blob: d58af4ef63ff6810a59e7277998abc0377d16bf3 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Unit Test for AdjustableMaxPriorityQueue
#define LOG_NDEBUG 0
#define LOG_TAG "AdjustableMaxPriorityQueueTest"
#include <android-base/logging.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <gtest/gtest.h>
#include <media/AdjustableMaxPriorityQueue.h>
#include <utils/Log.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <list>
#include <queue>
#include <unordered_map>
namespace android {
class IntUniquePtrComp {
public:
bool operator()(const std::unique_ptr<int>& lhs, const std::unique_ptr<int>& rhs) const {
return *lhs < *rhs;
}
};
// Test the heap property and make sure it is the same as std::priority_queue.
TEST(AdjustableMaxPriorityQueueTest, BasicAPIS) {
AdjustableMaxPriorityQueue<std::pair<float, char*>> heap;
std::priority_queue<std::pair<float, char*>> pq;
AdjustableMaxPriorityQueue<std::pair<float, char*>> remove_queue;
// Push a set of values onto both AdjustableMaxPriorityQueue and priority_queue
// Also compute the sum of those values
double sum = 0;
for (int i = 0; i < 10; ++i) {
float value = 2.1 * i;
sum += value;
heap.push(std::pair<float, char*>(value, nullptr));
pq.push(std::pair<float, char*>(value, nullptr));
remove_queue.push(std::pair<float, char*>(value, nullptr));
}
// Test the iterator by using it to subtract all values from earlier sum
AdjustableMaxPriorityQueue<std::pair<float, char*>>::iterator it;
for (it = heap.begin(); it != heap.end(); ++it) {
sum -= it->first;
}
EXPECT_EQ(0, sum);
// Test the size();
EXPECT_EQ(10, heap.size());
// Testing pop() by popping values from both queues and compare if they are the same.
// Also check each pop is smaller than the previous pop max value.
float max = 1000;
while (!heap.empty()) {
float value = heap.top().first;
ALOGD("Value is %f ", value);
EXPECT_EQ(value, pq.top().first);
EXPECT_LE(value, max);
max = value;
heap.pop();
pq.pop();
}
// Test erase() by removing values and ensuring the heap
// condition is still met as miscellaneous elements are
// removed from the heap.
int iteration_mixer = 0;
float previous_value = remove_queue.top().first;
while (!remove_queue.empty()) {
int iteration_count = iteration_mixer % remove_queue.size();
AdjustableMaxPriorityQueue<std::pair<float, char*>>::iterator iterator =
remove_queue.begin();
// Empty loop as we just want to advance the iterator.
for (int i = 0; i < iteration_count; ++i, ++iterator) {
}
remove_queue.erase(iterator);
float value = remove_queue.top().first;
remove_queue.pop();
EXPECT_GE(previous_value, value);
++iteration_mixer;
previous_value = value;
}
}
TEST(AdjustableMaxPriorityQueueTest, BasicWithMoveOnly) {
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp> heap;
auto smaller = std::make_unique<int>(1);
EXPECT_TRUE(heap.push(std::move(smaller)));
EXPECT_EQ(1, *heap.top());
EXPECT_EQ(1, heap.size());
auto bigger = std::make_unique<int>(2);
heap.push(std::move(bigger));
EXPECT_EQ(2, *heap.top());
auto biggest = std::make_unique<int>(3);
EXPECT_TRUE(heap.push(std::move(biggest)));
EXPECT_EQ(3, heap.size());
// Biggest should be on top.
EXPECT_EQ(3, *heap.top());
biggest = heap.consume_top();
EXPECT_EQ(3, *biggest);
bigger = heap.consume_top();
EXPECT_EQ(2, *bigger);
smaller = heap.consume_top();
EXPECT_EQ(1, *smaller);
EXPECT_TRUE(heap.empty());
}
TEST(AdjustableMaxPriorityQueueTest, TestChangingItem) {
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp> heap;
using HeapIterator =
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp>::iterator;
int testValues[] = {1, 2, 3};
// Map to save each value's position in the heap.
std::unordered_map<int, HeapIterator> itemToIterratorMap;
// Insert the test values into the heap.
for (auto value : testValues) {
auto item = std::make_unique<int>(value);
EXPECT_TRUE(heap.push(std::move(item)));
}
// Save each value and its pos in the heap into the map.
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
itemToIterratorMap[*iter->get()] = iter;
}
// Change the item with value 1 -> 4. And expects the 4 to be the top of the HEAP after that.
