blob: 2b9fd600a6aaad1480792360fac26a5841467f20 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VideoEditorTools.h"
#include "PreviewRenderer.h"
/*+ Handle the image files here */
#include <utils/Log.h>
/*- Handle the image files here */
const M4VIFI_UInt8 M4VIFI_ClipTable[1256]
= {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23,
0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33,
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43,
0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b,
0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53,
0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b,
0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63,
0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b,
0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73,
0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b,
0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83,
0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b,
0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93,
0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b,
0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3,
0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab,
0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3,
0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb,
0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb,
0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3,
0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb,
0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3,
0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb,
0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3,
0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb,
0xfc, 0xfd, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/* Division table for ( 65535/x ); x = 0 to 512 */
const M4VIFI_UInt16 M4VIFI_DivTable[512]
= {
0, 65535, 32768, 21845, 16384, 13107, 10922, 9362,
8192, 7281, 6553, 5957, 5461, 5041, 4681, 4369,
4096, 3855, 3640, 3449, 3276, 3120, 2978, 2849,
2730, 2621, 2520, 2427, 2340, 2259, 2184, 2114,
2048, 1985, 1927, 1872, 1820, 1771, 1724, 1680,
1638, 1598, 1560, 1524, 1489, 1456, 1424, 1394,
1365, 1337, 1310, 1285, 1260, 1236, 1213, 1191,
1170, 1149, 1129, 1110, 1092, 1074, 1057, 1040,
1024, 1008, 992, 978, 963, 949, 936, 923,
910, 897, 885, 873, 862, 851, 840, 829,
819, 809, 799, 789, 780, 771, 762, 753,
744, 736, 728, 720, 712, 704, 697, 689,
682, 675, 668, 661, 655, 648, 642, 636,
630, 624, 618, 612, 606, 601, 595, 590,
585, 579, 574, 569, 564, 560, 555, 550,
546, 541, 537, 532, 528, 524, 520, 516,
512, 508, 504, 500, 496, 492, 489, 485,
481, 478, 474, 471, 468, 464, 461, 458,
455, 451, 448, 445, 442, 439, 436, 434,
431, 428, 425, 422, 420, 417, 414, 412,
409, 407, 404, 402, 399, 397, 394, 392,
390, 387, 385, 383, 381, 378, 376, 374,
372, 370, 368, 366, 364, 362, 360, 358,
356, 354, 352, 350, 348, 346, 344, 343,
341, 339, 337, 336, 334, 332, 330, 329,
327, 326, 324, 322, 321, 319, 318, 316,
315, 313, 312, 310, 309, 307, 306, 304,
303, 302, 300, 299, 297, 296, 295, 293,
292, 291, 289, 288, 287, 286, 284, 283,
282, 281, 280, 278, 277, 276, 275, 274,
273, 271, 270, 269, 268, 267, 266, 265,
264, 263, 262, 261, 260, 259, 258, 257,
256, 255, 254, 253, 252, 251, 250, 249,
248, 247, 246, 245, 244, 243, 242, 241,
240, 240, 239, 238, 237, 236, 235, 234,
234, 233, 232, 231, 230, 229, 229, 228,
227, 226, 225, 225, 224, 223, 222, 222,
221, 220, 219, 219, 218, 217, 217, 216,
215, 214, 214, 213, 212, 212, 211, 210,
210, 209, 208, 208, 207, 206, 206, 205,
204, 204, 203, 202, 202, 201, 201, 200,
199, 199, 198, 197, 197, 196, 196, 195,
195, 194, 193, 193, 192, 192, 191, 191,
190, 189, 189, 188, 188, 187, 187, 186,
186, 185, 185, 184, 184, 183, 183, 182,
182, 181, 181, 180, 180, 179, 179, 178,
178, 177, 177, 176, 176, 175, 175, 174,
174, 173, 173, 172, 172, 172, 171, 171,
170, 170, 169, 169, 168, 168, 168, 167,
167, 166, 166, 165, 165, 165, 164, 164,
163, 163, 163, 162, 162, 161, 161, 161,
160, 160, 159, 159, 159, 158, 158, 157,
157, 157, 156, 156, 156, 155, 155, 154,
154, 154, 153, 153, 153, 152, 152, 152,
151, 151, 151, 150, 150, 149, 149, 149,
148, 148, 148, 147, 147, 147, 146, 146,
146, 145, 145, 145, 144, 144, 144, 144,
143, 143, 143, 142, 142, 142, 141, 141,
141, 140, 140, 140, 140, 139, 139, 139,
138, 138, 138, 137, 137, 137, 137, 136,
136, 136, 135, 135, 135, 135, 134, 134,
134, 134, 133, 133, 133, 132, 132, 132,
132, 131, 131, 131, 131, 130, 130, 130,
130, 129, 129, 129, 129, 128, 128, 128
};
const M4VIFI_Int32 const_storage1[8]
= {
0x00002568, 0x00003343,0x00000649,0x00000d0f, 0x0000D86C, 0x0000D83B, 0x00010000, 0x00010000
};
const M4VIFI_Int32 const_storage[8]
= {
0x00002568, 0x00003343, 0x1BF800, 0x00000649, 0x00000d0f, 0x110180, 0x40cf, 0x22BE00
};
const M4VIFI_UInt16 *M4VIFI_DivTable_zero
= &M4VIFI_DivTable[0];
const M4VIFI_UInt8 *M4VIFI_ClipTable_zero
= &M4VIFI_ClipTable[500];
M4VIFI_UInt8 M4VIFI_YUV420PlanarToYUV420Semiplanar(void *user_data,
M4VIFI_ImagePlane *PlaneIn, M4VIFI_ImagePlane *PlaneOut ) {
M4VIFI_UInt32 i;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest, *p_buf_src_u, *p_buf_src_v;
M4VIFI_UInt8 return_code = M4VIFI_OK;
/* the filter is implemented with the assumption that the width is equal to stride */
if(PlaneIn[0].u_width != PlaneIn[0].u_stride)
return M4VIFI_INVALID_PARAM;
/* The input Y Plane is the same as the output Y Plane */
p_buf_src = &(PlaneIn[0].pac_data[PlaneIn[0].u_topleft]);
p_buf_dest = &(PlaneOut[0].pac_data[PlaneOut[0].u_topleft]);
memcpy((void *)p_buf_dest,(void *)p_buf_src ,
PlaneOut[0].u_width * PlaneOut[0].u_height);
/* The U and V components are planar. The need to be made interleaved */
p_buf_src_u = &(PlaneIn[1].pac_data[PlaneIn[1].u_topleft]);
p_buf_src_v = &(PlaneIn[2].pac_data[PlaneIn[2].u_topleft]);
p_buf_dest = &(PlaneOut[1].pac_data[PlaneOut[1].u_topleft]);
for(i = 0; i < PlaneOut[1].u_width*PlaneOut[1].u_height; i++)
{
*p_buf_dest++ = *p_buf_src_u++;
*p_buf_dest++ = *p_buf_src_v++;
}
return return_code;
}
M4VIFI_UInt8 M4VIFI_SemiplanarYUV420toYUV420(void *user_data,
M4VIFI_ImagePlane *PlaneIn, M4VIFI_ImagePlane *PlaneOut ) {
M4VIFI_UInt32 i;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest, *p_buf_src_u, *p_buf_src_v;
M4VIFI_UInt8 *p_buf_dest_u,*p_buf_dest_v,*p_buf_src_uv;
M4VIFI_UInt8 return_code = M4VIFI_OK;
/* the filter is implemented with the assumption that the width is equal to stride */
if(PlaneIn[0].u_width != PlaneIn[0].u_stride)
return M4VIFI_INVALID_PARAM;
/* The input Y Plane is the same as the output Y Plane */
p_buf_src = &(PlaneIn[0].pac_data[PlaneIn[0].u_topleft]);
p_buf_dest = &(PlaneOut[0].pac_data[PlaneOut[0].u_topleft]);
memcpy((void *)p_buf_dest,(void *)p_buf_src ,
PlaneOut[0].u_width * PlaneOut[0].u_height);
/* The U and V components are planar. The need to be made interleaved */
p_buf_src_uv = &(PlaneIn[1].pac_data[PlaneIn[1].u_topleft]);
p_buf_dest_u = &(PlaneOut[1].pac_data[PlaneOut[1].u_topleft]);
p_buf_dest_v = &(PlaneOut[2].pac_data[PlaneOut[2].u_topleft]);
for(i = 0; i < PlaneOut[1].u_width*PlaneOut[1].u_height; i++)
{
*p_buf_dest_u++ = *p_buf_src_uv++;
*p_buf_dest_v++ = *p_buf_src_uv++;
}
return return_code;
}
/**
******************************************************************************
* prototype M4VSS3GPP_externalVideoEffectColor(M4OSA_Void *pFunctionContext,
* M4VIFI_ImagePlane *PlaneIn,
* M4VIFI_ImagePlane *PlaneOut,
* M4VSS3GPP_ExternalProgress *pProgress,
* M4OSA_UInt32 uiEffectKind)
*
* @brief This function apply a color effect on an input YUV420 planar frame
* @note
* @param pFunctionContext(IN) Contains which color to apply (not very clean ...)
* @param PlaneIn (IN) Input YUV420 planar
* @param PlaneOut (IN/OUT) Output YUV420 planar
* @param pProgress (IN/OUT) Progress indication (0-100)
* @param uiEffectKind (IN) Unused
*
* @return M4VIFI_OK: No error
******************************************************************************
*/
M4OSA_ERR M4VSS3GPP_externalVideoEffectColor(M4OSA_Void *pFunctionContext,
M4VIFI_ImagePlane *PlaneIn, M4VIFI_ImagePlane *PlaneOut,
M4VSS3GPP_ExternalProgress *pProgress, M4OSA_UInt32 uiEffectKind) {
M4VIFI_Int32 plane_number;
M4VIFI_UInt32 i,j;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest;
M4xVSS_ColorStruct* ColorContext = (M4xVSS_ColorStruct*)pFunctionContext;
for (plane_number = 0; plane_number < 3; plane_number++)
{
p_buf_src =
&(PlaneIn[plane_number].pac_data[PlaneIn[plane_number].u_topleft]);
p_buf_dest =
&(PlaneOut[plane_number].pac_data[PlaneOut[plane_number].u_topleft]);
for (i = 0; i < PlaneOut[plane_number].u_height; i++)
{
/**
* Chrominance */
if(plane_number==1 || plane_number==2)
{
//switch ((M4OSA_UInt32)pFunctionContext) // commented because a structure for the effects context exist
switch (ColorContext->colorEffectType)
{
case M4xVSS_kVideoEffectType_BlackAndWhite:
memset((void *)p_buf_dest,128,
PlaneIn[plane_number].u_width);
break;
case M4xVSS_kVideoEffectType_Pink:
memset((void *)p_buf_dest,255,
PlaneIn[plane_number].u_width);
break;
case M4xVSS_kVideoEffectType_Green:
memset((void *)p_buf_dest,0,
PlaneIn[plane_number].u_width);
break;
case M4xVSS_kVideoEffectType_Sepia:
if(plane_number==1)
{
memset((void *)p_buf_dest,117,
PlaneIn[plane_number].u_width);
}
else
{
memset((void *)p_buf_dest,139,
PlaneIn[plane_number].u_width);
}
break;
case M4xVSS_kVideoEffectType_Negative:
memcpy((void *)p_buf_dest,
(void *)p_buf_src ,PlaneOut[plane_number].u_width);
break;
case M4xVSS_kVideoEffectType_ColorRGB16:
{
M4OSA_UInt16 r = 0,g = 0,b = 0,y = 0,u = 0,v = 0;
/*first get the r, g, b*/
b = (ColorContext->rgb16ColorData & 0x001f);
g = (ColorContext->rgb16ColorData & 0x07e0)>>5;
r = (ColorContext->rgb16ColorData & 0xf800)>>11;
/*keep y, but replace u and v*/
if(plane_number==1)
{
/*then convert to u*/
u = U16(r, g, b);
memset((void *)p_buf_dest,(M4OSA_UInt8)u,
PlaneIn[plane_number].u_width);
}
if(plane_number==2)
{
/*then convert to v*/
v = V16(r, g, b);
memset((void *)p_buf_dest,(M4OSA_UInt8)v,
PlaneIn[plane_number].u_width);
}
}
break;
case M4xVSS_kVideoEffectType_Gradient:
{
M4OSA_UInt16 r = 0,g = 0,b = 0,y = 0,u = 0,v = 0;
/*first get the r, g, b*/
b = (ColorContext->rgb16ColorData & 0x001f);
g = (ColorContext->rgb16ColorData & 0x07e0)>>5;
r = (ColorContext->rgb16ColorData & 0xf800)>>11;
/*for color gradation*/
b = (M4OSA_UInt16)( b - ((b*i)/PlaneIn[plane_number].u_height));
g = (M4OSA_UInt16)(g - ((g*i)/PlaneIn[plane_number].u_height));
r = (M4OSA_UInt16)(r - ((r*i)/PlaneIn[plane_number].u_height));
/*keep y, but replace u and v*/
if(plane_number==1)
{
/*then convert to u*/
u = U16(r, g, b);
memset((void *)p_buf_dest,(M4OSA_UInt8)u,
PlaneIn[plane_number].u_width);
}
if(plane_number==2)
{
/*then convert to v*/
v = V16(r, g, b);
memset((void *)p_buf_dest,(M4OSA_UInt8)v,
PlaneIn[plane_number].u_width);
}
}
break;
default:
return M4VIFI_INVALID_PARAM;
}
}
/**
* Luminance */
else
{
//switch ((M4OSA_UInt32)pFunctionContext)// commented because a structure for the effects context exist
switch (ColorContext->colorEffectType)
{
case M4xVSS_kVideoEffectType_Negative:
for(j=0;j<PlaneOut[plane_number].u_width;j++)
{
p_buf_dest[j] = 255 - p_buf_src[j];
}
break;
default:
memcpy((void *)p_buf_dest,
(void *)p_buf_src ,PlaneOut[plane_number].u_width);
break;
}
}
p_buf_src += PlaneIn[plane_number].u_stride;
p_buf_dest += PlaneOut[plane_number].u_stride;
}
}
return M4VIFI_OK;
}
/**
******************************************************************************
* prototype M4VSS3GPP_externalVideoEffectFraming(M4OSA_Void *pFunctionContext,
* M4VIFI_ImagePlane *PlaneIn,
* M4VIFI_ImagePlane *PlaneOut,
* M4VSS3GPP_ExternalProgress *pProgress,
* M4OSA_UInt32 uiEffectKind)
*
* @brief This function add a fixed or animated image on an input YUV420 planar frame
* @note
* @param pFunctionContext(IN) Contains which color to apply (not very clean ...)
