blob: b267d8824b1aed5e4274da001c3225f9aebf6133 [file] [log] [blame]
/*
**
** Copyright 2012, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#define LOG_TAG "AudioFlinger"
//#define LOG_NDEBUG 0
#include <algorithm>
#include "Configuration.h"
#include <utils/Log.h>
#include <system/audio_effects/effect_aec.h>
#include <system/audio_effects/effect_dynamicsprocessing.h>
#include <system/audio_effects/effect_hapticgenerator.h>
#include <system/audio_effects/effect_ns.h>
#include <system/audio_effects/effect_visualizer.h>
#include <audio_utils/channels.h>
#include <audio_utils/primitives.h>
#include <media/AudioCommonTypes.h>
#include <media/AudioContainers.h>
#include <media/AudioEffect.h>
#include <media/AudioDeviceTypeAddr.h>
#include <media/ShmemCompat.h>
#include <media/audiohal/EffectHalInterface.h>
#include <media/audiohal/EffectsFactoryHalInterface.h>
#include <mediautils/ServiceUtilities.h>
#include "AudioFlinger.h"
// ----------------------------------------------------------------------------
// Note: the following macro is used for extremely verbose logging message. In
// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
// 0; but one side effect of this is to turn all LOGV's as well. Some messages
// are so verbose that we want to suppress them even when we have ALOG_ASSERT
// turned on. Do not uncomment the #def below unless you really know what you
// are doing and want to see all of the extremely verbose messages.
//#define VERY_VERY_VERBOSE_LOGGING
#ifdef VERY_VERY_VERBOSE_LOGGING
#define ALOGVV ALOGV
#else
#define ALOGVV(a...) do { } while(0)
#endif
#define DEFAULT_OUTPUT_SAMPLE_RATE 48000
namespace android {
using aidl_utils::statusTFromBinderStatus;
using binder::Status;
namespace {
// Append a POD value into a vector of bytes.
template<typename T>
void appendToBuffer(const T& value, std::vector<uint8_t>* buffer) {
const uint8_t* ar(reinterpret_cast<const uint8_t*>(&value));
buffer->insert(buffer->end(), ar, ar + sizeof(T));
}
// Write a POD value into a vector of bytes (clears the previous buffer
// content).
template<typename T>
void writeToBuffer(const T& value, std::vector<uint8_t>* buffer) {
buffer->clear();
appendToBuffer(value, buffer);
}
} // namespace
// ----------------------------------------------------------------------------
// EffectBase implementation
// ----------------------------------------------------------------------------
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectBase"
AudioFlinger::EffectBase::EffectBase(const sp<AudioFlinger::EffectCallbackInterface>& callback,
effect_descriptor_t *desc,
int id,
audio_session_t sessionId,
bool pinned)
: mPinned(pinned),
mCallback(callback), mId(id), mSessionId(sessionId),
mDescriptor(*desc)
{
}
// must be called with EffectModule::mLock held
status_t AudioFlinger::EffectBase::setEnabled_l(bool enabled)
{
ALOGV("setEnabled %p enabled %d", this, enabled);
if (enabled != isEnabled()) {
switch (mState) {
// going from disabled to enabled
case IDLE:
mState = STARTING;
break;
case STOPPED:
mState = RESTART;
break;
case STOPPING:
mState = ACTIVE;
break;
// going from enabled to disabled
case RESTART:
mState = STOPPED;
break;
case STARTING:
mState = IDLE;
break;
case ACTIVE:
mState = STOPPING;
break;
case DESTROYED:
return NO_ERROR; // simply ignore as we are being destroyed
}
for (size_t i = 1; i < mHandles.size(); i++) {
EffectHandle *h = mHandles[i];
if (h != NULL && !h->disconnected()) {
h->setEnabled(enabled);
}
}
}
return NO_ERROR;
}
status_t AudioFlinger::EffectBase::setEnabled(bool enabled, bool fromHandle)
{
status_t status;
{
Mutex::Autolock _l(mLock);
status = setEnabled_l(enabled);
}
if (fromHandle) {
if (enabled) {
if (status != NO_ERROR) {
getCallback()->checkSuspendOnEffectEnabled(this, false, false /*threadLocked*/);
} else {
getCallback()->onEffectEnable(this);
}
} else {
getCallback()->onEffectDisable(this);
}
}
return status;
}
bool AudioFlinger::EffectBase::isEnabled() const
{
switch (mState) {
case RESTART:
case STARTING:
case ACTIVE:
return true;
case IDLE:
case STOPPING:
case STOPPED:
case DESTROYED:
default:
return false;
}
}
void AudioFlinger::EffectBase::setSuspended(bool suspended)
{
Mutex::Autolock _l(mLock);
mSuspended = suspended;
}
bool AudioFlinger::EffectBase::suspended() const
{
Mutex::Autolock _l(mLock);
return mSuspended;
}
status_t AudioFlinger::EffectBase::addHandle(EffectHandle *handle)
{
status_t status;
Mutex::Autolock _l(mLock);
int priority = handle->priority();
size_t size = mHandles.size();
EffectHandle *controlHandle = NULL;
size_t i;
for (i = 0; i < size; i++) {
EffectHandle *h = mHandles[i];
if (h == NULL || h->disconnected()) {
continue;
}
// first non destroyed handle is considered in control
if (controlHandle == NULL) {
controlHandle = h;
}
if (h->priority() <= priority) {
break;
}
}
// if inserted in first place, move effect control from previous owner to this handle
if (i == 0) {
bool enabled = false;
if (controlHandle != NULL) {
enabled = controlHandle->enabled();
controlHandle->setControl(false/*hasControl*/, true /*signal*/, enabled /*enabled*/);
}
handle->setControl(true /*hasControl*/, false /*signal*/, enabled /*enabled*/);
status = NO_ERROR;
} else {
status = ALREADY_EXISTS;
}
ALOGV("addHandle() %p added handle %p in position %zu", this, handle, i);
mHandles.insertAt(handle, i);
return status;
}
status_t AudioFlinger::EffectBase::updatePolicyState()
{
status_t status = NO_ERROR;
bool doRegister = false;
bool registered = false;
bool doEnable = false;
bool enabled = false;
audio_io_handle_t io = AUDIO_IO_HANDLE_NONE;
product_strategy_t strategy = PRODUCT_STRATEGY_NONE;
{
Mutex::Autolock _l(mLock);
// register effect when first handle is attached and unregister when last handle is removed
if (mPolicyRegistered != mHandles.size() > 0) {
doRegister = true;
mPolicyRegistered = mHandles.size() > 0;
if (mPolicyRegistered) {
const auto callback = getCallback();
io = callback->io();
strategy = callback->strategy();
}
}
// enable effect when registered according to enable state requested by controlling handle
if (mHandles.size() > 0) {
EffectHandle *handle = controlHandle_l();
if (handle != nullptr && mPolicyEnabled != handle->enabled()) {
doEnable = true;
mPolicyEnabled = handle->enabled();
}
}
registered = mPolicyRegistered;
enabled = mPolicyEnabled;
// The simultaneous release of two EffectHandles with the same EffectModule
// may cause us to call this method at the same time.
// This may deadlock under some circumstances (b/180941720). Avoid this.
if (!doRegister && !(registered && doEnable)) {
return NO_ERROR;
}
mPolicyLock.lock();
}
ALOGV("%s name %s id %d session %d doRegister %d registered %d doEnable %d enabled %d",
__func__, mDescriptor.name, mId, mSessionId, doRegister, registered, doEnable, enabled);
if (doRegister) {
if (registered) {
status = AudioSystem::registerEffect(
&mDescriptor,
io,
strategy,
mSessionId,
mId);
} else {
status = AudioSystem::unregisterEffect(mId);
}
}
if (registered && doEnable) {
status = AudioSystem::setEffectEnabled(mId, enabled);
}
mPolicyLock.unlock();
return status;
}
ssize_t AudioFlinger::EffectBase::removeHandle(EffectHandle *handle)
{
Mutex::Autolock _l(mLock);
return removeHandle_l(handle);
}
ssize_t AudioFlinger::EffectBase::removeHandle_l(EffectHandle *handle)
{
size_t size = mHandles.size();
size_t i;
for (i = 0; i < size; i++) {
if (mHandles[i] == handle) {
break;
}
}
if (i == size) {
ALOGW("%s %p handle not found %p", __FUNCTION__, this, handle);
return BAD_VALUE;
}
ALOGV("removeHandle_l() %p removed handle %p in position %zu", this, handle, i);
mHandles.removeAt(i);
// if removed from first place, move effect control from this handle to next in line
if (i == 0) {
EffectHandle *h = controlHandle_l();
if (h != NULL) {
h->setControl(true /*hasControl*/, true /*signal*/ , handle->enabled() /*enabled*/);
}
}
// Prevent calls to process() and other functions on effect interface from now on.
// The effect engine will be released by the destructor when the last strong reference on
// this object is released which can happen after next process is called.
