blob: f311cef8a92679abe0d8a2f67599298b86cf8ad8 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_NEON_H
#define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_NEON_H
namespace android {
// depends on AudioResamplerFirOps.h, AudioResamplerFirProcess.h
#if USE_NEON
//
// NEON specializations are enabled for Process() and ProcessL()
//
// TODO: Stride 16 and Stride 8 can be combined with one pass stride 8 (if necessary)
// and looping stride 16 (or vice versa). This has some polyphase coef data alignment
// issues with S16 coefs. Consider this later.
// Macros to save a mono/stereo accumulator sample in q0 (and q4) as stereo out.
#define ASSEMBLY_ACCUMULATE_MONO \
"vld1.s32 {d2}, [%[vLR]:64] \n"/* (1) load volumes */\
"vld1.s32 {d3}, %[out] \n"/* (2) unaligned load the output */\
"vpadd.s32 d0, d0, d1 \n"/* (1) add all 4 partial sums */\
"vpadd.s32 d0, d0, d0 \n"/* (1+4d) and replicate L/R */\
"vqrdmulh.s32 d0, d0, d2 \n"/* (2+3d) apply volume */\
"vqadd.s32 d3, d3, d0 \n"/* (1+4d) accumulate result (saturating) */\
"vst1.s32 {d3}, %[out] \n"/* (2+2d) store result */
#define ASSEMBLY_ACCUMULATE_STEREO \
"vld1.s32 {d2}, [%[vLR]:64] \n"/* (1) load volumes*/\
"vld1.s32 {d3}, %[out] \n"/* (2) unaligned load the output*/\
"vpadd.s32 d0, d0, d1 \n"/* (1) add all 4 partial sums from q0*/\
"vpadd.s32 d8, d8, d9 \n"/* (1) add all 4 partial sums from q4*/\
"vpadd.s32 d0, d0, d8 \n"/* (1+4d) combine into L/R*/\
"vqrdmulh.s32 d0, d0, d2 \n"/* (2+3d) apply volume*/\
"vqadd.s32 d3, d3, d0 \n"/* (1+4d) accumulate result (saturating)*/\
"vst1.s32 {d3}, %[out] \n"/* (2+2d)store result*/
template <>
inline void ProcessL<1, 16>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// (0 - combines+) accumulator = 0
"1: \n"
"vld1.16 {q2}, [%[sP]] \n"// (2+0d) load 8 16-bits mono samples
"vld1.16 {q3}, [%[sN]]! \n"// (2) load 8 16-bits mono samples
"vld1.16 {q8}, [%[coefsP0]:128]! \n"// (1) load 8 16-bits coefs
"vld1.16 {q10}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs
"vrev64.16 q2, q2 \n"// (1) reverse s3, s2, s1, s0, s7, s6, s5, s4
// reordering the vmal to do d6, d7 before d4, d5 is slower(?)
