blob: 780b746359f1dd78869c40865aa5d478805dc25d [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "WAVExtractor"
#include <utils/Log.h>
#include "include/WAVExtractor.h"
#include <audio_utils/primitives.h>
#include <media/stagefright/foundation/ADebug.h>
#include <media/stagefright/DataSource.h>
#include <media/stagefright/MediaBufferGroup.h>
#include <media/stagefright/MediaDefs.h>
#include <media/stagefright/MediaErrors.h>
#include <media/stagefright/MediaSource.h>
#include <media/stagefright/MetaData.h>
#include <utils/String8.h>
#include <cutils/bitops.h>
#define CHANNEL_MASK_USE_CHANNEL_ORDER 0
namespace android {
enum {
WAVE_FORMAT_PCM = 0x0001,
WAVE_FORMAT_IEEE_FLOAT = 0x0003,
WAVE_FORMAT_ALAW = 0x0006,
WAVE_FORMAT_MULAW = 0x0007,
WAVE_FORMAT_MSGSM = 0x0031,
WAVE_FORMAT_EXTENSIBLE = 0xFFFE
};
static const char* WAVEEXT_SUBFORMAT = "\x00\x00\x00\x00\x10\x00\x80\x00\x00\xAA\x00\x38\x9B\x71";
static const char* AMBISONIC_SUBFORMAT = "\x00\x00\x21\x07\xD3\x11\x86\x44\xC8\xC1\xCA\x00\x00\x00";
static uint32_t U32_LE_AT(const uint8_t *ptr) {
return ptr[3] << 24 | ptr[2] << 16 | ptr[1] << 8 | ptr[0];
}
static uint16_t U16_LE_AT(const uint8_t *ptr) {
return ptr[1] << 8 | ptr[0];
}
struct WAVSource : public MediaSource {
WAVSource(
const sp<DataSource> &dataSource,
const sp<MetaData> &meta,
uint16_t waveFormat,
int32_t bitsPerSample,
off64_t offset, size_t size);
virtual status_t start(MetaData *params = NULL);
virtual status_t stop();
virtual sp<MetaData> getFormat();
virtual status_t read(
MediaBuffer **buffer, const ReadOptions *options = NULL);
virtual bool supportNonblockingRead() { return true; }
protected:
virtual ~WAVSource();
private:
static const size_t kMaxFrameSize;
sp<DataSource> mDataSource;
sp<MetaData> mMeta;
uint16_t mWaveFormat;
int32_t mSampleRate;
int32_t mNumChannels;
int32_t mBitsPerSample;
off64_t mOffset;
size_t mSize;
bool mStarted;
MediaBufferGroup *mGroup;
off64_t mCurrentPos;
WAVSource(const WAVSource &);
WAVSource &operator=(const WAVSource &);
};
WAVExtractor::WAVExtractor(const sp<DataSource> &source)
: mDataSource(source),
mValidFormat(false),
mChannelMask(CHANNEL_MASK_USE_CHANNEL_ORDER) {
mInitCheck = init();
}
WAVExtractor::~WAVExtractor() {
}
sp<MetaData> WAVExtractor::getMetaData() {
sp<MetaData> meta = new MetaData;
if (mInitCheck != OK) {
return meta;
}
meta->setCString(kKeyMIMEType, MEDIA_MIMETYPE_CONTAINER_WAV);
return meta;
}
size_t WAVExtractor::countTracks() {
return mInitCheck == OK ? 1 : 0;
}
sp<IMediaSource> WAVExtractor::getTrack(size_t index) {
if (mInitCheck != OK || index > 0) {
return NULL;
}
return new WAVSource(
mDataSource, mTrackMeta,
mWaveFormat, mBitsPerSample, mDataOffset, mDataSize);
}
sp<MetaData> WAVExtractor::getTrackMetaData(
size_t index, uint32_t /* flags */) {
if (mInitCheck != OK || index > 0) {
return NULL;
}
return mTrackMeta;
}
status_t WAVExtractor::init() {
uint8_t header[12];
if (mDataSource->readAt(
0, header, sizeof(header)) < (ssize_t)sizeof(header)) {
return NO_INIT;
}
if (memcmp(header, "RIFF", 4) || memcmp(&header[8], "WAVE", 4)) {
return NO_INIT;
}
size_t totalSize = U32_LE_AT(&header[4]);
off64_t offset = 12;
size_t remainingSize = totalSize;
while (remainingSize >= 8) {
uint8_t chunkHeader[8];
if (mDataSource->readAt(offset, chunkHeader, 8) < 8) {
return NO_INIT;
}
remainingSize -= 8;
offset += 8;
uint32_t chunkSize = U32_LE_AT(&chunkHeader[4]);
if (chunkSize > remainingSize) {
return NO_INIT;
}
if (!memcmp(chunkHeader, "fmt ", 4)) {
if (chunkSize < 16) {
return NO_INIT;
}
uint8_t formatSpec[40];