* @param PlaneIn (IN) Input YUV420 planar
* @param PlaneOut (IN/OUT) Output YUV420 planar
* @param pProgress (IN/OUT) Progress indication (0-100)
* @param uiEffectKind (IN) Unused
*
* @return M4VIFI_OK: No error
******************************************************************************
*/
M4OSA_ERR M4VSS3GPP_externalVideoEffectFraming(
M4OSA_Void *userData, M4VIFI_ImagePlane PlaneIn[3],
M4VIFI_ImagePlane *PlaneOut, M4VSS3GPP_ExternalProgress *pProgress,
M4OSA_UInt32 uiEffectKind ) {
M4VIFI_UInt32 x,y;
M4VIFI_UInt8 *p_in_Y = PlaneIn[0].pac_data;
M4VIFI_UInt8 *p_in_U = PlaneIn[1].pac_data;
M4VIFI_UInt8 *p_in_V = PlaneIn[2].pac_data;
M4xVSS_FramingStruct* Framing = M4OSA_NULL;
M4xVSS_FramingStruct* currentFraming = M4OSA_NULL;
M4VIFI_UInt8 *FramingRGB = M4OSA_NULL;
M4VIFI_UInt8 *p_out0;
M4VIFI_UInt8 *p_out1;
M4VIFI_UInt8 *p_out2;
M4VIFI_UInt32 topleft[2];
M4OSA_UInt8 transparent1 =
(M4OSA_UInt8)((TRANSPARENT_COLOR & 0xFF00)>>8);
M4OSA_UInt8 transparent2 = (M4OSA_UInt8)TRANSPARENT_COLOR;
#ifndef DECODE_GIF_ON_SAVING
Framing = (M4xVSS_FramingStruct *)userData;
currentFraming = (M4xVSS_FramingStruct *)Framing->pCurrent;
FramingRGB = Framing->FramingRgb->pac_data;
#endif /*DECODE_GIF_ON_SAVING*/
#ifdef DECODE_GIF_ON_SAVING
M4OSA_ERR err;
Framing =
(M4xVSS_FramingStruct *)((M4xVSS_FramingContext*)userData)->aFramingCtx;
if(Framing == M4OSA_NULL)
{
((M4xVSS_FramingContext*)userData)->clipTime = pProgress->uiOutputTime;
err = M4xVSS_internalDecodeGIF(userData);
if(M4NO_ERROR != err)
{
M4OSA_TRACE1_1("M4VSS3GPP_externalVideoEffectFraming: \
Error in M4xVSS_internalDecodeGIF: 0x%x", err);
return err;
}
Framing =
(M4xVSS_FramingStruct *)((M4xVSS_FramingContext*)userData)->aFramingCtx;
/* Initializes first GIF time */
((M4xVSS_FramingContext*)userData)->current_gif_time =
pProgress->uiOutputTime;
}
currentFraming = (M4xVSS_FramingStruct *)Framing;
FramingRGB = Framing->FramingRgb->pac_data;
#endif /*DECODE_GIF_ON_SAVING*/
/**
* Initialize input / output plane pointers */
p_in_Y += PlaneIn[0].u_topleft;
p_in_U += PlaneIn[1].u_topleft;
p_in_V += PlaneIn[2].u_topleft;
p_out0 = PlaneOut[0].pac_data;
p_out1 = PlaneOut[1].pac_data;
p_out2 = PlaneOut[2].pac_data;
/**
* Depending on time, initialize Framing frame to use */
if(Framing->previousClipTime == -1)
{
Framing->previousClipTime = pProgress->uiOutputTime;
}
/**
* If the current clip time has reach the duration of one frame of the framing picture
* we need to step to next framing picture */
#ifdef DECODE_GIF_ON_SAVING
if(((M4xVSS_FramingContext*)userData)->b_animated == M4OSA_TRUE)
{
while((((M4xVSS_FramingContext*)userData)->current_gif_time + currentFraming->duration) < pProgress->uiOutputTime)
{
((M4xVSS_FramingContext*)userData)->clipTime =
pProgress->uiOutputTime;
err = M4xVSS_internalDecodeGIF(userData);
if(M4NO_ERROR != err)
{
M4OSA_TRACE1_1("M4VSS3GPP_externalVideoEffectFraming: Error in M4xVSS_internalDecodeGIF: 0x%x", err);
return err;
}
if(currentFraming->duration != 0)
{
((M4xVSS_FramingContext*)userData)->current_gif_time += currentFraming->duration;
}
else
{
((M4xVSS_FramingContext*)userData)->current_gif_time +=
pProgress->uiOutputTime - Framing->previousClipTime;
}
Framing = (M4xVSS_FramingStruct *)((M4xVSS_FramingContext*)userData)->aFramingCtx;
currentFraming = (M4xVSS_FramingStruct *)Framing;
FramingRGB = Framing->FramingRgb->pac_data;
}
}
#else
Framing->pCurrent = currentFraming->pNext;
currentFraming = (M4xVSS_FramingStruct*)Framing->pCurrent;
#endif /*DECODE_GIF_ON_SAVING*/
Framing->previousClipTime = pProgress->uiOutputTime;
FramingRGB = currentFraming->FramingRgb->pac_data;
topleft[0] = currentFraming->topleft_x;
topleft[1] = currentFraming->topleft_y;
for( x=0 ;x < PlaneIn[0].u_height ; x++)
{
for( y=0 ;y < PlaneIn[0].u_width ; y++)
{
/**
* To handle framing with input size != output size
* Framing is applyed if coordinates matches between framing/topleft and input plane */
if( y < (topleft[0] + currentFraming->FramingYuv[0].u_width) &&
y >= topleft[0] &&
x < (topleft[1] + currentFraming->FramingYuv[0].u_height) &&
x >= topleft[1])
{
/*Alpha blending support*/
M4OSA_Float alphaBlending = 1;
#ifdef DECODE_GIF_ON_SAVING
M4xVSS_internalEffectsAlphaBlending* alphaBlendingStruct =
(M4xVSS_internalEffectsAlphaBlending*)((M4xVSS_FramingContext*)userData)->alphaBlendingStruct;
#else
M4xVSS_internalEffectsAlphaBlending* alphaBlendingStruct =
(M4xVSS_internalEffectsAlphaBlending*)((M4xVSS_FramingStruct*)userData)->alphaBlendingStruct;
#endif //#ifdef DECODE_GIF_ON_SAVING
if(alphaBlendingStruct != M4OSA_NULL)
{
if(pProgress->uiProgress < (M4OSA_UInt32)(alphaBlendingStruct->m_fadeInTime*10))
{
alphaBlending = ((M4OSA_Float)(alphaBlendingStruct->m_middle - alphaBlendingStruct->m_start)*pProgress->uiProgress/(alphaBlendingStruct->m_fadeInTime*10));
alphaBlending += alphaBlendingStruct->m_start;
alphaBlending /= 100;
}
else if(pProgress->uiProgress >= (M4OSA_UInt32)(alphaBlendingStruct->m_fadeInTime*10) && pProgress->uiProgress < 1000 - (M4OSA_UInt32)(alphaBlendingStruct->m_fadeOutTime*10))
{
alphaBlending = (M4OSA_Float)((M4OSA_Float)alphaBlendingStruct->m_middle/100);
}
else if(pProgress->uiProgress >= 1000 - (M4OSA_UInt32)(alphaBlendingStruct->m_fadeOutTime*10))
{
alphaBlending = ((M4OSA_Float)(alphaBlendingStruct->m_middle - alphaBlendingStruct->m_end))*(1000 - pProgress->uiProgress)/(alphaBlendingStruct->m_fadeOutTime*10);
alphaBlending += alphaBlendingStruct->m_end;
alphaBlending /= 100;
}
}
/**/
if((*(FramingRGB)==transparent1) && (*(FramingRGB+1)==transparent2))
{
*( p_out0+y+x*PlaneOut[0].u_stride)=(*(p_in_Y+y+x*PlaneIn[0].u_stride));
*( p_out1+(y>>1)+(x>>1)*PlaneOut[1].u_stride)=(*(p_in_U+(y>>1)+(x>>1)*PlaneIn[1].u_stride));
*( p_out2+(y>>1)+(x>>1)*PlaneOut[2].u_stride)=(*(p_in_V+(y>>1)+(x>>1)*PlaneIn[2].u_stride));
}
else
{
*( p_out0+y+x*PlaneOut[0].u_stride)=(*(currentFraming->FramingYuv[0].pac_data+(y-topleft[0])+(x-topleft[1])*currentFraming->FramingYuv[0].u_stride))*alphaBlending;
*( p_out0+y+x*PlaneOut[0].u_stride)+=(*(p_in_Y+y+x*PlaneIn[0].u_stride))*(1-alphaBlending);
*( p_out1+(y>>1)+(x>>1)*PlaneOut[1].u_stride)=(*(currentFraming->FramingYuv[1].pac_data+((y-topleft[0])>>1)+((x-topleft[1])>>1)*currentFraming->FramingYuv[1].u_stride))*alphaBlending;
*( p_out1+(y>>1)+(x>>1)*PlaneOut[1].u_stride)+=(*(p_in_U+(y>>1)+(x>>1)*PlaneIn[1].u_stride))*(1-alphaBlending);
*( p_out2+(y>>1)+(x>>1)*PlaneOut[2].u_stride)=(*(currentFraming->FramingYuv[2].pac_data+((y-topleft[0])>>1)+((x-topleft[1])>>1)*currentFraming->FramingYuv[2].u_stride))*alphaBlending;
*( p_out2+(y>>1)+(x>>1)*PlaneOut[2].u_stride)+=(*(p_in_V+(y>>1)+(x>>1)*PlaneIn[2].u_stride))*(1-alphaBlending);
}
if( PlaneIn[0].u_width < (topleft[0] + currentFraming->FramingYuv[0].u_width) &&
y == PlaneIn[0].u_width-1)
{
FramingRGB = FramingRGB + 2 * (topleft[0] + currentFraming->FramingYuv[0].u_width - PlaneIn[0].u_width + 1);
}
else
{
FramingRGB = FramingRGB + 2;
}
}
/**
* Just copy input plane to output plane */
else
{
*( p_out0+y+x*PlaneOut[0].u_stride)=*(p_in_Y+y+x*PlaneIn[0].u_stride);
*( p_out1+(y>>1)+(x>>1)*PlaneOut[1].u_stride)=*(p_in_U+(y>>1)+(x>>1)*PlaneIn[1].u_stride);
*( p_out2+(y>>1)+(x>>1)*PlaneOut[2].u_stride)=*(p_in_V+(y>>1)+(x>>1)*PlaneIn[2].u_stride);
}
}
}
#ifdef DECODE_GIF_ON_SAVING
if(pProgress->bIsLast == M4OSA_TRUE
&& (M4OSA_Bool)((M4xVSS_FramingContext*)userData)->b_IsFileGif == M4OSA_TRUE)
{
M4xVSS_internalDecodeGIF_Cleaning((M4xVSS_FramingContext*)userData);
}
#endif /*DECODE_GIF_ON_SAVING*/
return M4VIFI_OK;
}
/**
******************************************************************************
* prototype M4VSS3GPP_externalVideoEffectFifties(M4OSA_Void *pFunctionContext,
* M4VIFI_ImagePlane *PlaneIn,
* M4VIFI_ImagePlane *PlaneOut,
* M4VSS3GPP_ExternalProgress *pProgress,
* M4OSA_UInt32 uiEffectKind)
*
* @brief This function make a video look as if it was taken in the fifties
* @note
* @param pUserData (IN) Context
* @param pPlaneIn (IN) Input YUV420 planar
* @param pPlaneOut (IN/OUT) Output YUV420 planar
* @param pProgress (IN/OUT) Progress indication (0-100)
* @param uiEffectKind (IN) Unused
*
* @return M4VIFI_OK: No error
* @return M4ERR_PARAMETER: pFiftiesData, pPlaneOut or pProgress are NULL (DEBUG only)
******************************************************************************
*/
M4OSA_ERR M4VSS3GPP_externalVideoEffectFifties(
M4OSA_Void *pUserData, M4VIFI_ImagePlane *pPlaneIn,
M4VIFI_ImagePlane *pPlaneOut, M4VSS3GPP_ExternalProgress *pProgress,
M4OSA_UInt32 uiEffectKind )
{
M4VIFI_UInt32 x, y, xShift;
M4VIFI_UInt8 *pInY = pPlaneIn[0].pac_data;
M4VIFI_UInt8 *pOutY, *pInYbegin;
M4VIFI_UInt8 *pInCr,* pOutCr;
M4VIFI_Int32 plane_number;
/* Internal context*/
M4xVSS_FiftiesStruct* p_FiftiesData = (M4xVSS_FiftiesStruct *)pUserData;
/* Initialize input / output plane pointers */
pInY += pPlaneIn[0].u_topleft;
pOutY = pPlaneOut[0].pac_data;
pInYbegin = pInY;
/* Initialize the random */
if(p_FiftiesData->previousClipTime < 0)
{
M4OSA_randInit();
M4OSA_rand((M4OSA_Int32*)&(p_FiftiesData->shiftRandomValue), (pPlaneIn[0].u_height) >> 4);
M4OSA_rand((M4OSA_Int32*)&(p_FiftiesData->stripeRandomValue), (pPlaneIn[0].u_width)<< 2);
p_FiftiesData->previousClipTime = pProgress->uiOutputTime;
}
/* Choose random values if we have reached the duration of a partial effect */
else if( (pProgress->uiOutputTime - p_FiftiesData->previousClipTime) > p_FiftiesData->fiftiesEffectDuration)
{
M4OSA_rand((M4OSA_Int32*)&(p_FiftiesData->shiftRandomValue), (pPlaneIn[0].u_height) >> 4);
M4OSA_rand((M4OSA_Int32*)&(p_FiftiesData->stripeRandomValue), (pPlaneIn[0].u_width)<< 2);
p_FiftiesData->previousClipTime = pProgress->uiOutputTime;
}
/* Put in Sepia the chrominance */
for (plane_number = 1; plane_number < 3; plane_number++)
{
pInCr = pPlaneIn[plane_number].pac_data + pPlaneIn[plane_number].u_topleft;
pOutCr = pPlaneOut[plane_number].pac_data + pPlaneOut[plane_number].u_topleft;
for (x = 0; x < pPlaneOut[plane_number].u_height; x++)
{
if (1 == plane_number)
memset((void *)pOutCr, 117,pPlaneIn[plane_number].u_width); /* U value */
else
memset((void *)pOutCr, 139,pPlaneIn[plane_number].u_width); /* V value */
pInCr += pPlaneIn[plane_number].u_stride;
pOutCr += pPlaneOut[plane_number].u_stride;
}
}
/* Compute the new pixels values */
for( x = 0 ; x < pPlaneIn[0].u_height ; x++)
{
M4VIFI_UInt8 *p_outYtmp, *p_inYtmp;
/* Compute the xShift (random value) */
if (0 == (p_FiftiesData->shiftRandomValue % 5 ))
xShift = (x + p_FiftiesData->shiftRandomValue ) % (pPlaneIn[0].u_height - 1);
else
xShift = (x + (pPlaneIn[0].u_height - p_FiftiesData->shiftRandomValue) ) % (pPlaneIn[0].u_height - 1);
/* Initialize the pointers */
p_outYtmp = pOutY + 1; /* yShift of 1 pixel */
p_inYtmp = pInYbegin + (xShift * pPlaneIn[0].u_stride); /* Apply the xShift */
for( y = 0 ; y < pPlaneIn[0].u_width ; y++)
{
/* Set Y value */
if (xShift > (pPlaneIn[0].u_height - 4))
*p_outYtmp = 40; /* Add some horizontal black lines between the two parts of the image */
else if ( y == p_FiftiesData->stripeRandomValue)
*p_outYtmp = 90; /* Add a random vertical line for the bulk */
else
*p_outYtmp = *p_inYtmp;
/* Go to the next pixel */
p_outYtmp++;
p_inYtmp++;
/* Restart at the beginning of the line for the last pixel*/
if (y == (pPlaneIn[0].u_width - 2))
p_outYtmp = pOutY;
}
/* Go to the next line */
pOutY += pPlaneOut[0].u_stride;
}
return M4VIFI_OK;
}
unsigned char M4VFL_modifyLumaWithScale(M4ViComImagePlane *plane_in,
M4ViComImagePlane *plane_out,
unsigned long lum_factor,
void *user_data)
{
unsigned short *p_src, *p_dest, *p_src_line, *p_dest_line;
unsigned char *p_csrc, *p_cdest, *p_csrc_line, *p_cdest_line;
unsigned long pix_src;
unsigned long u_outpx, u_outpx2;
unsigned long u_width, u_stride, u_stride_out,u_height, pix;
long i, j;
/* copy or filter chroma */
u_width = plane_in[1].u_width;
u_height = plane_in[1].u_height;
u_stride = plane_in[1].u_stride;
u_stride_out = plane_out[1].u_stride;
p_cdest_line = (unsigned char *) &plane_out[1].pac_data[plane_out[1].u_topleft];
p_csrc_line = (unsigned char *) &plane_in[1].pac_data[plane_in[1].u_topleft];
if (lum_factor > 256)
{
p_cdest = (unsigned char *) &plane_out[2].pac_data[plane_out[2].u_topleft];
p_csrc = (unsigned char *) &plane_in[2].pac_data[plane_in[2].u_topleft];
/* copy chroma */
for (j = u_height; j != 0; j--)
{
for (i = u_width; i != 0; i--)
{
memcpy((void *)p_cdest_line, (void *)p_csrc_line, u_width);
memcpy((void *)p_cdest, (void *)p_csrc, u_width);
}
p_cdest_line += u_stride_out;
p_cdest += u_stride_out;
p_csrc_line += u_stride;
p_csrc += u_stride;
}
}
else
{
/* filter chroma */
pix = (1024 - lum_factor) << 7;
for (j = u_height; j != 0; j--)
{
p_cdest = p_cdest_line;
p_csrc = p_csrc_line;
for (i = u_width; i != 0; i--)
{
*p_cdest++ = ((pix + (*p_csrc++ & 0xFF) * lum_factor) >> LUM_FACTOR_MAX);
}
p_cdest_line += u_stride_out;
p_csrc_line += u_stride;
}
p_cdest_line = (unsigned char *) &plane_out[2].pac_data[plane_out[2].u_topleft];
p_csrc_line = (unsigned char *) &plane_in[2].pac_data[plane_in[2].u_topleft];
for (j = u_height; j != 0; j--)
{
p_cdest = p_cdest_line;
p_csrc = p_csrc_line;
for (i = u_width; i != 0; i--)
{
*p_cdest++ = ((pix + (*p_csrc & 0xFF) * lum_factor) >> LUM_FACTOR_MAX);
}
p_cdest_line += u_stride_out;
p_csrc_line += u_stride;
}
}
/* apply luma factor */
u_width = plane_in[0].u_width;
u_height = plane_in[0].u_height;
u_stride = (plane_in[0].u_stride >> 1);
u_stride_out = (plane_out[0].u_stride >> 1);
p_dest = (unsigned short *) &plane_out[0].pac_data[plane_out[0].u_topleft];
p_src = (unsigned short *) &plane_in[0].pac_data[plane_in[0].u_topleft];
p_dest_line = p_dest;
p_src_line = p_src;
for (j = u_height; j != 0; j--)
{
p_dest = p_dest_line;
p_src = p_src_line;
for (i = (u_width >> 1); i != 0; i--)
{
pix_src = (unsigned long) *p_src++;
pix = pix_src & 0xFF;
u_outpx = ((pix * lum_factor) >> LUM_FACTOR_MAX);
pix = ((pix_src & 0xFF00) >> 8);
u_outpx2 = (((pix * lum_factor) >> LUM_FACTOR_MAX)<< 8) ;
*p_dest++ = (unsigned short) (u_outpx2 | u_outpx);
}
p_dest_line += u_stride_out;
p_src_line += u_stride;
}
return 0;
}
/******************************************************************************
* prototype M4OSA_ERR M4xVSS_internalConvertRGBtoYUV(M4xVSS_FramingStruct* framingCtx)
* @brief This function converts an RGB565 plane to YUV420 planar
* @note It is used only for framing effect
* It allocates output YUV planes
* @param framingCtx (IN) The framing struct containing input RGB565 plane
*
* @return M4NO_ERROR: No error
* @return M4ERR_PARAMETER: At least one of the function parameters is null
* @return M4ERR_ALLOC: Allocation error (no more memory)
******************************************************************************
*/
M4OSA_ERR M4xVSS_internalConvertRGBtoYUV(M4xVSS_FramingStruct* framingCtx)
{
M4OSA_ERR err;
/**
* Allocate output YUV planes */
framingCtx->FramingYuv = (M4VIFI_ImagePlane*)M4OSA_32bitAlignedMalloc(3*sizeof(M4VIFI_ImagePlane), M4VS, (M4OSA_Char*)"M4xVSS_internalConvertRGBtoYUV: Output plane YUV");
if(framingCtx->FramingYuv == M4OSA_NULL)
{
M4OSA_TRACE1_0("Allocation error in M4xVSS_internalConvertRGBtoYUV");
return M4ERR_ALLOC;
}
framingCtx->FramingYuv[0].u_width = framingCtx->FramingRgb->u_width;
framingCtx->FramingYuv[0].u_height = framingCtx->FramingRgb->u_height;
framingCtx->FramingYuv[0].u_topleft = 0;
framingCtx->FramingYuv[0].u_stride = framingCtx->FramingRgb->u_width;
framingCtx->FramingYuv[0].pac_data = (M4VIFI_UInt8*)M4OSA_32bitAlignedMalloc((framingCtx->FramingYuv[0].u_width*framingCtx->FramingYuv[0].u_height*3)>>1, M4VS, (M4OSA_Char*)"Alloc for the Convertion output YUV");;
if(framingCtx->FramingYuv[0].pac_data == M4OSA_NULL)
{
M4OSA_TRACE1_0("Allocation error in M4xVSS_internalConvertRGBtoYUV");
return M4ERR_ALLOC;
}
framingCtx->FramingYuv[1].u_width = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[1].u_height = (framingCtx->FramingRgb->u_height)>>1;
framingCtx->FramingYuv[1].u_topleft = 0;
framingCtx->FramingYuv[1].u_stride = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[1].pac_data = framingCtx->FramingYuv[0].pac_data + framingCtx->FramingYuv[0].u_width * framingCtx->FramingYuv[0].u_height;
framingCtx->FramingYuv[2].u_width = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[2].u_height = (framingCtx->FramingRgb->u_height)>>1;
framingCtx->FramingYuv[2].u_topleft = 0;
framingCtx->FramingYuv[2].u_stride = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[2].pac_data = framingCtx->FramingYuv[1].pac_data + framingCtx->FramingYuv[1].u_width * framingCtx->FramingYuv[1].u_height;
/**
* Convert input RGB 565 to YUV 420 to be able to merge it with output video in framing effect */
err = M4VIFI_xVSS_RGB565toYUV420(M4OSA_NULL, framingCtx->FramingRgb, framingCtx->FramingYuv);
if(err != M4NO_ERROR)
{
M4OSA_TRACE1_1("M4xVSS_internalConvertRGBtoYUV: error when converting from RGB to YUV: 0x%x\n", err);
}
framingCtx->duration = 0;
framingCtx->previousClipTime = -1;
framingCtx->previewOffsetClipTime = -1;
/**
* Only one element in the chained list (no animated image with RGB buffer...) */
framingCtx->pCurrent = framingCtx;
framingCtx->pNext = framingCtx;
return M4NO_ERROR;
}
/******************************************************************************
* prototype M4OSA_ERR M4xVSS_internalConvertRGB888toYUV(M4xVSS_FramingStruct* framingCtx)
* @brief This function converts an RGB888 plane to YUV420 planar
* @note It is used only for framing effect
* It allocates output YUV planes
* @param framingCtx (IN) The framing struct containing input RGB888 plane
*
* @return M4NO_ERROR: No error
* @return M4ERR_PARAMETER: At least one of the function parameters is null
* @return M4ERR_ALLOC: Allocation error (no more memory)
******************************************************************************
*/
M4OSA_ERR M4xVSS_internalConvertRGB888toYUV(M4xVSS_FramingStruct* framingCtx)
{
M4OSA_ERR err;
/**
* Allocate output YUV planes */
framingCtx->FramingYuv = (M4VIFI_ImagePlane*)M4OSA_32bitAlignedMalloc(3*sizeof(M4VIFI_ImagePlane), M4VS, (M4OSA_Char*)"M4xVSS_internalConvertRGBtoYUV: Output plane YUV");
if(framingCtx->FramingYuv == M4OSA_NULL)
{
M4OSA_TRACE1_0("Allocation error in M4xVSS_internalConvertRGBtoYUV");
return M4ERR_ALLOC;
}
framingCtx->FramingYuv[0].u_width = framingCtx->FramingRgb->u_width;
framingCtx->FramingYuv[0].u_height = framingCtx->FramingRgb->u_height;
framingCtx->FramingYuv[0].u_topleft = 0;
framingCtx->FramingYuv[0].u_stride = framingCtx->FramingRgb->u_width;
framingCtx->FramingYuv[0].pac_data = (M4VIFI_UInt8*)M4OSA_32bitAlignedMalloc((framingCtx->FramingYuv[0].u_width*framingCtx->FramingYuv[0].u_height*3)>>1, M4VS, (M4OSA_Char*)"Alloc for the Convertion output YUV");;
if(framingCtx->FramingYuv[0].pac_data == M4OSA_NULL)
{
M4OSA_TRACE1_0("Allocation error in M4xVSS_internalConvertRGBtoYUV");
return M4ERR_ALLOC;
}
framingCtx->FramingYuv[1].u_width = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[1].u_height = (framingCtx->FramingRgb->u_height)>>1;
framingCtx->FramingYuv[1].u_topleft = 0;
framingCtx->FramingYuv[1].u_stride = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[1].pac_data = framingCtx->FramingYuv[0].pac_data + framingCtx->FramingYuv[0].u_width * framingCtx->FramingYuv[0].u_height;
framingCtx->FramingYuv[2].u_width = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[2].u_height = (framingCtx->FramingRgb->u_height)>>1;
framingCtx->FramingYuv[2].u_topleft = 0;
framingCtx->FramingYuv[2].u_stride = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[2].pac_data = framingCtx->FramingYuv[1].pac_data + framingCtx->FramingYuv[1].u_width * framingCtx->FramingYuv[1].u_height;
/**
* Convert input RGB888 to YUV 420 to be able to merge it with output video in framing effect */
err = M4VIFI_RGB888toYUV420(M4OSA_NULL, framingCtx->FramingRgb, framingCtx->FramingYuv);
if(err != M4NO_ERROR)
{
M4OSA_TRACE1_1("M4xVSS_internalConvertRGBtoYUV: error when converting from RGB to YUV: 0x%x\n", err);
}
framingCtx->duration = 0;
framingCtx->previousClipTime = -1;
framingCtx->previewOffsetClipTime = -1;
/**
* Only one element in the chained list (no animated image with RGB buffer...) */
framingCtx->pCurrent = framingCtx;
framingCtx->pNext = framingCtx;
return M4NO_ERROR;
}
/**
******************************************************************************
* M4VIFI_UInt8 M4VIFI_RGB565toYUV420 (void *pUserData,
* M4VIFI_ImagePlane *pPlaneIn,
* M4VIFI_ImagePlane *pPlaneOut)
* @author Patrice Martinez / Philips Digital Networks - MP4Net
* @brief transform RGB565 image to a YUV420 image.
