| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #define LOG_TAG "PerformanceAnalysis" |
| // #define LOG_NDEBUG 0 |
| // #define WRITE_TO_FILE |
| |
| #include <algorithm> |
| #include <climits> |
| #include <deque> |
| #include <iomanip> |
| #include <math.h> |
| #include <numeric> |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <sys/prctl.h> |
| #include <time.h> |
| #include <new> |
| #include <audio_utils/LogPlot.h> |
| #include <audio_utils/roundup.h> |
| #include <media/nblog/NBLog.h> |
| #include <media/nblog/PerformanceAnalysis.h> |
| #include <media/nblog/ReportPerformance.h> |
| #include <utils/Log.h> |
| #include <utils/String8.h> |
| #include <utils/Timers.h> |
| |
| #include <queue> |
| #include <utility> |
| |
| namespace android { |
| namespace ReportPerformance { |
| |
| void Histogram::add(double value) |
| { |
| if (mBinSize <= 0 || mBins.size() < 2) { |
| return; |
| } |
| // TODO Handle domain and range error exceptions? |
| const int unboundedIndex = lround((value - mLow) / mBinSize) + 1; |
| // std::clamp is introduced in C++17 |
| //const int index = std::clamp(unboundedIndex, 0, (int)(mBins.size() - 1)); |
| const int index = std::max(0, std::min((int)(mBins.size() - 1), unboundedIndex)); |
| mBins[index]++; |
| mTotalCount++; |
| } |
| |
| void Histogram::clear() |
| { |
| std::fill(mBins.begin(), mBins.end(), 0); |
| mTotalCount = 0; |
| } |
| |
| uint64_t Histogram::totalCount() const |
| { |
| return mTotalCount; |
| } |
| |
| std::string Histogram::toString() const { |
| std::stringstream ss; |
| static constexpr char kDivider = '|'; |
| ss << kVersion << "," << mBinSize << "," << mNumBins << "," << mLow << ",{"; |
| bool first = true; |
| for (size_t i = 0; i < mBins.size(); i++) { |
| if (mBins[i] != 0) { |
| if (!first) { |
| ss << ","; |
| } |
| ss << static_cast<int>(i) - 1 << kDivider << mBins[i]; |
| first = false; |
| } |
| } |
| ss << "}"; |
| |
| return ss.str(); |
| } |
| |
| std::string Histogram::asciiArtString(size_t indent) const { |
| if (totalCount() == 0 || mBinSize <= 0 || mBins.size() < 2) { |
| return ""; |
| } |
| |
| static constexpr char kMarker = '-'; |
| // One increment is considered one step of a bin's height. |
| static constexpr size_t kMarkersPerIncrement = 2; |
| static constexpr size_t kMaxIncrements = 64 + 1; |
| static constexpr size_t kMaxNumberWidth = 7; |
| static const std::string kMarkers(kMarkersPerIncrement * kMaxIncrements, kMarker); |
| static const std::string kSpaces(kMarkersPerIncrement * kMaxIncrements, ' '); |
| // get the last n characters of s, or the whole string if it is shorter |
| auto getTail = [](const size_t n, const std::string &s) { |
| return s.c_str() + s.size() - std::min(n, s.size()); |
| }; |
| |
| // Since totalCount() > 0, mBins is not empty and maxCount > 0. |
| const unsigned maxCount = *std::max_element(mBins.begin(), mBins.end()); |
| const size_t maxIncrements = log2(maxCount) + 1; |
| |
| std::stringstream ss; |
| |
| // Non-zero bins must exist at this point because totalCount() > 0. |
| size_t firstNonZeroBin = 0; |
| // If firstNonZeroBin reaches mBins.size() - 1, then it must be a nonzero bin. |
| for (; firstNonZeroBin < mBins.size() - 1 && mBins[firstNonZeroBin] == 0; firstNonZeroBin++) {} |
| const size_t firstBinToPrint = firstNonZeroBin == 0 ? 0 : firstNonZeroBin - 1; |
| |
| size_t lastNonZeroBin = mBins.size() - 1; |
| // If lastNonZeroBin reaches 0, then it must be a nonzero bin. |
| for (; lastNonZeroBin > 0 && mBins[lastNonZeroBin] == 0; lastNonZeroBin--) {} |
| const size_t lastBinToPrint = lastNonZeroBin == mBins.size() - 1 ? lastNonZeroBin |
| : lastNonZeroBin + 1; |
| |
| for (size_t bin = firstBinToPrint; bin <= lastBinToPrint; bin++) { |
| ss << std::setw(indent + kMaxNumberWidth); |
| if (bin == 0) { |
| ss << "<"; |
| } else if (bin == mBins.size() - 1) { |