if (mHandles.size() == 0 && !mPinned) {
mState = DESTROYED;
}
return mHandles.size();
}
// must be called with EffectModule::mLock held
AudioFlinger::EffectHandle *AudioFlinger::EffectBase::controlHandle_l()
{
// the first valid handle in the list has control over the module
for (size_t i = 0; i < mHandles.size(); i++) {
EffectHandle *h = mHandles[i];
if (h != NULL && !h->disconnected()) {
return h;
}
}
return NULL;
}
// unsafe method called when the effect parent thread has been destroyed
ssize_t AudioFlinger::EffectBase::disconnectHandle(EffectHandle *handle, bool unpinIfLast)
{
const auto callback = getCallback();
ALOGV("disconnect() %p handle %p", this, handle);
if (callback->disconnectEffectHandle(handle, unpinIfLast)) {
return mHandles.size();
}
Mutex::Autolock _l(mLock);
ssize_t numHandles = removeHandle_l(handle);
if ((numHandles == 0) && (!mPinned || unpinIfLast)) {
mLock.unlock();
callback->updateOrphanEffectChains(this);
mLock.lock();
}
return numHandles;
}
bool AudioFlinger::EffectBase::purgeHandles()
{
bool enabled = false;
Mutex::Autolock _l(mLock);
EffectHandle *handle = controlHandle_l();
if (handle != NULL) {
enabled = handle->enabled();
}
mHandles.clear();
return enabled;
}
void AudioFlinger::EffectBase::checkSuspendOnEffectEnabled(bool enabled, bool threadLocked) {
getCallback()->checkSuspendOnEffectEnabled(this, enabled, threadLocked);
}
static String8 effectFlagsToString(uint32_t flags) {
String8 s;
s.append("conn. mode: ");
switch (flags & EFFECT_FLAG_TYPE_MASK) {
case EFFECT_FLAG_TYPE_INSERT: s.append("insert"); break;
case EFFECT_FLAG_TYPE_AUXILIARY: s.append("auxiliary"); break;
case EFFECT_FLAG_TYPE_REPLACE: s.append("replace"); break;
case EFFECT_FLAG_TYPE_PRE_PROC: s.append("preproc"); break;
case EFFECT_FLAG_TYPE_POST_PROC: s.append("postproc"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
s.append("insert pref: ");
switch (flags & EFFECT_FLAG_INSERT_MASK) {
case EFFECT_FLAG_INSERT_ANY: s.append("any"); break;
case EFFECT_FLAG_INSERT_FIRST: s.append("first"); break;
case EFFECT_FLAG_INSERT_LAST: s.append("last"); break;
case EFFECT_FLAG_INSERT_EXCLUSIVE: s.append("exclusive"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
s.append("volume mgmt: ");
switch (flags & EFFECT_FLAG_VOLUME_MASK) {
case EFFECT_FLAG_VOLUME_NONE: s.append("none"); break;
case EFFECT_FLAG_VOLUME_CTRL: s.append("implements control"); break;
case EFFECT_FLAG_VOLUME_IND: s.append("requires indication"); break;
case EFFECT_FLAG_VOLUME_MONITOR: s.append("monitors volume"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
uint32_t devind = flags & EFFECT_FLAG_DEVICE_MASK;
if (devind) {
s.append("device indication: ");
switch (devind) {
case EFFECT_FLAG_DEVICE_IND: s.append("requires updates"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
}
s.append("input mode: ");
switch (flags & EFFECT_FLAG_INPUT_MASK) {
case EFFECT_FLAG_INPUT_DIRECT: s.append("direct"); break;
case EFFECT_FLAG_INPUT_PROVIDER: s.append("provider"); break;
case EFFECT_FLAG_INPUT_BOTH: s.append("direct+provider"); break;
default: s.append("not set"); break;
}
s.append(", ");
s.append("output mode: ");
switch (flags & EFFECT_FLAG_OUTPUT_MASK) {
case EFFECT_FLAG_OUTPUT_DIRECT: s.append("direct"); break;
case EFFECT_FLAG_OUTPUT_PROVIDER: s.append("provider"); break;
case EFFECT_FLAG_OUTPUT_BOTH: s.append("direct+provider"); break;
default: s.append("not set"); break;
}
s.append(", ");
uint32_t accel = flags & EFFECT_FLAG_HW_ACC_MASK;
if (accel) {
s.append("hardware acceleration: ");
switch (accel) {
case EFFECT_FLAG_HW_ACC_SIMPLE: s.append("non-tunneled"); break;
case EFFECT_FLAG_HW_ACC_TUNNEL: s.append("tunneled"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
}
uint32_t modeind = flags & EFFECT_FLAG_AUDIO_MODE_MASK;
if (modeind) {
s.append("mode indication: ");
switch (modeind) {
case EFFECT_FLAG_AUDIO_MODE_IND: s.append("required"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
}
uint32_t srcind = flags & EFFECT_FLAG_AUDIO_SOURCE_MASK;
if (srcind) {
s.append("source indication: ");
switch (srcind) {
case EFFECT_FLAG_AUDIO_SOURCE_IND: s.append("required"); break;
default: s.append("unknown/reserved"); break;
}
s.append(", ");
}
if (flags & EFFECT_FLAG_OFFLOAD_MASK) {
s.append("offloadable, ");
}
int len = s.length();
if (s.length() > 2) {
(void) s.lockBuffer(len);
s.unlockBuffer(len - 2);
}
return s;
}
void AudioFlinger::EffectBase::dump(int fd, const Vector<String16>& args __unused)
{
String8 result;
result.appendFormat("\tEffect ID %d:\n", mId);
bool locked = AudioFlinger::dumpTryLock(mLock);
// failed to lock - AudioFlinger is probably deadlocked
if (!locked) {
result.append("\t\tCould not lock Fx mutex:\n");
}
result.append("\t\tSession State Registered Enabled Suspended:\n");
result.appendFormat("\t\t%05d %03d %s %s %s\n",
mSessionId, mState, mPolicyRegistered ? "y" : "n",
mPolicyEnabled ? "y" : "n", mSuspended ? "y" : "n");
result.append("\t\tDescriptor:\n");
char uuidStr[64];
AudioEffect::guidToString(&mDescriptor.uuid, uuidStr, sizeof(uuidStr));
result.appendFormat("\t\t- UUID: %s\n", uuidStr);
AudioEffect::guidToString(&mDescriptor.type, uuidStr, sizeof(uuidStr));
result.appendFormat("\t\t- TYPE: %s\n", uuidStr);
result.appendFormat("\t\t- apiVersion: %08X\n\t\t- flags: %08X (%s)\n",
mDescriptor.apiVersion,
mDescriptor.flags,
effectFlagsToString(mDescriptor.flags).string());
result.appendFormat("\t\t- name: %s\n",
mDescriptor.name);
result.appendFormat("\t\t- implementor: %s\n",
mDescriptor.implementor);
result.appendFormat("\t\t%zu Clients:\n", mHandles.size());
result.append("\t\t\t Pid Priority Ctrl Locked client server\n");
char buffer[256];
for (size_t i = 0; i < mHandles.size(); ++i) {
EffectHandle *handle = mHandles[i];
if (handle != NULL && !handle->disconnected()) {
handle->dumpToBuffer(buffer, sizeof(buffer));
result.append(buffer);
}
}
if (locked) {
mLock.unlock();
}
write(fd, result.string(), result.length());
}
// ----------------------------------------------------------------------------
// EffectModule implementation
// ----------------------------------------------------------------------------
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectModule"
AudioFlinger::EffectModule::EffectModule(const sp<AudioFlinger::EffectCallbackInterface>& callback,
effect_descriptor_t *desc,
int id,
audio_session_t sessionId,
bool pinned,
audio_port_handle_t deviceId)
: EffectBase(callback, desc, id, sessionId, pinned),
// clear mConfig to ensure consistent initial value of buffer framecount
// in case buffers are associated by setInBuffer() or setOutBuffer()
// prior to configure().
mConfig{{}, {}},
mStatus(NO_INIT),
mMaxDisableWaitCnt(1), // set by configure(), should be >= 1
mDisableWaitCnt(0), // set by process() and updateState()
mOffloaded(false),
mAddedToHal(false)
#ifdef FLOAT_EFFECT_CHAIN
, mSupportsFloat(false)
#endif
{
ALOGV("Constructor %p pinned %d", this, pinned);
int lStatus;
// create effect engine from effect factory
mStatus = callback->createEffectHal(
&desc->uuid, sessionId, deviceId, &mEffectInterface);
if (mStatus != NO_ERROR) {
return;
}
lStatus = init();
if (lStatus < 0) {
mStatus = lStatus;
goto Error;
}
setOffloaded(callback->isOffload(), callback->io());
ALOGV("Constructor success name %s, Interface %p", mDescriptor.name, mEffectInterface.get());
return;
Error:
mEffectInterface.clear();
ALOGV("Constructor Error %d", mStatus);
}
AudioFlinger::EffectModule::~EffectModule()
{
ALOGV("Destructor %p", this);
if (mEffectInterface != 0) {
char uuidStr[64];
AudioEffect::guidToString(&mDescriptor.uuid, uuidStr, sizeof(uuidStr));
ALOGW("EffectModule %p destructor called with unreleased interface, effect %s",
this, uuidStr);
release_l();
}
}
bool AudioFlinger::EffectModule::updateState() {
Mutex::Autolock _l(mLock);
bool started = false;
switch (mState) {
case RESTART:
reset_l();
FALLTHROUGH_INTENDED;
case STARTING:
// clear auxiliary effect input buffer for next accumulation
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
memset(mConfig.inputCfg.buffer.raw,
0,
mConfig.inputCfg.buffer.frameCount*sizeof(int32_t));
}
if (start_l() == NO_ERROR) {
mState = ACTIVE;
started = true;
} else {
mState = IDLE;
}
break;
case STOPPING:
// volume control for offload and direct threads must take effect immediately.
if (stop_l() == NO_ERROR
&& !(isVolumeControl() && isOffloadedOrDirect())) {
mDisableWaitCnt = mMaxDisableWaitCnt;
} else {
mDisableWaitCnt = 1; // will cause immediate transition to IDLE
}
mState = STOPPED;
break;
case STOPPED:
// mDisableWaitCnt is forced to 1 by process() when the engine indicates the end of the
// turn off sequence.
if (--mDisableWaitCnt == 0) {
reset_l();
mState = IDLE;
}
break;
default: //IDLE , ACTIVE, DESTROYED
break;
}
return started;
}
void AudioFlinger::EffectModule::process()
{
Mutex::Autolock _l(mLock);
if (mState == DESTROYED || mEffectInterface == 0 || mInBuffer == 0 || mOutBuffer == 0) {
return;
}
const uint32_t inChannelCount =
audio_channel_count_from_out_mask(mConfig.inputCfg.channels);
const uint32_t outChannelCount =
audio_channel_count_from_out_mask(mConfig.outputCfg.channels);
const bool auxType =
(mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY;
// safeInputOutputSampleCount is 0 if the channel count between input and output
// buffers do not match. This prevents automatic accumulation or copying between the
// input and output effect buffers without an intermediary effect process.
// TODO: consider implementing channel conversion.
const size_t safeInputOutputSampleCount =
mInChannelCountRequested != mOutChannelCountRequested ? 0
: mOutChannelCountRequested * std::min(
mConfig.inputCfg.buffer.frameCount,
mConfig.outputCfg.buffer.frameCount);
const auto accumulateInputToOutput = [this, safeInputOutputSampleCount]() {
#ifdef FLOAT_EFFECT_CHAIN
accumulate_float(
mConfig.outputCfg.buffer.f32,
mConfig.inputCfg.buffer.f32,
safeInputOutputSampleCount);
#else
accumulate_i16(
mConfig.outputCfg.buffer.s16,
mConfig.inputCfg.buffer.s16,
safeInputOutputSampleCount);
#endif
};
const auto copyInputToOutput = [this, safeInputOutputSampleCount]() {
#ifdef FLOAT_EFFECT_CHAIN
memcpy(
mConfig.outputCfg.buffer.f32,
mConfig.inputCfg.buffer.f32,
safeInputOutputSampleCount * sizeof(*mConfig.outputCfg.buffer.f32));
#else
memcpy(
mConfig.outputCfg.buffer.s16,
mConfig.inputCfg.buffer.s16,
safeInputOutputSampleCount * sizeof(*mConfig.outputCfg.buffer.s16));
#endif
};
if (isProcessEnabled()) {
int ret;
if (isProcessImplemented()) {
if (auxType) {
// We overwrite the aux input buffer here and clear after processing.
// aux input is always mono.
