blob: 300003890377d1224fa6a497d49cbb1df2f05d92 [file] [log] [blame]
// libjingle
// Copyright 2010 Google Inc.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Implementation file of class VideoCapturer.
#include "talk/media/base/videocapturer.h"
#include <algorithm>
#if !defined(DISABLE_YUV)
#include "libyuv/scale_argb.h"
#endif
#include "talk/media/base/videoframefactory.h"
#include "talk/media/base/videoprocessor.h"
#include "webrtc/base/common.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/systeminfo.h"
#if defined(HAVE_WEBRTC_VIDEO)
#include "talk/media/webrtc/webrtcvideoframe.h"
#include "talk/media/webrtc/webrtcvideoframefactory.h"
#endif // HAVE_WEBRTC_VIDEO
namespace cricket {
namespace {
// TODO(thorcarpenter): This is a BIG hack to flush the system with black
// frames. Frontends should coordinate to update the video state of a muted
// user. When all frontends to this consider removing the black frame business.
const int kNumBlackFramesOnMute = 30;
// MessageHandler constants.
enum {
MSG_DO_PAUSE = 0,
MSG_DO_UNPAUSE,
MSG_STATE_CHANGE
};
static const int64 kMaxDistance = ~(static_cast<int64>(1) << 63);
#ifdef LINUX
static const int kYU12Penalty = 16; // Needs to be higher than MJPG index.
#endif
static const int kDefaultScreencastFps = 5;
typedef rtc::TypedMessageData<CaptureState> StateChangeParams;
// Limit stats data collections to ~20 seconds of 30fps data before dropping
// old data in case stats aren't reset for long periods of time.
static const size_t kMaxAccumulatorSize = 600;
} // namespace
/////////////////////////////////////////////////////////////////////
// Implementation of struct CapturedFrame
/////////////////////////////////////////////////////////////////////
CapturedFrame::CapturedFrame()
: width(0),
height(0),
fourcc(0),
pixel_width(0),
pixel_height(0),
elapsed_time(0),
time_stamp(0),
data_size(0),
rotation(0),
data(NULL) {}
// TODO(fbarchard): Remove this function once lmimediaengine stops using it.
bool CapturedFrame::GetDataSize(uint32* size) const {
if (!size || data_size == CapturedFrame::kUnknownDataSize) {
return false;
}
*size = data_size;
return true;
}
/////////////////////////////////////////////////////////////////////
// Implementation of class VideoCapturer
/////////////////////////////////////////////////////////////////////
VideoCapturer::VideoCapturer()
: thread_(rtc::Thread::Current()),
adapt_frame_drops_data_(kMaxAccumulatorSize),
effect_frame_drops_data_(kMaxAccumulatorSize),
frame_time_data_(kMaxAccumulatorSize) {
Construct();
}
VideoCapturer::VideoCapturer(rtc::Thread* thread)
: thread_(thread),
adapt_frame_drops_data_(kMaxAccumulatorSize),
effect_frame_drops_data_(kMaxAccumulatorSize),
frame_time_data_(kMaxAccumulatorSize) {
Construct();
}
void VideoCapturer::Construct() {
ClearAspectRatio();
enable_camera_list_ = false;
square_pixel_aspect_ratio_ = false;
capture_state_ = CS_STOPPED;
SignalFrameCaptured.connect(this, &VideoCapturer::OnFrameCaptured);
scaled_width_ = 0;
scaled_height_ = 0;
screencast_max_pixels_ = 0;
muted_ = false;
black_frame_count_down_ = kNumBlackFramesOnMute;
enable_video_adapter_ = true;
adapt_frame_drops_ = 0;
effect_frame_drops_ = 0;
previous_frame_time_ = 0.0;
#ifdef HAVE_WEBRTC_VIDEO
// There are lots of video capturers out there that don't call
// set_frame_factory. We can either go change all of them, or we
// can set this default.