"vmlal.s16 q0, d4, d17 \n"// (1+0d) multiply (reversed)samples by coef
"vmlal.s16 q0, d5, d16 \n"// (1) multiply (reversed)samples by coef
"vmlal.s16 q0, d6, d20 \n"// (1) multiply neg samples
"vmlal.s16 q0, d7, d21 \n"// (1) multiply neg samples
// moving these ARM instructions before neon above seems to be slower
"subs %[count], %[count], #8 \n"// (1) update loop counter
"sub %[sP], %[sP], #16 \n"// (0) move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q10"
);
}
template <>
inline void ProcessL<2, 16>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// (1) acc_L = 0
"veor q4, q4, q4 \n"// (0 combines+) acc_R = 0
"1: \n"
"vld2.16 {q2, q3}, [%[sP]] \n"// (3+0d) load 8 16-bits stereo samples
"vld2.16 {q5, q6}, [%[sN]]! \n"// (3) load 8 16-bits stereo samples
"vld1.16 {q8}, [%[coefsP0]:128]! \n"// (1) load 8 16-bits coefs
"vld1.16 {q10}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs
"vrev64.16 q2, q2 \n"// (1) reverse 8 frames of the left positive
"vrev64.16 q3, q3 \n"// (0 combines+) reverse right positive
"vmlal.s16 q0, d4, d17 \n"// (1) multiply (reversed) samples left
"vmlal.s16 q0, d5, d16 \n"// (1) multiply (reversed) samples left
"vmlal.s16 q4, d6, d17 \n"// (1) multiply (reversed) samples right
"vmlal.s16 q4, d7, d16 \n"// (1) multiply (reversed) samples right
"vmlal.s16 q0, d10, d20 \n"// (1) multiply samples left
"vmlal.s16 q0, d11, d21 \n"// (1) multiply samples left
"vmlal.s16 q4, d12, d20 \n"// (1) multiply samples right
"vmlal.s16 q4, d13, d21 \n"// (1) multiply samples right
// moving these ARM before neon seems to be slower
"subs %[count], %[count], #8 \n"// (1) update loop counter
"sub %[sP], %[sP], #32 \n"// (0) move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q4", "q5", "q6",
"q8", "q10"
);
}
template <>
inline void Process<1, 16>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* coefsP1,
const int16_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase S32 Q15
"veor q0, q0, q0 \n"// (0 - combines+) accumulator = 0
"1: \n"
"vld1.16 {q2}, [%[sP]] \n"// (2+0d) load 8 16-bits mono samples
"vld1.16 {q3}, [%[sN]]! \n"// (2) load 8 16-bits mono samples
"vld1.16 {q8}, [%[coefsP0]:128]! \n"// (1) load 8 16-bits coefs
"vld1.16 {q9}, [%[coefsP1]:128]! \n"// (1) load 8 16-bits coefs for interpolation
"vld1.16 {q10}, [%[coefsN1]:128]! \n"// (1) load 8 16-bits coefs
"vld1.16 {q11}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs for interpolation
"vsub.s16 q9, q9, q8 \n"// (1) interpolate (step1) 1st set of coefs
"vsub.s16 q11, q11, q10 \n"// (1) interpolate (step1) 2nd set of coets
"vqrdmulh.s16 q9, q9, d2[0] \n"// (2) interpolate (step2) 1st set of coefs
"vqrdmulh.s16 q11, q11, d2[0] \n"// (2) interpolate (step2) 2nd set of coefs
"vrev64.16 q2, q2 \n"// (1) reverse s3, s2, s1, s0, s7, s6, s5, s4
"vadd.s16 q8, q8, q9 \n"// (1+2d) interpolate (step3) 1st set
"vadd.s16 q10, q10, q11 \n"// (1+1d) interpolate (step3) 2nd set
// reordering the vmal to do d6, d7 before d4, d5 is slower(?)
"vmlal.s16 q0, d4, d17 \n"// (1+0d) multiply reversed samples by coef
"vmlal.s16 q0, d5, d16 \n"// (1) multiply reversed samples by coef
"vmlal.s16 q0, d6, d20 \n"// (1) multiply neg samples
"vmlal.s16 q0, d7, d21 \n"// (1) multiply neg samples
// moving these ARM instructions before neon above seems to be slower
"subs %[count], %[count], #8 \n"// (1) update loop counter
"sub %[sP], %[sP], #16 \n"// (0) move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[coefsP1] "+r" (coefsP1),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q9", "q10", "q11"
);
}
template <>
inline void Process<2, 16>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* coefsP1,