if (mDataSource->readAt(offset, formatSpec, 2) < 2) {
return NO_INIT;
}
mWaveFormat = U16_LE_AT(formatSpec);
if (mWaveFormat != WAVE_FORMAT_PCM
&& mWaveFormat != WAVE_FORMAT_IEEE_FLOAT
&& mWaveFormat != WAVE_FORMAT_ALAW
&& mWaveFormat != WAVE_FORMAT_MULAW
&& mWaveFormat != WAVE_FORMAT_MSGSM
&& mWaveFormat != WAVE_FORMAT_EXTENSIBLE) {
return ERROR_UNSUPPORTED;
}
uint8_t fmtSize = 16;
if (mWaveFormat == WAVE_FORMAT_EXTENSIBLE) {
fmtSize = 40;
}
if (mDataSource->readAt(offset, formatSpec, fmtSize) < fmtSize) {
return NO_INIT;
}
mNumChannels = U16_LE_AT(&formatSpec[2]);
if (mNumChannels < 1 || mNumChannels > 8) {
ALOGE("Unsupported number of channels (%d)", mNumChannels);
return ERROR_UNSUPPORTED;
}
if (mWaveFormat != WAVE_FORMAT_EXTENSIBLE) {
if (mNumChannels != 1 && mNumChannels != 2) {
ALOGW("More than 2 channels (%d) in non-WAVE_EXT, unknown channel mask",
mNumChannels);
}
}
mSampleRate = U32_LE_AT(&formatSpec[4]);
if (mSampleRate == 0) {
return ERROR_MALFORMED;
}
mBitsPerSample = U16_LE_AT(&formatSpec[14]);
if (mWaveFormat == WAVE_FORMAT_EXTENSIBLE) {
uint16_t validBitsPerSample = U16_LE_AT(&formatSpec[18]);
if (validBitsPerSample != mBitsPerSample) {
if (validBitsPerSample != 0) {
ALOGE("validBits(%d) != bitsPerSample(%d) are not supported",
validBitsPerSample, mBitsPerSample);
return ERROR_UNSUPPORTED;
} else {
// we only support valitBitsPerSample == bitsPerSample but some WAV_EXT
// writers don't correctly set the valid bits value, and leave it at 0.
ALOGW("WAVE_EXT has 0 valid bits per sample, ignoring");
}
}
mChannelMask = U32_LE_AT(&formatSpec[20]);
ALOGV("numChannels=%d channelMask=0x%x", mNumChannels, mChannelMask);
if ((mChannelMask >> 18) != 0) {
ALOGE("invalid channel mask 0x%x", mChannelMask);
return ERROR_MALFORMED;
}
if ((mChannelMask != CHANNEL_MASK_USE_CHANNEL_ORDER)
&& (popcount(mChannelMask) != mNumChannels)) {
ALOGE("invalid number of channels (%d) in channel mask (0x%x)",
popcount(mChannelMask), mChannelMask);
return ERROR_MALFORMED;
}
// In a WAVE_EXT header, the first two bytes of the GUID stored at byte 24 contain
// the sample format, using the same definitions as a regular WAV header
mWaveFormat = U16_LE_AT(&formatSpec[24]);
if (memcmp(&formatSpec[26], WAVEEXT_SUBFORMAT, 14) &&
memcmp(&formatSpec[26], AMBISONIC_SUBFORMAT, 14)) {
ALOGE("unsupported GUID");
return ERROR_UNSUPPORTED;
}
}
if (mWaveFormat == WAVE_FORMAT_PCM) {
if (mBitsPerSample != 8 && mBitsPerSample != 16
&& mBitsPerSample != 24 && mBitsPerSample != 32) {
return ERROR_UNSUPPORTED;
}
} else if (mWaveFormat == WAVE_FORMAT_IEEE_FLOAT) {
if (mBitsPerSample != 32) { // TODO we don't support double
return ERROR_UNSUPPORTED;
}
}
else if (mWaveFormat == WAVE_FORMAT_MSGSM) {
if (mBitsPerSample != 0) {
return ERROR_UNSUPPORTED;
}
} else if (mWaveFormat == WAVE_FORMAT_MULAW || mWaveFormat == WAVE_FORMAT_ALAW) {
if (mBitsPerSample != 8) {
return ERROR_UNSUPPORTED;
}
} else {
return ERROR_UNSUPPORTED;
}
mValidFormat = true;
} else if (!memcmp(chunkHeader, "data", 4)) {
if (mValidFormat) {
mDataOffset = offset;
mDataSize = chunkSize;
mTrackMeta = new MetaData;
switch (mWaveFormat) {
case WAVE_FORMAT_PCM:
case WAVE_FORMAT_IEEE_FLOAT:
mTrackMeta->setCString(
kKeyMIMEType, MEDIA_MIMETYPE_AUDIO_RAW);
break;
case WAVE_FORMAT_ALAW:
mTrackMeta->setCString(
kKeyMIMEType, MEDIA_MIMETYPE_AUDIO_G711_ALAW);
break;
case WAVE_FORMAT_MSGSM:
mTrackMeta->setCString(
kKeyMIMEType, MEDIA_MIMETYPE_AUDIO_MSGSM);
break;
default:
CHECK_EQ(mWaveFormat, (uint16_t)WAVE_FORMAT_MULAW);
mTrackMeta->setCString(
kKeyMIMEType, MEDIA_MIMETYPE_AUDIO_G711_MLAW);
break;
}