// TODO(pthatcher): Remove this hack and require the frame factory
// to be passed in the constructor.
set_frame_factory(new WebRtcVideoFrameFactory());
#endif
}
const std::vector<VideoFormat>* VideoCapturer::GetSupportedFormats() const {
return &filtered_supported_formats_;
}
bool VideoCapturer::StartCapturing(const VideoFormat& capture_format) {
previous_frame_time_ = frame_length_time_reporter_.TimerNow();
CaptureState result = Start(capture_format);
const bool success = (result == CS_RUNNING) || (result == CS_STARTING);
if (!success) {
return false;
}
if (result == CS_RUNNING) {
SetCaptureState(result);
}
return true;
}
void VideoCapturer::UpdateAspectRatio(int ratio_w, int ratio_h) {
if (ratio_w == 0 || ratio_h == 0) {
LOG(LS_WARNING) << "UpdateAspectRatio ignored invalid ratio: "
<< ratio_w << "x" << ratio_h;
return;
}
ratio_w_ = ratio_w;
ratio_h_ = ratio_h;
}
void VideoCapturer::ClearAspectRatio() {
ratio_w_ = 0;
ratio_h_ = 0;
}
// Override this to have more control of how your device is started/stopped.
bool VideoCapturer::Pause(bool pause) {
if (pause) {
if (capture_state() == CS_PAUSED) {
return true;
}
bool is_running = capture_state() == CS_STARTING ||
capture_state() == CS_RUNNING;
if (!is_running) {
LOG(LS_ERROR) << "Cannot pause a stopped camera.";
return false;
}
LOG(LS_INFO) << "Pausing a camera.";
rtc::scoped_ptr<VideoFormat> capture_format_when_paused(
capture_format_ ? new VideoFormat(*capture_format_) : NULL);
Stop();
SetCaptureState(CS_PAUSED);
// If you override this function be sure to restore the capture format
// after calling Stop().
SetCaptureFormat(capture_format_when_paused.get());
} else { // Unpause.
if (capture_state() != CS_PAUSED) {
LOG(LS_WARNING) << "Cannot unpause a camera that hasn't been paused.";
return false;
}
if (!capture_format_) {
LOG(LS_ERROR) << "Missing capture_format_, cannot unpause a camera.";
return false;
}
if (muted_) {
LOG(LS_WARNING) << "Camera cannot be unpaused while muted.";
return false;
}
LOG(LS_INFO) << "Unpausing a camera.";
if (!Start(*capture_format_)) {
LOG(LS_ERROR) << "Camera failed to start when unpausing.";
return false;
}
}
return true;
}
bool VideoCapturer::Restart(const VideoFormat& capture_format) {
if (!IsRunning()) {
return StartCapturing(capture_format);
}
if (GetCaptureFormat() != NULL && *GetCaptureFormat() == capture_format) {
// The reqested format is the same; nothing to do.
return true;
}
Stop();
return StartCapturing(capture_format);
}
bool VideoCapturer::MuteToBlackThenPause(bool muted) {
if (muted == IsMuted()) {
return true;
}
LOG(LS_INFO) << (muted ? "Muting" : "Unmuting") << " this video capturer.";
muted_ = muted; // Do this before calling Pause().
if (muted) {
// Reset black frame count down.
black_frame_count_down_ = kNumBlackFramesOnMute;
// Following frames will be overritten with black, then the camera will be
// paused.
return true;
}
// Start the camera.
thread_->Clear(this, MSG_DO_PAUSE);
return Pause(false);
}
void VideoCapturer::SetSupportedFormats(
const std::vector<VideoFormat>& formats) {
supported_formats_ = formats;
UpdateFilteredSupportedFormats();
}
bool VideoCapturer::GetBestCaptureFormat(const VideoFormat& format,
VideoFormat* best_format) {
// TODO(fbarchard): Directly support max_format.
UpdateFilteredSupportedFormats();
const std::vector<VideoFormat>* supported_formats = GetSupportedFormats();
if (supported_formats->empty()) {
return false;
}
LOG(LS_INFO) << " Capture Requested " << format.ToString();
int64 best_distance = kMaxDistance;
std::vector<VideoFormat>::const_iterator best = supported_formats->end();
std::vector<VideoFormat>::const_iterator i;
for (i = supported_formats->begin(); i != supported_formats->end(); ++i) {
int64 distance = GetFormatDistance(format, *i);
// TODO(fbarchard): Reduce to LS_VERBOSE if/when camera capture is
// relatively bug free.