const int16_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase
"veor q0, q0, q0 \n"// (1) acc_L = 0
"veor q4, q4, q4 \n"// (0 combines+) acc_R = 0
"1: \n"
"vld2.16 {q2, q3}, [%[sP]] \n"// (3+0d) load 8 16-bits stereo samples
"vld2.16 {q5, q6}, [%[sN]]! \n"// (3) load 8 16-bits stereo samples
"vld1.16 {q8}, [%[coefsP0]:128]! \n"// (1) load 8 16-bits coefs
"vld1.16 {q9}, [%[coefsP1]:128]! \n"// (1) load 8 16-bits coefs for interpolation
"vld1.16 {q10}, [%[coefsN1]:128]! \n"// (1) load 8 16-bits coefs
"vld1.16 {q11}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs for interpolation
"vsub.s16 q9, q9, q8 \n"// (1) interpolate (step1) 1st set of coefs
"vsub.s16 q11, q11, q10 \n"// (1) interpolate (step1) 2nd set of coets
"vqrdmulh.s16 q9, q9, d2[0] \n"// (2) interpolate (step2) 1st set of coefs
"vqrdmulh.s16 q11, q11, d2[0] \n"// (2) interpolate (step2) 2nd set of coefs
"vrev64.16 q2, q2 \n"// (1) reverse 8 frames of the left positive
"vrev64.16 q3, q3 \n"// (1) reverse 8 frames of the right positive
"vadd.s16 q8, q8, q9 \n"// (1+1d) interpolate (step3) 1st set
"vadd.s16 q10, q10, q11 \n"// (1+1d) interpolate (step3) 2nd set
"vmlal.s16 q0, d4, d17 \n"// (1) multiply reversed samples left
"vmlal.s16 q0, d5, d16 \n"// (1) multiply reversed samples left
"vmlal.s16 q4, d6, d17 \n"// (1) multiply reversed samples right
"vmlal.s16 q4, d7, d16 \n"// (1) multiply reversed samples right
"vmlal.s16 q0, d10, d20 \n"// (1) multiply samples left
"vmlal.s16 q0, d11, d21 \n"// (1) multiply samples left
"vmlal.s16 q4, d12, d20 \n"// (1) multiply samples right
"vmlal.s16 q4, d13, d21 \n"// (1) multiply samples right
// moving these ARM before neon seems to be slower
"subs %[count], %[count], #8 \n"// (1) update loop counter
"sub %[sP], %[sP], #32 \n"// (0) move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[coefsP1] "+r" (coefsP1),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q4", "q5", "q6",
"q8", "q9", "q10", "q11"
);
}
template <>
inline void ProcessL<1, 16>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// result, initialize to 0
"1: \n"
"vld1.16 {q2}, [%[sP]] \n"// load 8 16-bits mono samples
"vld1.16 {q3}, [%[sN]]! \n"// load 8 16-bits mono samples
"vld1.32 {q8, q9}, [%[coefsP0]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q10, q11}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs
"vrev64.16 q2, q2 \n"// reverse 8 frames of the positive side
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d5, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d6, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d7, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q9 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q11 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q13, q13, q14 \n"// accumulate result
"vadd.s32 q0, q0, q15 \n"// accumulate result
"vadd.s32 q0, q0, q13 \n"// accumulate result
"sub %[sP], %[sP], #16 \n"// move pointer to next set of samples
"subs %[count], %[count], #8 \n"// update loop counter
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q9", "q10", "q11",
"q12", "q13", "q14", "q15"
);
}
template <>
inline void ProcessL<2, 16>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// result, initialize to 0
"veor q4, q4, q4 \n"// result, initialize to 0
"1: \n"
"vld2.16 {q2, q3}, [%[sP]] \n"// load 4 16-bits stereo samples
"vld2.16 {q5, q6}, [%[sN]]! \n"// load 4 16-bits stereo samples
"vld1.32 {q8, q9}, [%[coefsP0]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q10, q11}, [%[coefsN0]:128]! \n"// load 4 32-bits coefs
"vrev64.16 q2, q2 \n"// reverse 8 frames of the positive side
"vrev64.16 q3, q3 \n"// reverse 8 frames of the positive side