* @note Convert RGB565 to YUV420,
* Loop on each row ( 2 rows by 2 rows )
* Loop on each column ( 2 col by 2 col )
* Get 4 RGB samples from input data and build 4 output Y samples
* and each single U & V data
* end loop on col
* end loop on row
* @param pUserData: (IN) User Specific Data
* @param pPlaneIn: (IN) Pointer to RGB565 Plane
* @param pPlaneOut: (OUT) Pointer to YUV420 buffer Plane
* @return M4VIFI_OK: there is no error
* @return M4VIFI_ILLEGAL_FRAME_HEIGHT: YUV Plane height is ODD
* @return M4VIFI_ILLEGAL_FRAME_WIDTH: YUV Plane width is ODD
******************************************************************************
*/
M4VIFI_UInt8 M4VIFI_xVSS_RGB565toYUV420(void *pUserData, M4VIFI_ImagePlane *pPlaneIn,
M4VIFI_ImagePlane *pPlaneOut)
{
M4VIFI_UInt32 u32_width, u32_height;
M4VIFI_UInt32 u32_stride_Y, u32_stride2_Y, u32_stride_U, u32_stride_V;
M4VIFI_UInt32 u32_stride_rgb, u32_stride_2rgb;
M4VIFI_UInt32 u32_col, u32_row;
M4VIFI_Int32 i32_r00, i32_r01, i32_r10, i32_r11;
M4VIFI_Int32 i32_g00, i32_g01, i32_g10, i32_g11;
M4VIFI_Int32 i32_b00, i32_b01, i32_b10, i32_b11;
M4VIFI_Int32 i32_y00, i32_y01, i32_y10, i32_y11;
M4VIFI_Int32 i32_u00, i32_u01, i32_u10, i32_u11;
M4VIFI_Int32 i32_v00, i32_v01, i32_v10, i32_v11;
M4VIFI_UInt8 *pu8_yn, *pu8_ys, *pu8_u, *pu8_v;
M4VIFI_UInt8 *pu8_y_data, *pu8_u_data, *pu8_v_data;
M4VIFI_UInt8 *pu8_rgbn_data, *pu8_rgbn;
M4VIFI_UInt16 u16_pix1, u16_pix2, u16_pix3, u16_pix4;
M4VIFI_UInt8 count_null=0;
/* Check planes height are appropriate */
if( (pPlaneIn->u_height != pPlaneOut[0].u_height) ||
(pPlaneOut[0].u_height != (pPlaneOut[1].u_height<<1)) ||
(pPlaneOut[0].u_height != (pPlaneOut[2].u_height<<1)))
{
return M4VIFI_ILLEGAL_FRAME_HEIGHT;
}
/* Check planes width are appropriate */
if( (pPlaneIn->u_width != pPlaneOut[0].u_width) ||
(pPlaneOut[0].u_width != (pPlaneOut[1].u_width<<1)) ||
(pPlaneOut[0].u_width != (pPlaneOut[2].u_width<<1)))
{
return M4VIFI_ILLEGAL_FRAME_WIDTH;
}
/* Set the pointer to the beginning of the output data buffers */
pu8_y_data = pPlaneOut[0].pac_data + pPlaneOut[0].u_topleft;
pu8_u_data = pPlaneOut[1].pac_data + pPlaneOut[1].u_topleft;
pu8_v_data = pPlaneOut[2].pac_data + pPlaneOut[2].u_topleft;
/* Set the pointer to the beginning of the input data buffers */
pu8_rgbn_data = pPlaneIn->pac_data + pPlaneIn->u_topleft;
/* Get the size of the output image */
u32_width = pPlaneOut[0].u_width;
u32_height = pPlaneOut[0].u_height;
/* Set the size of the memory jumps corresponding to row jump in each output plane */
u32_stride_Y = pPlaneOut[0].u_stride;
u32_stride2_Y = u32_stride_Y << 1;
u32_stride_U = pPlaneOut[1].u_stride;
u32_stride_V = pPlaneOut[2].u_stride;
/* Set the size of the memory jumps corresponding to row jump in input plane */
u32_stride_rgb = pPlaneIn->u_stride;
u32_stride_2rgb = u32_stride_rgb << 1;
/* Loop on each row of the output image, input coordinates are estimated from output ones */
/* Two YUV rows are computed at each pass */
for (u32_row = u32_height ;u32_row != 0; u32_row -=2)
{
/* Current Y plane row pointers */
pu8_yn = pu8_y_data;
/* Next Y plane row pointers */
pu8_ys = pu8_yn + u32_stride_Y;
/* Current U plane row pointer */
pu8_u = pu8_u_data;
/* Current V plane row pointer */
pu8_v = pu8_v_data;
pu8_rgbn = pu8_rgbn_data;
/* Loop on each column of the output image */
for (u32_col = u32_width; u32_col != 0 ; u32_col -=2)
{
/* Get four RGB 565 samples from input data */
u16_pix1 = *( (M4VIFI_UInt16 *) pu8_rgbn);
u16_pix2 = *( (M4VIFI_UInt16 *) (pu8_rgbn + CST_RGB_16_SIZE));
u16_pix3 = *( (M4VIFI_UInt16 *) (pu8_rgbn + u32_stride_rgb));
u16_pix4 = *( (M4VIFI_UInt16 *) (pu8_rgbn + u32_stride_rgb + CST_RGB_16_SIZE));
/* Unpack RGB565 to 8bit R, G, B */
/* (x,y) */
GET_RGB565(i32_b00,i32_g00,i32_r00,u16_pix1);
/* (x+1,y) */
GET_RGB565(i32_b10,i32_g10,i32_r10,u16_pix2);
/* (x,y+1) */
GET_RGB565(i32_b01,i32_g01,i32_r01,u16_pix3);
/* (x+1,y+1) */
GET_RGB565(i32_b11,i32_g11,i32_r11,u16_pix4);
/* If RGB is transparent color (0, 63, 0), we transform it to white (31,63,31) */
if(i32_b00 == 0 && i32_g00 == 63 && i32_r00 == 0)
{
i32_b00 = 31;
i32_r00 = 31;
}
if(i32_b10 == 0 && i32_g10 == 63 && i32_r10 == 0)
{
i32_b10 = 31;
i32_r10 = 31;
}
if(i32_b01 == 0 && i32_g01 == 63 && i32_r01 == 0)
{
i32_b01 = 31;
i32_r01 = 31;
}
if(i32_b11 == 0 && i32_g11 == 63 && i32_r11 == 0)
{
i32_b11 = 31;
i32_r11 = 31;
}
/* Convert RGB value to YUV */
i32_u00 = U16(i32_r00, i32_g00, i32_b00);
i32_v00 = V16(i32_r00, i32_g00, i32_b00);
/* luminance value */
i32_y00 = Y16(i32_r00, i32_g00, i32_b00);
i32_u10 = U16(i32_r10, i32_g10, i32_b10);
i32_v10 = V16(i32_r10, i32_g10, i32_b10);
/* luminance value */
i32_y10 = Y16(i32_r10, i32_g10, i32_b10);
i32_u01 = U16(i32_r01, i32_g01, i32_b01);
i32_v01 = V16(i32_r01, i32_g01, i32_b01);
/* luminance value */
i32_y01 = Y16(i32_r01, i32_g01, i32_b01);
i32_u11 = U16(i32_r11, i32_g11, i32_b11);
i32_v11 = V16(i32_r11, i32_g11, i32_b11);
/* luminance value */
i32_y11 = Y16(i32_r11, i32_g11, i32_b11);
/* Store luminance data */
pu8_yn[0] = (M4VIFI_UInt8)i32_y00;
pu8_yn[1] = (M4VIFI_UInt8)i32_y10;
pu8_ys[0] = (M4VIFI_UInt8)i32_y01;
pu8_ys[1] = (M4VIFI_UInt8)i32_y11;
*pu8_u = (M4VIFI_UInt8)((i32_u00 + i32_u01 + i32_u10 + i32_u11 + 2) >> 2);
*pu8_v = (M4VIFI_UInt8)((i32_v00 + i32_v01 + i32_v10 + i32_v11 + 2) >> 2);
/* Prepare for next column */
pu8_rgbn += (CST_RGB_16_SIZE<<1);
/* Update current Y plane line pointer*/
pu8_yn += 2;
/* Update next Y plane line pointer*/
pu8_ys += 2;
/* Update U plane line pointer*/
pu8_u ++;
/* Update V plane line pointer*/
pu8_v ++;
} /* End of horizontal scanning */
/* Prepare pointers for the next row */
pu8_y_data += u32_stride2_Y;
pu8_u_data += u32_stride_U;
pu8_v_data += u32_stride_V;
pu8_rgbn_data += u32_stride_2rgb;
} /* End of vertical scanning */
return M4VIFI_OK;
}
/***************************************************************************
Proto:
M4VIFI_UInt8 M4VIFI_RGB888toYUV420(void *pUserData, M4VIFI_ImagePlane *PlaneIn, M4VIFI_ImagePlane PlaneOut[3]);
Author: Patrice Martinez / Philips Digital Networks - MP4Net
Purpose: filling of the YUV420 plane from a BGR24 plane
Abstract: Loop on each row ( 2 rows by 2 rows )
Loop on each column ( 2 col by 2 col )
Get 4 BGR samples from input data and build 4 output Y samples and each single U & V data
end loop on col
end loop on row
In: RGB24 plane
InOut: none
Out: array of 3 M4VIFI_ImagePlane structures
Modified: ML: RGB function modified to BGR.
***************************************************************************/
M4VIFI_UInt8 M4VIFI_RGB888toYUV420(void *pUserData, M4VIFI_ImagePlane *PlaneIn, M4VIFI_ImagePlane PlaneOut[3])
{
M4VIFI_UInt32 u32_width, u32_height;
M4VIFI_UInt32 u32_stride_Y, u32_stride2_Y, u32_stride_U, u32_stride_V, u32_stride_rgb, u32_stride_2rgb;
M4VIFI_UInt32 u32_col, u32_row;
M4VIFI_Int32 i32_r00, i32_r01, i32_r10, i32_r11;
M4VIFI_Int32 i32_g00, i32_g01, i32_g10, i32_g11;
M4VIFI_Int32 i32_b00, i32_b01, i32_b10, i32_b11;
M4VIFI_Int32 i32_y00, i32_y01, i32_y10, i32_y11;
M4VIFI_Int32 i32_u00, i32_u01, i32_u10, i32_u11;
M4VIFI_Int32 i32_v00, i32_v01, i32_v10, i32_v11;
M4VIFI_UInt8 *pu8_yn, *pu8_ys, *pu8_u, *pu8_v;
M4VIFI_UInt8 *pu8_y_data, *pu8_u_data, *pu8_v_data;
M4VIFI_UInt8 *pu8_rgbn_data, *pu8_rgbn;
/* check sizes */
if( (PlaneIn->u_height != PlaneOut[0].u_height) ||
(PlaneOut[0].u_height != (PlaneOut[1].u_height<<1)) ||
(PlaneOut[0].u_height != (PlaneOut[2].u_height<<1)))
return M4VIFI_ILLEGAL_FRAME_HEIGHT;
if( (PlaneIn->u_width != PlaneOut[0].u_width) ||
(PlaneOut[0].u_width != (PlaneOut[1].u_width<<1)) ||
(PlaneOut[0].u_width != (PlaneOut[2].u_width<<1)))
return M4VIFI_ILLEGAL_FRAME_WIDTH;
/* set the pointer to the beginning of the output data buffers */
pu8_y_data = PlaneOut[0].pac_data + PlaneOut[0].u_topleft;
pu8_u_data = PlaneOut[1].pac_data + PlaneOut[1].u_topleft;
pu8_v_data = PlaneOut[2].pac_data + PlaneOut[2].u_topleft;
/* idem for input buffer */
pu8_rgbn_data = PlaneIn->pac_data + PlaneIn->u_topleft;
/* get the size of the output image */
u32_width = PlaneOut[0].u_width;
u32_height = PlaneOut[0].u_height;
/* set the size of the memory jumps corresponding to row jump in each output plane */
u32_stride_Y = PlaneOut[0].u_stride;
u32_stride2_Y= u32_stride_Y << 1;
u32_stride_U = PlaneOut[1].u_stride;
u32_stride_V = PlaneOut[2].u_stride;
/* idem for input plane */
u32_stride_rgb = PlaneIn->u_stride;
u32_stride_2rgb = u32_stride_rgb << 1;
/* loop on each row of the output image, input coordinates are estimated from output ones */
/* two YUV rows are computed at each pass */
for (u32_row = u32_height ;u32_row != 0; u32_row -=2)
{
/* update working pointers */
pu8_yn = pu8_y_data;
pu8_ys = pu8_yn + u32_stride_Y;
pu8_u = pu8_u_data;
pu8_v = pu8_v_data;
pu8_rgbn= pu8_rgbn_data;
/* loop on each column of the output image*/
for (u32_col = u32_width; u32_col != 0 ; u32_col -=2)
{
/* get RGB samples of 4 pixels */
GET_RGB24(i32_r00, i32_g00, i32_b00, pu8_rgbn, 0);
GET_RGB24(i32_r10, i32_g10, i32_b10, pu8_rgbn, CST_RGB_24_SIZE);
GET_RGB24(i32_r01, i32_g01, i32_b01, pu8_rgbn, u32_stride_rgb);
GET_RGB24(i32_r11, i32_g11, i32_b11, pu8_rgbn, u32_stride_rgb + CST_RGB_24_SIZE);
i32_u00 = U24(i32_r00, i32_g00, i32_b00);
i32_v00 = V24(i32_r00, i32_g00, i32_b00);
i32_y00 = Y24(i32_r00, i32_g00, i32_b00); /* matrix luminance */
pu8_yn[0]= (M4VIFI_UInt8)i32_y00;
i32_u10 = U24(i32_r10, i32_g10, i32_b10);
i32_v10 = V24(i32_r10, i32_g10, i32_b10);
i32_y10 = Y24(i32_r10, i32_g10, i32_b10);
pu8_yn[1]= (M4VIFI_UInt8)i32_y10;
i32_u01 = U24(i32_r01, i32_g01, i32_b01);
i32_v01 = V24(i32_r01, i32_g01, i32_b01);
i32_y01 = Y24(i32_r01, i32_g01, i32_b01);
pu8_ys[0]= (M4VIFI_UInt8)i32_y01;
i32_u11 = U24(i32_r11, i32_g11, i32_b11);
i32_v11 = V24(i32_r11, i32_g11, i32_b11);
i32_y11 = Y24(i32_r11, i32_g11, i32_b11);
pu8_ys[1] = (M4VIFI_UInt8)i32_y11;
*pu8_u = (M4VIFI_UInt8)((i32_u00 + i32_u01 + i32_u10 + i32_u11 + 2) >> 2);
*pu8_v = (M4VIFI_UInt8)((i32_v00 + i32_v01 + i32_v10 + i32_v11 + 2) >> 2);
pu8_rgbn += (CST_RGB_24_SIZE<<1);
pu8_yn += 2;
pu8_ys += 2;
pu8_u ++;
pu8_v ++;
} /* end of horizontal scanning */
pu8_y_data += u32_stride2_Y;
pu8_u_data += u32_stride_U;
pu8_v_data += u32_stride_V;
pu8_rgbn_data += u32_stride_2rgb;
} /* End of vertical scanning */
return M4VIFI_OK;
}
/** YUV420 to YUV420 */
/**
*******************************************************************************************
* M4VIFI_UInt8 M4VIFI_YUV420toYUV420 (void *pUserData,
* M4VIFI_ImagePlane *pPlaneIn,
* M4VIFI_ImagePlane *pPlaneOut)
* @brief Transform YUV420 image to a YUV420 image.
