blob: 216dace993d54bba602e8e6c561b6d999c322a88 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "FastThread"
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_AUDIO
#include "Configuration.h"
#include <linux/futex.h>
#include <sys/syscall.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include "FastThread.h"
#define FAST_DEFAULT_NS 999999999L // ~1 sec: default time to sleep
#define FAST_HOT_IDLE_NS 1000000L // 1 ms: time to sleep while hot idling
#define MIN_WARMUP_CYCLES 2 // minimum number of loop cycles to wait for warmup
#define MAX_WARMUP_CYCLES 10 // maximum number of loop cycles to wait for warmup
namespace android {
FastThread::FastThread() : Thread(false /*canCallJava*/),
// re-initialized to &initial by subclass constructor
previous(NULL), current(NULL),
/* oldTs({0, 0}), */
oldTsValid(false),
sleepNs(-1),
periodNs(0),
underrunNs(0),
overrunNs(0),
forceNs(0),
warmupNs(0),
// re-initialized to &dummyDumpState by subclass constructor
mDummyDumpState(NULL),
dumpState(NULL),
ignoreNextOverrun(true),
#ifdef FAST_MIXER_STATISTICS
// oldLoad
oldLoadValid(false),
bounds(0),
full(false),
// tcu
#endif
coldGen(0),
isWarm(false),
/* measuredWarmupTs({0, 0}), */
warmupCycles(0),
// dummyLogWriter
logWriter(&dummyLogWriter),
timestampStatus(INVALID_OPERATION),
command(FastThreadState::INITIAL),
#if 0
frameCount(0),
#endif
attemptedWrite(false)
{
oldTs.tv_sec = 0;
oldTs.tv_nsec = 0;
measuredWarmupTs.tv_sec = 0;
measuredWarmupTs.tv_nsec = 0;
}
FastThread::~FastThread()
{
}
bool FastThread::threadLoop()
{
for (;;) {
// either nanosleep, sched_yield, or busy wait
if (sleepNs >= 0) {
if (sleepNs > 0) {
ALOG_ASSERT(sleepNs < 1000000000);
const struct timespec req = {0, sleepNs};
nanosleep(&req, NULL);
} else {
sched_yield();
}
}
// default to long sleep for next cycle
sleepNs = FAST_DEFAULT_NS;
// poll for state change
const FastThreadState *next = poll();
if (next == NULL) {
// continue to use the default initial state until a real state is available
// FIXME &initial not available, should save address earlier
//ALOG_ASSERT(current == &initial && previous == &initial);
next = current;
}
command = next->mCommand;
if (next != current) {
// As soon as possible of learning of a new dump area, start using it
dumpState = next->mDumpState != NULL ? next->mDumpState : mDummyDumpState;
logWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &dummyLogWriter;
setLog(logWriter);
// We want to always have a valid reference to the previous (non-idle) state.
// However, the state queue only guarantees access to current and previous states.
// So when there is a transition from a non-idle state into an idle state, we make a
// copy of the last known non-idle state so it is still available on return from idle.
// The possible transitions are:
// non-idle -> non-idle update previous from current in-place
// non-idle -> idle update previous from copy of current
// idle -> idle don't update previous
// idle -> non-idle don't update previous
if (!(current->mCommand & FastThreadState::IDLE)) {
if (command & FastThreadState::IDLE) {
onIdle();
oldTsValid = false;
#ifdef FAST_MIXER_STATISTICS
oldLoadValid = false;
#endif
ignoreNextOverrun = true;
}
previous = current;
}
current = next;
}
#if !LOG_NDEBUG
next = NULL; // not referenced again
#endif
dumpState->mCommand = command;
// << current, previous, command, dumpState >>
switch (command) {
case FastThreadState::INITIAL:
case FastThreadState::HOT_IDLE:
sleepNs = FAST_HOT_IDLE_NS;
continue;
case FastThreadState::COLD_IDLE:
// only perform a cold idle command once
// FIXME consider checking previous state and only perform if previous != COLD_IDLE
if (current->mColdGen != coldGen) {
int32_t *coldFutexAddr = current->mColdFutexAddr;
ALOG_ASSERT(coldFutexAddr != NULL);
int32_t old = android_atomic_dec(coldFutexAddr);
if (old <= 0) {
syscall(__NR_futex, coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL);
}
int policy = sched_getscheduler(0);
if (!(policy == SCHED_FIFO || policy == SCHED_RR)) {
ALOGE("did not receive expected priority boost");
}
// This may be overly conservative; there could be times that the normal mixer
// requests such a brief cold idle that it doesn't require resetting this flag.
isWarm = false;
measuredWarmupTs.tv_sec = 0;
measuredWarmupTs.tv_nsec = 0;
warmupCycles = 0;
sleepNs = -1;
coldGen = current->mColdGen;
#ifdef FAST_MIXER_STATISTICS
bounds = 0;
full = false;
#endif
oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs);
timestampStatus = INVALID_OPERATION;
} else {
sleepNs = FAST_HOT_IDLE_NS;
}
continue;
case FastThreadState::EXIT:
onExit();
return false;
default:
LOG_ALWAYS_FATAL_IF(!isSubClassCommand(command));
break;
}
// there is a non-idle state available to us; did the state change?
if (current != previous) {
onStateChange();
#if 1 // FIXME shouldn't need this
// only process state change once
previous = current;
#endif
}
// do work using current state here
attemptedWrite = false;
onWork();
// To be exactly periodic, compute the next sleep time based on current time.