LOG(LS_INFO) << " Supported " << i->ToString() << " distance " << distance;
if (distance < best_distance) {
best_distance = distance;
best = i;
}
}
if (supported_formats->end() == best) {
LOG(LS_ERROR) << " No acceptable camera format found";
return false;
}
if (best_format) {
best_format->width = best->width;
best_format->height = best->height;
best_format->fourcc = best->fourcc;
best_format->interval = best->interval;
LOG(LS_INFO) << " Best " << best_format->ToString() << " Interval "
<< best_format->interval << " distance " << best_distance;
}
return true;
}
void VideoCapturer::AddVideoProcessor(VideoProcessor* video_processor) {
rtc::CritScope cs(&crit_);
ASSERT(std::find(video_processors_.begin(), video_processors_.end(),
video_processor) == video_processors_.end());
video_processors_.push_back(video_processor);
}
bool VideoCapturer::RemoveVideoProcessor(VideoProcessor* video_processor) {
rtc::CritScope cs(&crit_);
VideoProcessors::iterator found = std::find(
video_processors_.begin(), video_processors_.end(), video_processor);
if (found == video_processors_.end()) {
return false;
}
video_processors_.erase(found);
return true;
}
void VideoCapturer::ConstrainSupportedFormats(const VideoFormat& max_format) {
max_format_.reset(new VideoFormat(max_format));
LOG(LS_VERBOSE) << " ConstrainSupportedFormats " << max_format.ToString();
UpdateFilteredSupportedFormats();
}
std::string VideoCapturer::ToString(const CapturedFrame* captured_frame) const {
std::string fourcc_name = GetFourccName(captured_frame->fourcc) + " ";
for (std::string::const_iterator i = fourcc_name.begin();
i < fourcc_name.end(); ++i) {
// Test character is printable; Avoid isprint() which asserts on negatives.
if (*i < 32 || *i >= 127) {
fourcc_name = "";
break;
}
}
std::ostringstream ss;
ss << fourcc_name << captured_frame->width << "x" << captured_frame->height
<< "x" << VideoFormat::IntervalToFpsFloat(captured_frame->elapsed_time);
return ss.str();
}
void VideoCapturer::GetStats(VariableInfo<int>* adapt_drops_stats,
VariableInfo<int>* effect_drops_stats,
VariableInfo<double>* frame_time_stats,
VideoFormat* last_captured_frame_format) {
rtc::CritScope cs(&frame_stats_crit_);
GetVariableSnapshot(adapt_frame_drops_data_, adapt_drops_stats);
GetVariableSnapshot(effect_frame_drops_data_, effect_drops_stats);
GetVariableSnapshot(frame_time_data_, frame_time_stats);
*last_captured_frame_format = last_captured_frame_format_;
adapt_frame_drops_data_.Reset();
effect_frame_drops_data_.Reset();
frame_time_data_.Reset();
}
void VideoCapturer::OnFrameCaptured(VideoCapturer*,
const CapturedFrame* captured_frame) {
if (muted_) {
if (black_frame_count_down_ == 0) {
thread_->Post(this, MSG_DO_PAUSE, NULL);
} else {
--black_frame_count_down_;
}
}
if (SignalVideoFrame.is_empty()) {
return;
}
#if !defined(DISABLE_YUV)
if (IsScreencast()) {
int scaled_width, scaled_height;
if (screencast_max_pixels_ > 0) {
ComputeScaleMaxPixels(captured_frame->width, captured_frame->height,
screencast_max_pixels_, &scaled_width, &scaled_height);
} else {
int desired_screencast_fps = capture_format_.get() ?