| ss << ">"; |
| } else { |
| ss << mLow + (bin - 1) * mBinSize; |
| } |
| ss << " |"; |
| size_t increments = 0; |
| const uint64_t binCount = mBins[bin]; |
| if (binCount > 0) { |
| increments = log2(binCount) + 1; |
| ss << getTail(increments * kMarkersPerIncrement, kMarkers); |
| } |
| ss << getTail((maxIncrements - increments + 1) * kMarkersPerIncrement, kSpaces) |
| << binCount << "\n"; |
| } |
| ss << "\n"; |
| |
| return ss.str(); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| // Given an audio processing wakeup timestamp, buckets the time interval |
| // since the previous timestamp into a histogram, searches for |
| // outliers, analyzes the outlier series for unexpectedly |
| // small or large values and stores these as peaks |
| void PerformanceAnalysis::logTsEntry(timestamp ts) { |
| // after a state change, start a new series and do not |
| // record time intervals in-between |
| if (mBufferPeriod.mPrevTs == 0) { |
| mBufferPeriod.mPrevTs = ts; |
| return; |
| } |
| |
| // calculate time interval between current and previous timestamp |
| const msInterval diffMs = static_cast<msInterval>( |
| deltaMs(mBufferPeriod.mPrevTs, ts)); |
| |
| const int diffJiffy = deltaJiffy(mBufferPeriod.mPrevTs, ts); |
| |
| // old versus new weight ratio when updating the buffer period mean |
| static constexpr double exponentialWeight = 0.999; |
| // update buffer period mean with exponential weighting |
| mBufferPeriod.mMean = (mBufferPeriod.mMean < 0) ? diffMs : |
| exponentialWeight * mBufferPeriod.mMean + (1.0 - exponentialWeight) * diffMs; |
| // set mOutlierFactor to a smaller value for the fastmixer thread |
| const int kFastMixerMax = 10; |
| // NormalMixer times vary much more than FastMixer times. |
| // TODO: mOutlierFactor values are set empirically based on what appears to be |
| // an outlier. Learn these values from the data. |
| mBufferPeriod.mOutlierFactor = mBufferPeriod.mMean < kFastMixerMax ? 1.8 : 2.0; |
| // set outlier threshold |
| mBufferPeriod.mOutlier = mBufferPeriod.mMean * mBufferPeriod.mOutlierFactor; |
| |
| // Check whether the time interval between the current timestamp |
| // and the previous one is long enough to count as an outlier |
| const bool isOutlier = detectAndStoreOutlier(diffMs); |
| // If an outlier was found, check whether it was a peak |
| if (isOutlier) { |
| /*bool isPeak =*/ detectAndStorePeak( |
| mOutlierData[0].first, mOutlierData[0].second); |
| // TODO: decide whether to insert a new empty histogram if a peak |
| // TODO: remove isPeak if unused to avoid "unused variable" error |
| // occurred at the current timestamp |
| } |
| |
| // Insert a histogram to mHists if it is empty, or |
| // close the current histogram and insert a new empty one if |
| // if the current histogram has spanned its maximum time interval. |
| if (mHists.empty() || |
| deltaMs(mHists[0].first, ts) >= kMaxLength.HistTimespanMs) { |
| mHists.emplace_front(ts, std::map<int, int>()); |
| // When memory is full, delete oldest histogram |
| // TODO: use a circular buffer |
| if (mHists.size() >= kMaxLength.Hists) { |
| mHists.resize(kMaxLength.Hists); |
| } |
| } |
| // add current time intervals to histogram |
| ++mHists[0].second[diffJiffy]; |
| // update previous timestamp |
| mBufferPeriod.mPrevTs = ts; |
| } |
| |
| |
| // forces short-term histogram storage to avoid adding idle audio time interval |
| // to buffer period data |
| void PerformanceAnalysis::handleStateChange() { |
| mBufferPeriod.mPrevTs = 0; |
| return; |
| } |
| |
| |
| // Checks whether the time interval between two outliers is far enough from |
| // a typical delta to be considered a peak. |
| // looks for changes in distribution (peaks), which can be either positive or negative. |
| // The function sets the mean to the starting value and sigma to 0, and updates |