* @param pUserData: (IN) User Specific Data (Unused - could be NULL)
* @param pPlaneIn: (IN) Pointer to YUV plane buffer
* @param pPlaneOut: (OUT) Pointer to YUV Plane
* @return M4VIFI_OK: there is no error
* @return M4VIFI_ILLEGAL_FRAME_HEIGHT: Error in plane height
* @return M4VIFI_ILLEGAL_FRAME_WIDTH: Error in plane width
*******************************************************************************************
*/
M4VIFI_UInt8 M4VIFI_YUV420toYUV420(void *user_data, M4VIFI_ImagePlane PlaneIn[3], M4VIFI_ImagePlane *PlaneOut )
{
M4VIFI_Int32 plane_number;
M4VIFI_UInt32 i;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest;
for (plane_number = 0; plane_number < 3; plane_number++)
{
p_buf_src = &(PlaneIn[plane_number].pac_data[PlaneIn[plane_number].u_topleft]);
p_buf_dest = &(PlaneOut[plane_number].pac_data[PlaneOut[plane_number].u_topleft]);
for (i = 0; i < PlaneOut[plane_number].u_height; i++)
{
memcpy((void *)p_buf_dest, (void *)p_buf_src ,PlaneOut[plane_number].u_width);
p_buf_src += PlaneIn[plane_number].u_stride;
p_buf_dest += PlaneOut[plane_number].u_stride;
}
}
return M4VIFI_OK;
}
/**
***********************************************************************************************
* M4VIFI_UInt8 M4VIFI_ResizeBilinearYUV420toYUV420(void *pUserData, M4VIFI_ImagePlane *pPlaneIn,
* M4VIFI_ImagePlane *pPlaneOut)
* @author David Dana (PHILIPS Software)
* @brief Resizes YUV420 Planar plane.
* @note Basic structure of the function
* Loop on each row (step 2)
* Loop on each column (step 2)
* Get four Y samples and 1 U & V sample
* Resize the Y with corresponing U and V samples
* Place the YUV in the ouput plane
* end loop column
* end loop row
* For resizing bilinear interpolation linearly interpolates along
* each row, and then uses that result in a linear interpolation down each column.
* Each estimated pixel in the output image is a weighted
* combination of its four neighbours. The ratio of compression
* or dilatation is estimated using input and output sizes.
* @param pUserData: (IN) User Data
* @param pPlaneIn: (IN) Pointer to YUV420 (Planar) plane buffer
* @param pPlaneOut: (OUT) Pointer to YUV420 (Planar) plane
* @return M4VIFI_OK: there is no error
* @return M4VIFI_ILLEGAL_FRAME_HEIGHT: Error in height
* @return M4VIFI_ILLEGAL_FRAME_WIDTH: Error in width
***********************************************************************************************
*/
M4VIFI_UInt8 M4VIFI_ResizeBilinearYUV420toYUV420(void *pUserData,
M4VIFI_ImagePlane *pPlaneIn,
M4VIFI_ImagePlane *pPlaneOut)
{
M4VIFI_UInt8 *pu8_data_in, *pu8_data_out, *pu8dum;
M4VIFI_UInt32 u32_plane;
M4VIFI_UInt32 u32_width_in, u32_width_out, u32_height_in, u32_height_out;
M4VIFI_UInt32 u32_stride_in, u32_stride_out;
M4VIFI_UInt32 u32_x_inc, u32_y_inc;
M4VIFI_UInt32 u32_x_accum, u32_y_accum, u32_x_accum_start;
M4VIFI_UInt32 u32_width, u32_height;
M4VIFI_UInt32 u32_y_frac;
M4VIFI_UInt32 u32_x_frac;
M4VIFI_UInt32 u32_temp_value;
M4VIFI_UInt8 *pu8_src_top;
M4VIFI_UInt8 *pu8_src_bottom;
M4VIFI_UInt8 u8Wflag = 0;
M4VIFI_UInt8 u8Hflag = 0;
M4VIFI_UInt32 loop = 0;
/*
If input width is equal to output width and input height equal to
output height then M4VIFI_YUV420toYUV420 is called.
*/
if ((pPlaneIn[0].u_height == pPlaneOut[0].u_height) &&
(pPlaneIn[0].u_width == pPlaneOut[0].u_width))
{
return M4VIFI_YUV420toYUV420(pUserData, pPlaneIn, pPlaneOut);
}
/* Check for the YUV width and height are even */
if ((IS_EVEN(pPlaneIn[0].u_height) == FALSE) ||
(IS_EVEN(pPlaneOut[0].u_height) == FALSE))
{
return M4VIFI_ILLEGAL_FRAME_HEIGHT;
}
if ((IS_EVEN(pPlaneIn[0].u_width) == FALSE) ||
(IS_EVEN(pPlaneOut[0].u_width) == FALSE))
{
return M4VIFI_ILLEGAL_FRAME_WIDTH;
}
/* Loop on planes */
for(u32_plane = 0;u32_plane < PLANES;u32_plane++)
{
/* Set the working pointers at the beginning of the input/output data field */
pu8_data_in = pPlaneIn[u32_plane].pac_data + pPlaneIn[u32_plane].u_topleft;
pu8_data_out = pPlaneOut[u32_plane].pac_data + pPlaneOut[u32_plane].u_topleft;
/* Get the memory jump corresponding to a row jump */
u32_stride_in = pPlaneIn[u32_plane].u_stride;
u32_stride_out = pPlaneOut[u32_plane].u_stride;
/* Set the bounds of the active image */
u32_width_in = pPlaneIn[u32_plane].u_width;
u32_height_in = pPlaneIn[u32_plane].u_height;
u32_width_out = pPlaneOut[u32_plane].u_width;
u32_height_out = pPlaneOut[u32_plane].u_height;
/*
For the case , width_out = width_in , set the flag to avoid
accessing one column beyond the input width.In this case the last
column is replicated for processing
*/
if (u32_width_out == u32_width_in) {
u32_width_out = u32_width_out-1;
u8Wflag = 1;
}
/* Compute horizontal ratio between src and destination width.*/
if (u32_width_out >= u32_width_in)
{
u32_x_inc = ((u32_width_in-1) * MAX_SHORT) / (u32_width_out-1);
}
else
{
u32_x_inc = (u32_width_in * MAX_SHORT) / (u32_width_out);
}
/*
For the case , height_out = height_in , set the flag to avoid
accessing one row beyond the input height.In this case the last
row is replicated for processing
*/
if (u32_height_out == u32_height_in) {
u32_height_out = u32_height_out-1;
u8Hflag = 1;
}
/* Compute vertical ratio between src and destination height.*/
if (u32_height_out >= u32_height_in)
{
u32_y_inc = ((u32_height_in - 1) * MAX_SHORT) / (u32_height_out-1);
}
else
{
u32_y_inc = (u32_height_in * MAX_SHORT) / (u32_height_out);
}
/*
Calculate initial accumulator value : u32_y_accum_start.
u32_y_accum_start is coded on 15 bits, and represents a value
between 0 and 0.5
*/
if (u32_y_inc >= MAX_SHORT)
{
/*
Keep the fractionnal part, assimung that integer part is coded
on the 16 high bits and the fractional on the 15 low bits
*/
u32_y_accum = u32_y_inc & 0xffff;
if (!u32_y_accum)
{
u32_y_accum = MAX_SHORT;
}
u32_y_accum >>= 1;
}
else
{
u32_y_accum = 0;
}
/*
Calculate initial accumulator value : u32_x_accum_start.
u32_x_accum_start is coded on 15 bits, and represents a value
between 0 and 0.5
*/
if (u32_x_inc >= MAX_SHORT)
{
u32_x_accum_start = u32_x_inc & 0xffff;
if (!u32_x_accum_start)
{
u32_x_accum_start = MAX_SHORT;
}
u32_x_accum_start >>= 1;
}
else
{
u32_x_accum_start = 0;
}
u32_height = u32_height_out;
/*
Bilinear interpolation linearly interpolates along each row, and
then uses that result in a linear interpolation donw each column.
Each estimated pixel in the output image is a weighted combination
of its four neighbours according to the formula:
F(p',q')=f(p,q)R(-a)R(b)+f(p,q-1)R(-a)R(b-1)+f(p+1,q)R(1-a)R(b)+
f(p+&,q+1)R(1-a)R(b-1) with R(x) = / x+1 -1 =< x =< 0 \ 1-x
0 =< x =< 1 and a (resp. b)weighting coefficient is the distance
from the nearest neighbor in the p (resp. q) direction
*/
do { /* Scan all the row */
/* Vertical weight factor */
u32_y_frac = (u32_y_accum>>12)&15;
/* Reinit accumulator */
u32_x_accum = u32_x_accum_start;
u32_width = u32_width_out;
do { /* Scan along each row */
pu8_src_top = pu8_data_in + (u32_x_accum >> 16);
pu8_src_bottom = pu8_src_top + u32_stride_in;
u32_x_frac = (u32_x_accum >> 12)&15; /* Horizontal weight factor */
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[0]*(16-u32_x_frac) +
pu8_src_top[1]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[0]*(16-u32_x_frac) +
pu8_src_bottom[1]*u32_x_frac)*u32_y_frac )>>8);
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update horizontal accumulator */
u32_x_accum += u32_x_inc;
} while(--u32_width);
/*
This u8Wflag flag gets in to effect if input and output
width is same, and height may be different. So previous
pixel is replicated here
*/
if (u8Wflag) {
*pu8_data_out = (M4VIFI_UInt8)u32_temp_value;
}
pu8dum = (pu8_data_out-u32_width_out);
pu8_data_out = pu8_data_out + u32_stride_out - u32_width_out;
/* Update vertical accumulator */
u32_y_accum += u32_y_inc;
if (u32_y_accum>>16) {
pu8_data_in = pu8_data_in + (u32_y_accum >> 16) * u32_stride_in;
u32_y_accum &= 0xffff;
}
} while(--u32_height);
/*
This u8Hflag flag gets in to effect if input and output height
is same, and width may be different. So previous pixel row is
replicated here
*/
if (u8Hflag) {
for(loop =0; loop < (u32_width_out+u8Wflag); loop++) {
*pu8_data_out++ = (M4VIFI_UInt8)*pu8dum++;
}
}
}
return M4VIFI_OK;
}
M4OSA_ERR applyRenderingMode(M4VIFI_ImagePlane* pPlaneIn, M4VIFI_ImagePlane* pPlaneOut, M4xVSS_MediaRendering mediaRendering)
{
M4OSA_ERR err = M4NO_ERROR;
if(mediaRendering == M4xVSS_kResizing)
{
/**
* Call the resize filter. From the intermediate frame to the encoder image plane */
err = M4VIFI_ResizeBilinearYUV420toYUV420(M4OSA_NULL, pPlaneIn, pPlaneOut);
if (M4NO_ERROR != err)
{
M4OSA_TRACE1_1("applyRenderingMode: M4ViFilResizeBilinearYUV420toYUV420 returns 0x%x!", err);
return err;
}
}
else
{
M4AIR_Params Params;
M4OSA_Context m_air_context;
M4VIFI_ImagePlane pImagePlanesTemp[3];
M4VIFI_ImagePlane* pPlaneTemp;
M4OSA_UInt8* pOutPlaneY = pPlaneOut[0].pac_data + pPlaneOut[0].u_topleft;
M4OSA_UInt8* pOutPlaneU = pPlaneOut[1].pac_data + pPlaneOut[1].u_topleft;
M4OSA_UInt8* pOutPlaneV = pPlaneOut[2].pac_data + pPlaneOut[2].u_topleft;
M4OSA_UInt8* pInPlaneY = NULL;
M4OSA_UInt8* pInPlaneU = NULL;
M4OSA_UInt8* pInPlaneV = NULL;
M4OSA_UInt32 i;
/*to keep media aspect ratio*/
/*Initialize AIR Params*/
Params.m_inputCoord.m_x = 0;
Params.m_inputCoord.m_y = 0;
Params.m_inputSize.m_height = pPlaneIn->u_height;
Params.m_inputSize.m_width = pPlaneIn->u_width;
Params.m_outputSize.m_width = pPlaneOut->u_width;
Params.m_outputSize.m_height = pPlaneOut->u_height;
Params.m_bOutputStripe = M4OSA_FALSE;
Params.m_outputOrientation = M4COMMON_kOrientationTopLeft;
/**
Media rendering: Black borders*/
if(mediaRendering == M4xVSS_kBlackBorders)
{
memset((void *)pPlaneOut[0].pac_data,Y_PLANE_BORDER_VALUE,(pPlaneOut[0].u_height*pPlaneOut[0].u_stride));
memset((void *)pPlaneOut[1].pac_data,U_PLANE_BORDER_VALUE,(pPlaneOut[1].u_height*pPlaneOut[1].u_stride));
memset((void *)pPlaneOut[2].pac_data,V_PLANE_BORDER_VALUE,(pPlaneOut[2].u_height*pPlaneOut[2].u_stride));
pImagePlanesTemp[0].u_width = pPlaneOut[0].u_width;
pImagePlanesTemp[0].u_height = pPlaneOut[0].u_height;
pImagePlanesTemp[0].u_stride = pPlaneOut[0].u_width;
pImagePlanesTemp[0].u_topleft = 0;
pImagePlanesTemp[0].pac_data = M4OSA_NULL;
pImagePlanesTemp[1].u_width = pPlaneOut[1].u_width;
pImagePlanesTemp[1].u_height = pPlaneOut[1].u_height;
pImagePlanesTemp[1].u_stride = pPlaneOut[1].u_width;
pImagePlanesTemp[1].u_topleft = 0;
pImagePlanesTemp[1].pac_data = M4OSA_NULL;
pImagePlanesTemp[2].u_width = pPlaneOut[2].u_width;
pImagePlanesTemp[2].u_height = pPlaneOut[2].u_height;
pImagePlanesTemp[2].u_stride = pPlaneOut[2].u_width;
pImagePlanesTemp[2].u_topleft = 0;
pImagePlanesTemp[2].pac_data = M4OSA_NULL;
/* Allocates plan in local image plane structure */
pImagePlanesTemp[0].pac_data = (M4OSA_UInt8*)M4OSA_32bitAlignedMalloc(pImagePlanesTemp[0].u_width * pImagePlanesTemp[0].u_height, M4VS, (M4OSA_Char*)"applyRenderingMode: temporary plane bufferY") ;
if(pImagePlanesTemp[0].pac_data == M4OSA_NULL)
{
M4OSA_TRACE1_0("Error alloc in applyRenderingMode");
return M4ERR_ALLOC;
}
pImagePlanesTemp[1].pac_data = (M4OSA_UInt8*)M4OSA_32bitAlignedMalloc(pImagePlanesTemp[1].u_width * pImagePlanesTemp[1].u_height, M4VS, (M4OSA_Char*)"applyRenderingMode: temporary plane bufferU") ;
if(pImagePlanesTemp[1].pac_data == M4OSA_NULL)
{
M4OSA_TRACE1_0("Error alloc in applyRenderingMode");
return M4ERR_ALLOC;
}
pImagePlanesTemp[2].pac_data = (M4OSA_UInt8*)M4OSA_32bitAlignedMalloc(pImagePlanesTemp[2].u_width * pImagePlanesTemp[2].u_height, M4VS, (M4OSA_Char*)"applyRenderingMode: temporary plane bufferV") ;
if(pImagePlanesTemp[2].pac_data == M4OSA_NULL)
{
M4OSA_TRACE1_0("Error alloc in applyRenderingMode");
return M4ERR_ALLOC;
}
pInPlaneY = pImagePlanesTemp[0].pac_data ;
pInPlaneU = pImagePlanesTemp[1].pac_data ;
pInPlaneV = pImagePlanesTemp[2].pac_data ;
memset((void *)pImagePlanesTemp[0].pac_data,Y_PLANE_BORDER_VALUE,(pImagePlanesTemp[0].u_height*pImagePlanesTemp[0].u_stride));
memset((void *)pImagePlanesTemp[1].pac_data,U_PLANE_BORDER_VALUE,(pImagePlanesTemp[1].u_height*pImagePlanesTemp[1].u_stride));
memset((void *)pImagePlanesTemp[2].pac_data,V_PLANE_BORDER_VALUE,(pImagePlanesTemp[2].u_height*pImagePlanesTemp[2].u_stride));
if((M4OSA_UInt32)((pPlaneIn->u_height * pPlaneOut->u_width) /pPlaneIn->u_width) <= pPlaneOut->u_height)//Params.m_inputSize.m_height < Params.m_inputSize.m_width)
{
/*it is height so black borders will be on the top and on the bottom side*/
Params.m_outputSize.m_width = pPlaneOut->u_width;
Params.m_outputSize.m_height = (M4OSA_UInt32)((pPlaneIn->u_height * pPlaneOut->u_width) /pPlaneIn->u_width);
/*number of lines at the top*/
pImagePlanesTemp[0].u_topleft = (M4xVSS_ABS((M4OSA_Int32)(pImagePlanesTemp[0].u_height-Params.m_outputSize.m_height)>>1))*pImagePlanesTemp[0].u_stride;
pImagePlanesTemp[0].u_height = Params.m_outputSize.m_height;
pImagePlanesTemp[1].u_topleft = (M4xVSS_ABS((M4OSA_Int32)(pImagePlanesTemp[1].u_height-(Params.m_outputSize.m_height>>1)))>>1)*pImagePlanesTemp[1].u_stride;
pImagePlanesTemp[1].u_height = Params.m_outputSize.m_height>>1;
pImagePlanesTemp[2].u_topleft = (M4xVSS_ABS((M4OSA_Int32)(pImagePlanesTemp[2].u_height-(Params.m_outputSize.m_height>>1)))>>1)*pImagePlanesTemp[2].u_stride;
pImagePlanesTemp[2].u_height = Params.m_outputSize.m_height>>1;
}
else
{
/*it is width so black borders will be on the left and right side*/
Params.m_outputSize.m_height = pPlaneOut->u_height;
Params.m_outputSize.m_width = (M4OSA_UInt32)((pPlaneIn->u_width * pPlaneOut->u_height) /pPlaneIn->u_height);
pImagePlanesTemp[0].u_topleft = (M4xVSS_ABS((M4OSA_Int32)(pImagePlanesTemp[0].u_width-Params.m_outputSize.m_width)>>1));
pImagePlanesTemp[0].u_width = Params.m_outputSize.m_width;
pImagePlanesTemp[1].u_topleft = (M4xVSS_ABS((M4OSA_Int32)(pImagePlanesTemp[1].u_width-(Params.m_outputSize.m_width>>1)))>>1);
pImagePlanesTemp[1].u_width = Params.m_outputSize.m_width>>1;
pImagePlanesTemp[2].u_topleft = (M4xVSS_ABS((M4OSA_Int32)(pImagePlanesTemp[2].u_width-(Params.m_outputSize.m_width>>1)))>>1);
pImagePlanesTemp[2].u_width = Params.m_outputSize.m_width>>1;
}
/*Width and height have to be even*/
Params.m_outputSize.m_width = (Params.m_outputSize.m_width>>1)<<1;
Params.m_outputSize.m_height = (Params.m_outputSize.m_height>>1)<<1;
Params.m_inputSize.m_width = (Params.m_inputSize.m_width>>1)<<1;
Params.m_inputSize.m_height = (Params.m_inputSize.m_height>>1)<<1;
pImagePlanesTemp[0].u_width = (pImagePlanesTemp[0].u_width>>1)<<1;
pImagePlanesTemp[1].u_width = (pImagePlanesTemp[1].u_width>>1)<<1;
pImagePlanesTemp[2].u_width = (pImagePlanesTemp[2].u_width>>1)<<1;
pImagePlanesTemp[0].u_height = (pImagePlanesTemp[0].u_height>>1)<<1;
pImagePlanesTemp[1].u_height = (pImagePlanesTemp[1].u_height>>1)<<1;
pImagePlanesTemp[2].u_height = (pImagePlanesTemp[2].u_height>>1)<<1;
/*Check that values are coherent*/
if(Params.m_inputSize.m_height == Params.m_outputSize.m_height)