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d5, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d10, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d11, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q9 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q11 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q13, q13, q14 \n"// accumulate result
"vadd.s32 q0, q0, q15 \n"// (+1) accumulate result
"vadd.s32 q0, q0, q13 \n"// (+1) accumulate result
"vshll.s16 q12, d6, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d7, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d12, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d13, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q9 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q11 \n"// multiply samples by interpolated coef
"vadd.s32 q4, q4, q12 \n"// accumulate result
"vadd.s32 q13, q13, q14 \n"// accumulate result
"vadd.s32 q4, q4, q15 \n"// (+1) accumulate result
"vadd.s32 q4, q4, q13 \n"// (+1) accumulate result
"subs %[count], %[count], #8 \n"// update loop counter
"sub %[sP], %[sP], #32 \n"// move pointer to next set of samples
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q4", "q5", "q6",
"q8", "q9", "q10", "q11",
"q12", "q13", "q14", "q15"
);
}
template <>
inline void Process<1, 16>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int32_t* coefsP1,
const int32_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase
"veor q0, q0, q0 \n"// result, initialize to 0
"1: \n"
"vld1.16 {q2}, [%[sP]] \n"// load 8 16-bits mono samples
"vld1.16 {q3}, [%[sN]]! \n"// load 8 16-bits mono samples
"vld1.32 {q8, q9}, [%[coefsP0]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q12, q13}, [%[coefsP1]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q10, q11}, [%[coefsN1]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q14, q15}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs
"vsub.s32 q12, q12, q8 \n"// interpolate (step1)
"vsub.s32 q13, q13, q9 \n"// interpolate (step1)
"vsub.s32 q14, q14, q10 \n"// interpolate (step1)
"vsub.s32 q15, q15, q11 \n"// interpolate (step1)
"vqrdmulh.s32 q12, q12, d2[0] \n"// interpolate (step2)
"vqrdmulh.s32 q13, q13, d2[0] \n"// interpolate (step2)
"vqrdmulh.s32 q14, q14, d2[0] \n"// interpolate (step2)
"vqrdmulh.s32 q15, q15, d2[0] \n"// interpolate (step2)
"vadd.s32 q8, q8, q12 \n"// interpolate (step3)
"vadd.s32 q9, q9, q13 \n"// interpolate (step3)
"vadd.s32 q10, q10, q14 \n"// interpolate (step3)
"vadd.s32 q11, q11, q15 \n"// interpolate (step3)
"vrev64.16 q2, q2 \n"// reverse 8 frames of the positive side
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d5, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d6, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d7, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q9 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q11 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q13, q13, q14 \n"// accumulate result
"vadd.s32 q0, q0, q15 \n"// accumulate result
"vadd.s32 q0, q0, q13 \n"// accumulate result
"sub %[sP], %[sP], #16 \n"// move pointer to next set of samples
"subs %[count], %[count], #8 \n"// update loop counter
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[coefsP1] "+r" (coefsP1),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q9", "q10", "q11",
"q12", "q13", "q14", "q15"
);
}
template <>
inline void Process<2, 16>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int32_t* coefsP1,
const int32_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 16;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase
"veor q0, q0, q0 \n"// result, initialize to 0
