| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <math.h> |
| #include <stdio.h> |
| #include <unistd.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| static inline double sinc(double x) { |
| if (fabs(x) == 0.0f) return 1.0f; |
| return sin(x) / x; |
| } |
| |
| static inline double sqr(double x) { |
| return x*x; |
| } |
| |
| static inline int64_t toint(double x, int64_t maxval) { |
| int64_t v; |
| |
| v = static_cast<int64_t>(floor(x * maxval + 0.5)); |
| if (v >= maxval) { |
| return maxval - 1; // error! |
| } |
| return v; |
| } |
| |
| static double I0(double x) { |
| // from the Numerical Recipes in C p. 237 |
| double ax,ans,y; |
| ax=fabs(x); |
| if (ax < 3.75) { |
| y=x/3.75; |
| y*=y; |
| ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492 |
| +y*(0.2659732+y*(0.360768e-1+y*0.45813e-2))))); |
| } else { |
| y=3.75/ax; |
| ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1 |
| +y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2 |
| +y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1 |
| +y*0.392377e-2)))))))); |
| } |
| return ans; |
| } |
| |
| static double kaiser(int k, int N, double beta) { |
| if (k < 0 || k > N) |
| return 0; |
| return I0(beta * sqrt(1.0 - sqr((2.0*k)/N - 1.0))) / I0(beta); |
| } |
| |
| static void usage(char* name) { |
| fprintf(stderr, |
| "usage: %s [-h] [-d] [-s sample_rate] [-c cut-off_frequency] [-n half_zero_crossings]" |
| " [-f {float|fixed|fixed16}] [-b beta] [-v dBFS] [-l lerp]\n" |
| " %s [-h] [-d] [-s sample_rate] [-c cut-off_frequency] [-n half_zero_crossings]" |
| " [-f {float|fixed|fixed16}] [-b beta] [-v dBFS] -p M/N\n" |
| " -h this help message\n" |
| " -d debug, print comma-separated coefficient table\n" |
| " -p generate poly-phase filter coefficients, with sample increment M/N\n" |
| " -s sample rate (48000)\n" |
| " -c cut-off frequency (20478)\n" |
| " -n number of zero-crossings on one side (8)\n" |
| " -l number of lerping bits (4)\n" |
| " -m number of polyphases (related to -l, default 16)\n" |
| " -f output format, can be fixed-point or floating-point (fixed)\n" |
| " -b kaiser window parameter beta (7.865 [-80dB])\n" |
| " -v attenuation in dBFS (0)\n", |
| name, name |
| ); |
| exit(0); |
| } |
| |
| int main(int argc, char** argv) |
| { |
| // nc is the number of bits to store the coefficients |
| int nc = 32; |
| bool polyphase = false; |
| unsigned int polyM = 160; |
| unsigned int polyN = 147; |
| bool debug = false; |
| double Fs = 48000; |
| double Fc = 20478; |
| double atten = 1; |
| int format = 0; |
| |
| // in order to keep the errors associated with the linear |
| // interpolation of the coefficients below the quantization error |
| // we must satisfy: |
| // 2^nz >= 2^(nc/2) |
| // |
| // for 16 bit coefficients that would be 256 |
| // |
| // note that increasing nz only increases memory requirements, |
| // but doesn't increase the amount of computation to do. |
| // |
| // |
| // see: |
| // Smith, J.O. Digital Audio Resampling Home Page |
| // https://ccrma.stanford.edu/~jos/resample/, 2011-03-29 |
| // |
| |
| // | 0.1102*(A - 8.7) A > 50 |
| // beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50 |
| // | 0 A < 21 |
| // with A is the desired stop-band attenuation in dBFS |
| // |
| // for eg: |
| // |
| // 30 dB 2.210 |
| // 40 dB 3.384 |
| // 50 dB 4.538 |
| // 60 dB 5.658 |
| // 70 dB 6.764 |
| // 80 dB 7.865 |
| // 90 dB 8.960 |
| // 100 dB 10.056 |
| double beta = 7.865; |
| |
| // 2*nzc = (A - 8) / (2.285 * dw) |
| // with dw the transition width = 2*pi*dF/Fs |
| // |
| int nzc = 8; |
| |
| /* |
| * Example: |
| * 44.1 KHz to 48 KHz resampling |
| * 100 dB rejection above 28 KHz |
| * (the spectrum will fold around 24 KHz and we want 100 dB rejection |
| * at the point where the folding reaches 20 KHz) |
| * ...___|_____ |