{
Params.m_inputSize.m_width = Params.m_outputSize.m_width;
}
else if(Params.m_inputSize.m_width == Params.m_outputSize.m_width)
{
Params.m_inputSize.m_height = Params.m_outputSize.m_height;
}
pPlaneTemp = pImagePlanesTemp;
}
/**
Media rendering: Cropping*/
if(mediaRendering == M4xVSS_kCropping)
{
Params.m_outputSize.m_height = pPlaneOut->u_height;
Params.m_outputSize.m_width = pPlaneOut->u_width;
if((Params.m_outputSize.m_height * Params.m_inputSize.m_width) /Params.m_outputSize.m_width<Params.m_inputSize.m_height)
{
/*height will be cropped*/
Params.m_inputSize.m_height = (M4OSA_UInt32)((Params.m_outputSize.m_height * Params.m_inputSize.m_width) /Params.m_outputSize.m_width);
Params.m_inputSize.m_height = (Params.m_inputSize.m_height>>1)<<1;
Params.m_inputCoord.m_y = (M4OSA_Int32)((M4OSA_Int32)((pPlaneIn->u_height - Params.m_inputSize.m_height))>>1);
}
else
{
/*width will be cropped*/
Params.m_inputSize.m_width = (M4OSA_UInt32)((Params.m_outputSize.m_width * Params.m_inputSize.m_height) /Params.m_outputSize.m_height);
Params.m_inputSize.m_width = (Params.m_inputSize.m_width>>1)<<1;
Params.m_inputCoord.m_x = (M4OSA_Int32)((M4OSA_Int32)((pPlaneIn->u_width - Params.m_inputSize.m_width))>>1);
}
pPlaneTemp = pPlaneOut;
}
/**
* Call AIR functions */
err = M4AIR_create(&m_air_context, M4AIR_kYUV420P);
if(err != M4NO_ERROR)
{
M4OSA_TRACE1_1("applyRenderingMode: Error when initializing AIR: 0x%x", err);
for(i=0; i<3; i++)
{
if(pImagePlanesTemp[i].pac_data != M4OSA_NULL)
{
free(pImagePlanesTemp[i].pac_data);
pImagePlanesTemp[i].pac_data = M4OSA_NULL;
}
}
return err;
}
err = M4AIR_configure(m_air_context, &Params);
if(err != M4NO_ERROR)
{
M4OSA_TRACE1_1("applyRenderingMode: Error when configuring AIR: 0x%x", err);
M4AIR_cleanUp(m_air_context);
for(i=0; i<3; i++)
{
if(pImagePlanesTemp[i].pac_data != M4OSA_NULL)
{
free(pImagePlanesTemp[i].pac_data);
pImagePlanesTemp[i].pac_data = M4OSA_NULL;
}
}
return err;
}
err = M4AIR_get(m_air_context, pPlaneIn, pPlaneTemp);
if(err != M4NO_ERROR)
{
M4OSA_TRACE1_1("applyRenderingMode: Error when getting AIR plane: 0x%x", err);
M4AIR_cleanUp(m_air_context);
for(i=0; i<3; i++)
{
if(pImagePlanesTemp[i].pac_data != M4OSA_NULL)
{
free(pImagePlanesTemp[i].pac_data);
pImagePlanesTemp[i].pac_data = M4OSA_NULL;
}
}
return err;
}
if(mediaRendering == M4xVSS_kBlackBorders)
{
for(i=0; i<pPlaneOut[0].u_height; i++)
{
memcpy((void *)pOutPlaneY, (void *)pInPlaneY, pPlaneOut[0].u_width);
pInPlaneY += pPlaneOut[0].u_width;
pOutPlaneY += pPlaneOut[0].u_stride;
}
for(i=0; i<pPlaneOut[1].u_height; i++)
{
memcpy((void *)pOutPlaneU, (void *)pInPlaneU, pPlaneOut[1].u_width);
pInPlaneU += pPlaneOut[1].u_width;
pOutPlaneU += pPlaneOut[1].u_stride;
}
for(i=0; i<pPlaneOut[2].u_height; i++)
{
memcpy((void *)pOutPlaneV, (void *)pInPlaneV, pPlaneOut[2].u_width);
pInPlaneV += pPlaneOut[2].u_width;
pOutPlaneV += pPlaneOut[2].u_stride;
}
for(i=0; i<3; i++)
{
if(pImagePlanesTemp[i].pac_data != M4OSA_NULL)
{
free(pImagePlanesTemp[i].pac_data);
pImagePlanesTemp[i].pac_data = M4OSA_NULL;
}
}
}
if (m_air_context != M4OSA_NULL) {
M4AIR_cleanUp(m_air_context);
m_air_context = M4OSA_NULL;
}
}
return err;
}
//TODO: remove this code after link with videoartist lib
/* M4AIR code*/
#define M4AIR_YUV420_FORMAT_SUPPORTED
#define M4AIR_YUV420A_FORMAT_SUPPORTED
/************************* COMPILATION CHECKS ***************************/
#ifndef M4AIR_YUV420_FORMAT_SUPPORTED
#ifndef M4AIR_BGR565_FORMAT_SUPPORTED
#ifndef M4AIR_RGB565_FORMAT_SUPPORTED
#ifndef M4AIR_BGR888_FORMAT_SUPPORTED
#ifndef M4AIR_RGB888_FORMAT_SUPPORTED
#ifndef M4AIR_JPG_FORMAT_SUPPORTED
#error "Please define at least one input format for the AIR component"
#endif
#endif
#endif
#endif
#endif
#endif
/************************ M4AIR INTERNAL TYPES DEFINITIONS ***********************/
/**
******************************************************************************
* enum M4AIR_States
* @brief The following enumeration defines the internal states of the AIR.
******************************************************************************
*/
typedef enum
{
M4AIR_kCreated, /**< State after M4AIR_create has been called */
M4AIR_kConfigured /**< State after M4AIR_configure has been called */
}M4AIR_States;
/**
******************************************************************************
* struct M4AIR_InternalContext
* @brief The following structure is the internal context of the AIR.
******************************************************************************
*/
typedef struct
{
M4AIR_States m_state; /**< Internal state */
M4AIR_InputFormatType m_inputFormat; /**< Input format like YUV420Planar, RGB565, JPG, etc ... */
M4AIR_Params m_params; /**< Current input Parameter of the processing */
M4OSA_UInt32 u32_x_inc[4]; /**< ratio between input and ouput width for YUV */
M4OSA_UInt32 u32_y_inc[4]; /**< ratio between input and ouput height for YUV */
M4OSA_UInt32 u32_x_accum_start[4]; /**< horizontal initial accumulator value */
M4OSA_UInt32 u32_y_accum_start[4]; /**< Vertical initial accumulator value */
M4OSA_UInt32 u32_x_accum[4]; /**< save of horizontal accumulator value */
M4OSA_UInt32 u32_y_accum[4]; /**< save of vertical accumulator value */
M4OSA_UInt8* pu8_data_in[4]; /**< Save of input plane pointers in case of stripe mode */
M4OSA_UInt32 m_procRows; /**< Number of processed rows, used in stripe mode only */
M4OSA_Bool m_bOnlyCopy; /**< Flag to know if we just perform a copy or a bilinear interpolation */
M4OSA_Bool m_bFlipX; /**< Depend on output orientation, used during processing to revert processing order in X coordinates */
M4OSA_Bool m_bFlipY; /**< Depend on output orientation, used during processing to revert processing order in Y coordinates */
M4OSA_Bool m_bRevertXY; /**< Depend on output orientation, used during processing to revert X and Y processing order (+-90° rotation) */
}M4AIR_InternalContext;
/********************************* MACROS *******************************/
#define M4ERR_CHECK_NULL_RETURN_VALUE(retval, pointer) if ((pointer) == M4OSA_NULL) return ((M4OSA_ERR)(retval));
/********************** M4AIR PUBLIC API IMPLEMENTATION ********************/
/**
******************************************************************************
* M4OSA_ERR M4AIR_create(M4OSA_Context* pContext,M4AIR_InputFormatType inputFormat)
* @author Arnaud Collard
* @brief This function initialize an instance of the AIR.
* @param pContext: (IN/OUT) Address of the context to create
* @param inputFormat: (IN) input format type.
* @return M4NO_ERROR: there is no error
* @return M4ERR_PARAMETER: pContext is M4OSA_NULL (debug only). Invalid formatType
* @return M4ERR_ALLOC: No more memory is available
******************************************************************************
*/
M4OSA_ERR M4AIR_create(M4OSA_Context* pContext,M4AIR_InputFormatType inputFormat)
{
M4OSA_ERR err = M4NO_ERROR ;
M4AIR_InternalContext* pC = M4OSA_NULL ;
/* Check that the address on the context is not NULL */
M4ERR_CHECK_NULL_RETURN_VALUE(M4ERR_PARAMETER, pContext) ;
*pContext = M4OSA_NULL ;
/* Internal Context creation */
pC = (M4AIR_InternalContext*)M4OSA_32bitAlignedMalloc(sizeof(M4AIR_InternalContext), M4AIR, (M4OSA_Char*)"AIR internal context") ;
M4ERR_CHECK_NULL_RETURN_VALUE(M4ERR_ALLOC, pC) ;
/* Check if the input format is supported */
switch(inputFormat)
{
#ifdef M4AIR_YUV420_FORMAT_SUPPORTED
case M4AIR_kYUV420P:
break ;
#endif
#ifdef M4AIR_YUV420A_FORMAT_SUPPORTED
case M4AIR_kYUV420AP:
break ;
#endif
default:
err = M4ERR_AIR_FORMAT_NOT_SUPPORTED;
goto M4AIR_create_cleanup ;
}
/**< Save input format and update state */
pC->m_inputFormat = inputFormat;
pC->m_state = M4AIR_kCreated;
/* Return the context to the caller */
*pContext = pC ;
return M4NO_ERROR ;
M4AIR_create_cleanup:
/* Error management : we destroy the context if needed */
if(M4OSA_NULL != pC)
{
free(pC) ;
}
*pContext = M4OSA_NULL ;
return err ;
}
/**
******************************************************************************
* M4OSA_ERR M4AIR_cleanUp(M4OSA_Context pContext)
* @author Arnaud Collard
* @brief This function destroys an instance of the AIR component
* @param pContext: (IN) Context identifying the instance to destroy
* @return M4NO_ERROR: there is no error
* @return M4ERR_PARAMETER: pContext is M4OSA_NULL (debug only).
* @return M4ERR_STATE: Internal state is incompatible with this function call.
******************************************************************************
*/
M4OSA_ERR M4AIR_cleanUp(M4OSA_Context pContext)
{
M4AIR_InternalContext* pC = (M4AIR_InternalContext*)pContext ;
M4ERR_CHECK_NULL_RETURN_VALUE(M4ERR_PARAMETER, pContext) ;
/**< Check state */
if((M4AIR_kCreated != pC->m_state)&&(M4AIR_kConfigured != pC->m_state))
{
return M4ERR_STATE;
}
free(pC) ;
return M4NO_ERROR ;
}
/**
******************************************************************************
* M4OSA_ERR M4AIR_configure(M4OSA_Context pContext, M4AIR_Params* pParams)
* @brief This function will configure the AIR.
* @note It will set the input and output coordinates and sizes,
* and indicates if we will proceed in stripe or not.
* In case a M4AIR_get in stripe mode was on going, it will cancel this previous processing
* and reset the get process.
* @param pContext: (IN) Context identifying the instance
* @param pParams->m_bOutputStripe:(IN) Stripe mode.
* @param pParams->m_inputCoord: (IN) X,Y coordinates of the first valid pixel in input.
* @param pParams->m_inputSize: (IN) input ROI size.
* @param pParams->m_outputSize: (IN) output size.
* @return M4NO_ERROR: there is no error
* @return M4ERR_ALLOC: No more memory space to add a new effect.
* @return M4ERR_PARAMETER: pContext is M4OSA_NULL (debug only).
* @return M4ERR_AIR_FORMAT_NOT_SUPPORTED: the requested input format is not supported.
******************************************************************************
*/
M4OSA_ERR M4AIR_configure(M4OSA_Context pContext, M4AIR_Params* pParams)
{
M4AIR_InternalContext* pC = (M4AIR_InternalContext*)pContext ;
M4OSA_UInt32 i,u32_width_in, u32_width_out, u32_height_in, u32_height_out;
M4OSA_UInt32 nb_planes;
M4ERR_CHECK_NULL_RETURN_VALUE(M4ERR_PARAMETER, pContext) ;
if(M4AIR_kYUV420AP == pC->m_inputFormat)
{
nb_planes = 4;
}
else
{
nb_planes = 3;
}
/**< Check state */
if((M4AIR_kCreated != pC->m_state)&&(M4AIR_kConfigured != pC->m_state))
{
return M4ERR_STATE;
}
/** Save parameters */
pC->m_params = *pParams;
/* Check for the input&output width and height are even */
if( ((pC->m_params.m_inputSize.m_height)&0x1) ||
((pC->m_params.m_inputSize.m_height)&0x1))
{
return M4ERR_AIR_ILLEGAL_FRAME_SIZE;
}
if( ((pC->m_params.m_inputSize.m_width)&0x1) ||
((pC->m_params.m_inputSize.m_width)&0x1))
{
return M4ERR_AIR_ILLEGAL_FRAME_SIZE;
}
if(((pC->m_params.m_inputSize.m_width) == (pC->m_params.m_outputSize.m_width))
&&((pC->m_params.m_inputSize.m_height) == (pC->m_params.m_outputSize.m_height)))
{
/**< No resize in this case, we will just copy input in output */
pC->m_bOnlyCopy = M4OSA_TRUE;
}
else
{
pC->m_bOnlyCopy = M4OSA_FALSE;
/**< Initialize internal variables used for resize filter */
for(i=0;i<nb_planes;i++)
{
u32_width_in = ((i==0)||(i==3))?pC->m_params.m_inputSize.m_width:(pC->m_params.m_inputSize.m_width+1)>>1;
u32_height_in = ((i==0)||(i==3))?pC->m_params.m_inputSize.m_height:(pC->m_params.m_inputSize.m_height+1)>>1;
u32_width_out = ((i==0)||(i==3))?pC->m_params.m_outputSize.m_width:(pC->m_params.m_outputSize.m_width+1)>>1;
u32_height_out = ((i==0)||(i==3))?pC->m_params.m_outputSize.m_height:(pC->m_params.m_outputSize.m_height+1)>>1;
/* Compute horizontal ratio between src and destination width.*/
if (u32_width_out >= u32_width_in)
{
pC->u32_x_inc[i] = ((u32_width_in-1) * 0x10000) / (u32_width_out-1);
}
else
{
pC->u32_x_inc[i] = (u32_width_in * 0x10000) / (u32_width_out);
}
/* Compute vertical ratio between src and destination height.*/
if (u32_height_out >= u32_height_in)
{
pC->u32_y_inc[i] = ((u32_height_in - 1) * 0x10000) / (u32_height_out-1);
}
else
{
pC->u32_y_inc[i] = (u32_height_in * 0x10000) / (u32_height_out);
}
/*
Calculate initial accumulator value : u32_y_accum_start.
u32_y_accum_start is coded on 15 bits, and represents a value between 0 and 0.5
*/
if (pC->u32_y_inc[i] >= 0x10000)
{
/*
Keep the fractionnal part, assimung that integer part is coded
on the 16 high bits and the fractionnal on the 15 low bits
*/
pC->u32_y_accum_start[i] = pC->u32_y_inc[i] & 0xffff;
if (!pC->u32_y_accum_start[i])
{
pC->u32_y_accum_start[i] = 0x10000;
}
pC->u32_y_accum_start[i] >>= 1;
}
else
{
pC->u32_y_accum_start[i] = 0;
}
/**< Take into account that Y coordinate can be odd
in this case we have to put a 0.5 offset
for U and V plane as there a 2 times sub-sampled vs Y*/
if((pC->m_params.m_inputCoord.m_y&0x1)&&((i==1)||(i==2)))
{
pC->u32_y_accum_start[i] += 0x8000;
}
/*
Calculate initial accumulator value : u32_x_accum_start.
u32_x_accum_start is coded on 15 bits, and represents a value between 0 and 0.5
*/
if (pC->u32_x_inc[i] >= 0x10000)
{
pC->u32_x_accum_start[i] = pC->u32_x_inc[i] & 0xffff;
if (!pC->u32_x_accum_start[i])
{
pC->u32_x_accum_start[i] = 0x10000;
}
pC->u32_x_accum_start[i] >>= 1;
}
else
{
pC->u32_x_accum_start[i] = 0;
}
/**< Take into account that X coordinate can be odd
in this case we have to put a 0.5 offset
for U and V plane as there a 2 times sub-sampled vs Y*/
if((pC->m_params.m_inputCoord.m_x&0x1)&&((i==1)||(i==2)))
{
pC->u32_x_accum_start[i] += 0x8000;
}
}
}
/**< Reset variable used for stripe mode */
pC->m_procRows = 0;
/**< Initialize var for X/Y processing order according to orientation */
pC->m_bFlipX = M4OSA_FALSE;
pC->m_bFlipY = M4OSA_FALSE;
pC->m_bRevertXY = M4OSA_FALSE;
switch(pParams->m_outputOrientation)
{
case M4COMMON_kOrientationTopLeft:
break;
case M4COMMON_kOrientationTopRight:
pC->m_bFlipX = M4OSA_TRUE;
break;
case M4COMMON_kOrientationBottomRight:
pC->m_bFlipX = M4OSA_TRUE;
pC->m_bFlipY = M4OSA_TRUE;
break;
case M4COMMON_kOrientationBottomLeft:
pC->m_bFlipY = M4OSA_TRUE;
break;
case M4COMMON_kOrientationLeftTop:
pC->m_bRevertXY = M4OSA_TRUE;
break;
case M4COMMON_kOrientationRightTop:
pC->m_bRevertXY = M4OSA_TRUE;
pC->m_bFlipY = M4OSA_TRUE;
break;
case M4COMMON_kOrientationRightBottom:
pC->m_bRevertXY = M4OSA_TRUE;
pC->m_bFlipX = M4OSA_TRUE;
pC->m_bFlipY = M4OSA_TRUE;
break;
case M4COMMON_kOrientationLeftBottom:
pC->m_bRevertXY = M4OSA_TRUE;
pC->m_bFlipX = M4OSA_TRUE;
break;
default:
return M4ERR_PARAMETER;
}
/**< Update state */
pC->m_state = M4AIR_kConfigured;
return M4NO_ERROR ;
}
/**
******************************************************************************
* M4OSA_ERR M4AIR_get(M4OSA_Context pContext, M4VIFI_ImagePlane* pIn, M4VIFI_ImagePlane* pOut)
* @brief This function will provide the requested resized area of interest according to settings
* provided in M4AIR_configure.