mTrackMeta->setInt32(kKeyChannelCount, mNumChannels);
mTrackMeta->setInt32(kKeyChannelMask, mChannelMask);
mTrackMeta->setInt32(kKeySampleRate, mSampleRate);
mTrackMeta->setInt32(kKeyPcmEncoding, kAudioEncodingPcm16bit);
int64_t durationUs = 0;
if (mWaveFormat == WAVE_FORMAT_MSGSM) {
// 65 bytes decode to 320 8kHz samples
durationUs =
1000000LL * (mDataSize / 65 * 320) / 8000;
} else {
size_t bytesPerSample = mBitsPerSample >> 3;
if (!bytesPerSample || !mNumChannels)
return ERROR_MALFORMED;
size_t num_samples = mDataSize / (mNumChannels * bytesPerSample);
if (!mSampleRate)
return ERROR_MALFORMED;
durationUs =
1000000LL * num_samples / mSampleRate;
}
mTrackMeta->setInt64(kKeyDuration, durationUs);
return OK;
}
}
offset += chunkSize;
}
return NO_INIT;
}
const size_t WAVSource::kMaxFrameSize = 32768;
WAVSource::WAVSource(
const sp<DataSource> &dataSource,
const sp<MetaData> &meta,
uint16_t waveFormat,
int32_t bitsPerSample,
off64_t offset, size_t size)
: mDataSource(dataSource),
mMeta(meta),
mWaveFormat(waveFormat),
mSampleRate(0),
mNumChannels(0),
mBitsPerSample(bitsPerSample),
mOffset(offset),
mSize(size),
mStarted(false),
mGroup(NULL) {
CHECK(mMeta->findInt32(kKeySampleRate, &mSampleRate));
CHECK(mMeta->findInt32(kKeyChannelCount, &mNumChannels));
mMeta->setInt32(kKeyMaxInputSize, kMaxFrameSize);
}
WAVSource::~WAVSource() {
if (mStarted) {
stop();
}
}
status_t WAVSource::start(MetaData * /* params */) {
ALOGV("WAVSource::start");
CHECK(!mStarted);
// some WAV files may have large audio buffers that use shared memory transfer.
mGroup = new MediaBufferGroup(4 /* buffers */, kMaxFrameSize);
if (mBitsPerSample == 8) {
// As a temporary buffer for 8->16 bit conversion.
mGroup->add_buffer(new MediaBuffer(kMaxFrameSize));
}
mCurrentPos = mOffset;
mStarted = true;
return OK;
}
status_t WAVSource::stop() {
ALOGV("WAVSource::stop");
CHECK(mStarted);
delete mGroup;
mGroup = NULL;
mStarted = false;
return OK;
}
sp<MetaData> WAVSource::getFormat() {
ALOGV("WAVSource::getFormat");
return mMeta;
}
status_t WAVSource::read(
MediaBuffer **out, const ReadOptions *options) {
*out = NULL;
if (options != nullptr && options->getNonBlocking() && !mGroup->has_buffers()) {
return WOULD_BLOCK;
}
int64_t seekTimeUs;
ReadOptions::SeekMode mode;
if (options != NULL && options->getSeekTo(&seekTimeUs, &mode)) {
int64_t pos = 0;
if (mWaveFormat == WAVE_FORMAT_MSGSM) {
// 65 bytes decode to 320 8kHz samples
int64_t samplenumber = (seekTimeUs * mSampleRate) / 1000000;
int64_t framenumber = samplenumber / 320;
pos = framenumber * 65;
} else {
pos = (seekTimeUs * mSampleRate) / 1000000 * mNumChannels * (mBitsPerSample >> 3);
}
if (pos > (off64_t)mSize) {
pos = mSize;
}
mCurrentPos = pos + mOffset;
}
MediaBuffer *buffer;
status_t err = mGroup->acquire_buffer(&buffer);
if (err != OK) {
return err;
}
// make sure that maxBytesToRead is multiple of 3, in 24-bit case
size_t maxBytesToRead =
mBitsPerSample == 8 ? kMaxFrameSize / 2 :
(mBitsPerSample == 24 ? 3*(kMaxFrameSize/3): kMaxFrameSize);
size_t maxBytesAvailable =
(mCurrentPos - mOffset >= (off64_t)mSize)
? 0 : mSize - (mCurrentPos - mOffset);
if (maxBytesToRead > maxBytesAvailable) {
maxBytesToRead = maxBytesAvailable;
}
if (mWaveFormat == WAVE_FORMAT_MSGSM) {
// Microsoft packs 2 frames into 65 bytes, rather than using separate 33-byte frames,
// so read multiples of 65, and use smaller buffers to account for ~10:1 expansion ratio
if (maxBytesToRead > 1024) {
maxBytesToRead = 1024;
}
maxBytesToRead = (maxBytesToRead / 65) * 65;
} else {
// read only integral amounts of audio unit frames.