VideoFormat::IntervalToFps(capture_format_->interval) :
kDefaultScreencastFps;
ComputeScale(captured_frame->width, captured_frame->height,
desired_screencast_fps, &scaled_width, &scaled_height);
}
if (FOURCC_ARGB == captured_frame->fourcc &&
(scaled_width != captured_frame->width ||
scaled_height != captured_frame->height)) {
if (scaled_width != scaled_width_ || scaled_height != scaled_height_) {
LOG(LS_INFO) << "Scaling Screencast from "
<< captured_frame->width << "x"
<< captured_frame->height << " to "
<< scaled_width << "x" << scaled_height;
scaled_width_ = scaled_width;
scaled_height_ = scaled_height;
}
CapturedFrame* modified_frame =
const_cast<CapturedFrame*>(captured_frame);
// Compute new width such that width * height is less than maximum but
// maintains original captured frame aspect ratio.
// Round down width to multiple of 4 so odd width won't round up beyond
// maximum, and so chroma channel is even width to simplify spatial
// resampling.
libyuv::ARGBScale(reinterpret_cast<const uint8*>(captured_frame->data),
captured_frame->width * 4, captured_frame->width,
captured_frame->height,
reinterpret_cast<uint8*>(modified_frame->data),
scaled_width * 4, scaled_width, scaled_height,
libyuv::kFilterBilinear);
modified_frame->width = scaled_width;
modified_frame->height = scaled_height;
modified_frame->data_size = scaled_width * 4 * scaled_height;
}
}
const int kYuy2Bpp = 2;
const int kArgbBpp = 4;
// TODO(fbarchard): Make a helper function to adjust pixels to square.
// TODO(fbarchard): Hook up experiment to scaling.
// TODO(fbarchard): Avoid scale and convert if muted.
// Temporary buffer is scoped here so it will persist until i420_frame.Init()
// makes a copy of the frame, converting to I420.
rtc::scoped_ptr<uint8[]> temp_buffer;
// YUY2 can be scaled vertically using an ARGB scaler. Aspect ratio is only
// a problem on OSX. OSX always converts webcams to YUY2 or UYVY.
bool can_scale =
FOURCC_YUY2 == CanonicalFourCC(captured_frame->fourcc) ||
FOURCC_UYVY == CanonicalFourCC(captured_frame->fourcc);
// If pixels are not square, optionally use vertical scaling to make them
// square. Square pixels simplify the rest of the pipeline, including
// effects and rendering.
if (can_scale && square_pixel_aspect_ratio_ &&
captured_frame->pixel_width != captured_frame->pixel_height) {
int scaled_width, scaled_height;
// modified_frame points to the captured_frame but with const casted away
// so it can be modified.
CapturedFrame* modified_frame = const_cast<CapturedFrame*>(captured_frame);
// Compute the frame size that makes pixels square pixel aspect ratio.
ComputeScaleToSquarePixels(captured_frame->width, captured_frame->height,
captured_frame->pixel_width,
captured_frame->pixel_height,
&scaled_width, &scaled_height);
if (scaled_width != scaled_width_ || scaled_height != scaled_height_) {
LOG(LS_INFO) << "Scaling WebCam from "
<< captured_frame->width << "x"
<< captured_frame->height << " to "
<< scaled_width << "x" << scaled_height
<< " for PAR "
<< captured_frame->pixel_width << "x"
<< captured_frame->pixel_height;
scaled_width_ = scaled_width;
scaled_height_ = scaled_height;
}
const int modified_frame_size = scaled_width * scaled_height * kYuy2Bpp;
uint8* temp_buffer_data;
// Pixels are wide and short; Increasing height. Requires temporary buffer.
if (scaled_height > captured_frame->height) {
temp_buffer.reset(new uint8[modified_frame_size]);
temp_buffer_data = temp_buffer.get();
} else {
// Pixels are narrow and tall; Decreasing height. Scale will be done
// in place.
temp_buffer_data = reinterpret_cast<uint8*>(captured_frame->data);
}
// Use ARGBScaler to vertically scale the YUY2 image, adjusting for 16 bpp.
libyuv::ARGBScale(reinterpret_cast<const uint8*>(captured_frame->data),
captured_frame->width * kYuy2Bpp, // Stride for YUY2.