#ifdef FLOAT_EFFECT_CHAIN
if (mSupportsFloat) {
#ifndef FLOAT_AUX
// Do in-place float conversion for auxiliary effect input buffer.
static_assert(sizeof(float) <= sizeof(int32_t),
"in-place conversion requires sizeof(float) <= sizeof(int32_t)");
memcpy_to_float_from_q4_27(
mConfig.inputCfg.buffer.f32,
mConfig.inputCfg.buffer.s32,
mConfig.inputCfg.buffer.frameCount);
#endif // !FLOAT_AUX
} else
#endif // FLOAT_EFFECT_CHAIN
{
#ifdef FLOAT_AUX
memcpy_to_i16_from_float(
mConfig.inputCfg.buffer.s16,
mConfig.inputCfg.buffer.f32,
mConfig.inputCfg.buffer.frameCount);
#else
memcpy_to_i16_from_q4_27(
mConfig.inputCfg.buffer.s16,
mConfig.inputCfg.buffer.s32,
mConfig.inputCfg.buffer.frameCount);
#endif
}
}
#ifdef FLOAT_EFFECT_CHAIN
sp<EffectBufferHalInterface> inBuffer = mInBuffer;
sp<EffectBufferHalInterface> outBuffer = mOutBuffer;
if (!auxType && mInChannelCountRequested != inChannelCount) {
adjust_channels(
inBuffer->audioBuffer()->f32, mInChannelCountRequested,
mInConversionBuffer->audioBuffer()->f32, inChannelCount,
sizeof(float),
sizeof(float)
* mInChannelCountRequested * mConfig.inputCfg.buffer.frameCount);
inBuffer = mInConversionBuffer;
}
if (mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE
&& mOutChannelCountRequested != outChannelCount) {
adjust_selected_channels(
outBuffer->audioBuffer()->f32, mOutChannelCountRequested,
mOutConversionBuffer->audioBuffer()->f32, outChannelCount,
sizeof(float),
sizeof(float)
* mOutChannelCountRequested * mConfig.outputCfg.buffer.frameCount);
outBuffer = mOutConversionBuffer;
}
if (!mSupportsFloat) { // convert input to int16_t as effect doesn't support float.
if (!auxType) {
if (mInConversionBuffer == nullptr) {
ALOGW("%s: mInConversionBuffer is null, bypassing", __func__);
goto data_bypass;
}
memcpy_to_i16_from_float(
mInConversionBuffer->audioBuffer()->s16,
inBuffer->audioBuffer()->f32,
inChannelCount * mConfig.inputCfg.buffer.frameCount);
inBuffer = mInConversionBuffer;
}
if (mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) {
if (mOutConversionBuffer == nullptr) {
ALOGW("%s: mOutConversionBuffer is null, bypassing", __func__);
goto data_bypass;
}
memcpy_to_i16_from_float(
mOutConversionBuffer->audioBuffer()->s16,
outBuffer->audioBuffer()->f32,
outChannelCount * mConfig.outputCfg.buffer.frameCount);
outBuffer = mOutConversionBuffer;
}
}
#endif
ret = mEffectInterface->process();
#ifdef FLOAT_EFFECT_CHAIN
if (!mSupportsFloat) { // convert output int16_t back to float.
sp<EffectBufferHalInterface> target =
mOutChannelCountRequested != outChannelCount
? mOutConversionBuffer : mOutBuffer;
memcpy_to_float_from_i16(
target->audioBuffer()->f32,
mOutConversionBuffer->audioBuffer()->s16,
outChannelCount * mConfig.outputCfg.buffer.frameCount);
}
if (mOutChannelCountRequested != outChannelCount) {
adjust_selected_channels(mOutConversionBuffer->audioBuffer()->f32, outChannelCount,
mOutBuffer->audioBuffer()->f32, mOutChannelCountRequested,
sizeof(float),
sizeof(float) * outChannelCount * mConfig.outputCfg.buffer.frameCount);
}
#endif
} else {
#ifdef FLOAT_EFFECT_CHAIN
data_bypass:
#endif
if (!auxType /* aux effects do not require data bypass */
&& mConfig.inputCfg.buffer.raw != mConfig.outputCfg.buffer.raw) {
if (mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) {
accumulateInputToOutput();
} else {
copyInputToOutput();
}
}
ret = -ENODATA;
}
// force transition to IDLE state when engine is ready
if (mState == STOPPED && ret == -ENODATA) {
mDisableWaitCnt = 1;
}
// clear auxiliary effect input buffer for next accumulation
if (auxType) {
#ifdef FLOAT_AUX
const size_t size =
mConfig.inputCfg.buffer.frameCount * inChannelCount * sizeof(float);
#else
const size_t size =
mConfig.inputCfg.buffer.frameCount * inChannelCount * sizeof(int32_t);
#endif
memset(mConfig.inputCfg.buffer.raw, 0, size);
}
} else if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_INSERT &&
// mInBuffer->audioBuffer()->raw != mOutBuffer->audioBuffer()->raw
mConfig.inputCfg.buffer.raw != mConfig.outputCfg.buffer.raw) {
// If an insert effect is idle and input buffer is different from output buffer,
// accumulate input onto output
if (getCallback()->activeTrackCnt() != 0) {
// similar handling with data_bypass above.
if (mConfig.outputCfg.accessMode == EFFECT_BUFFER_ACCESS_ACCUMULATE) {
accumulateInputToOutput();
} else { // EFFECT_BUFFER_ACCESS_WRITE
copyInputToOutput();
}
}
}
}
void AudioFlinger::EffectModule::reset_l()
{
if (mStatus != NO_ERROR || mEffectInterface == 0) {
return;
}
mEffectInterface->command(EFFECT_CMD_RESET, 0, NULL, 0, NULL);
}
status_t AudioFlinger::EffectModule::configure()
{
ALOGVV("configure() started");
status_t status;
uint32_t size;
audio_channel_mask_t channelMask;
sp<EffectCallbackInterface> callback;
if (mEffectInterface == 0) {
status = NO_INIT;
goto exit;
}
// TODO: handle configuration of effects replacing track process
// TODO: handle configuration of input (record) SW effects above the HAL,
// similar to output EFFECT_FLAG_TYPE_INSERT/REPLACE,
// in which case input channel masks should be used here.
callback = getCallback();
channelMask = callback->channelMask();
mConfig.inputCfg.channels = channelMask;
mConfig.outputCfg.channels = channelMask;
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
if (mConfig.inputCfg.channels != AUDIO_CHANNEL_OUT_MONO) {
mConfig.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
ALOGV("Overriding auxiliary effect input channels %#x as MONO",
mConfig.inputCfg.channels);
}
#ifndef MULTICHANNEL_EFFECT_CHAIN
if (mConfig.outputCfg.channels != AUDIO_CHANNEL_OUT_STEREO) {
mConfig.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
ALOGV("Overriding auxiliary effect output channels %#x as STEREO",
mConfig.outputCfg.channels);
}
#endif
} else {
#ifndef MULTICHANNEL_EFFECT_CHAIN
// TODO: Update this logic when multichannel effects are implemented.
// For offloaded tracks consider mono output as stereo for proper effect initialization
if (channelMask == AUDIO_CHANNEL_OUT_MONO) {
mConfig.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
mConfig.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
ALOGV("Overriding effect input and output as STEREO");
}
#endif
}
if (isHapticGenerator()) {
audio_channel_mask_t hapticChannelMask = callback->hapticChannelMask();
mConfig.inputCfg.channels |= hapticChannelMask;
mConfig.outputCfg.channels |= hapticChannelMask;
}
mInChannelCountRequested =
audio_channel_count_from_out_mask(mConfig.inputCfg.channels);
mOutChannelCountRequested =
audio_channel_count_from_out_mask(mConfig.outputCfg.channels);
mConfig.inputCfg.format = EFFECT_BUFFER_FORMAT;
mConfig.outputCfg.format = EFFECT_BUFFER_FORMAT;
// Don't use sample rate for thread if effect isn't offloadable.
if (callback->isOffloadOrDirect() && !isOffloaded()) {
mConfig.inputCfg.samplingRate = DEFAULT_OUTPUT_SAMPLE_RATE;
ALOGV("Overriding effect input as 48kHz");
} else {
mConfig.inputCfg.samplingRate = callback->sampleRate();
}
mConfig.outputCfg.samplingRate = mConfig.inputCfg.samplingRate;
mConfig.inputCfg.bufferProvider.cookie = NULL;
mConfig.inputCfg.bufferProvider.getBuffer = NULL;
mConfig.inputCfg.bufferProvider.releaseBuffer = NULL;
mConfig.outputCfg.bufferProvider.cookie = NULL;
mConfig.outputCfg.bufferProvider.getBuffer = NULL;
mConfig.outputCfg.bufferProvider.releaseBuffer = NULL;
mConfig.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
// Insert effect:
// - in global sessions (e.g AUDIO_SESSION_OUTPUT_MIX),
// always overwrites output buffer: input buffer == output buffer
// - in other sessions:
// last effect in the chain accumulates in output buffer: input buffer != output buffer
// other effect: overwrites output buffer: input buffer == output buffer
// Auxiliary effect:
// accumulates in output buffer: input buffer != output buffer
// Therefore: accumulate <=> input buffer != output buffer
if (mConfig.inputCfg.buffer.raw != mConfig.outputCfg.buffer.raw) {
mConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
} else {
mConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_WRITE;
}
mConfig.inputCfg.mask = EFFECT_CONFIG_ALL;
mConfig.outputCfg.mask = EFFECT_CONFIG_ALL;
mConfig.inputCfg.buffer.frameCount = callback->frameCount();
mConfig.outputCfg.buffer.frameCount = mConfig.inputCfg.buffer.frameCount;
ALOGV("configure() %p chain %p buffer %p framecount %zu",
this, callback->chain().promote().get(),
mConfig.inputCfg.buffer.raw, mConfig.inputCfg.buffer.frameCount);
status_t cmdStatus;
size = sizeof(int);
status = mEffectInterface->command(EFFECT_CMD_SET_CONFIG,
sizeof(mConfig),
&mConfig,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
#ifdef MULTICHANNEL_EFFECT_CHAIN
if (status != NO_ERROR &&
callback->isOutput() &&
(mConfig.inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO
|| mConfig.outputCfg.channels != AUDIO_CHANNEL_OUT_STEREO)) {
// Older effects may require exact STEREO position mask.
if (mConfig.inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO
&& (mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_AUXILIARY) {
ALOGV("Overriding effect input channels %#x as STEREO", mConfig.inputCfg.channels);
mConfig.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
}
if (mConfig.outputCfg.channels != AUDIO_CHANNEL_OUT_STEREO) {
ALOGV("Overriding effect output channels %#x as STEREO", mConfig.outputCfg.channels);
mConfig.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
}
size = sizeof(int);
status = mEffectInterface->command(EFFECT_CMD_SET_CONFIG,
sizeof(mConfig),
&mConfig,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
}
#endif
#ifdef FLOAT_EFFECT_CHAIN
if (status == NO_ERROR) {
mSupportsFloat = true;
}
if (status != NO_ERROR) {
ALOGV("EFFECT_CMD_SET_CONFIG failed with float format, retry with int16_t.");
mConfig.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
mConfig.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
size = sizeof(int);
status = mEffectInterface->command(EFFECT_CMD_SET_CONFIG,
sizeof(mConfig),
&mConfig,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
if (status == NO_ERROR) {
mSupportsFloat = false;
ALOGVV("config worked with 16 bit");
} else {
ALOGE("%s failed %d with int16_t (as well as float)", __func__, status);
}
}
#endif
if (status == NO_ERROR) {
// Establish Buffer strategy
setInBuffer(mInBuffer);
setOutBuffer(mOutBuffer);
// Update visualizer latency
if (memcmp(&mDescriptor.type, SL_IID_VISUALIZATION, sizeof(effect_uuid_t)) == 0) {
uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2];
effect_param_t *p = (effect_param_t *)buf32;
p->psize = sizeof(uint32_t);
p->vsize = sizeof(uint32_t);
size = sizeof(int);
*(int32_t *)p->data = VISUALIZER_PARAM_LATENCY;
uint32_t latency = callback->latency();
*((int32_t *)p->data + 1)= latency;
mEffectInterface->command(EFFECT_CMD_SET_PARAM,
sizeof(effect_param_t) + 8,
&buf32,
&size,
&cmdStatus);
}
}
// mConfig.outputCfg.buffer.frameCount cannot be zero.
mMaxDisableWaitCnt = (uint32_t)std::max(
(uint64_t)1, // mMaxDisableWaitCnt must be greater than zero.