| * | \| |
| * | ____/|\____ |
| * |/alias| \ |
| * ------/------+------\---------> KHz |
| * 20 24 28 |
| * |
| * Transition band 8 KHz, or dw = 1.0472 |
| * |
| * beta = 10.056 |
| * nzc = 20 |
| */ |
| |
| int M = 1 << 4; // number of phases for interpolation |
| int ch; |
| while ((ch = getopt(argc, argv, ":hds:c:n:f:l:m:b:p:v:z:")) != -1) { |
| switch (ch) { |
| case 'd': |
| debug = true; |
| break; |
| case 'p': |
| if (sscanf(optarg, "%u/%u", &polyM, &polyN) != 2) { |
| usage(argv[0]); |
| } |
| polyphase = true; |
| break; |
| case 's': |
| Fs = atof(optarg); |
| break; |
| case 'c': |
| Fc = atof(optarg); |
| break; |
| case 'n': |
| nzc = atoi(optarg); |
| break; |
| case 'm': |
| M = atoi(optarg); |
| break; |
| case 'l': |
| M = 1 << atoi(optarg); |
| break; |
| case 'f': |
| if (!strcmp(optarg, "fixed")) { |
| format = 0; |
| } |
| else if (!strcmp(optarg, "fixed16")) { |
| format = 0; |
| nc = 16; |
| } |
| else if (!strcmp(optarg, "float")) { |
| format = 1; |
| } |
| else { |
| usage(argv[0]); |
| } |
| break; |
| case 'b': |
| beta = atof(optarg); |
| break; |
| case 'v': |
| atten = pow(10, -fabs(atof(optarg))*0.05 ); |
| break; |
| case 'h': |
| default: |
| usage(argv[0]); |
| break; |
| } |
| } |
| |
| // cut off frequency ratio Fc/Fs |
| double Fcr = Fc / Fs; |
| |
| // total number of coefficients (one side) |
| |
| const int N = M * nzc; |
| |
| // lerp (which is most useful if M is a power of 2) |
| |
| int nz = 0; // recalculate nz as the bits needed to represent M |
| for (int i = M-1 ; i; i>>=1, nz++); |
| // generate the right half of the filter |
| if (!debug) { |
| printf("// cmd-line: "); |
| for (int i=1 ; i<argc ; i++) { |
| printf("%s ", argv[i]); |
| } |
| printf("\n"); |
| if (!polyphase) { |
| printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", N); |
| printf("const int32_t RESAMPLE_FIR_INT_PHASES = %d;\n", M); |
| printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", nzc); |
| } else { |
| printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", 2*nzc*polyN); |
| printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", 2*nzc); |
| } |
| if (!format) { |
| printf("const int32_t RESAMPLE_FIR_COEF_BITS = %d;\n", nc); |
| } |
| printf("\n"); |
| printf("static %s resampleFIR[] = {", !format ? "int32_t" : "float"); |
| } |
| |
| if (!polyphase) { |
| for (int i=0 ; i<=M ; i++) { // an extra set of coefs for interpolation |
| for (int j=0 ; j<nzc ; j++) { |
| int ix = j*M + i; |
| double x = (2.0 * M_PI * ix * Fcr) / M; |
| double y = kaiser(ix+N, 2*N, beta) * sinc(x) * 2.0 * Fcr; |
| y *= atten; |
| |
| if (!debug) { |
| if (j == 0) |
| printf("\n "); |
| } |
| if (!format) { |
| int64_t yi = toint(y, 1ULL<<(nc-1)); |
| if (nc > 16) { |
| printf("0x%08x, ", int32_t(yi)); |
| } else { |
| printf("0x%04x, ", int32_t(yi)&0xffff); |
| } |
| } else { |
| printf("%.9g%s ", y, debug ? "," : "f,"); |
| } |
| } |
| } |
| } else { |
| for (unsigned int j=0 ; j<polyN ; j++) { |
| // calculate the phase |
| double p = ((polyM*j) % polyN) / double(polyN); |
| if (!debug) printf("\n "); |
| else printf("\n"); |
| // generate a FIR per phase |
| for (int i=-nzc ; i<nzc ; i++) { |
| double x = 2.0 * M_PI * Fcr * (i + p); |
| double y = kaiser(i+N, 2*N, beta) * sinc(x) * 2.0 * Fcr;; |
| y *= atten; |
| if (!format) { |
| int64_t yi = toint(y, 1ULL<<(nc-1)); |
| if (nc > 16) { |
| printf("0x%08x, ", int32_t(yi)); |
| } else { |
| printf("0x%04x, ", int32_t(yi)&0xffff); |
| } |
| } else { |
| printf("%.9g%s", y, debug ? "" : "f"); |
| } |
| |
| if (debug && (i==nzc-1)) { |
| } else { |
| printf(", "); |
| } |
| } |
| } |
| } |
| |
| if (!debug) { |
| printf("\n};"); |
| } |
| printf("\n"); |
| return 0; |
| } |
| |
| // http://www.csee.umbc.edu/help/sound/AFsp-V2R1/html/audio/ResampAudio.html |