const size_t inputUnitFrameSize = mNumChannels * mBitsPerSample / 8;
maxBytesToRead -= maxBytesToRead % inputUnitFrameSize;
}
ssize_t n = mDataSource->readAt(
mCurrentPos, buffer->data(),
maxBytesToRead);
if (n <= 0) {
buffer->release();
buffer = NULL;
return ERROR_END_OF_STREAM;
}
buffer->set_range(0, n);
// TODO: add capability to return data as float PCM instead of 16 bit PCM.
if (mWaveFormat == WAVE_FORMAT_PCM) {
if (mBitsPerSample == 8) {
// Convert 8-bit unsigned samples to 16-bit signed.
// Create new buffer with 2 byte wide samples
MediaBuffer *tmp;
CHECK_EQ(mGroup->acquire_buffer(&tmp), (status_t)OK);
tmp->set_range(0, 2 * n);
memcpy_to_i16_from_u8((int16_t *)tmp->data(), (const uint8_t *)buffer->data(), n);
buffer->release();
buffer = tmp;
} else if (mBitsPerSample == 24) {
// Convert 24-bit signed samples to 16-bit signed in place
const size_t numSamples = n / 3;
memcpy_to_i16_from_p24((int16_t *)buffer->data(), (const uint8_t *)buffer->data(), numSamples);
buffer->set_range(0, 2 * numSamples);
} else if (mBitsPerSample == 32) {
// Convert 32-bit signed samples to 16-bit signed in place
const size_t numSamples = n / 4;
memcpy_to_i16_from_i32((int16_t *)buffer->data(), (const int32_t *)buffer->data(), numSamples);
buffer->set_range(0, 2 * numSamples);
}
} else if (mWaveFormat == WAVE_FORMAT_IEEE_FLOAT) {
if (mBitsPerSample == 32) {
// Convert 32-bit float samples to 16-bit signed in place
const size_t numSamples = n / 4;
memcpy_to_i16_from_float((int16_t *)buffer->data(), (const float *)buffer->data(), numSamples);
buffer->set_range(0, 2 * numSamples);
}
}
int64_t timeStampUs = 0;
if (mWaveFormat == WAVE_FORMAT_MSGSM) {
timeStampUs = 1000000LL * (mCurrentPos - mOffset) * 320 / 65 / mSampleRate;
} else {
size_t bytesPerSample = mBitsPerSample >> 3;
timeStampUs = 1000000LL * (mCurrentPos - mOffset)
/ (mNumChannels * bytesPerSample) / mSampleRate;
}
buffer->meta_data()->setInt64(kKeyTime, timeStampUs);
buffer->meta_data()->setInt32(kKeyIsSyncFrame, 1);
mCurrentPos += n;
*out = buffer;
return OK;
}
////////////////////////////////////////////////////////////////////////////////
bool SniffWAV(
const sp<DataSource> &source, String8 *mimeType, float *confidence,
sp<AMessage> *) {
char header[12];
if (source->readAt(0, header, sizeof(header)) < (ssize_t)sizeof(header)) {
return false;
}
if (memcmp(header, "RIFF", 4) || memcmp(&header[8], "WAVE", 4)) {
return false;
}
sp<MediaExtractor> extractor = new WAVExtractor(source);
if (extractor->countTracks() == 0) {
return false;
}
*mimeType = MEDIA_MIMETYPE_CONTAINER_WAV;
*confidence = 0.3f;
return true;
}
} // namespace android