(uint64_t)MAX_DISABLE_TIME_MS * mConfig.outputCfg.samplingRate
/ ((uint64_t)1000 * mConfig.outputCfg.buffer.frameCount));
exit:
// TODO: consider clearing mConfig on error.
mStatus = status;
ALOGVV("configure ended");
return status;
}
status_t AudioFlinger::EffectModule::init()
{
Mutex::Autolock _l(mLock);
if (mEffectInterface == 0) {
return NO_INIT;
}
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status_t status = mEffectInterface->command(EFFECT_CMD_INIT,
0,
NULL,
&size,
&cmdStatus);
if (status == 0) {
status = cmdStatus;
}
return status;
}
void AudioFlinger::EffectModule::addEffectToHal_l()
{
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC ||
(mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
if (mAddedToHal) {
return;
}
(void)getCallback()->addEffectToHal(mEffectInterface);
mAddedToHal = true;
}
}
// start() must be called with PlaybackThread::mLock or EffectChain::mLock held
status_t AudioFlinger::EffectModule::start()
{
status_t status;
{
Mutex::Autolock _l(mLock);
status = start_l();
}
if (status == NO_ERROR) {
getCallback()->resetVolume();
}
return status;
}
status_t AudioFlinger::EffectModule::start_l()
{
if (mEffectInterface == 0) {
return NO_INIT;
}
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status_t status = mEffectInterface->command(EFFECT_CMD_ENABLE,
0,
NULL,
&size,
&cmdStatus);
if (status == 0) {
status = cmdStatus;
}
if (status == 0) {
addEffectToHal_l();
}
return status;
}
status_t AudioFlinger::EffectModule::stop()
{
Mutex::Autolock _l(mLock);
return stop_l();
}
status_t AudioFlinger::EffectModule::stop_l()
{
if (mEffectInterface == 0) {
return NO_INIT;
}
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t cmdStatus = NO_ERROR;
uint32_t size = sizeof(status_t);
if (isVolumeControl() && isOffloadedOrDirect()) {
// We have the EffectChain and EffectModule lock, permit a reentrant call to setVolume:
// resetVolume_l --> setVolume_l --> EffectModule::setVolume
mSetVolumeReentrantTid = gettid();
getCallback()->resetVolume();
mSetVolumeReentrantTid = INVALID_PID;
}
status_t status = mEffectInterface->command(EFFECT_CMD_DISABLE,
0,
NULL,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
if (status == NO_ERROR) {
status = removeEffectFromHal_l();
}
return status;
}
// must be called with EffectChain::mLock held
void AudioFlinger::EffectModule::release_l()
{
if (mEffectInterface != 0) {
removeEffectFromHal_l();
// release effect engine
mEffectInterface->close();
mEffectInterface.clear();
}
}
status_t AudioFlinger::EffectModule::removeEffectFromHal_l()
{
if ((mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC ||
(mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
if (!mAddedToHal) {
return NO_ERROR;
}
getCallback()->removeEffectFromHal(mEffectInterface);
mAddedToHal = false;
}
return NO_ERROR;
}
// round up delta valid if value and divisor are positive.
template <typename T>
static T roundUpDelta(const T &value, const T &divisor) {
T remainder = value % divisor;
return remainder == 0 ? 0 : divisor - remainder;
}
status_t AudioFlinger::EffectModule::command(int32_t cmdCode,
const std::vector<uint8_t>& cmdData,
int32_t maxReplySize,
std::vector<uint8_t>* reply)
{
Mutex::Autolock _l(mLock);
ALOGVV("command(), cmdCode: %d, mEffectInterface: %p", cmdCode, mEffectInterface.get());
if (mState == DESTROYED || mEffectInterface == 0) {
return NO_INIT;
}
if (mStatus != NO_ERROR) {
return mStatus;
}
if (maxReplySize < 0 || maxReplySize > EFFECT_PARAM_SIZE_MAX) {
return -EINVAL;
}
size_t cmdSize = cmdData.size();
const effect_param_t* param = cmdSize >= sizeof(effect_param_t)
? reinterpret_cast<const effect_param_t*>(cmdData.data())
: nullptr;
if (cmdCode == EFFECT_CMD_GET_PARAM &&
(param == nullptr || param->psize > cmdSize - sizeof(effect_param_t))) {
android_errorWriteLog(0x534e4554, "32438594");
android_errorWriteLog(0x534e4554, "33003822");
return -EINVAL;
}
if (cmdCode == EFFECT_CMD_GET_PARAM &&
(maxReplySize < sizeof(effect_param_t) ||
param->psize > maxReplySize - sizeof(effect_param_t))) {
android_errorWriteLog(0x534e4554, "29251553");
return -EINVAL;
}
if (cmdCode == EFFECT_CMD_GET_PARAM &&
(sizeof(effect_param_t) > maxReplySize
|| param->psize > maxReplySize - sizeof(effect_param_t)
|| param->vsize > maxReplySize - sizeof(effect_param_t)
- param->psize
|| roundUpDelta(param->psize, (uint32_t) sizeof(int)) >
maxReplySize
- sizeof(effect_param_t)
- param->psize
- param->vsize)) {
ALOGV("\tLVM_ERROR : EFFECT_CMD_GET_PARAM: reply size inconsistent");
android_errorWriteLog(0x534e4554, "32705438");
return -EINVAL;
}
if ((cmdCode == EFFECT_CMD_SET_PARAM
|| cmdCode == EFFECT_CMD_SET_PARAM_DEFERRED)
&& // DEFERRED not generally used
(param == nullptr
|| param->psize > cmdSize - sizeof(effect_param_t)
|| param->vsize > cmdSize - sizeof(effect_param_t)
- param->psize
|| roundUpDelta(param->psize,
(uint32_t) sizeof(int)) >
cmdSize
- sizeof(effect_param_t)
- param->psize
- param->vsize)) {
android_errorWriteLog(0x534e4554, "30204301");
return -EINVAL;
}
uint32_t replySize = maxReplySize;
reply->resize(replySize);
status_t status = mEffectInterface->command(cmdCode,
cmdSize,
const_cast<uint8_t*>(cmdData.data()),
&replySize,
reply->data());
reply->resize(status == NO_ERROR ? replySize : 0);
if (cmdCode != EFFECT_CMD_GET_PARAM && status == NO_ERROR) {
for (size_t i = 1; i < mHandles.size(); i++) {
EffectHandle *h = mHandles[i];
if (h != NULL && !h->disconnected()) {
h->commandExecuted(cmdCode, cmdData, *reply);
}
}
}
return status;
}
bool AudioFlinger::EffectModule::isProcessEnabled() const
{
if (mStatus != NO_ERROR) {
return false;
}
switch (mState) {
case RESTART:
case ACTIVE:
case STOPPING:
case STOPPED:
return true;
case IDLE:
case STARTING:
case DESTROYED:
default:
return false;
}
}
bool AudioFlinger::EffectModule::isOffloadedOrDirect() const
{
return getCallback()->isOffloadOrDirect();
}
bool AudioFlinger::EffectModule::isVolumeControlEnabled() const
{
return (isVolumeControl() && (isOffloadedOrDirect() ? isEnabled() : isProcessEnabled()));
}
void AudioFlinger::EffectModule::setInBuffer(const sp<EffectBufferHalInterface>& buffer) {
ALOGVV("setInBuffer %p",(&buffer));
// mConfig.inputCfg.buffer.frameCount may be zero if configure() is not called yet.
if (buffer != 0) {
mConfig.inputCfg.buffer.raw = buffer->audioBuffer()->raw;
buffer->setFrameCount(mConfig.inputCfg.buffer.frameCount);
} else {
mConfig.inputCfg.buffer.raw = NULL;
}
mInBuffer = buffer;
mEffectInterface->setInBuffer(buffer);
#ifdef FLOAT_EFFECT_CHAIN
// aux effects do in place conversion to float - we don't allocate mInConversionBuffer.
// Theoretically insert effects can also do in-place conversions (destroying
// the original buffer) when the output buffer is identical to the input buffer,
// but we don't optimize for it here.
const bool auxType = (mDescriptor.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY;
const uint32_t inChannelCount =
audio_channel_count_from_out_mask(mConfig.inputCfg.channels);
const bool formatMismatch = !mSupportsFloat || mInChannelCountRequested != inChannelCount;
if (!auxType && formatMismatch && mInBuffer != nullptr) {
// we need to translate - create hidl shared buffer and intercept
const size_t inFrameCount = mConfig.inputCfg.buffer.frameCount;
// Use FCC_2 in case mInChannelCountRequested is mono and the effect is stereo.
const uint32_t inChannels = std::max((uint32_t)FCC_2, mInChannelCountRequested);
const size_t size = inChannels * inFrameCount * std::max(sizeof(int16_t), sizeof(float));
ALOGV("%s: setInBuffer updating for inChannels:%d inFrameCount:%zu total size:%zu",
__func__, inChannels, inFrameCount, size);
if (size > 0 && (mInConversionBuffer == nullptr
|| size > mInConversionBuffer->getSize())) {
mInConversionBuffer.clear();
ALOGV("%s: allocating mInConversionBuffer %zu", __func__, size);
(void)getCallback()->allocateHalBuffer(size, &mInConversionBuffer);
}
if (mInConversionBuffer != nullptr) {
mInConversionBuffer->setFrameCount(inFrameCount);
mEffectInterface->setInBuffer(mInConversionBuffer);
} else if (size > 0) {
ALOGE("%s cannot create mInConversionBuffer", __func__);
}
}
#endif
}
void AudioFlinger::EffectModule::setOutBuffer(const sp<EffectBufferHalInterface>& buffer) {
ALOGVV("setOutBuffer %p",(&buffer));
// mConfig.outputCfg.buffer.frameCount may be zero if configure() is not called yet.
if (buffer != 0) {
mConfig.outputCfg.buffer.raw = buffer->audioBuffer()->raw;
buffer->setFrameCount(mConfig.outputCfg.buffer.frameCount);
} else {
mConfig.outputCfg.buffer.raw = NULL;
}
mOutBuffer = buffer;
mEffectInterface->setOutBuffer(buffer);
#ifdef FLOAT_EFFECT_CHAIN
// Note: Any effect that does not accumulate does not need mOutConversionBuffer and
// can do in-place conversion from int16_t to float. We don't optimize here.
const uint32_t outChannelCount =
audio_channel_count_from_out_mask(mConfig.outputCfg.channels);
const bool formatMismatch = !mSupportsFloat || mOutChannelCountRequested != outChannelCount;
if (formatMismatch && mOutBuffer != nullptr) {
const size_t outFrameCount = mConfig.outputCfg.buffer.frameCount;
// Use FCC_2 in case mOutChannelCountRequested is mono and the effect is stereo.
const uint32_t outChannels = std::max((uint32_t)FCC_2, mOutChannelCountRequested);
const size_t size = outChannels * outFrameCount * std::max(sizeof(int16_t), sizeof(float));
ALOGV("%s: setOutBuffer updating for outChannels:%d outFrameCount:%zu total size:%zu",
__func__, outChannels, outFrameCount, size);
if (size > 0 && (mOutConversionBuffer == nullptr
|| size > mOutConversionBuffer->getSize())) {
mOutConversionBuffer.clear();
ALOGV("%s: allocating mOutConversionBuffer %zu", __func__, size);
(void)getCallback()->allocateHalBuffer(size, &mOutConversionBuffer);
}
if (mOutConversionBuffer != nullptr) {
mOutConversionBuffer->setFrameCount(outFrameCount);
mEffectInterface->setOutBuffer(mOutConversionBuffer);
} else if (size > 0) {
ALOGE("%s cannot create mOutConversionBuffer", __func__);
}
}
#endif
}
status_t AudioFlinger::EffectModule::setVolume(uint32_t *left, uint32_t *right, bool controller)
{
AutoLockReentrant _l(mLock, mSetVolumeReentrantTid);
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t status = NO_ERROR;
// Send volume indication if EFFECT_FLAG_VOLUME_IND is set and read back altered volume
// if controller flag is set (Note that controller == TRUE => EFFECT_FLAG_VOLUME_CTRL set)
if (isProcessEnabled() &&
((mDescriptor.flags & EFFECT_FLAG_VOLUME_MASK) == EFFECT_FLAG_VOLUME_CTRL ||
(mDescriptor.flags & EFFECT_FLAG_VOLUME_MASK) == EFFECT_FLAG_VOLUME_IND ||
(mDescriptor.flags & EFFECT_FLAG_VOLUME_MASK) == EFFECT_FLAG_VOLUME_MONITOR)) {
uint32_t volume[2];
uint32_t *pVolume = NULL;
uint32_t size = sizeof(volume);
volume[0] = *left;
volume[1] = *right;
if (controller) {
pVolume = volume;
}
status = mEffectInterface->command(EFFECT_CMD_SET_VOLUME,
size,
volume,
&size,
pVolume);
if (controller && status == NO_ERROR && size == sizeof(volume)) {
*left = volume[0];
*right = volume[1];
}
}
return status;
}
void AudioFlinger::EffectChain::setVolumeForOutput_l(uint32_t left, uint32_t right)
{
// for offload or direct thread, if the effect chain has non-offloadable
// effect and any effect module within the chain has volume control, then
// volume control is delegated to effect, otherwise, set volume to hal.