"veor q4, q4, q4 \n"// result, initialize to 0
"1: \n"
"vld2.16 {q2, q3}, [%[sP]] \n"// load 4 16-bits stereo samples
"vld2.16 {q5, q6}, [%[sN]]! \n"// load 4 16-bits stereo samples
"vld1.32 {q8, q9}, [%[coefsP0]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q12, q13}, [%[coefsP1]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q10, q11}, [%[coefsN1]:128]! \n"// load 8 32-bits coefs
"vld1.32 {q14, q15}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs
"vsub.s32 q12, q12, q8 \n"// interpolate (step1)
"vsub.s32 q13, q13, q9 \n"// interpolate (step1)
"vsub.s32 q14, q14, q10 \n"// interpolate (step1)
"vsub.s32 q15, q15, q11 \n"// interpolate (step1)
"vqrdmulh.s32 q12, q12, d2[0] \n"// interpolate (step2)
"vqrdmulh.s32 q13, q13, d2[0] \n"// interpolate (step2)
"vqrdmulh.s32 q14, q14, d2[0] \n"// interpolate (step2)
"vqrdmulh.s32 q15, q15, d2[0] \n"// interpolate (step2)
"vadd.s32 q8, q8, q12 \n"// interpolate (step3)
"vadd.s32 q9, q9, q13 \n"// interpolate (step3)
"vadd.s32 q10, q10, q14 \n"// interpolate (step3)
"vadd.s32 q11, q11, q15 \n"// interpolate (step3)
"vrev64.16 q2, q2 \n"// reverse 8 frames of the positive side
"vrev64.16 q3, q3 \n"// reverse 8 frames of the positive side
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d5, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d10, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d11, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q9 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q11 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q13, q13, q14 \n"// accumulate result
"vadd.s32 q0, q0, q15 \n"// (+1) accumulate result
"vadd.s32 q0, q0, q13 \n"// (+1) accumulate result
"vshll.s16 q12, d6, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d7, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d12, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d13, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q9 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q11 \n"// multiply samples by interpolated coef
"vadd.s32 q4, q4, q12 \n"// accumulate result
"vadd.s32 q13, q13, q14 \n"// accumulate result
"vadd.s32 q4, q4, q15 \n"// (+1) accumulate result
"vadd.s32 q4, q4, q13 \n"// (+1) accumulate result
"subs %[count], %[count], #8 \n"// update loop counter
"sub %[sP], %[sP], #32 \n"// move pointer to next set of samples
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[coefsP1] "+r" (coefsP1),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q4", "q5", "q6",
"q8", "q9", "q10", "q11",
"q12", "q13", "q14", "q15"
);
}
template <>
inline void ProcessL<1, 8>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// (0 - combines+) accumulator = 0
"1: \n"
"vld1.16 {d4}, [%[sP]] \n"// (2+0d) load 4 16-bits mono samples
"vld1.16 {d6}, [%[sN]]! \n"// (2) load 4 16-bits mono samples
"vld1.16 {d16}, [%[coefsP0]:64]! \n"// (1) load 4 16-bits coefs
"vld1.16 {d20}, [%[coefsN0]:64]! \n"// (1) load 4 16-bits coefs
"vrev64.16 d4, d4 \n"// (1) reversed s3, s2, s1, s0, s7, s6, s5, s4
// reordering the vmal to do d6, d7 before d4, d5 is slower(?)
"vmlal.s16 q0, d4, d16 \n"// (1) multiply (reversed)samples by coef
"vmlal.s16 q0, d6, d20 \n"// (1) multiply neg samples
// moving these ARM instructions before neon above seems to be slower
"subs %[count], %[count], #4 \n"// (1) update loop counter
"sub %[sP], %[sP], #8 \n"// (0) move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q10"
);
}
template <>
inline void ProcessL<2, 8>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// (1) acc_L = 0
"veor q4, q4, q4 \n"// (0 combines+) acc_R = 0
"1: \n"
"vld2.16 {d4, d5}, [%[sP]] \n"// (2+0d) load 8 16-bits stereo samples