| // them as long as no peak is detected. When a value is more than 'threshold' |
| // standard deviations from the mean, a peak is detected and the mean and sigma |
| // are set to the peak value and 0. |
| bool PerformanceAnalysis::detectAndStorePeak(msInterval diff, timestamp ts) { |
| bool isPeak = false; |
| if (mOutlierData.empty()) { |
| return false; |
| } |
| // Update mean of the distribution |
| // TypicalDiff is used to check whether a value is unusually large |
| // when we cannot use standard deviations from the mean because the sd is set to 0. |
| mOutlierDistribution.mTypicalDiff = (mOutlierDistribution.mTypicalDiff * |
| (mOutlierData.size() - 1) + diff) / mOutlierData.size(); |
| |
| // Initialize short-term mean at start of program |
| if (mOutlierDistribution.mMean == 0) { |
| mOutlierDistribution.mMean = diff; |
| } |
| // Update length of current sequence of outliers |
| mOutlierDistribution.mN++; |
| |
| // Check whether a large deviation from the mean occurred. |
| // If the standard deviation has been reset to zero, the comparison is |
| // instead to the mean of the full mOutlierInterval sequence. |
| if ((fabs(diff - mOutlierDistribution.mMean) < |
| mOutlierDistribution.kMaxDeviation * mOutlierDistribution.mSd) || |
| (mOutlierDistribution.mSd == 0 && |
| fabs(diff - mOutlierDistribution.mMean) < |
| mOutlierDistribution.mTypicalDiff)) { |
| // update the mean and sd using online algorithm |
| // https://en.wikipedia.org/wiki/ |
| // Algorithms_for_calculating_variance#Online_algorithm |
| mOutlierDistribution.mN++; |
| const double kDelta = diff - mOutlierDistribution.mMean; |
| mOutlierDistribution.mMean += kDelta / mOutlierDistribution.mN; |
| const double kDelta2 = diff - mOutlierDistribution.mMean; |
| mOutlierDistribution.mM2 += kDelta * kDelta2; |
| mOutlierDistribution.mSd = (mOutlierDistribution.mN < 2) ? 0 : |
| sqrt(mOutlierDistribution.mM2 / (mOutlierDistribution.mN - 1)); |
| } else { |
| // new value is far from the mean: |
| // store peak timestamp and reset mean, sd, and short-term sequence |
| isPeak = true; |
| mPeakTimestamps.emplace_front(ts); |
| // if mPeaks has reached capacity, delete oldest data |
| // Note: this means that mOutlierDistribution values do not exactly |
| // match the data we have in mPeakTimestamps, but this is not an issue |
| // in practice for estimating future peaks. |
| // TODO: turn this into a circular buffer |
| if (mPeakTimestamps.size() >= kMaxLength.Peaks) { |
| mPeakTimestamps.resize(kMaxLength.Peaks); |
| } |
| mOutlierDistribution.mMean = 0; |
| mOutlierDistribution.mSd = 0; |
| mOutlierDistribution.mN = 0; |
| mOutlierDistribution.mM2 = 0; |
| } |
| return isPeak; |
| } |
| |
| |
| // Determines whether the difference between a timestamp and the previous |
| // one is beyond a threshold. If yes, stores the timestamp as an outlier |
| // and writes to mOutlierdata in the following format: |
| // Time elapsed since previous outlier: Timestamp of start of outlier |
| // e.g. timestamps (ms) 1, 4, 5, 16, 18, 28 will produce pairs (4, 5), (13, 18). |
| // TODO: learn what timestamp sequences correlate with glitches instead of |
| // manually designing a heuristic. |
| bool PerformanceAnalysis::detectAndStoreOutlier(const msInterval diffMs) { |
| bool isOutlier = false; |
| if (diffMs >= mBufferPeriod.mOutlier) { |
| isOutlier = true; |
| mOutlierData.emplace_front( |
| mOutlierDistribution.mElapsed, mBufferPeriod.mPrevTs); |
| // Remove oldest value if the vector is full |
| // TODO: turn this into a circular buffer |
| // TODO: make sure kShortHistSize is large enough that that data will never be lost |
| // before being written to file or to a FIFO |
| if (mOutlierData.size() >= kMaxLength.Outliers) { |
| mOutlierData.resize(kMaxLength.Outliers); |
| } |
| mOutlierDistribution.mElapsed = 0; |