if (mEffectCallback->isOffloadOrDirect() &&
!(isNonOffloadableEnabled_l() && hasVolumeControlEnabled_l())) {
float vol_l = (float)left / (1 << 24);
float vol_r = (float)right / (1 << 24);
mEffectCallback->setVolumeForOutput(vol_l, vol_r);
}
}
status_t AudioFlinger::EffectModule::sendSetAudioDevicesCommand(
const AudioDeviceTypeAddrVector &devices, uint32_t cmdCode)
{
audio_devices_t deviceType = deviceTypesToBitMask(getAudioDeviceTypes(devices));
if (deviceType == AUDIO_DEVICE_NONE) {
return NO_ERROR;
}
Mutex::Autolock _l(mLock);
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t status = NO_ERROR;
if ((mDescriptor.flags & EFFECT_FLAG_DEVICE_MASK) == EFFECT_FLAG_DEVICE_IND) {
status_t cmdStatus;
uint32_t size = sizeof(status_t);
// FIXME: use audio device types and addresses when the hal interface is ready.
status = mEffectInterface->command(cmdCode,
sizeof(uint32_t),
&deviceType,
&size,
&cmdStatus);
}
return status;
}
status_t AudioFlinger::EffectModule::setDevices(const AudioDeviceTypeAddrVector &devices)
{
return sendSetAudioDevicesCommand(devices, EFFECT_CMD_SET_DEVICE);
}
status_t AudioFlinger::EffectModule::setInputDevice(const AudioDeviceTypeAddr &device)
{
return sendSetAudioDevicesCommand({device}, EFFECT_CMD_SET_INPUT_DEVICE);
}
status_t AudioFlinger::EffectModule::setMode(audio_mode_t mode)
{
Mutex::Autolock _l(mLock);
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t status = NO_ERROR;
if ((mDescriptor.flags & EFFECT_FLAG_AUDIO_MODE_MASK) == EFFECT_FLAG_AUDIO_MODE_IND) {
status_t cmdStatus;
uint32_t size = sizeof(status_t);
status = mEffectInterface->command(EFFECT_CMD_SET_AUDIO_MODE,
sizeof(audio_mode_t),
&mode,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
}
return status;
}
status_t AudioFlinger::EffectModule::setAudioSource(audio_source_t source)
{
Mutex::Autolock _l(mLock);
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t status = NO_ERROR;
if ((mDescriptor.flags & EFFECT_FLAG_AUDIO_SOURCE_MASK) == EFFECT_FLAG_AUDIO_SOURCE_IND) {
uint32_t size = 0;
status = mEffectInterface->command(EFFECT_CMD_SET_AUDIO_SOURCE,
sizeof(audio_source_t),
&source,
&size,
NULL);
}
return status;
}
status_t AudioFlinger::EffectModule::setOffloaded(bool offloaded, audio_io_handle_t io)
{
Mutex::Autolock _l(mLock);
if (mStatus != NO_ERROR) {
return mStatus;
}
status_t status = NO_ERROR;
if ((mDescriptor.flags & EFFECT_FLAG_OFFLOAD_SUPPORTED) != 0) {
status_t cmdStatus;
uint32_t size = sizeof(status_t);
effect_offload_param_t cmd;
cmd.isOffload = offloaded;
cmd.ioHandle = io;
status = mEffectInterface->command(EFFECT_CMD_OFFLOAD,
sizeof(effect_offload_param_t),
&cmd,
&size,
&cmdStatus);
if (status == NO_ERROR) {
status = cmdStatus;
}
mOffloaded = (status == NO_ERROR) ? offloaded : false;
} else {
if (offloaded) {
status = INVALID_OPERATION;
}
mOffloaded = false;
}
ALOGV("setOffloaded() offloaded %d io %d status %d", offloaded, io, status);
return status;
}
bool AudioFlinger::EffectModule::isOffloaded() const
{
Mutex::Autolock _l(mLock);
return mOffloaded;
}
/*static*/
bool AudioFlinger::EffectModule::isHapticGenerator(const effect_uuid_t *type) {
return memcmp(type, FX_IID_HAPTICGENERATOR, sizeof(effect_uuid_t)) == 0;
}
bool AudioFlinger::EffectModule::isHapticGenerator() const {
return isHapticGenerator(&mDescriptor.type);
}
status_t AudioFlinger::EffectModule::setHapticIntensity(int id, int intensity)
{
if (mStatus != NO_ERROR) {
return mStatus;
}
if (!isHapticGenerator()) {
ALOGW("Should not set haptic intensity for effects that are not HapticGenerator");
return INVALID_OPERATION;
}
std::vector<uint8_t> request(sizeof(effect_param_t) + 3 * sizeof(uint32_t));
effect_param_t *param = (effect_param_t*) request.data();
param->psize = sizeof(int32_t);
param->vsize = sizeof(int32_t) * 2;
*(int32_t*)param->data = HG_PARAM_HAPTIC_INTENSITY;
*((int32_t*)param->data + 1) = id;
*((int32_t*)param->data + 2) = intensity;
std::vector<uint8_t> response;
status_t status = command(EFFECT_CMD_SET_PARAM, request, sizeof(int32_t), &response);
if (status == NO_ERROR) {
LOG_ALWAYS_FATAL_IF(response.size() != 4);
status = *reinterpret_cast<const status_t*>(response.data());
}
return status;
}
status_t AudioFlinger::EffectModule::setVibratorInfo(const media::AudioVibratorInfo* vibratorInfo)
{
if (mStatus != NO_ERROR) {
return mStatus;
}
if (!isHapticGenerator()) {
ALOGW("Should not set vibrator info for effects that are not HapticGenerator");
return INVALID_OPERATION;
}
std::vector<uint8_t> request(
sizeof(effect_param_t) + sizeof(int32_t) + 2 * sizeof(float));
effect_param_t *param = (effect_param_t*) request.data();
param->psize = sizeof(int32_t);
param->vsize = 2 * sizeof(float);
*(int32_t*)param->data = HG_PARAM_VIBRATOR_INFO;
float* vibratorInfoPtr = reinterpret_cast<float*>(param->data + sizeof(int32_t));
vibratorInfoPtr[0] = vibratorInfo->resonantFrequency;
vibratorInfoPtr[1] = vibratorInfo->qFactor;
std::vector<uint8_t> response;
status_t status = command(EFFECT_CMD_SET_PARAM, request, sizeof(int32_t), &response);
if (status == NO_ERROR) {
LOG_ALWAYS_FATAL_IF(response.size() != sizeof(status_t));
status = *reinterpret_cast<const status_t*>(response.data());
}
return status;
}
static std::string dumpInOutBuffer(bool isInput, const sp<EffectBufferHalInterface> &buffer) {
std::stringstream ss;
if (buffer == nullptr) {
return "nullptr"; // make different than below
} else if (buffer->externalData() != nullptr) {
ss << (isInput ? buffer->externalData() : buffer->audioBuffer()->raw)
<< " -> "
<< (isInput ? buffer->audioBuffer()->raw : buffer->externalData());
} else {
ss << buffer->audioBuffer()->raw;
}
return ss.str();
}
void AudioFlinger::EffectModule::dump(int fd, const Vector<String16>& args)
{
EffectBase::dump(fd, args);
String8 result;
bool locked = AudioFlinger::dumpTryLock(mLock);
result.append("\t\tStatus Engine:\n");
result.appendFormat("\t\t%03d %p\n",
mStatus, mEffectInterface.get());
result.appendFormat("\t\t- data: %s\n", mSupportsFloat ? "float" : "int16");
result.append("\t\t- Input configuration:\n");
result.append("\t\t\tBuffer Frames Smp rate Channels Format\n");
result.appendFormat("\t\t\t%p %05zu %05d %08x %6d (%s)\n",
mConfig.inputCfg.buffer.raw,
mConfig.inputCfg.buffer.frameCount,
mConfig.inputCfg.samplingRate,
mConfig.inputCfg.channels,
mConfig.inputCfg.format,
formatToString((audio_format_t)mConfig.inputCfg.format).c_str());
result.append("\t\t- Output configuration:\n");
result.append("\t\t\tBuffer Frames Smp rate Channels Format\n");
result.appendFormat("\t\t\t%p %05zu %05d %08x %6d (%s)\n",
mConfig.outputCfg.buffer.raw,
mConfig.outputCfg.buffer.frameCount,
mConfig.outputCfg.samplingRate,
mConfig.outputCfg.channels,
mConfig.outputCfg.format,
formatToString((audio_format_t)mConfig.outputCfg.format).c_str());
#ifdef FLOAT_EFFECT_CHAIN
result.appendFormat("\t\t- HAL buffers:\n"
"\t\t\tIn(%s) InConversion(%s) Out(%s) OutConversion(%s)\n",
dumpInOutBuffer(true /* isInput */, mInBuffer).c_str(),
dumpInOutBuffer(true /* isInput */, mInConversionBuffer).c_str(),
dumpInOutBuffer(false /* isInput */, mOutBuffer).c_str(),
dumpInOutBuffer(false /* isInput */, mOutConversionBuffer).c_str());
#endif
write(fd, result.string(), result.length());
if (mEffectInterface != 0) {
dprintf(fd, "\tEffect ID %d HAL dump:\n", mId);
(void)mEffectInterface->dump(fd);
}
if (locked) {
mLock.unlock();
}
}
// ----------------------------------------------------------------------------
// EffectHandle implementation
// ----------------------------------------------------------------------------
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectHandle"
AudioFlinger::EffectHandle::EffectHandle(const sp<EffectBase>& effect,
const sp<AudioFlinger::Client>& client,
const sp<media::IEffectClient>& effectClient,
int32_t priority)
: BnEffect(),
mEffect(effect), mEffectClient(effectClient), mClient(client), mCblk(NULL),
mPriority(priority), mHasControl(false), mEnabled(false), mDisconnected(false)
{
ALOGV("constructor %p client %p", this, client.get());
if (client == 0) {
return;
}
int bufOffset = ((sizeof(effect_param_cblk_t) - 1) / sizeof(int) + 1) * sizeof(int);
mCblkMemory = client->heap()->allocate(EFFECT_PARAM_BUFFER_SIZE + bufOffset);
if (mCblkMemory == 0 ||
(mCblk = static_cast<effect_param_cblk_t *>(mCblkMemory->unsecurePointer())) == NULL) {
ALOGE("not enough memory for Effect size=%zu", EFFECT_PARAM_BUFFER_SIZE +
sizeof(effect_param_cblk_t));
mCblkMemory.clear();
return;
}
new(mCblk) effect_param_cblk_t();
mBuffer = (uint8_t *)mCblk + bufOffset;
}
AudioFlinger::EffectHandle::~EffectHandle()
{
ALOGV("Destructor %p", this);
disconnect(false);
}
status_t AudioFlinger::EffectHandle::initCheck()
{
return mClient == 0 || mCblkMemory != 0 ? OK : NO_MEMORY;
}
#define RETURN(code) \
*_aidl_return = (code); \
return Status::ok();
Status AudioFlinger::EffectHandle::enable(int32_t* _aidl_return)
{
AutoMutex _l(mLock);
ALOGV("enable %p", this);
sp<EffectBase> effect = mEffect.promote();
if (effect == 0 || mDisconnected) {
RETURN(DEAD_OBJECT);
}
if (!mHasControl) {
RETURN(INVALID_OPERATION);
}
if (mEnabled) {
RETURN(NO_ERROR);
}
mEnabled = true;
status_t status = effect->updatePolicyState();
if (status != NO_ERROR) {
mEnabled = false;
RETURN(status);
}
effect->checkSuspendOnEffectEnabled(true, false /*threadLocked*/);
// checkSuspendOnEffectEnabled() can suspend this same effect when enabled
if (effect->suspended()) {
RETURN(NO_ERROR);
}
status = effect->setEnabled(true, true /*fromHandle*/);
if (status != NO_ERROR) {
mEnabled = false;
}
RETURN(status);
}
Status AudioFlinger::EffectHandle::disable(int32_t* _aidl_return)
{
ALOGV("disable %p", this);
AutoMutex _l(mLock);
sp<EffectBase> effect = mEffect.promote();
if (effect == 0 || mDisconnected) {
RETURN(DEAD_OBJECT);
}
if (!mHasControl) {
RETURN(INVALID_OPERATION);
}
if (!mEnabled) {
RETURN(NO_ERROR);
}
mEnabled = false;
effect->updatePolicyState();
if (effect->suspended()) {
RETURN(NO_ERROR);
}
status_t status = effect->setEnabled(false, true /*fromHandle*/);
RETURN(status);
}
Status AudioFlinger::EffectHandle::disconnect()
{
ALOGV("%s %p", __FUNCTION__, this);
disconnect(true);
return Status::ok();
}
void AudioFlinger::EffectHandle::disconnect(bool unpinIfLast)
{
AutoMutex _l(mLock);
ALOGV("disconnect(%s) %p", unpinIfLast ? "true" : "false", this);
if (mDisconnected) {
if (unpinIfLast) {
android_errorWriteLog(0x534e4554, "32707507");
}
return;
}
mDisconnected = true;
{
sp<EffectBase> effect = mEffect.promote();
if (effect != 0) {
if (effect->disconnectHandle(this, unpinIfLast) > 0) {
ALOGW("%s Effect handle %p disconnected after thread destruction",
__func__, this);
}
effect->updatePolicyState();
}
}
if (mClient != 0) {
if (mCblk != NULL) {
// unlike ~TrackBase(), mCblk is never a local new, so don't delete
mCblk->~effect_param_cblk_t(); // destroy our shared-structure.