"vld2.16 {d6, d7}, [%[sN]]! \n"// (2) load 8 16-bits stereo samples
"vld1.16 {d16}, [%[coefsP0]:64]! \n"// (1) load 8 16-bits coefs
"vld1.16 {d20}, [%[coefsN0]:64]! \n"// (1) load 8 16-bits coefs
"vrev64.16 q2, q2 \n"// (1) reverse 8 frames of the left positive
"vmlal.s16 q0, d4, d16 \n"// (1) multiply (reversed) samples left
"vmlal.s16 q4, d5, d16 \n"// (1) multiply (reversed) samples right
"vmlal.s16 q0, d6, d20 \n"// (1) multiply samples left
"vmlal.s16 q4, d7, d20 \n"// (1) multiply samples right
// moving these ARM before neon seems to be slower
"subs %[count], %[count], #4 \n"// (1) update loop counter
"sub %[sP], %[sP], #16 \n"// (0) move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q4", "q5", "q6",
"q8", "q10"
);
}
template <>
inline void Process<1, 8>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* coefsP1,
const int16_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase S32 Q15
"veor q0, q0, q0 \n"// (0 - combines+) accumulator = 0
"1: \n"
"vld1.16 {d4}, [%[sP]] \n"// (2+0d) load 4 16-bits mono samples
"vld1.16 {d6}, [%[sN]]! \n"// (2) load 4 16-bits mono samples
"vld1.16 {d16}, [%[coefsP0]:64]! \n"// (1) load 4 16-bits coefs
"vld1.16 {d17}, [%[coefsP1]:64]! \n"// (1) load 4 16-bits coefs for interpolation
"vld1.16 {d20}, [%[coefsN1]:64]! \n"// (1) load 4 16-bits coefs
"vld1.16 {d21}, [%[coefsN0]:64]! \n"// (1) load 4 16-bits coefs for interpolation
"vsub.s16 d17, d17, d16 \n"// (1) interpolate (step1) 1st set of coefs
"vsub.s16 d21, d21, d20 \n"// (1) interpolate (step1) 2nd set of coets
"vqrdmulh.s16 d17, d17, d2[0] \n"// (2) interpolate (step2) 1st set of coefs
"vqrdmulh.s16 d21, d21, d2[0] \n"// (2) interpolate (step2) 2nd set of coefs
"vrev64.16 d4, d4 \n"// (1) reverse s3, s2, s1, s0, s7, s6, s5, s4
"vadd.s16 d16, d16, d17 \n"// (1+2d) interpolate (step3) 1st set
"vadd.s16 d20, d20, d21 \n"// (1+1d) interpolate (step3) 2nd set
// reordering the vmal to do d6, d7 before d4, d5 is slower(?)
"vmlal.s16 q0, d4, d16 \n"// (1+0d) multiply (reversed)by coef
"vmlal.s16 q0, d6, d20 \n"// (1) multiply neg samples
// moving these ARM instructions before neon above seems to be slower
"subs %[count], %[count], #4 \n"// (1) update loop counter
"sub %[sP], %[sP], #8 \n"// move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[coefsP1] "+r" (coefsP1),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q9", "q10", "q11"
);
}
template <>
inline void Process<2, 8>(int32_t* const out,
int count,
const int16_t* coefsP,
const int16_t* coefsN,
const int16_t* coefsP1,
const int16_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase
"veor q0, q0, q0 \n"// (1) acc_L = 0
"veor q4, q4, q4 \n"// (0 combines+) acc_R = 0
"1: \n"
"vld2.16 {d4, d5}, [%[sP]] \n"// (3+0d) load 8 16-bits stereo samples
"vld2.16 {d6, d7}, [%[sN]]! \n"// (3) load 8 16-bits stereo samples
"vld1.16 {d16}, [%[coefsP0]:64]! \n"// (1) load 8 16-bits coefs
"vld1.16 {d17}, [%[coefsP1]:64]! \n"// (1) load 8 16-bits coefs for interpolation
"vld1.16 {d20}, [%[coefsN1]:64]! \n"// (1) load 8 16-bits coefs
"vld1.16 {d21}, [%[coefsN0]:64]! \n"// (1) load 8 16-bits coefs for interpolation
"vsub.s16 d17, d17, d16 \n"// (1) interpolate (step1) 1st set of coefs
"vsub.s16 d21, d21, d20 \n"// (1) interpolate (step1) 2nd set of coets
"vqrdmulh.s16 d17, d17, d2[0] \n"// (2) interpolate (step2) 1st set of coefs
"vqrdmulh.s16 d21, d21, d2[0] \n"// (2) interpolate (step2) 2nd set of coefs
"vrev64.16 q2, q2 \n"// (1) reverse 8 frames of the left positive
"vadd.s16 d16, d16, d17 \n"// (1+1d) interpolate (step3) 1st set
"vadd.s16 d20, d20, d21 \n"// (1+1d) interpolate (step3) 2nd set
"vmlal.s16 q0, d4, d16 \n"// (1) multiply (reversed) samples left