* @note In case the input format type is JPEG, input plane(s)
* in pIn is not used. In normal mode, dimension specified in output plane(s) structure must be the
* same than the one specified in M4AIR_configure. In stripe mode, only the width will be the same,
* height will be taken as the stripe height (typically 16).
* In normal mode, this function is call once to get the full output picture. In stripe mode, it is called
* for each stripe till the whole picture has been retrieved,and the position of the output stripe in the output picture
* is internally incremented at each step.
* Any call to M4AIR_configure during stripe process will reset this one to the beginning of the output picture.
* @param pContext: (IN) Context identifying the instance
* @param pIn: (IN) Plane structure containing input Plane(s).
* @param pOut: (IN/OUT) Plane structure containing output Plane(s).
* @return M4NO_ERROR: there is no error
* @return M4ERR_ALLOC: No more memory space to add a new effect.
* @return M4ERR_PARAMETER: pContext is M4OSA_NULL (debug only).
******************************************************************************
*/
M4OSA_ERR M4AIR_get(M4OSA_Context pContext, M4VIFI_ImagePlane* pIn, M4VIFI_ImagePlane* pOut)
{
M4AIR_InternalContext* pC = (M4AIR_InternalContext*)pContext ;
M4OSA_UInt32 i,j,k,u32_x_frac,u32_y_frac,u32_x_accum,u32_y_accum,u32_shift;
M4OSA_UInt8 *pu8_data_in, *pu8_data_in_org, *pu8_data_in_tmp, *pu8_data_out;
M4OSA_UInt8 *pu8_src_top;
M4OSA_UInt8 *pu8_src_bottom;
M4OSA_UInt32 u32_temp_value;
M4OSA_Int32 i32_tmp_offset;
M4OSA_UInt32 nb_planes;
M4ERR_CHECK_NULL_RETURN_VALUE(M4ERR_PARAMETER, pContext) ;
/**< Check state */
if(M4AIR_kConfigured != pC->m_state)
{
return M4ERR_STATE;
}
if(M4AIR_kYUV420AP == pC->m_inputFormat)
{
nb_planes = 4;
}
else
{
nb_planes = 3;
}
/**< Loop on each Plane */
for(i=0;i<nb_planes;i++)
{
/* Set the working pointers at the beginning of the input/output data field */
u32_shift = ((i==0)||(i==3))?0:1; /**< Depend on Luma or Chroma */
if((M4OSA_FALSE == pC->m_params.m_bOutputStripe)||((M4OSA_TRUE == pC->m_params.m_bOutputStripe)&&(0 == pC->m_procRows)))
{
/**< For input, take care about ROI */
pu8_data_in = pIn[i].pac_data + pIn[i].u_topleft + (pC->m_params.m_inputCoord.m_x>>u32_shift)
+ (pC->m_params.m_inputCoord.m_y >> u32_shift) * pIn[i].u_stride;
/** Go at end of line/column in case X/Y scanning is flipped */
if(M4OSA_TRUE == pC->m_bFlipX)
{
pu8_data_in += ((pC->m_params.m_inputSize.m_width)>>u32_shift) -1 ;
}
if(M4OSA_TRUE == pC->m_bFlipY)
{
pu8_data_in += ((pC->m_params.m_inputSize.m_height>>u32_shift) -1) * pIn[i].u_stride;
}
/**< Initialize accumulators in case we are using it (bilinear interpolation) */
if( M4OSA_FALSE == pC->m_bOnlyCopy)
{
pC->u32_x_accum[i] = pC->u32_x_accum_start[i];
pC->u32_y_accum[i] = pC->u32_y_accum_start[i];
}
}
else
{
/**< In case of stripe mode for other than first stripe, we need to recover input pointer from internal context */
pu8_data_in = pC->pu8_data_in[i];
}
/**< In every mode, output data are at the beginning of the output plane */
pu8_data_out = pOut[i].pac_data + pOut[i].u_topleft;
/**< Initialize input offset applied after each pixel */
if(M4OSA_FALSE == pC->m_bFlipY)
{
i32_tmp_offset = pIn[i].u_stride;
}
else
{
i32_tmp_offset = -pIn[i].u_stride;
}
/**< In this case, no bilinear interpolation is needed as input and output dimensions are the same */
if( M4OSA_TRUE == pC->m_bOnlyCopy)
{
/**< No +-90° rotation */
if(M4OSA_FALSE == pC->m_bRevertXY)
{
/**< No flip on X abscissa */
if(M4OSA_FALSE == pC->m_bFlipX)
{
M4OSA_UInt32 loc_height = pOut[i].u_height;
M4OSA_UInt32 loc_width = pOut[i].u_width;
M4OSA_UInt32 loc_stride = pIn[i].u_stride;
/**< Loop on each row */
for (j=0; j<loc_height; j++)
{
/**< Copy one whole line */
memcpy((void *)pu8_data_out, (void *)pu8_data_in, loc_width);
/**< Update pointers */
pu8_data_out += pOut[i].u_stride;
if(M4OSA_FALSE == pC->m_bFlipY)
{
pu8_data_in += loc_stride;
}
else
{
pu8_data_in -= loc_stride;
}
}
}
else
{
/**< Loop on each row */
for(j=0;j<pOut[i].u_height;j++)
{
/**< Loop on each pixel of 1 row */
for(k=0;k<pOut[i].u_width;k++)
{
*pu8_data_out++ = *pu8_data_in--;
}
/**< Update pointers */
pu8_data_out += (pOut[i].u_stride - pOut[i].u_width);
pu8_data_in += pOut[i].u_width + i32_tmp_offset;
}
}
}
/**< Here we have a +-90° rotation */
else
{
/**< Loop on each row */
for(j=0;j<pOut[i].u_height;j++)
{
pu8_data_in_tmp = pu8_data_in;
/**< Loop on each pixel of 1 row */
for(k=0;k<pOut[i].u_width;k++)
{
*pu8_data_out++ = *pu8_data_in_tmp;
/**< Update input pointer in order to go to next/past line */
pu8_data_in_tmp += i32_tmp_offset;
}
/**< Update pointers */
pu8_data_out += (pOut[i].u_stride - pOut[i].u_width);
if(M4OSA_FALSE == pC->m_bFlipX)
{
pu8_data_in ++;
}
else
{
pu8_data_in --;
}
}
}
}
/**< Bilinear interpolation */
else
{
if(3 != i) /**< other than alpha plane */
{
/**No +-90° rotation */
if(M4OSA_FALSE == pC->m_bRevertXY)
{
/**< Loop on each row */
for(j=0;j<pOut[i].u_height;j++)
{
/* Vertical weight factor */
u32_y_frac = (pC->u32_y_accum[i]>>12)&15;
/* Reinit horizontal weight factor */
u32_x_accum = pC->u32_x_accum_start[i];
if(M4OSA_TRUE == pC->m_bFlipX)
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_x_frac = (u32_x_accum >> 12)&15; /* Fraction of Horizontal weight factor */
pu8_src_top = (pu8_data_in - (u32_x_accum >> 16)) -1 ;
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[1]*(16-u32_x_frac) +
pu8_src_top[0]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[1]*(16-u32_x_frac) +
pu8_src_bottom[0]*u32_x_frac)*u32_y_frac )>>8);
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update horizontal accumulator */
u32_x_accum += pC->u32_x_inc[i];
}
}
else
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_x_frac = (u32_x_accum >> 12)&15; /* Fraction of Horizontal weight factor */
pu8_src_top = pu8_data_in + (u32_x_accum >> 16);
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[0]*(16-u32_x_frac) +
pu8_src_top[1]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[0]*(16-u32_x_frac) +
pu8_src_bottom[1]*u32_x_frac)*u32_y_frac )>>8);
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update horizontal accumulator */
u32_x_accum += pC->u32_x_inc[i];
}
}
pu8_data_out += pOut[i].u_stride - pOut[i].u_width;
/* Update vertical accumulator */
pC->u32_y_accum[i] += pC->u32_y_inc[i];
if (pC->u32_y_accum[i]>>16)
{
pu8_data_in = pu8_data_in + (pC->u32_y_accum[i] >> 16) * i32_tmp_offset;
pC->u32_y_accum[i] &= 0xffff;
}
}
}
/** +-90° rotation */
else
{
pu8_data_in_org = pu8_data_in;
/**< Loop on each output row */
for(j=0;j<pOut[i].u_height;j++)
{
/* horizontal weight factor */
u32_x_frac = (pC->u32_x_accum[i]>>12)&15;
/* Reinit accumulator */
u32_y_accum = pC->u32_y_accum_start[i];
if(M4OSA_TRUE == pC->m_bFlipX)
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_y_frac = (u32_y_accum >> 12)&15; /* Vertical weight factor */
pu8_src_top = (pu8_data_in - (pC->u32_x_accum[i] >> 16)) - 1;
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[1]*(16-u32_x_frac) +
pu8_src_top[0]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[1]*(16-u32_x_frac) +
pu8_src_bottom[0]*u32_x_frac)*u32_y_frac )>>8);
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update vertical accumulator */
u32_y_accum += pC->u32_y_inc[i];
if (u32_y_accum>>16)
{
pu8_data_in = pu8_data_in + (u32_y_accum >> 16) * i32_tmp_offset;
u32_y_accum &= 0xffff;
}
}
}
else
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_y_frac = (u32_y_accum >> 12)&15; /* Vertical weight factor */
pu8_src_top = pu8_data_in + (pC->u32_x_accum[i] >> 16);
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[0]*(16-u32_x_frac) +
pu8_src_top[1]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[0]*(16-u32_x_frac) +
pu8_src_bottom[1]*u32_x_frac)*u32_y_frac )>>8);
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update vertical accumulator */
u32_y_accum += pC->u32_y_inc[i];
if (u32_y_accum>>16)
{
pu8_data_in = pu8_data_in + (u32_y_accum >> 16) * i32_tmp_offset;
u32_y_accum &= 0xffff;
}
}
}
pu8_data_out += pOut[i].u_stride - pOut[i].u_width;
/* Update horizontal accumulator */
pC->u32_x_accum[i] += pC->u32_x_inc[i];
pu8_data_in = pu8_data_in_org;
}
}
}/** 3 != i */
else
{
/**No +-90° rotation */
if(M4OSA_FALSE == pC->m_bRevertXY)
{
/**< Loop on each row */
for(j=0;j<pOut[i].u_height;j++)
{
/* Vertical weight factor */
u32_y_frac = (pC->u32_y_accum[i]>>12)&15;
/* Reinit horizontal weight factor */
u32_x_accum = pC->u32_x_accum_start[i];
if(M4OSA_TRUE == pC->m_bFlipX)
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_x_frac = (u32_x_accum >> 12)&15; /* Fraction of Horizontal weight factor */
pu8_src_top = (pu8_data_in - (u32_x_accum >> 16)) -1 ;
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[1]*(16-u32_x_frac) +
pu8_src_top[0]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[1]*(16-u32_x_frac) +
pu8_src_bottom[0]*u32_x_frac)*u32_y_frac )>>8);
u32_temp_value= (u32_temp_value >> 7)*0xff;
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update horizontal accumulator */
u32_x_accum += pC->u32_x_inc[i];
}
}
else
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_x_frac = (u32_x_accum >> 12)&15; /* Fraction of Horizontal weight factor */
pu8_src_top = pu8_data_in + (u32_x_accum >> 16);
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[0]*(16-u32_x_frac) +
pu8_src_top[1]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[0]*(16-u32_x_frac) +
pu8_src_bottom[1]*u32_x_frac)*u32_y_frac )>>8);
u32_temp_value= (u32_temp_value >> 7)*0xff;
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update horizontal accumulator */
u32_x_accum += pC->u32_x_inc[i];
}
}
pu8_data_out += pOut[i].u_stride - pOut[i].u_width;
/* Update vertical accumulator */
pC->u32_y_accum[i] += pC->u32_y_inc[i];
if (pC->u32_y_accum[i]>>16)
{
pu8_data_in = pu8_data_in + (pC->u32_y_accum[i] >> 16) * i32_tmp_offset;
pC->u32_y_accum[i] &= 0xffff;
}
}
} /**< M4OSA_FALSE == pC->m_bRevertXY */
/** +-90° rotation */
else
{
pu8_data_in_org = pu8_data_in;
/**< Loop on each output row */
for(j=0;j<pOut[i].u_height;j++)
{
/* horizontal weight factor */
u32_x_frac = (pC->u32_x_accum[i]>>12)&15;
/* Reinit accumulator */
u32_y_accum = pC->u32_y_accum_start[i];
if(M4OSA_TRUE == pC->m_bFlipX)
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_y_frac = (u32_y_accum >> 12)&15; /* Vertical weight factor */
pu8_src_top = (pu8_data_in - (pC->u32_x_accum[i] >> 16)) - 1;
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[1]*(16-u32_x_frac) +
pu8_src_top[0]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[1]*(16-u32_x_frac) +
pu8_src_bottom[0]*u32_x_frac)*u32_y_frac )>>8);
u32_temp_value= (u32_temp_value >> 7)*0xff;
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update vertical accumulator */
u32_y_accum += pC->u32_y_inc[i];
if (u32_y_accum>>16)
{
pu8_data_in = pu8_data_in + (u32_y_accum >> 16) * i32_tmp_offset;
u32_y_accum &= 0xffff;
}
}
}
else
{
/**< Loop on each output pixel in a row */
for(k=0;k<pOut[i].u_width;k++)
{
u32_y_frac = (u32_y_accum >> 12)&15; /* Vertical weight factor */
pu8_src_top = pu8_data_in + (pC->u32_x_accum[i] >> 16);
pu8_src_bottom = pu8_src_top + i32_tmp_offset;
/* Weighted combination */
u32_temp_value = (M4VIFI_UInt8)(((pu8_src_top[0]*(16-u32_x_frac) +
pu8_src_top[1]*u32_x_frac)*(16-u32_y_frac) +
(pu8_src_bottom[0]*(16-u32_x_frac) +
pu8_src_bottom[1]*u32_x_frac)*u32_y_frac )>>8);
u32_temp_value= (u32_temp_value >> 7)*0xff;
*pu8_data_out++ = (M4VIFI_UInt8)u32_temp_value;
/* Update vertical accumulator */
u32_y_accum += pC->u32_y_inc[i];
if (u32_y_accum>>16)
{
pu8_data_in = pu8_data_in + (u32_y_accum >> 16) * i32_tmp_offset;
u32_y_accum &= 0xffff;
}
}
}
pu8_data_out += pOut[i].u_stride - pOut[i].u_width;
/* Update horizontal accumulator */
pC->u32_x_accum[i] += pC->u32_x_inc[i];
pu8_data_in = pu8_data_in_org;
}
} /**< M4OSA_TRUE == pC->m_bRevertXY */
}/** 3 == i */
}
/**< In case of stripe mode, save current input pointer */
if(M4OSA_TRUE == pC->m_params.m_bOutputStripe)
{
pC->pu8_data_in[i] = pu8_data_in;
}
}
/**< Update number of processed rows, reset it if we have finished with the whole processing */
pC->m_procRows += pOut[0].u_height;
if(M4OSA_FALSE == pC->m_bRevertXY)
{
if(pC->m_params.m_outputSize.m_height <= pC->m_procRows) pC->m_procRows = 0;
}
else
{
if(pC->m_params.m_outputSize.m_width <= pC->m_procRows) pC->m_procRows = 0;
}
return M4NO_ERROR ;
}
/*+ Handle the image files here */
/**
******************************************************************************
* M4OSA_ERR LvGetImageThumbNail(M4OSA_UChar *fileName, M4OSA_Void **pBuffer)
* @brief This function gives YUV420 buffer of a given image file (in argb888 format)
* @Note: The caller of the function is responsible to free the yuv buffer allocated
* @param fileName: (IN) Path to the filename of the image argb data
* @param height: (IN) Height of the image
* @param width: (OUT) pBuffer pointer to the address where the yuv data address needs to be returned.
* @return M4NO_ERROR: there is no error
* @return M4ERR_ALLOC: No more memory space to add a new effect.
* @return M4ERR_FILE_NOT_FOUND: if the file passed does not exists.