}
mCblkMemory.clear(); // free the shared memory before releasing the heap it belongs to
// Client destructor must run with AudioFlinger client mutex locked
Mutex::Autolock _l(mClient->audioFlinger()->mClientLock);
mClient.clear();
}
}
Status AudioFlinger::EffectHandle::getCblk(media::SharedFileRegion* _aidl_return) {
LOG_ALWAYS_FATAL_IF(!convertIMemoryToSharedFileRegion(mCblkMemory, _aidl_return));
return Status::ok();
}
Status AudioFlinger::EffectHandle::command(int32_t cmdCode,
const std::vector<uint8_t>& cmdData,
int32_t maxResponseSize,
std::vector<uint8_t>* response,
int32_t* _aidl_return)
{
ALOGVV("command(), cmdCode: %d, mHasControl: %d, mEffect: %p",
cmdCode, mHasControl, mEffect.unsafe_get());
// reject commands reserved for internal use by audio framework if coming from outside
// of audioserver
switch(cmdCode) {
case EFFECT_CMD_ENABLE:
case EFFECT_CMD_DISABLE:
case EFFECT_CMD_SET_PARAM:
case EFFECT_CMD_SET_PARAM_DEFERRED:
case EFFECT_CMD_SET_PARAM_COMMIT:
case EFFECT_CMD_GET_PARAM:
break;
default:
if (cmdCode >= EFFECT_CMD_FIRST_PROPRIETARY) {
break;
}
android_errorWriteLog(0x534e4554, "62019992");
RETURN(BAD_VALUE);
}
if (cmdCode == EFFECT_CMD_ENABLE) {
if (maxResponseSize < sizeof(int)) {
android_errorWriteLog(0x534e4554, "32095713");
RETURN(BAD_VALUE);
}
writeToBuffer(NO_ERROR, response);
return enable(_aidl_return);
} else if (cmdCode == EFFECT_CMD_DISABLE) {
if (maxResponseSize < sizeof(int)) {
android_errorWriteLog(0x534e4554, "32095713");
RETURN(BAD_VALUE);
}
writeToBuffer(NO_ERROR, response);
return disable(_aidl_return);
}
AutoMutex _l(mLock);
sp<EffectBase> effect = mEffect.promote();
if (effect == 0 || mDisconnected) {
RETURN(DEAD_OBJECT);
}
// only get parameter command is permitted for applications not controlling the effect
if (!mHasControl && cmdCode != EFFECT_CMD_GET_PARAM) {
RETURN(INVALID_OPERATION);
}
// handle commands that are not forwarded transparently to effect engine
if (cmdCode == EFFECT_CMD_SET_PARAM_COMMIT) {
if (mClient == 0) {
RETURN(INVALID_OPERATION);
}
if (maxResponseSize < sizeof(int)) {
android_errorWriteLog(0x534e4554, "32095713");
RETURN(BAD_VALUE);
}
writeToBuffer(NO_ERROR, response);
// No need to trylock() here as this function is executed in the binder thread serving a
// particular client process: no risk to block the whole media server process or mixer
// threads if we are stuck here
Mutex::Autolock _l(mCblk->lock);
// keep local copy of index in case of client corruption b/32220769
const uint32_t clientIndex = mCblk->clientIndex;
const uint32_t serverIndex = mCblk->serverIndex;
if (clientIndex > EFFECT_PARAM_BUFFER_SIZE ||
serverIndex > EFFECT_PARAM_BUFFER_SIZE) {
mCblk->serverIndex = 0;
mCblk->clientIndex = 0;
RETURN(BAD_VALUE);
}
status_t status = NO_ERROR;
std::vector<uint8_t> param;
for (uint32_t index = serverIndex; index < clientIndex;) {
int *p = (int *)(mBuffer + index);
const int size = *p++;
if (size < 0
|| size > EFFECT_PARAM_BUFFER_SIZE
|| ((uint8_t *)p + size) > mBuffer + clientIndex) {
ALOGW("command(): invalid parameter block size");
status = BAD_VALUE;
break;
}
std::copy(reinterpret_cast<const uint8_t*>(p),
reinterpret_cast<const uint8_t*>(p) + size,
std::back_inserter(param));
std::vector<uint8_t> replyBuffer;
status_t ret = effect->command(EFFECT_CMD_SET_PARAM,
param,
sizeof(int),
&replyBuffer);
int reply = *reinterpret_cast<const int*>(replyBuffer.data());
// verify shared memory: server index shouldn't change; client index can't go back.
if (serverIndex != mCblk->serverIndex
|| clientIndex > mCblk->clientIndex) {
android_errorWriteLog(0x534e4554, "32220769");
status = BAD_VALUE;
break;
}
// stop at first error encountered
if (ret != NO_ERROR) {
status = ret;
writeToBuffer(reply, response);
break;
} else if (reply != NO_ERROR) {
writeToBuffer(reply, response);
break;
}
index += size;
}
mCblk->serverIndex = 0;
mCblk->clientIndex = 0;
RETURN(status);
}
status_t status = effect->command(cmdCode,
cmdData,
maxResponseSize,
response);
RETURN(status);
}
void AudioFlinger::EffectHandle::setControl(bool hasControl, bool signal, bool enabled)
{
ALOGV("setControl %p control %d", this, hasControl);
mHasControl = hasControl;
mEnabled = enabled;
if (signal && mEffectClient != 0) {
mEffectClient->controlStatusChanged(hasControl);
}
}
void AudioFlinger::EffectHandle::commandExecuted(uint32_t cmdCode,
const std::vector<uint8_t>& cmdData,
const std::vector<uint8_t>& replyData)
{
if (mEffectClient != 0) {
mEffectClient->commandExecuted(cmdCode, cmdData, replyData);
}
}
void AudioFlinger::EffectHandle::setEnabled(bool enabled)
{
if (mEffectClient != 0) {
mEffectClient->enableStatusChanged(enabled);
}
}
void AudioFlinger::EffectHandle::dumpToBuffer(char* buffer, size_t size)
{
bool locked = mCblk != NULL && AudioFlinger::dumpTryLock(mCblk->lock);
snprintf(buffer, size, "\t\t\t%5d %5d %3s %3s %5u %5u\n",
(mClient == 0) ? getpid() : mClient->pid(),
mPriority,
mHasControl ? "yes" : "no",
locked ? "yes" : "no",
mCblk ? mCblk->clientIndex : 0,
mCblk ? mCblk->serverIndex : 0
);
if (locked) {
mCblk->lock.unlock();
}
}
#undef LOG_TAG
#define LOG_TAG "AudioFlinger::EffectChain"
AudioFlinger::EffectChain::EffectChain(const wp<ThreadBase>& thread,
audio_session_t sessionId)
: mSessionId(sessionId), mActiveTrackCnt(0), mTrackCnt(0), mTailBufferCount(0),
mVolumeCtrlIdx(-1), mLeftVolume(UINT_MAX), mRightVolume(UINT_MAX),
mNewLeftVolume(UINT_MAX), mNewRightVolume(UINT_MAX),
mEffectCallback(new EffectCallback(wp<EffectChain>(this), thread))
{
mStrategy = AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
sp<ThreadBase> p = thread.promote();
if (p == nullptr) {
return;
}
mMaxTailBuffers = ((kProcessTailDurationMs * p->sampleRate()) / 1000) /
p->frameCount();
}
AudioFlinger::EffectChain::~EffectChain()
{
}
// getEffectFromDesc_l() must be called with ThreadBase::mLock held
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectFromDesc_l(
effect_descriptor_t *descriptor)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
if (memcmp(&mEffects[i]->desc().uuid, &descriptor->uuid, sizeof(effect_uuid_t)) == 0) {
return mEffects[i];
}
}
return 0;
}
// getEffectFromId_l() must be called with ThreadBase::mLock held
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectFromId_l(int id)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
// by convention, return first effect if id provided is 0 (0 is never a valid id)
if (id == 0 || mEffects[i]->id() == id) {
return mEffects[i];
}
}
return 0;
}
// getEffectFromType_l() must be called with ThreadBase::mLock held
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectFromType_l(
const effect_uuid_t *type)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
if (memcmp(&mEffects[i]->desc().type, type, sizeof(effect_uuid_t)) == 0) {
return mEffects[i];
}
}
return 0;
}
std::vector<int> AudioFlinger::EffectChain::getEffectIds()
{
std::vector<int> ids;
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mEffects.size(); i++) {
ids.push_back(mEffects[i]->id());
}
return ids;
}
void AudioFlinger::EffectChain::clearInputBuffer()
{
Mutex::Autolock _l(mLock);
clearInputBuffer_l();
}
// Must be called with EffectChain::mLock locked
void AudioFlinger::EffectChain::clearInputBuffer_l()
{
if (mInBuffer == NULL) {
return;
}
const size_t frameSize =
audio_bytes_per_sample(EFFECT_BUFFER_FORMAT) * mEffectCallback->channelCount();
memset(mInBuffer->audioBuffer()->raw, 0, mEffectCallback->frameCount() * frameSize);
mInBuffer->commit();
}
// Must be called with EffectChain::mLock locked
void AudioFlinger::EffectChain::process_l()
{
// never process effects when:
// - on an OFFLOAD thread
// - no more tracks are on the session and the effect tail has been rendered
bool doProcess = !mEffectCallback->isOffloadOrMmap();
if (!audio_is_global_session(mSessionId)) {
bool tracksOnSession = (trackCnt() != 0);
if (!tracksOnSession && mTailBufferCount == 0) {
doProcess = false;
}
if (activeTrackCnt() == 0) {
// if no track is active and the effect tail has not been rendered,
// the input buffer must be cleared here as the mixer process will not do it
if (tracksOnSession || mTailBufferCount > 0) {
clearInputBuffer_l();
if (mTailBufferCount > 0) {
mTailBufferCount--;
}
}
}
}
size_t size = mEffects.size();
if (doProcess) {
// Only the input and output buffers of the chain can be external,
// and 'update' / 'commit' do nothing for allocated buffers, thus
// it's not needed to consider any other buffers here.