"vmlal.s16 q4, d5, d16 \n"// (1) multiply (reversed) samples right
"vmlal.s16 q0, d6, d20 \n"// (1) multiply samples left
"vmlal.s16 q4, d7, d20 \n"// (1) multiply samples right
// moving these ARM before neon seems to be slower
"subs %[count], %[count], #4 \n"// (1) update loop counter
"sub %[sP], %[sP], #16 \n"// move pointer to next set of samples
// sP used after branch (warning)
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[coefsP1] "+r" (coefsP1),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q4", "q5", "q6",
"q8", "q9", "q10", "q11"
);
}
template <>
inline void ProcessL<1, 8>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// result, initialize to 0
"1: \n"
"vld1.16 {d4}, [%[sP]] \n"// load 4 16-bits mono samples
"vld1.16 {d6}, [%[sN]]! \n"// load 4 16-bits mono samples
"vld1.32 {q8}, [%[coefsP0]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q10}, [%[coefsN0]:128]! \n"// load 4 32-bits coefs
"vrev64.16 d4, d4 \n"// reverse 2 frames of the positive side
"vshll.s16 q12, d4, #15 \n"// (stall) extend samples to 31 bits
"vshll.s16 q14, d6, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q0, q0, q14 \n"// (stall) accumulate result
"subs %[count], %[count], #4 \n"// update loop counter
"sub %[sP], %[sP], #8 \n"// move pointer to next set of samples
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q9", "q10", "q11",
"q12", "q14"
);
}
template <>
inline void ProcessL<2, 8>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int16_t* sP,
const int16_t* sN,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"veor q0, q0, q0 \n"// result, initialize to 0
"veor q4, q4, q4 \n"// result, initialize to 0
"1: \n"
"vld2.16 {d4, d5}, [%[sP]] \n"// load 4 16-bits stereo samples
"vld2.16 {d6, d7}, [%[sN]]! \n"// load 4 16-bits stereo samples
"vld1.32 {q8}, [%[coefsP0]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q10}, [%[coefsN0]:128]! \n"// load 4 32-bits coefs
"vrev64.16 q2, q2 \n"// reverse 2 frames of the positive side
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d5, #15 \n"// extend samples to 31 bits
"vshll.s16 q14, d6, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d7, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q12, q12, q8 \n"// multiply samples by coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by coef
"vqrdmulh.s32 q15, q15, q10 \n"// multiply samples by coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q4, q4, q13 \n"// accumulate result
"vadd.s32 q0, q0, q14 \n"// accumulate result
"vadd.s32 q4, q4, q15 \n"// accumulate result
"subs %[count], %[count], #4 \n"// update loop counter
"sub %[sP], %[sP], #16 \n"// move pointer to next set of samples
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsN0] "+r" (coefsN),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3", "q4",
"q8", "q9", "q10", "q11",
"q12", "q13", "q14", "q15"
);
}
template <>
inline void Process<1, 8>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int32_t* coefsP1,
const int32_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 1; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase
"veor q0, q0, q0 \n"// result, initialize to 0
"1: \n"
"vld1.16 {d4}, [%[sP]] \n"// load 4 16-bits mono samples
"vld1.16 {d6}, [%[sN]]! \n"// load 4 16-bits mono samples
"vld1.32 {q8}, [%[coefsP0]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q9}, [%[coefsP1]:128]! \n"// load 4 32-bits coefs for interpolation
"vld1.32 {q10}, [%[coefsN1]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q11}, [%[coefsN0]:128]! \n"// load 4 32-bits coefs for interpolation
"vrev64.16 d4, d4 \n"// reverse 2 frames of the positive side