| } |
| mOutlierDistribution.mElapsed += diffMs; |
| return isOutlier; |
| } |
| |
| // rounds value to precision based on log-distance from mean |
| __attribute__((no_sanitize("signed-integer-overflow"))) |
| inline double logRound(double x, double mean) { |
| // Larger values decrease range of high resolution and prevent overflow |
| // of a histogram on the console. |
| // The following formula adjusts kBase based on the buffer period length. |
| // Different threads have buffer periods ranging from 2 to 40. The |
| // formula below maps buffer period 2 to kBase = ~1, 4 to ~2, 20 to ~3, 40 to ~4. |
| // TODO: tighten this for higher means, the data still overflows |
| const double kBase = log(mean) / log(2.2); |
| const double power = floor( |
| log(abs(x - mean) / mean) / log(kBase)) + 2; |
| // do not round values close to the mean |
| if (power < 1) { |
| return x; |
| } |
| const int factor = static_cast<int>(pow(10, power)); |
| return (static_cast<int>(x) * factor) / factor; |
| } |
| |
| // TODO Make it return a std::string instead of modifying body |
| // TODO: move this to ReportPerformance, probably make it a friend function |
| // of PerformanceAnalysis |
| void PerformanceAnalysis::reportPerformance(String8 *body, int author, log_hash_t hash, |
| int maxHeight) { |
| if (mHists.empty() || body == nullptr) { |
| return; |
| } |
| |
| // ms of active audio in displayed histogram |
| double elapsedMs = 0; |
| // starting timestamp of histogram |
| timestamp startingTs = mHists[0].first; |
| |
| // histogram which stores .1 precision ms counts instead of Jiffy multiple counts |
| std::map<double, int> buckets; |
| for (const auto &shortHist: mHists) { |
| for (const auto &countPair : shortHist.second) { |
| const double ms = static_cast<double>(countPair.first) / kJiffyPerMs; |
| buckets[logRound(ms, mBufferPeriod.mMean)] += countPair.second; |
| elapsedMs += ms * countPair.second; |
| } |
| } |
| |
| static const int SIZE = 128; |
| char title[SIZE]; |
| snprintf(title, sizeof(title), "\n%s %3.2f %s\n%s%d, %lld, %lld\n", |
| "Occurrences in", (elapsedMs / kMsPerSec), "seconds of audio:", |
| "Thread, hash, starting timestamp: ", author, |
| static_cast<long long>(hash), static_cast<long long>(startingTs)); |
| static const char * const kLabel = "ms"; |
| |
| body->appendFormat("%s", |
| audio_utils_plot_histogram(buckets, title, kLabel, maxHeight).c_str()); |
| |
| // Now report glitches |
| body->appendFormat("\ntime elapsed between glitches and glitch timestamps:\n"); |
| for (const auto &outlier: mOutlierData) { |
| body->appendFormat("%lld: %lld\n", static_cast<long long>(outlier.first), |
| static_cast<long long>(outlier.second)); |
| } |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| // writes summary of performance into specified file descriptor |
| void dump(int fd, int indent, PerformanceAnalysisMap &threadPerformanceAnalysis) { |
| String8 body; |
| #ifdef WRITE_TO_FILE |
| const char* const kDirectory = "/data/misc/audioserver/"; |
| #endif |
| for (auto & thread : threadPerformanceAnalysis) { |
| for (auto & hash: thread.second) { |
| PerformanceAnalysis& curr = hash.second; |
| // write performance data to console |
| curr.reportPerformance(&body, thread.first, hash.first); |
| if (!body.isEmpty()) { |
| dumpLine(fd, indent, body); |
| body.clear(); |
| } |
| #ifdef WRITE_TO_FILE |
| // write to file. Enable by uncommenting macro at top of file. |
| writeToFile(curr.mHists, curr.mOutlierData, curr.mPeakTimestamps, |
| kDirectory, false, thread.first, hash.first); |
| #endif |
| } |
| } |
| } |
| |
| |
| // Writes a string into specified file descriptor |
| void dumpLine(int fd, int indent, const String8 &body) { |
| dprintf(fd, "%.*s%s \n", indent, "", body.string()); |
| } |
| |
| } // namespace ReportPerformance |
| } // namespace android |