mInBuffer->update();
if (mInBuffer->audioBuffer()->raw != mOutBuffer->audioBuffer()->raw) {
mOutBuffer->update();
}
for (size_t i = 0; i < size; i++) {
mEffects[i]->process();
}
mInBuffer->commit();
if (mInBuffer->audioBuffer()->raw != mOutBuffer->audioBuffer()->raw) {
mOutBuffer->commit();
}
}
bool doResetVolume = false;
for (size_t i = 0; i < size; i++) {
doResetVolume = mEffects[i]->updateState() || doResetVolume;
}
if (doResetVolume) {
resetVolume_l();
}
}
// createEffect_l() must be called with ThreadBase::mLock held
status_t AudioFlinger::EffectChain::createEffect_l(sp<EffectModule>& effect,
effect_descriptor_t *desc,
int id,
audio_session_t sessionId,
bool pinned)
{
Mutex::Autolock _l(mLock);
effect = new EffectModule(mEffectCallback, desc, id, sessionId, pinned, AUDIO_PORT_HANDLE_NONE);
status_t lStatus = effect->status();
if (lStatus == NO_ERROR) {
lStatus = addEffect_ll(effect);
}
if (lStatus != NO_ERROR) {
effect.clear();
}
return lStatus;
}
// addEffect_l() must be called with ThreadBase::mLock held
status_t AudioFlinger::EffectChain::addEffect_l(const sp<EffectModule>& effect)
{
Mutex::Autolock _l(mLock);
return addEffect_ll(effect);
}
// addEffect_l() must be called with ThreadBase::mLock and EffectChain::mLock held
status_t AudioFlinger::EffectChain::addEffect_ll(const sp<EffectModule>& effect)
{
effect_descriptor_t desc = effect->desc();
uint32_t insertPref = desc.flags & EFFECT_FLAG_INSERT_MASK;
effect->setCallback(mEffectCallback);
if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
// Auxiliary effects are inserted at the beginning of mEffects vector as
// they are processed first and accumulated in chain input buffer
mEffects.insertAt(effect, 0);
// the input buffer for auxiliary effect contains mono samples in
// 32 bit format. This is to avoid saturation in AudoMixer
// accumulation stage. Saturation is done in EffectModule::process() before
// calling the process in effect engine
size_t numSamples = mEffectCallback->frameCount();
sp<EffectBufferHalInterface> halBuffer;
#ifdef FLOAT_EFFECT_CHAIN
status_t result = mEffectCallback->allocateHalBuffer(
numSamples * sizeof(float), &halBuffer);
#else
status_t result = mEffectCallback->allocateHalBuffer(
numSamples * sizeof(int32_t), &halBuffer);
#endif
if (result != OK) return result;
effect->setInBuffer(halBuffer);
// auxiliary effects output samples to chain input buffer for further processing
// by insert effects
effect->setOutBuffer(mInBuffer);
} else {
// Insert effects are inserted at the end of mEffects vector as they are processed
// after track and auxiliary effects.
// Insert effect order as a function of indicated preference:
// if EFFECT_FLAG_INSERT_EXCLUSIVE, insert in first position or reject if
// another effect is present
// else if EFFECT_FLAG_INSERT_FIRST, insert in first position or after the
// last effect claiming first position
// else if EFFECT_FLAG_INSERT_LAST, insert in last position or before the
// first effect claiming last position
// else if EFFECT_FLAG_INSERT_ANY insert after first or before last
// Reject insertion if an effect with EFFECT_FLAG_INSERT_EXCLUSIVE is
// already present
size_t size = mEffects.size();
size_t idx_insert = size;
ssize_t idx_insert_first = -1;
ssize_t idx_insert_last = -1;
for (size_t i = 0; i < size; i++) {
effect_descriptor_t d = mEffects[i]->desc();
uint32_t iMode = d.flags & EFFECT_FLAG_TYPE_MASK;
uint32_t iPref = d.flags & EFFECT_FLAG_INSERT_MASK;
if (iMode == EFFECT_FLAG_TYPE_INSERT) {
// check invalid effect chaining combinations
if (insertPref == EFFECT_FLAG_INSERT_EXCLUSIVE ||
iPref == EFFECT_FLAG_INSERT_EXCLUSIVE) {
ALOGW("addEffect_l() could not insert effect %s: exclusive conflict with %s",
desc.name, d.name);
return INVALID_OPERATION;
}
// remember position of first insert effect and by default
// select this as insert position for new effect
if (idx_insert == size) {
idx_insert = i;
}
// remember position of last insert effect claiming
// first position
if (iPref == EFFECT_FLAG_INSERT_FIRST) {
idx_insert_first = i;
}
// remember position of first insert effect claiming
// last position
if (iPref == EFFECT_FLAG_INSERT_LAST &&
idx_insert_last == -1) {
idx_insert_last = i;
}
}
}
// modify idx_insert from first position if needed
if (insertPref == EFFECT_FLAG_INSERT_LAST) {
if (idx_insert_last != -1) {
idx_insert = idx_insert_last;
} else {
idx_insert = size;
}
} else {
if (idx_insert_first != -1) {
idx_insert = idx_insert_first + 1;
}
}
// always read samples from chain input buffer
effect->setInBuffer(mInBuffer);
// if last effect in the chain, output samples to chain
// output buffer, otherwise to chain input buffer
if (idx_insert == size) {
if (idx_insert != 0) {
mEffects[idx_insert-1]->setOutBuffer(mInBuffer);
mEffects[idx_insert-1]->configure();
}
effect->setOutBuffer(mOutBuffer);
} else {
effect->setOutBuffer(mInBuffer);
}
mEffects.insertAt(effect, idx_insert);
ALOGV("addEffect_l() effect %p, added in chain %p at rank %zu", effect.get(), this,
idx_insert);
}
effect->configure();
return NO_ERROR;
}
// removeEffect_l() must be called with ThreadBase::mLock held
size_t AudioFlinger::EffectChain::removeEffect_l(const sp<EffectModule>& effect,
bool release)
{
Mutex::Autolock _l(mLock);
size_t size = mEffects.size();
uint32_t type = effect->desc().flags & EFFECT_FLAG_TYPE_MASK;
for (size_t i = 0; i < size; i++) {
if (effect == mEffects[i]) {
// calling stop here will remove pre-processing effect from the audio HAL.
// This is safe as we hold the EffectChain mutex which guarantees that we are not in
// the middle of a read from audio HAL
if (mEffects[i]->state() == EffectModule::ACTIVE ||
mEffects[i]->state() == EffectModule::STOPPING) {
mEffects[i]->stop();
}
if (release) {
mEffects[i]->release_l();
}
if (type != EFFECT_FLAG_TYPE_AUXILIARY) {
if (i == size - 1 && i != 0) {
mEffects[i - 1]->setOutBuffer(mOutBuffer);
mEffects[i - 1]->configure();
}
}
mEffects.removeAt(i);
ALOGV("removeEffect_l() effect %p, removed from chain %p at rank %zu", effect.get(),
this, i);
break;
}
}
return mEffects.size();
}
// setDevices_l() must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setDevices_l(const AudioDeviceTypeAddrVector &devices)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setDevices(devices);
}
}
// setInputDevice_l() must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setInputDevice_l(const AudioDeviceTypeAddr &device)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setInputDevice(device);
}
}
// setMode_l() must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setMode_l(audio_mode_t mode)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setMode(mode);
}
}
// setAudioSource_l() must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setAudioSource_l(audio_source_t source)
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
mEffects[i]->setAudioSource(source);
}
}
bool AudioFlinger::EffectChain::hasVolumeControlEnabled_l() const {
for (const auto &effect : mEffects) {
if (effect->isVolumeControlEnabled()) return true;
}
return false;
}
// setVolume_l() must be called with ThreadBase::mLock or EffectChain::mLock held
bool AudioFlinger::EffectChain::setVolume_l(uint32_t *left, uint32_t *right, bool force)
{
uint32_t newLeft = *left;
uint32_t newRight = *right;
bool hasControl = false;
int ctrlIdx = -1;
size_t size = mEffects.size();
// first update volume controller
for (size_t i = size; i > 0; i--) {
if (mEffects[i - 1]->isVolumeControlEnabled()) {
ctrlIdx = i - 1;
hasControl = true;
break;
}
}
if (!force && ctrlIdx == mVolumeCtrlIdx &&
*left == mLeftVolume && *right == mRightVolume) {
if (hasControl) {
*left = mNewLeftVolume;
*right = mNewRightVolume;
}
return hasControl;
}
mVolumeCtrlIdx = ctrlIdx;
mLeftVolume = newLeft;
mRightVolume = newRight;
// second get volume update from volume controller
if (ctrlIdx >= 0) {
mEffects[ctrlIdx]->setVolume(&newLeft, &newRight, true);
mNewLeftVolume = newLeft;
mNewRightVolume = newRight;
}
// then indicate volume to all other effects in chain.