"vsub.s32 q9, q9, q8 \n"// interpolate (step1) 1st set of coefs
"vsub.s32 q11, q11, q10 \n"// interpolate (step1) 2nd set of coets
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q9, q9, d2[0] \n"// interpolate (step2) 1st set of coefs
"vqrdmulh.s32 q11, q11, d2[0] \n"// interpolate (step2) 2nd set of coefs
"vshll.s16 q14, d6, #15 \n"// extend samples to 31 bits
"vadd.s32 q8, q8, q9 \n"// interpolate (step3) 1st set
"vadd.s32 q10, q10, q11 \n"// interpolate (step4) 2nd set
"vqrdmulh.s32 q12, q12, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q0, q0, q14 \n"// accumulate result
"subs %[count], %[count], #4 \n"// update loop counter
"sub %[sP], %[sP], #8 \n"// move pointer to next set of samples
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_MONO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsP1] "+r" (coefsP1),
[coefsN0] "+r" (coefsN),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3",
"q8", "q9", "q10", "q11",
"q12", "q14"
);
}
template <>
inline
void Process<2, 8>(int32_t* const out,
int count,
const int32_t* coefsP,
const int32_t* coefsN,
const int32_t* coefsP1,
const int32_t* coefsN1,
const int16_t* sP,
const int16_t* sN,
uint32_t lerpP,
const int32_t* const volumeLR)
{
const int CHANNELS = 2; // template specialization does not preserve params
const int STRIDE = 8;
sP -= CHANNELS*((STRIDE>>1)-1);
asm (
"vmov.32 d2[0], %[lerpP] \n"// load the positive phase
"veor q0, q0, q0 \n"// result, initialize to 0
"veor q4, q4, q4 \n"// result, initialize to 0
"1: \n"
"vld2.16 {d4, d5}, [%[sP]] \n"// load 4 16-bits stereo samples
"vld2.16 {d6, d7}, [%[sN]]! \n"// load 4 16-bits stereo samples
"vld1.32 {q8}, [%[coefsP0]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q9}, [%[coefsP1]:128]! \n"// load 4 32-bits coefs for interpolation
"vld1.32 {q10}, [%[coefsN1]:128]! \n"// load 4 32-bits coefs
"vld1.32 {q11}, [%[coefsN0]:128]! \n"// load 4 32-bits coefs for interpolation
"vrev64.16 q2, q2 \n"// (reversed) 2 frames of the positive side
"vsub.s32 q9, q9, q8 \n"// interpolate (step1) 1st set of coefs
"vsub.s32 q11, q11, q10 \n"// interpolate (step1) 2nd set of coets
"vshll.s16 q12, d4, #15 \n"// extend samples to 31 bits
"vshll.s16 q13, d5, #15 \n"// extend samples to 31 bits
"vqrdmulh.s32 q9, q9, d2[0] \n"// interpolate (step2) 1st set of coefs
"vqrdmulh.s32 q11, q11, d2[1] \n"// interpolate (step3) 2nd set of coefs
"vshll.s16 q14, d6, #15 \n"// extend samples to 31 bits
"vshll.s16 q15, d7, #15 \n"// extend samples to 31 bits
"vadd.s32 q8, q8, q9 \n"// interpolate (step3) 1st set
"vadd.s32 q10, q10, q11 \n"// interpolate (step4) 2nd set
"vqrdmulh.s32 q12, q12, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q13, q13, q8 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q14, q14, q10 \n"// multiply samples by interpolated coef
"vqrdmulh.s32 q15, q15, q10 \n"// multiply samples by interpolated coef
"vadd.s32 q0, q0, q12 \n"// accumulate result
"vadd.s32 q4, q4, q13 \n"// accumulate result
"vadd.s32 q0, q0, q14 \n"// accumulate result
"vadd.s32 q4, q4, q15 \n"// accumulate result
"subs %[count], %[count], #4 \n"// update loop counter
"sub %[sP], %[sP], #16 \n"// move pointer to next set of samples
"bne 1b \n"// loop
ASSEMBLY_ACCUMULATE_STEREO
: [out] "=Uv" (out[0]),
[count] "+r" (count),
[coefsP0] "+r" (coefsP),
[coefsP1] "+r" (coefsP1),
[coefsN0] "+r" (coefsN),
[coefsN1] "+r" (coefsN1),
[sP] "+r" (sP),
[sN] "+r" (sN)
: [lerpP] "r" (lerpP),
[vLR] "r" (volumeLR)
: "cc", "memory",
"q0", "q1", "q2", "q3", "q4",
"q8", "q9", "q10", "q11",
"q12", "q13", "q14", "q15"
);
}
#endif //USE_NEON
}; // namespace android
#endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_NEON_H*/