// After changing, the heap should contain [2,3,4].
auto newValue = std::make_unique<int>(4);
itemToIterratorMap[1]->swap(newValue);
heap.rebuild();
EXPECT_EQ(4, *heap.top());
// Change the item with value 2 -> 5. And expects the 5 to be the top of the HEAP after that.
auto newValue2 = std::make_unique<int>(5);
itemToIterratorMap[2]->swap(newValue2);
heap.rebuild();
EXPECT_EQ(5, *heap.top());
}
TEST(AdjustableMaxPriorityQueueTest, TestErasingItem) {
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp> heap;
using HeapIterator =
AdjustableMaxPriorityQueue<std::unique_ptr<int>, IntUniquePtrComp>::iterator;
int testValues[] = {1, 2, 3};
// Map to save each value's position in the heap.
std::unordered_map<int, HeapIterator> itemToIterratorMap;
// Insert the test values into the heap.
for (auto value : testValues) {
auto item = std::make_unique<int>(value);
EXPECT_TRUE(heap.push(std::move(item)));
}
// Save each value and its pos in the heap into the map.
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
itemToIterratorMap[*iter->get()] = iter;
}
// The top of the heap must be 3.
EXPECT_EQ(3, *heap.top());
// Remove 3 and the top of the heap should be 2.
heap.erase(itemToIterratorMap[3]);
EXPECT_EQ(2, *heap.top());
// Reset the iter pos in the heap.
itemToIterratorMap.clear();
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
itemToIterratorMap[*iter->get()] = iter;
}
// Remove 2 and the top of the heap should be 1.
heap.erase(itemToIterratorMap[2]);
EXPECT_EQ(1, *heap.top());
// Reset the iter pos in the heap as iterator pos changed after
itemToIterratorMap.clear();
for (HeapIterator iter = heap.begin(); iter != heap.end(); iter++) {
itemToIterratorMap[*iter->get()] = iter;
}
// Remove 1 and the heap should be empty.
heap.erase(itemToIterratorMap[1]);
EXPECT_TRUE(heap.empty());
}
// Test the heap property and make sure it is the same as std::priority_queue.
TEST(AdjustableMaxPriorityQueueTest, TranscodingJobTest) {
// Test data structure that mimics the Transcoding job.
struct TranscodingJob {
int32_t priority;
int64_t createTimeUs;
};
// The job is arranging according to priority with highest priority comes first.
// For the job with the same priority, the job with early createTime will come first.
class TranscodingJobComp {
public:
bool operator()(const std::unique_ptr<TranscodingJob>& lhs,
const std::unique_ptr<TranscodingJob>& rhs) const {
if (lhs->priority != rhs->priority) {
return lhs->priority < rhs->priority;
}
return lhs->createTimeUs > rhs->createTimeUs;
}
};
// Map to save each value's position in the heap.
std::unordered_map<int, TranscodingJob*> jobIdToJobMap;
TranscodingJob testJobs[] = {
{1 /*priority*/, 66 /*createTimeUs*/}, // First job,
{2 /*priority*/, 67 /*createTimeUs*/}, // Second job,
{2 /*priority*/, 66 /*createTimeUs*/}, // Third job,
{3 /*priority*/, 68 /*createTimeUs*/}, // Fourth job.
};
AdjustableMaxPriorityQueue<std::unique_ptr<TranscodingJob>, TranscodingJobComp> jobQueue;
// Pushes all the jobs into the heap.
for (int jobId = 0; jobId < 4; ++jobId) {
auto newJob = std::make_unique<TranscodingJob>(testJobs[jobId]);
jobIdToJobMap[jobId] = newJob.get();
EXPECT_TRUE(jobQueue.push(std::move(newJob)));
}
// Check the job queue size.
EXPECT_EQ(4, jobQueue.size());
// Check the top and it should be Forth job: (3, 68)
const std::unique_ptr<TranscodingJob>& topJob = jobQueue.top();
EXPECT_EQ(3, topJob->priority);
EXPECT_EQ(68, topJob->createTimeUs);
// Consume the top.
std::unique_ptr<TranscodingJob> consumeJob = jobQueue.consume_top();
// Check the top and it should be Third Job (2, 66)
const std::unique_ptr<TranscodingJob>& topJob2 = jobQueue.top();
EXPECT_EQ(2, topJob2->priority);
EXPECT_EQ(66, topJob2->createTimeUs);
// Change the Second job's priority to 4 from (2, 67) -> (4, 67). It should becomes top of the
// queue.
jobIdToJobMap[1]->priority = 4;
jobQueue.rebuild();
const std::unique_ptr<TranscodingJob>& topJob3 = jobQueue.top();
EXPECT_EQ(4, topJob3->priority);
EXPECT_EQ(67, topJob3->createTimeUs);
}
} // namespace android