******************************************************************************
*/
M4OSA_ERR LvGetImageThumbNail(const char *fileName, M4OSA_UInt32 height, M4OSA_UInt32 width, M4OSA_Void **pBuffer) {
M4VIFI_ImagePlane rgbPlane, *yuvPlane;
M4OSA_UInt32 frameSize_argb = (width * height * 4); // argb data
M4OSA_Context lImageFileFp = M4OSA_NULL;
M4OSA_ERR err = M4NO_ERROR;
M4OSA_UInt8 *pTmpData = (M4OSA_UInt8*) M4OSA_32bitAlignedMalloc(frameSize_argb, M4VS, (M4OSA_Char*)"Image argb data");
if(pTmpData == M4OSA_NULL) {
ALOGE("Failed to allocate memory for Image clip");
return M4ERR_ALLOC;
}
/** Read the argb data from the passed file. */
M4OSA_ERR lerr = M4OSA_fileReadOpen(&lImageFileFp, (M4OSA_Void *) fileName, M4OSA_kFileRead);
if((lerr != M4NO_ERROR) || (lImageFileFp == M4OSA_NULL))
{
ALOGE("LVPreviewController: Can not open the file ");
free(pTmpData);
return M4ERR_FILE_NOT_FOUND;
}
lerr = M4OSA_fileReadData(lImageFileFp, (M4OSA_MemAddr8)pTmpData, &frameSize_argb);
if(lerr != M4NO_ERROR)
{
ALOGE("LVPreviewController: can not read the data ");
M4OSA_fileReadClose(lImageFileFp);
free(pTmpData);
return lerr;
}
M4OSA_fileReadClose(lImageFileFp);
M4OSA_UInt32 frameSize = (width * height * 3); //Size of YUV420 data.
rgbPlane.pac_data = (M4VIFI_UInt8*)M4OSA_32bitAlignedMalloc(frameSize, M4VS, (M4OSA_Char*)"Image clip RGB888 data");
if(rgbPlane.pac_data == M4OSA_NULL)
{
ALOGE("Failed to allocate memory for Image clip");
free(pTmpData);
return M4ERR_ALLOC;
}
/** Remove the alpha channel */
for (M4OSA_UInt32 i=0, j = 0; i < frameSize_argb; i++) {
if ((i % 4) == 0) continue;
rgbPlane.pac_data[j] = pTmpData[i];
j++;
}
free(pTmpData);
#ifdef FILE_DUMP
FILE *fp = fopen("/sdcard/Input/test_rgb.raw", "wb");
if(fp == NULL)
ALOGE("Errors file can not be created");
else {
fwrite(rgbPlane.pac_data, frameSize, 1, fp);
fclose(fp);
}
#endif
rgbPlane.u_height = height;
rgbPlane.u_width = width;
rgbPlane.u_stride = width*3;
rgbPlane.u_topleft = 0;
yuvPlane = (M4VIFI_ImagePlane*)M4OSA_32bitAlignedMalloc(3*sizeof(M4VIFI_ImagePlane),
M4VS, (M4OSA_Char*)"M4xVSS_internalConvertRGBtoYUV: Output plane YUV");
yuvPlane[0].u_height = height;
yuvPlane[0].u_width = width;
yuvPlane[0].u_stride = width;
yuvPlane[0].u_topleft = 0;
yuvPlane[0].pac_data = (M4VIFI_UInt8*)M4OSA_32bitAlignedMalloc(yuvPlane[0].u_height * yuvPlane[0].u_width * 1.5, M4VS, (M4OSA_Char*)"imageClip YUV data");
yuvPlane[1].u_height = yuvPlane[0].u_height >>1;
yuvPlane[1].u_width = yuvPlane[0].u_width >> 1;
yuvPlane[1].u_stride = yuvPlane[1].u_width;
yuvPlane[1].u_topleft = 0;
yuvPlane[1].pac_data = (M4VIFI_UInt8*)(yuvPlane[0].pac_data + yuvPlane[0].u_height * yuvPlane[0].u_width);
yuvPlane[2].u_height = yuvPlane[0].u_height >>1;
yuvPlane[2].u_width = yuvPlane[0].u_width >> 1;
yuvPlane[2].u_stride = yuvPlane[2].u_width;
yuvPlane[2].u_topleft = 0;
yuvPlane[2].pac_data = (M4VIFI_UInt8*)(yuvPlane[1].pac_data + yuvPlane[1].u_height * yuvPlane[1].u_width);
err = M4VIFI_RGB888toYUV420(M4OSA_NULL, &rgbPlane, yuvPlane);
//err = M4VIFI_BGR888toYUV420(M4OSA_NULL, &rgbPlane, yuvPlane);
if(err != M4NO_ERROR)
{
ALOGE("error when converting from RGB to YUV: 0x%x\n", (unsigned int)err);
}
free(rgbPlane.pac_data);
//ALOGE("RGB to YUV done");
#ifdef FILE_DUMP
FILE *fp1 = fopen("/sdcard/Input/test_yuv.raw", "wb");
if(fp1 == NULL)
ALOGE("Errors file can not be created");
else {
fwrite(yuvPlane[0].pac_data, yuvPlane[0].u_height * yuvPlane[0].u_width * 1.5, 1, fp1);
fclose(fp1);
}
#endif
*pBuffer = yuvPlane[0].pac_data;
free(yuvPlane);
return M4NO_ERROR;
}
M4OSA_Void prepareYUV420ImagePlane(M4VIFI_ImagePlane *plane,
M4OSA_UInt32 width, M4OSA_UInt32 height, M4VIFI_UInt8 *buffer,
M4OSA_UInt32 reportedWidth, M4OSA_UInt32 reportedHeight) {
//Y plane
plane[0].u_width = width;
plane[0].u_height = height;
plane[0].u_stride = reportedWidth;
plane[0].u_topleft = 0;
plane[0].pac_data = buffer;
// U plane
plane[1].u_width = width/2;
plane[1].u_height = height/2;
plane[1].u_stride = reportedWidth >> 1;
plane[1].u_topleft = 0;
plane[1].pac_data = buffer+(reportedWidth*reportedHeight);
// V Plane
plane[2].u_width = width/2;
plane[2].u_height = height/2;
plane[2].u_stride = reportedWidth >> 1;
plane[2].u_topleft = 0;
plane[2].pac_data = plane[1].pac_data + ((reportedWidth/2)*(reportedHeight/2));
}
M4OSA_Void prepareYV12ImagePlane(M4VIFI_ImagePlane *plane,
M4OSA_UInt32 width, M4OSA_UInt32 height, M4OSA_UInt32 stride,
M4VIFI_UInt8 *buffer) {
//Y plane
plane[0].u_width = width;
plane[0].u_height = height;
plane[0].u_stride = stride;
plane[0].u_topleft = 0;
plane[0].pac_data = buffer;
// U plane
plane[1].u_width = width/2;
plane[1].u_height = height/2;
plane[1].u_stride = android::PreviewRenderer::ALIGN(plane[0].u_stride/2, 16);
plane[1].u_topleft = 0;
plane[1].pac_data = (buffer
+ plane[0].u_height * plane[0].u_stride
+ (plane[0].u_height/2) * android::PreviewRenderer::ALIGN((
plane[0].u_stride / 2), 16));
// V Plane
plane[2].u_width = width/2;
plane[2].u_height = height/2;
plane[2].u_stride = android::PreviewRenderer::ALIGN(plane[0].u_stride/2, 16);
plane[2].u_topleft = 0;
plane[2].pac_data = (buffer +
plane[0].u_height * android::PreviewRenderer::ALIGN(plane[0].u_stride, 16));
}
M4OSA_Void swapImagePlanes(
M4VIFI_ImagePlane *planeIn, M4VIFI_ImagePlane *planeOut,
M4VIFI_UInt8 *buffer1, M4VIFI_UInt8 *buffer2) {
planeIn[0].u_height = planeOut[0].u_height;
planeIn[0].u_width = planeOut[0].u_width;
planeIn[0].u_stride = planeOut[0].u_stride;
planeIn[0].u_topleft = planeOut[0].u_topleft;
planeIn[0].pac_data = planeOut[0].pac_data;
/**
* U plane */
planeIn[1].u_width = planeOut[1].u_width;
planeIn[1].u_height = planeOut[1].u_height;
planeIn[1].u_stride = planeOut[1].u_stride;
planeIn[1].u_topleft = planeOut[1].u_topleft;
planeIn[1].pac_data = planeOut[1].pac_data;
/**
* V Plane */
planeIn[2].u_width = planeOut[2].u_width;
planeIn[2].u_height = planeOut[2].u_height;
planeIn[2].u_stride = planeOut[2].u_stride;
planeIn[2].u_topleft = planeOut[2].u_topleft;
planeIn[2].pac_data = planeOut[2].pac_data;
if(planeOut[0].pac_data == (M4VIFI_UInt8*)buffer1)
{
planeOut[0].pac_data = (M4VIFI_UInt8*)buffer2;
planeOut[1].pac_data = (M4VIFI_UInt8*)(buffer2 +
planeOut[0].u_width*planeOut[0].u_height);
planeOut[2].pac_data = (M4VIFI_UInt8*)(buffer2 +
planeOut[0].u_width*planeOut[0].u_height +
planeOut[1].u_width*planeOut[1].u_height);
}
else
{
planeOut[0].pac_data = (M4VIFI_UInt8*)buffer1;
planeOut[1].pac_data = (M4VIFI_UInt8*)(buffer1 +
planeOut[0].u_width*planeOut[0].u_height);
planeOut[2].pac_data = (M4VIFI_UInt8*)(buffer1 +
planeOut[0].u_width*planeOut[0].u_height +
planeOut[1].u_width*planeOut[1].u_height);
}
}
M4OSA_Void computePercentageDone(
M4OSA_UInt32 ctsMs, M4OSA_UInt32 effectStartTimeMs,
M4OSA_UInt32 effectDuration, M4OSA_Double *percentageDone) {
M4OSA_Double videoEffectTime =0;
// Compute how far from the beginning of the effect we are, in clip-base time.
videoEffectTime =
(M4OSA_Int32)(ctsMs+ 0.5) - effectStartTimeMs;
// To calculate %, substract timeIncrement
// because effect should finish on the last frame
// which is from CTS = (eof-timeIncrement) till CTS = eof
*percentageDone =
videoEffectTime / ((M4OSA_Float)effectDuration);
if(*percentageDone < 0.0) *percentageDone = 0.0;
if(*percentageDone > 1.0) *percentageDone = 1.0;
}
M4OSA_Void computeProgressForVideoEffect(
M4OSA_UInt32 ctsMs, M4OSA_UInt32 effectStartTimeMs,
M4OSA_UInt32 effectDuration, M4VSS3GPP_ExternalProgress* extProgress) {
M4OSA_Double percentageDone =0;
computePercentageDone(ctsMs, effectStartTimeMs, effectDuration, &percentageDone);
extProgress->uiProgress = (M4OSA_UInt32)( percentageDone * 1000 );
extProgress->uiOutputTime = (M4OSA_UInt32)(ctsMs + 0.5);
extProgress->uiClipTime = extProgress->uiOutputTime;
extProgress->bIsLast = M4OSA_FALSE;
}
M4OSA_ERR prepareFramingStructure(
M4xVSS_FramingStruct* framingCtx,
M4VSS3GPP_EffectSettings* effectsSettings, M4OSA_UInt32 index,
M4VIFI_UInt8* overlayRGB, M4VIFI_UInt8* overlayYUV) {
M4OSA_ERR err = M4NO_ERROR;
// Force input RGB buffer to even size to avoid errors in YUV conversion
framingCtx->FramingRgb = effectsSettings[index].xVSS.pFramingBuffer;
framingCtx->FramingRgb->u_width = framingCtx->FramingRgb->u_width & ~1;
framingCtx->FramingRgb->u_height = framingCtx->FramingRgb->u_height & ~1;
framingCtx->FramingYuv = NULL;
framingCtx->duration = effectsSettings[index].uiDuration;
framingCtx->topleft_x = effectsSettings[index].xVSS.topleft_x;
framingCtx->topleft_y = effectsSettings[index].xVSS.topleft_y;
framingCtx->pCurrent = framingCtx;
framingCtx->pNext = framingCtx;
framingCtx->previousClipTime = -1;
framingCtx->alphaBlendingStruct =
(M4xVSS_internalEffectsAlphaBlending*)M4OSA_32bitAlignedMalloc(
sizeof(M4xVSS_internalEffectsAlphaBlending), M4VS,
(M4OSA_Char*)"alpha blending struct");
framingCtx->alphaBlendingStruct->m_fadeInTime =
effectsSettings[index].xVSS.uialphaBlendingFadeInTime;
framingCtx->alphaBlendingStruct->m_fadeOutTime =
effectsSettings[index].xVSS.uialphaBlendingFadeOutTime;
framingCtx->alphaBlendingStruct->m_end =
effectsSettings[index].xVSS.uialphaBlendingEnd;
framingCtx->alphaBlendingStruct->m_middle =
effectsSettings[index].xVSS.uialphaBlendingMiddle;
framingCtx->alphaBlendingStruct->m_start =
effectsSettings[index].xVSS.uialphaBlendingStart;
// If new Overlay buffer, convert from RGB to YUV
if((overlayRGB != framingCtx->FramingRgb->pac_data) || (overlayYUV == NULL) ) {
// If YUV buffer exists, delete it
if(overlayYUV != NULL) {
free(overlayYUV);
overlayYUV = NULL;
}
if(effectsSettings[index].xVSS.rgbType == M4VSS3GPP_kRGB565) {
// Input RGB565 plane is provided,
// let's convert it to YUV420, and update framing structure
err = M4xVSS_internalConvertRGBtoYUV(framingCtx);
}
else if(effectsSettings[index].xVSS.rgbType == M4VSS3GPP_kRGB888) {
// Input RGB888 plane is provided,
// let's convert it to YUV420, and update framing structure
err = M4xVSS_internalConvertRGB888toYUV(framingCtx);
}
else {
err = M4ERR_PARAMETER;
}
overlayYUV = framingCtx->FramingYuv[0].pac_data;
overlayRGB = framingCtx->FramingRgb->pac_data;
}
else {
ALOGV(" YUV buffer reuse");
framingCtx->FramingYuv = (M4VIFI_ImagePlane*)M4OSA_32bitAlignedMalloc(
3*sizeof(M4VIFI_ImagePlane), M4VS, (M4OSA_Char*)"YUV");
if(framingCtx->FramingYuv == M4OSA_NULL) {
return M4ERR_ALLOC;
}
framingCtx->FramingYuv[0].u_width = framingCtx->FramingRgb->u_width;
framingCtx->FramingYuv[0].u_height = framingCtx->FramingRgb->u_height;
framingCtx->FramingYuv[0].u_topleft = 0;
framingCtx->FramingYuv[0].u_stride = framingCtx->FramingRgb->u_width;
framingCtx->FramingYuv[0].pac_data = (M4VIFI_UInt8*)overlayYUV;
framingCtx->FramingYuv[1].u_width = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[1].u_height = (framingCtx->FramingRgb->u_height)>>1;
framingCtx->FramingYuv[1].u_topleft = 0;
framingCtx->FramingYuv[1].u_stride = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[1].pac_data = framingCtx->FramingYuv[0].pac_data +
framingCtx->FramingYuv[0].u_width * framingCtx->FramingYuv[0].u_height;
framingCtx->FramingYuv[2].u_width = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[2].u_height = (framingCtx->FramingRgb->u_height)>>1;
framingCtx->FramingYuv[2].u_topleft = 0;
framingCtx->FramingYuv[2].u_stride = (framingCtx->FramingRgb->u_width)>>1;
framingCtx->FramingYuv[2].pac_data = framingCtx->FramingYuv[1].pac_data +
framingCtx->FramingYuv[1].u_width * framingCtx->FramingYuv[1].u_height;
framingCtx->duration = 0;
framingCtx->previousClipTime = -1;
framingCtx->previewOffsetClipTime = -1;
}
return err;
}
M4OSA_ERR applyColorEffect(M4xVSS_VideoEffectType colorEffect,
M4VIFI_ImagePlane *planeIn, M4VIFI_ImagePlane *planeOut,
M4VIFI_UInt8 *buffer1, M4VIFI_UInt8 *buffer2, M4OSA_UInt16 rgbColorData) {
M4xVSS_ColorStruct colorContext;
M4OSA_ERR err = M4NO_ERROR;
colorContext.colorEffectType = colorEffect;
colorContext.rgb16ColorData = rgbColorData;
err = M4VSS3GPP_externalVideoEffectColor(
(M4OSA_Void *)&colorContext, planeIn, planeOut, NULL,
colorEffect);
if(err != M4NO_ERROR) {
ALOGV("M4VSS3GPP_externalVideoEffectColor(%d) error %d",
colorEffect, err);
if(NULL != buffer1) {
free(buffer1);
buffer1 = NULL;
}
if(NULL != buffer2) {
free(buffer2);
buffer2 = NULL;
}
return err;
}
// The out plane now becomes the in plane for adding other effects
swapImagePlanes(planeIn, planeOut, buffer1, buffer2);
return err;
}
M4OSA_ERR applyLumaEffect(M4VSS3GPP_VideoEffectType videoEffect,
M4VIFI_ImagePlane *planeIn, M4VIFI_ImagePlane *planeOut,
M4VIFI_UInt8 *buffer1, M4VIFI_UInt8 *buffer2, M4OSA_Int32 lum_factor) {
M4OSA_ERR err = M4NO_ERROR;
err = M4VFL_modifyLumaWithScale(
(M4ViComImagePlane*)planeIn,(M4ViComImagePlane*)planeOut,
lum_factor, NULL);
if(err != M4NO_ERROR) {
ALOGE("M4VFL_modifyLumaWithScale(%d) error %d", videoEffect, (int)err);
if(NULL != buffer1) {
free(buffer1);
buffer1= NULL;
}
if(NULL != buffer2) {
free(buffer2);
buffer2= NULL;
}
return err;
}
// The out plane now becomes the in plane for adding other effects
swapImagePlanes(planeIn, planeOut,(M4VIFI_UInt8 *)buffer1,
(M4VIFI_UInt8 *)buffer2);
return err;
}
M4OSA_ERR applyEffectsAndRenderingMode(vePostProcessParams *params,
M4OSA_UInt32 reportedWidth, M4OSA_UInt32 reportedHeight) {
M4OSA_ERR err = M4NO_ERROR;
M4VIFI_ImagePlane planeIn[3], planeOut[3];
M4VIFI_UInt8 *finalOutputBuffer = NULL, *tempOutputBuffer= NULL;
M4OSA_Double percentageDone =0;
M4OSA_Int32 lum_factor;
M4VSS3GPP_ExternalProgress extProgress;
M4xVSS_FiftiesStruct fiftiesCtx;
M4OSA_UInt32 frameSize = 0, i=0;
frameSize = (params->videoWidth*params->videoHeight*3) >> 1;
finalOutputBuffer = (M4VIFI_UInt8*)M4OSA_32bitAlignedMalloc(frameSize, M4VS,
(M4OSA_Char*)("lvpp finalOutputBuffer"));
if(finalOutputBuffer == NULL) {
ALOGE("applyEffectsAndRenderingMode: malloc error");
return M4ERR_ALLOC;
}
// allocate the tempOutputBuffer
tempOutputBuffer = (M4VIFI_UInt8*)M4OSA_32bitAlignedMalloc(
((params->videoHeight*params->videoWidth*3)>>1), M4VS, (M4OSA_Char*)("lvpp colorBuffer"));
if(tempOutputBuffer == NULL) {
ALOGE("applyEffectsAndRenderingMode: malloc error tempOutputBuffer");
if(NULL != finalOutputBuffer) {
free(finalOutputBuffer);
finalOutputBuffer = NULL;
}
return M4ERR_ALLOC;
}
// Initialize the In plane
prepareYUV420ImagePlane(planeIn, params->videoWidth, params->videoHeight,
params->vidBuffer, reportedWidth, reportedHeight);
// Initialize the Out plane
prepareYUV420ImagePlane(planeOut, params->videoWidth, params->videoHeight,
(M4VIFI_UInt8 *)tempOutputBuffer, params->videoWidth, params->videoHeight);
// The planeIn contains the YUV420 input data to postprocessing node
// and planeOut will contain the YUV420 data with effect
// In each successive if condition, apply filter to successive
// output YUV frame so that concurrent effects are both applied
if(params->currentVideoEffect & VIDEO_EFFECT_BLACKANDWHITE) {
err = applyColorEffect(M4xVSS_kVideoEffectType_BlackAndWhite,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, 0);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_PINK) {