// Pass altered volume to effects before volume controller
// and requested volume to effects after controller or with volume monitor flag
uint32_t lVol = newLeft;
uint32_t rVol = newRight;
for (size_t i = 0; i < size; i++) {
if ((int)i == ctrlIdx) {
continue;
}
// this also works for ctrlIdx == -1 when there is no volume controller
if ((int)i > ctrlIdx) {
lVol = *left;
rVol = *right;
}
// Pass requested volume directly if this is volume monitor module
if (mEffects[i]->isVolumeMonitor()) {
mEffects[i]->setVolume(left, right, false);
} else {
mEffects[i]->setVolume(&lVol, &rVol, false);
}
}
*left = newLeft;
*right = newRight;
setVolumeForOutput_l(*left, *right);
return hasControl;
}
// resetVolume_l() must be called with ThreadBase::mLock or EffectChain::mLock held
void AudioFlinger::EffectChain::resetVolume_l()
{
if ((mLeftVolume != UINT_MAX) && (mRightVolume != UINT_MAX)) {
uint32_t left = mLeftVolume;
uint32_t right = mRightVolume;
(void)setVolume_l(&left, &right, true);
}
}
// containsHapticGeneratingEffect_l must be called with ThreadBase::mLock or EffectChain::mLock held
bool AudioFlinger::EffectChain::containsHapticGeneratingEffect_l()
{
for (size_t i = 0; i < mEffects.size(); ++i) {
if (mEffects[i]->isHapticGenerator()) {
return true;
}
}
return false;
}
void AudioFlinger::EffectChain::setHapticIntensity_l(int id, int intensity)
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mEffects.size(); ++i) {
mEffects[i]->setHapticIntensity(id, intensity);
}
}
void AudioFlinger::EffectChain::syncHalEffectsState()
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mEffects.size(); i++) {
if (mEffects[i]->state() == EffectModule::ACTIVE ||
mEffects[i]->state() == EffectModule::STOPPING) {
mEffects[i]->addEffectToHal_l();
}
}
}
void AudioFlinger::EffectChain::dump(int fd, const Vector<String16>& args)
{
String8 result;
const size_t numEffects = mEffects.size();
result.appendFormat(" %zu effects for session %d\n", numEffects, mSessionId);
if (numEffects) {
bool locked = AudioFlinger::dumpTryLock(mLock);
// failed to lock - AudioFlinger is probably deadlocked
if (!locked) {
result.append("\tCould not lock mutex:\n");
}
const std::string inBufferStr = dumpInOutBuffer(true /* isInput */, mInBuffer);
const std::string outBufferStr = dumpInOutBuffer(false /* isInput */, mOutBuffer);
result.appendFormat("\t%-*s%-*s Active tracks:\n",
(int)inBufferStr.size(), "In buffer ",
(int)outBufferStr.size(), "Out buffer ");
result.appendFormat("\t%s %s %d\n",
inBufferStr.c_str(), outBufferStr.c_str(), mActiveTrackCnt);
write(fd, result.string(), result.size());
for (size_t i = 0; i < numEffects; ++i) {
sp<EffectModule> effect = mEffects[i];
if (effect != 0) {
effect->dump(fd, args);
}
}
if (locked) {
mLock.unlock();
}
} else {
write(fd, result.string(), result.size());
}
}
// must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setEffectSuspended_l(
const effect_uuid_t *type, bool suspend)
{
sp<SuspendedEffectDesc> desc;
// use effect type UUID timelow as key as there is no real risk of identical
// timeLow fields among effect type UUIDs.
ssize_t index = mSuspendedEffects.indexOfKey(type->timeLow);
if (suspend) {
if (index >= 0) {
desc = mSuspendedEffects.valueAt(index);
} else {
desc = new SuspendedEffectDesc();
desc->mType = *type;
mSuspendedEffects.add(type->timeLow, desc);
ALOGV("setEffectSuspended_l() add entry for %08x", type->timeLow);
}
if (desc->mRefCount++ == 0) {
sp<EffectModule> effect = getEffectIfEnabled(type);
if (effect != 0) {
desc->mEffect = effect;
effect->setSuspended(true);
effect->setEnabled(false, false /*fromHandle*/);
}
}
} else {
if (index < 0) {
return;
}
desc = mSuspendedEffects.valueAt(index);
if (desc->mRefCount <= 0) {
ALOGW("setEffectSuspended_l() restore refcount should not be 0 %d", desc->mRefCount);
desc->mRefCount = 0;
return;
}
if (--desc->mRefCount == 0) {
ALOGV("setEffectSuspended_l() remove entry for %08x", mSuspendedEffects.keyAt(index));
if (desc->mEffect != 0) {
sp<EffectModule> effect = desc->mEffect.promote();
if (effect != 0) {
effect->setSuspended(false);
effect->lock();
EffectHandle *handle = effect->controlHandle_l();
if (handle != NULL && !handle->disconnected()) {
effect->setEnabled_l(handle->enabled());
}
effect->unlock();
}
desc->mEffect.clear();
}
mSuspendedEffects.removeItemsAt(index);
}
}
}
// must be called with ThreadBase::mLock held
void AudioFlinger::EffectChain::setEffectSuspendedAll_l(bool suspend)
{
sp<SuspendedEffectDesc> desc;
ssize_t index = mSuspendedEffects.indexOfKey((int)kKeyForSuspendAll);
if (suspend) {
if (index >= 0) {
desc = mSuspendedEffects.valueAt(index);
} else {
desc = new SuspendedEffectDesc();
mSuspendedEffects.add((int)kKeyForSuspendAll, desc);
ALOGV("setEffectSuspendedAll_l() add entry for 0");
}
if (desc->mRefCount++ == 0) {
Vector< sp<EffectModule> > effects;
getSuspendEligibleEffects(effects);
for (size_t i = 0; i < effects.size(); i++) {
setEffectSuspended_l(&effects[i]->desc().type, true);
}
}
} else {
if (index < 0) {
return;
}
desc = mSuspendedEffects.valueAt(index);
if (desc->mRefCount <= 0) {
ALOGW("setEffectSuspendedAll_l() restore refcount should not be 0 %d", desc->mRefCount);
desc->mRefCount = 1;
}
if (--desc->mRefCount == 0) {
Vector<const effect_uuid_t *> types;
for (size_t i = 0; i < mSuspendedEffects.size(); i++) {
if (mSuspendedEffects.keyAt(i) == (int)kKeyForSuspendAll) {
continue;
}
types.add(&mSuspendedEffects.valueAt(i)->mType);
}
for (size_t i = 0; i < types.size(); i++) {
setEffectSuspended_l(types[i], false);
}
ALOGV("setEffectSuspendedAll_l() remove entry for %08x",
mSuspendedEffects.keyAt(index));
mSuspendedEffects.removeItem((int)kKeyForSuspendAll);
}
}
}
// The volume effect is used for automated tests only
#ifndef OPENSL_ES_H_
static const effect_uuid_t SL_IID_VOLUME_ = { 0x09e8ede0, 0xddde, 0x11db, 0xb4f6,
{ 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b } };
const effect_uuid_t * const SL_IID_VOLUME = &SL_IID_VOLUME_;
#endif //OPENSL_ES_H_
/* static */
bool AudioFlinger::EffectChain::isEffectEligibleForBtNrecSuspend(const effect_uuid_t *type)
{
// Only NS and AEC are suspended when BtNRec is off
if ((memcmp(type, FX_IID_AEC, sizeof(effect_uuid_t)) == 0) ||
(memcmp(type, FX_IID_NS, sizeof(effect_uuid_t)) == 0)) {
return true;
}
return false;
}
bool AudioFlinger::EffectChain::isEffectEligibleForSuspend(const effect_descriptor_t& desc)
{
// auxiliary effects and visualizer are never suspended on output mix
if ((mSessionId == AUDIO_SESSION_OUTPUT_MIX) &&
(((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) ||
(memcmp(&desc.type, SL_IID_VISUALIZATION, sizeof(effect_uuid_t)) == 0) ||
(memcmp(&desc.type, SL_IID_VOLUME, sizeof(effect_uuid_t)) == 0) ||
(memcmp(&desc.type, SL_IID_DYNAMICSPROCESSING, sizeof(effect_uuid_t)) == 0))) {
return false;
}
return true;
}
void AudioFlinger::EffectChain::getSuspendEligibleEffects(
Vector< sp<AudioFlinger::EffectModule> > &effects)
{
effects.clear();
for (size_t i = 0; i < mEffects.size(); i++) {
if (isEffectEligibleForSuspend(mEffects[i]->desc())) {
effects.add(mEffects[i]);
}
}
}
sp<AudioFlinger::EffectModule> AudioFlinger::EffectChain::getEffectIfEnabled(
const effect_uuid_t *type)
{
sp<EffectModule> effect = getEffectFromType_l(type);
return effect != 0 && effect->isEnabled() ? effect : 0;
}
void AudioFlinger::EffectChain::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
bool enabled)
{
ssize_t index = mSuspendedEffects.indexOfKey(effect->desc().type.timeLow);
if (enabled) {
if (index < 0) {
// if the effect is not suspend check if all effects are suspended
index = mSuspendedEffects.indexOfKey((int)kKeyForSuspendAll);
if (index < 0) {
return;
}
if (!isEffectEligibleForSuspend(effect->desc())) {
return;
}
setEffectSuspended_l(&effect->desc().type, enabled);
index = mSuspendedEffects.indexOfKey(effect->desc().type.timeLow);
if (index < 0) {
ALOGW("checkSuspendOnEffectEnabled() Fx should be suspended here!");
return;
}
}
ALOGV("checkSuspendOnEffectEnabled() enable suspending fx %08x",
effect->desc().type.timeLow);
sp<SuspendedEffectDesc> desc = mSuspendedEffects.valueAt(index);
// if effect is requested to suspended but was not yet enabled, suspend it now.
if (desc->mEffect == 0) {
desc->mEffect = effect;
effect->setEnabled(false, false /*fromHandle*/);
effect->setSuspended(true);
}
} else {
if (index < 0) {
return;
}
ALOGV("checkSuspendOnEffectEnabled() disable restoring fx %08x",
effect->desc().type.timeLow);
sp<SuspendedEffectDesc> desc = mSuspendedEffects.valueAt(index);
desc->mEffect.clear();
effect->setSuspended(false);
}
}
bool AudioFlinger::EffectChain::isNonOffloadableEnabled()
{
Mutex::Autolock _l(mLock);
return isNonOffloadableEnabled_l();
}
bool AudioFlinger::EffectChain::isNonOffloadableEnabled_l()
{
size_t size = mEffects.size();
for (size_t i = 0; i < size; i++) {
if (mEffects[i]->isEnabled() && !mEffects[i]->isOffloadable()) {
return true;
}
}
return false;
}
void AudioFlinger::EffectChain::setThread(const sp<ThreadBase>& thread)
{
Mutex::Autolock _l(mLock);
mEffectCallback->setThread(thread);
}
void AudioFlinger::EffectChain::checkOutputFlagCompatibility(audio_output_flags_t *flags) const
{
if ((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0 && !isRawCompatible()) {
*flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
}
if ((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0 && !isFastCompatible()) {
*flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
}
}
void AudioFlinger::EffectChain::checkInputFlagCompatibility(audio_input_flags_t *flags) const
{
if ((*flags & AUDIO_INPUT_FLAG_RAW) != 0 && !isRawCompatible()) {
*flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_RAW);
}
if ((*flags & AUDIO_INPUT_FLAG_FAST) != 0 && !isFastCompatible()) {
*flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
}
}
bool AudioFlinger::EffectChain::isRawCompatible() const
{
Mutex::Autolock _l(mLock);
for (const auto &effect : mEffects) {
if (effect->isProcessImplemented()) {
return false;
}
}
// Allow effects without processing.
return true;
}
bool AudioFlinger::EffectChain::isFastCompatible() const
{
Mutex::Autolock _l(mLock);
for (const auto &effect : mEffects) {
if (effect->isProcessImplemented()
&& effect->isImplementationSoftware()) {
return false;
}
}
// Allow effects without processing or hw accelerated effects.
return true;
}
// isCompatibleWithThread_l() must be called with thread->mLock held
bool AudioFlinger::EffectChain::isCompatibleWithThread_l(const sp<ThreadBase>& thread) const
{
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mEffects.size(); i++) {
if (thread->checkEffectCompatibility_l(&(mEffects[i]->desc()), mSessionId) != NO_ERROR) {
return false;
}
}
return true;
}
// EffectCallbackInterface implementation
status_t AudioFlinger::EffectChain::EffectCallback::createEffectHal(
const effect_uuid_t *pEffectUuid, int32_t sessionId, int32_t deviceId,
sp<EffectHalInterface> *effect) {
status_t status = NO_INIT;
sp<EffectsFactoryHalInterface> effectsFactory = mAudioFlinger.getEffectsFactory();
if (effectsFactory != 0) {
status = effectsFactory->createEffect(pEffectUuid, sessionId, io(), deviceId, effect);
}
return status;
}
bool AudioFlinger::EffectChain::