// This code doesn't have long-term stability when the sink is non-blocking.
// FIXME To avoid drift, use the local audio clock or watch the sink's fill status.
struct timespec newTs;
int rc = clock_gettime(CLOCK_MONOTONIC, &newTs);
if (rc == 0) {
//logWriter->logTimestamp(newTs);
if (oldTsValid) {
time_t sec = newTs.tv_sec - oldTs.tv_sec;
long nsec = newTs.tv_nsec - oldTs.tv_nsec;
ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0),
"clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld",
oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec);
if (nsec < 0) {
--sec;
nsec += 1000000000;
}
// To avoid an initial underrun on fast tracks after exiting standby,
// do not start pulling data from tracks and mixing until warmup is complete.
// Warmup is considered complete after the earlier of:
// MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs
// MAX_WARMUP_CYCLES write() attempts.
// This is overly conservative, but to get better accuracy requires a new HAL API.
if (!isWarm && attemptedWrite) {
measuredWarmupTs.tv_sec += sec;
measuredWarmupTs.tv_nsec += nsec;
if (measuredWarmupTs.tv_nsec >= 1000000000) {
measuredWarmupTs.tv_sec++;
measuredWarmupTs.tv_nsec -= 1000000000;
}
++warmupCycles;
if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) ||
(warmupCycles >= MAX_WARMUP_CYCLES)) {
isWarm = true;
dumpState->mMeasuredWarmupTs = measuredWarmupTs;
dumpState->mWarmupCycles = warmupCycles;
}
}
sleepNs = -1;
if (isWarm) {
if (sec > 0 || nsec > underrunNs) {
ATRACE_NAME("underrun");
// FIXME only log occasionally
ALOGV("underrun: time since last cycle %d.%03ld sec",
(int) sec, nsec / 1000000L);
dumpState->mUnderruns++;
ignoreNextOverrun = true;
} else if (nsec < overrunNs) {
if (ignoreNextOverrun) {
ignoreNextOverrun = false;
} else {
// FIXME only log occasionally
ALOGV("overrun: time since last cycle %d.%03ld sec",
(int) sec, nsec / 1000000L);
dumpState->mOverruns++;
}
// This forces a minimum cycle time. It:
// - compensates for an audio HAL with jitter due to sample rate conversion
// - works with a variable buffer depth audio HAL that never pulls at a
// rate < than overrunNs per buffer.
// - recovers from overrun immediately after underrun
// It doesn't work with a non-blocking audio HAL.
sleepNs = forceNs - nsec;
} else {
ignoreNextOverrun = false;
}
}
#ifdef FAST_MIXER_STATISTICS
if (isWarm) {
// advance the FIFO queue bounds
size_t i = bounds & (dumpState->mSamplingN - 1);
bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF);
if (full) {
bounds += 0x10000;
} else if (!(bounds & (dumpState->mSamplingN - 1))) {
full = true;
}
// compute the delta value of clock_gettime(CLOCK_MONOTONIC)
uint32_t monotonicNs = nsec;
if (sec > 0 && sec < 4) {
monotonicNs += sec * 1000000000;
}
// compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID)
uint32_t loadNs = 0;
struct timespec newLoad;
rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad);
if (rc == 0) {
if (oldLoadValid) {
sec = newLoad.tv_sec - oldLoad.tv_sec;
nsec = newLoad.tv_nsec - oldLoad.tv_nsec;
if (nsec < 0) {
--sec;
nsec += 1000000000;
}
loadNs = nsec;
if (sec > 0 && sec < 4) {
loadNs += sec * 1000000000;
}
} else {
// first time through the loop
oldLoadValid = true;
}
oldLoad = newLoad;
}
#ifdef CPU_FREQUENCY_STATISTICS
// get the absolute value of CPU clock frequency in kHz
int cpuNum = sched_getcpu();
uint32_t kHz = tcu.getCpukHz(cpuNum);
kHz = (kHz << 4) | (cpuNum & 0xF);
#endif
// save values in FIFO queues for dumpsys
// these stores #1, #2, #3 are not atomic with respect to each other,
// or with respect to store #4 below
dumpState->mMonotonicNs[i] = monotonicNs;
dumpState->mLoadNs[i] = loadNs;
#ifdef CPU_FREQUENCY_STATISTICS
dumpState->mCpukHz[i] = kHz;
#endif
// this store #4 is not atomic with respect to stores #1, #2, #3 above, but
// the newest open & oldest closed halves are atomic with respect to each other
dumpState->mBounds = bounds;
ATRACE_INT("cycle_ms", monotonicNs / 1000000);
ATRACE_INT("load_us", loadNs / 1000);
}
#endif
} else {
// first time through the loop
oldTsValid = true;
sleepNs = periodNs;
ignoreNextOverrun = true;
}
oldTs = newTs;
} else {
// monotonic clock is broken
oldTsValid = false;
sleepNs = periodNs;
}
} // for (;;)
// never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion
}
} // namespace android