err = applyColorEffect(M4xVSS_kVideoEffectType_Pink,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, 0);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_GREEN) {
err = applyColorEffect(M4xVSS_kVideoEffectType_Green,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, 0);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_SEPIA) {
err = applyColorEffect(M4xVSS_kVideoEffectType_Sepia,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, 0);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_NEGATIVE) {
err = applyColorEffect(M4xVSS_kVideoEffectType_Negative,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, 0);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_GRADIENT) {
// find the effect in effectSettings array
for(i=0;i<params->numberEffects;i++) {
if(params->effectsSettings[i].VideoEffectType ==
(M4VSS3GPP_VideoEffectType)M4xVSS_kVideoEffectType_Gradient)
break;
}
err = applyColorEffect(M4xVSS_kVideoEffectType_Gradient,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer,
params->effectsSettings[i].xVSS.uiRgb16InputColor);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_COLOR_RGB16) {
// Find the effect in effectSettings array
for(i=0;i<params->numberEffects;i++) {
if(params->effectsSettings[i].VideoEffectType ==
(M4VSS3GPP_VideoEffectType)M4xVSS_kVideoEffectType_ColorRGB16)
break;
}
err = applyColorEffect(M4xVSS_kVideoEffectType_ColorRGB16,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer,
params->effectsSettings[i].xVSS.uiRgb16InputColor);
if(err != M4NO_ERROR) {
return err;
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_FIFTIES) {
// Find the effect in effectSettings array
for(i=0;i<params->numberEffects;i++) {
if(params->effectsSettings[i].VideoEffectType ==
(M4VSS3GPP_VideoEffectType)M4xVSS_kVideoEffectType_Fifties)
break;
}
if(i < params->numberEffects) {
computeProgressForVideoEffect(params->timeMs,
params->effectsSettings[i].uiStartTime,
params->effectsSettings[i].uiDuration, &extProgress);
if(params->isFiftiesEffectStarted) {
fiftiesCtx.previousClipTime = -1;
}
fiftiesCtx.fiftiesEffectDuration =
1000/params->effectsSettings[i].xVSS.uiFiftiesOutFrameRate;
fiftiesCtx.shiftRandomValue = 0;
fiftiesCtx.stripeRandomValue = 0;
err = M4VSS3GPP_externalVideoEffectFifties(
(M4OSA_Void *)&fiftiesCtx, planeIn, planeOut, &extProgress,
M4xVSS_kVideoEffectType_Fifties);
if(err != M4NO_ERROR) {
ALOGE("M4VSS3GPP_externalVideoEffectFifties error 0x%x", (unsigned int)err);
if(NULL != finalOutputBuffer) {
free(finalOutputBuffer);
finalOutputBuffer = NULL;
}
if(NULL != tempOutputBuffer) {
free(tempOutputBuffer);
tempOutputBuffer = NULL;
}
return err;
}
// The out plane now becomes the in plane for adding other effects
swapImagePlanes(planeIn, planeOut,(M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer);
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_FRAMING) {
M4xVSS_FramingStruct framingCtx;
// Find the effect in effectSettings array
for(i=0;i<params->numberEffects;i++) {
if(params->effectsSettings[i].VideoEffectType ==
(M4VSS3GPP_VideoEffectType)M4xVSS_kVideoEffectType_Framing) {
if((params->effectsSettings[i].uiStartTime <= params->timeMs + params->timeOffset) &&
((params->effectsSettings[i].uiStartTime+
params->effectsSettings[i].uiDuration) >= params->timeMs + params->timeOffset))
{
break;
}
}
}
if(i < params->numberEffects) {
computeProgressForVideoEffect(params->timeMs,
params->effectsSettings[i].uiStartTime,
params->effectsSettings[i].uiDuration, &extProgress);
err = prepareFramingStructure(&framingCtx,
params->effectsSettings, i, params->overlayFrameRGBBuffer,
params->overlayFrameYUVBuffer);
if(err == M4NO_ERROR) {
err = M4VSS3GPP_externalVideoEffectFraming(
(M4OSA_Void *)&framingCtx, planeIn, planeOut, &extProgress,
M4xVSS_kVideoEffectType_Framing);
}
free(framingCtx.alphaBlendingStruct);
if(framingCtx.FramingYuv != NULL) {
free(framingCtx.FramingYuv);
framingCtx.FramingYuv = NULL;
}
//If prepareFramingStructure / M4VSS3GPP_externalVideoEffectFraming
// returned error, then return from function
if(err != M4NO_ERROR) {
if(NULL != finalOutputBuffer) {
free(finalOutputBuffer);
finalOutputBuffer = NULL;
}
if(NULL != tempOutputBuffer) {
free(tempOutputBuffer);
tempOutputBuffer = NULL;
}
return err;
}
// The out plane now becomes the in plane for adding other effects
swapImagePlanes(planeIn, planeOut,(M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer);
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_FADEFROMBLACK) {
/* find the effect in effectSettings array*/
for(i=0;i<params->numberEffects;i++) {
if(params->effectsSettings[i].VideoEffectType ==
M4VSS3GPP_kVideoEffectType_FadeFromBlack)
break;
}
if(i < params->numberEffects) {
computePercentageDone(params->timeMs,
params->effectsSettings[i].uiStartTime,
params->effectsSettings[i].uiDuration, &percentageDone);
// Compute where we are in the effect (scale is 0->1024)
lum_factor = (M4OSA_Int32)( percentageDone * 1024 );
// Apply the darkening effect
err = applyLumaEffect(M4VSS3GPP_kVideoEffectType_FadeFromBlack,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, lum_factor);
if(err != M4NO_ERROR) {
return err;
}
}
}
if(params->currentVideoEffect & VIDEO_EFFECT_FADETOBLACK) {
// Find the effect in effectSettings array
for(i=0;i<params->numberEffects;i++) {
if(params->effectsSettings[i].VideoEffectType ==
M4VSS3GPP_kVideoEffectType_FadeToBlack)
break;
}
if(i < params->numberEffects) {
computePercentageDone(params->timeMs,
params->effectsSettings[i].uiStartTime,
params->effectsSettings[i].uiDuration, &percentageDone);
// Compute where we are in the effect (scale is 0->1024)
lum_factor = (M4OSA_Int32)( (1.0-percentageDone) * 1024 );
// Apply the darkening effect
err = applyLumaEffect(M4VSS3GPP_kVideoEffectType_FadeToBlack,
planeIn, planeOut, (M4VIFI_UInt8 *)finalOutputBuffer,
(M4VIFI_UInt8 *)tempOutputBuffer, lum_factor);
if(err != M4NO_ERROR) {
return err;
}
}
}
ALOGV("doMediaRendering CALL getBuffer()");
// Set the output YUV420 plane to be compatible with YV12 format
// W & H even
// YVU instead of YUV
// align buffers on 32 bits
// Y plane
//in YV12 format, sizes must be even
M4OSA_UInt32 yv12PlaneWidth = ((params->outVideoWidth +1)>>1)<<1;
M4OSA_UInt32 yv12PlaneHeight = ((params->outVideoHeight+1)>>1)<<1;
prepareYV12ImagePlane(planeOut, yv12PlaneWidth, yv12PlaneHeight,
(M4OSA_UInt32)params->outBufferStride, (M4VIFI_UInt8 *)params->pOutBuffer);
err = applyRenderingMode(planeIn, planeOut, params->renderingMode);
if(M4OSA_NULL != finalOutputBuffer) {
free(finalOutputBuffer);
finalOutputBuffer= M4OSA_NULL;
}
if(M4OSA_NULL != tempOutputBuffer) {
free(tempOutputBuffer);
tempOutputBuffer = M4OSA_NULL;
}
if(err != M4NO_ERROR) {
ALOGV("doVideoPostProcessing: applyRenderingMode returned err=%d",err);
return err;
}
return M4NO_ERROR;
}
android::status_t getVideoSizeByResolution(
M4VIDEOEDITING_VideoFrameSize resolution,
uint32_t *pWidth, uint32_t *pHeight) {
uint32_t frameWidth, frameHeight;
if (pWidth == NULL) {
ALOGE("getVideoFrameSizeByResolution invalid pointer for pWidth");
return android::BAD_VALUE;
}
if (pHeight == NULL) {
ALOGE("getVideoFrameSizeByResolution invalid pointer for pHeight");
return android::BAD_VALUE;
}
switch (resolution) {
case M4VIDEOEDITING_kSQCIF:
frameWidth = 128;
frameHeight = 96;
break;
case M4VIDEOEDITING_kQQVGA:
frameWidth = 160;
frameHeight = 120;
break;
case M4VIDEOEDITING_kQCIF:
frameWidth = 176;
frameHeight = 144;
break;
case M4VIDEOEDITING_kQVGA:
frameWidth = 320;
frameHeight = 240;
break;
case M4VIDEOEDITING_kCIF:
frameWidth = 352;
frameHeight = 288;
break;
case M4VIDEOEDITING_kVGA:
frameWidth = 640;
frameHeight = 480;
break;
case M4VIDEOEDITING_kWVGA:
frameWidth = 800;
frameHeight = 480;
break;
case M4VIDEOEDITING_kNTSC:
frameWidth = 720;
frameHeight = 480;
break;
case M4VIDEOEDITING_k640_360:
frameWidth = 640;
frameHeight = 360;
break;
case M4VIDEOEDITING_k854_480:
frameWidth = 854;
frameHeight = 480;
break;
case M4VIDEOEDITING_k1280_720:
frameWidth = 1280;
frameHeight = 720;
break;
case M4VIDEOEDITING_k1080_720:
frameWidth = 1080;
frameHeight = 720;
break;
case M4VIDEOEDITING_k960_720:
frameWidth = 960;
frameHeight = 720;
break;
case M4VIDEOEDITING_k1920_1080:
frameWidth = 1920;
frameHeight = 1080;
break;
default:
ALOGE("Unsupported video resolution %d.", resolution);
return android::BAD_VALUE;
}
*pWidth = frameWidth;
*pHeight = frameHeight;
return android::OK;
}
M4VIFI_UInt8 M4VIFI_Rotate90LeftYUV420toYUV420(void* pUserData,
M4VIFI_ImagePlane *pPlaneIn, M4VIFI_ImagePlane *pPlaneOut) {
M4VIFI_Int32 plane_number;
M4VIFI_UInt32 i,j, u_stride;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest;
/**< Loop on Y,U and V planes */
for (plane_number = 0; plane_number < 3; plane_number++) {
/**< Get adresses of first valid pixel in input and output buffer */
/**< As we have a -90° rotation, first needed pixel is the upper-right one */
p_buf_src =
&(pPlaneIn[plane_number].pac_data[pPlaneIn[plane_number].u_topleft]) +
pPlaneOut[plane_number].u_height - 1 ;
p_buf_dest =
&(pPlaneOut[plane_number].pac_data[pPlaneOut[plane_number].u_topleft]);
u_stride = pPlaneIn[plane_number].u_stride;
/**< Loop on output rows */
for (i = 0; i < pPlaneOut[plane_number].u_height; i++) {
/**< Loop on all output pixels in a row */
for (j = 0; j < pPlaneOut[plane_number].u_width; j++) {
*p_buf_dest++= *p_buf_src;
p_buf_src += u_stride; /**< Go to the next row */
}
/**< Go on next row of the output frame */
p_buf_dest +=
pPlaneOut[plane_number].u_stride - pPlaneOut[plane_number].u_width;
/**< Go to next pixel in the last row of the input frame*/
p_buf_src -=
pPlaneIn[plane_number].u_stride * pPlaneOut[plane_number].u_width + 1 ;
}
}
return M4VIFI_OK;
}
M4VIFI_UInt8 M4VIFI_Rotate90RightYUV420toYUV420(void* pUserData,
M4VIFI_ImagePlane *pPlaneIn, M4VIFI_ImagePlane *pPlaneOut) {
M4VIFI_Int32 plane_number;
M4VIFI_UInt32 i,j, u_stride;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest;
/**< Loop on Y,U and V planes */
for (plane_number = 0; plane_number < 3; plane_number++) {
/**< Get adresses of first valid pixel in input and output buffer */
/**< As we have a +90° rotation, first needed pixel is the left-down one */
p_buf_src =
&(pPlaneIn[plane_number].pac_data[pPlaneIn[plane_number].u_topleft]) +
(pPlaneIn[plane_number].u_stride * (pPlaneOut[plane_number].u_width - 1));
p_buf_dest =
&(pPlaneOut[plane_number].pac_data[pPlaneOut[plane_number].u_topleft]);
u_stride = pPlaneIn[plane_number].u_stride;
/**< Loop on output rows */
for (i = 0; i < pPlaneOut[plane_number].u_height; i++) {
/**< Loop on all output pixels in a row */
for (j = 0; j < pPlaneOut[plane_number].u_width; j++) {
*p_buf_dest++= *p_buf_src;
p_buf_src -= u_stride; /**< Go to the previous row */
}
/**< Go on next row of the output frame */
p_buf_dest +=
pPlaneOut[plane_number].u_stride - pPlaneOut[plane_number].u_width;
/**< Go to next pixel in the last row of the input frame*/
p_buf_src +=
pPlaneIn[plane_number].u_stride * pPlaneOut[plane_number].u_width +1 ;
}
}
return M4VIFI_OK;
}
M4VIFI_UInt8 M4VIFI_Rotate180YUV420toYUV420(void* pUserData,
M4VIFI_ImagePlane *pPlaneIn, M4VIFI_ImagePlane *pPlaneOut) {
M4VIFI_Int32 plane_number;
M4VIFI_UInt32 i,j;
M4VIFI_UInt8 *p_buf_src, *p_buf_dest, temp_pix1;
/**< Loop on Y,U and V planes */
for (plane_number = 0; plane_number < 3; plane_number++) {
/**< Get adresses of first valid pixel in input and output buffer */
p_buf_src =
&(pPlaneIn[plane_number].pac_data[pPlaneIn[plane_number].u_topleft]);
p_buf_dest =
&(pPlaneOut[plane_number].pac_data[pPlaneOut[plane_number].u_topleft]);
/**< If pPlaneIn = pPlaneOut, the algorithm will be different */
if (p_buf_src == p_buf_dest) {
/**< Get Address of last pixel in the last row of the frame */
p_buf_dest +=
pPlaneOut[plane_number].u_stride*(pPlaneOut[plane_number].u_height-1) +
pPlaneOut[plane_number].u_width - 1;
/**< We loop (height/2) times on the rows.
* In case u_height is odd, the row at the middle of the frame
* has to be processed as must be mirrored */
for (i = 0; i < ((pPlaneOut[plane_number].u_height)>>1); i++) {
for (j = 0; j < pPlaneOut[plane_number].u_width; j++) {
temp_pix1= *p_buf_dest;
*p_buf_dest--= *p_buf_src;
*p_buf_src++ = temp_pix1;
}
/**< Go on next row in top of frame */
p_buf_src +=
pPlaneOut[plane_number].u_stride - pPlaneOut[plane_number].u_width;
/**< Go to the last pixel in previous row in bottom of frame*/
p_buf_dest -=
pPlaneOut[plane_number].u_stride - pPlaneOut[plane_number].u_width;
}
/**< Mirror middle row in case height is odd */
if ((pPlaneOut[plane_number].u_height%2)!= 0) {
p_buf_src =
&(pPlaneOut[plane_number].pac_data[pPlaneIn[plane_number].u_topleft]);
p_buf_src +=
pPlaneOut[plane_number].u_stride*(pPlaneOut[plane_number].u_height>>1);
p_buf_dest =
p_buf_src + pPlaneOut[plane_number].u_width;
/**< We loop u_width/2 times on this row.
* In case u_width is odd, the pixel at the middle of this row
* remains unchanged */
for (j = 0; j < (pPlaneOut[plane_number].u_width>>1); j++) {
temp_pix1= *p_buf_dest;
*p_buf_dest--= *p_buf_src;
*p_buf_src++ = temp_pix1;
}
}
} else {
/**< Get Address of last pixel in the last row of the output frame */
p_buf_dest +=
pPlaneOut[plane_number].u_stride*(pPlaneOut[plane_number].u_height-1) +
pPlaneIn[plane_number].u_width - 1;
/**< Loop on rows */
for (i = 0; i < pPlaneOut[plane_number].u_height; i++) {
for (j = 0; j < pPlaneOut[plane_number].u_width; j++) {
*p_buf_dest--= *p_buf_src++;
}
/**< Go on next row in top of input frame */
p_buf_src +=
pPlaneIn[plane_number].u_stride - pPlaneOut[plane_number].u_width;
/**< Go to last pixel of previous row in bottom of input frame*/
p_buf_dest -=
pPlaneOut[plane_number].u_stride - pPlaneOut[plane_number].u_width;
}
}
}
return M4VIFI_OK;
}
M4OSA_ERR applyVideoRotation(M4OSA_Void* pBuffer, M4OSA_UInt32 width,
M4OSA_UInt32 height, M4OSA_UInt32 rotation) {
M4OSA_ERR err = M4NO_ERROR;
M4VIFI_ImagePlane planeIn[3], planeOut[3];
if (pBuffer == M4OSA_NULL) {
ALOGE("applyVideoRotation: NULL input frame");
return M4ERR_PARAMETER;
}
M4OSA_UInt8* outPtr = (M4OSA_UInt8 *)M4OSA_32bitAlignedMalloc(
(width*height*1.5), M4VS, (M4OSA_Char*)("rotation out ptr"));
if (outPtr == M4OSA_NULL) {
return M4ERR_ALLOC;
}
// In plane
prepareYUV420ImagePlane(planeIn, width,
height, (M4VIFI_UInt8 *)pBuffer, width, height);
// Out plane
if (rotation != 180) {
prepareYUV420ImagePlane(planeOut, height,
width, outPtr, height, width);
}
switch(rotation) {
case 90:
M4VIFI_Rotate90RightYUV420toYUV420(M4OSA_NULL, planeIn, planeOut);
memcpy(pBuffer, (void *)outPtr, (width*height*1.5));
break;
case 180:
// In plane rotation, so planeOut = planeIn
M4VIFI_Rotate180YUV420toYUV420(M4OSA_NULL, planeIn, planeIn);
break;
case 270:
M4VIFI_Rotate90LeftYUV420toYUV420(M4OSA_NULL, planeIn, planeOut);
memcpy(pBuffer, (void *)outPtr, (width*height*1.5));
break;
default:
ALOGE("invalid rotation param %d", (int)rotation);
err = M4ERR_PARAMETER;
break;
}
free((void *)outPtr);
return err;
}