captured_frame->width * kYuy2Bpp / kArgbBpp, // Width.
abs(captured_frame->height), // Height.
temp_buffer_data,
scaled_width * kYuy2Bpp, // Stride for YUY2.
scaled_width * kYuy2Bpp / kArgbBpp, // Width.
abs(scaled_height), // New height.
libyuv::kFilterBilinear);
modified_frame->width = scaled_width;
modified_frame->height = scaled_height;
modified_frame->pixel_width = 1;
modified_frame->pixel_height = 1;
modified_frame->data_size = modified_frame_size;
modified_frame->data = temp_buffer_data;
}
#endif // !DISABLE_YUV
// Size to crop captured frame to. This adjusts the captured frames
// aspect ratio to match the final view aspect ratio, considering pixel
// aspect ratio and rotation. The final size may be scaled down by video
// adapter to better match ratio_w_ x ratio_h_.
// Note that abs() of frame height is passed in, because source may be
// inverted, but output will be positive.
int cropped_width = captured_frame->width;
int cropped_height = captured_frame->height;
// TODO(fbarchard): Improve logic to pad or crop.
// MJPG can crop vertically, but not horizontally. This logic disables crop.
// Alternatively we could pad the image with black, or implement a 2 step
// crop.
bool can_crop = true;
if (captured_frame->fourcc == FOURCC_MJPG) {
float cam_aspect = static_cast<float>(captured_frame->width) /
static_cast<float>(captured_frame->height);
float view_aspect = static_cast<float>(ratio_w_) /
static_cast<float>(ratio_h_);
can_crop = cam_aspect <= view_aspect;
}
if (can_crop && !IsScreencast()) {
// TODO(ronghuawu): The capturer should always produce the native
// resolution and the cropping should be done in downstream code.
ComputeCrop(ratio_w_, ratio_h_, captured_frame->width,
abs(captured_frame->height), captured_frame->pixel_width,
captured_frame->pixel_height, captured_frame->rotation,
&cropped_width, &cropped_height);
}
int adapted_width = cropped_width;
int adapted_height = cropped_height;
if (enable_video_adapter_ && !IsScreencast()) {
const VideoFormat adapted_format =
video_adapter_.AdaptFrameResolution(cropped_width, cropped_height);
if (adapted_format.IsSize0x0()) {
// VideoAdapter dropped the frame.
++adapt_frame_drops_;
return;
}
adapted_width = adapted_format.width;
adapted_height = adapted_format.height;
}
if (!frame_factory_) {
LOG(LS_ERROR) << "No video frame factory.";
return;
}
rtc::scoped_ptr<VideoFrame> adapted_frame(
frame_factory_->CreateAliasedFrame(captured_frame,
cropped_width, cropped_height,
adapted_width, adapted_height));
if (!adapted_frame) {
// TODO(fbarchard): LOG more information about captured frame attributes.
LOG(LS_ERROR) << "Couldn't convert to I420! "
<< "From " << ToString(captured_frame) << " To "
<< cropped_width << " x " << cropped_height;
return;
}
if (!muted_ && !ApplyProcessors(adapted_frame.get())) {
// Processor dropped the frame.
++effect_frame_drops_;
return;
}
if (muted_ || (enable_video_adapter_ && video_adapter_.IsBlackOutput())) {
// TODO(pthatcher): Use frame_factory_->CreateBlackFrame() instead.
adapted_frame->SetToBlack();
}
SignalVideoFrame(this, adapted_frame.get());
UpdateStats(captured_frame);
}
void VideoCapturer::SetCaptureState(CaptureState state) {
if (state == capture_state_) {
// Don't trigger a state changed callback if the state hasn't changed.
return;
}
StateChangeParams* state_params = new StateChangeParams(state);
capture_state_ = state;
thread_->Post(this, MSG_STATE_CHANGE, state_params);
}
void VideoCapturer::OnMessage(rtc::Message* message) {
switch (message->message_id) {
case MSG_STATE_CHANGE: {
rtc::scoped_ptr<StateChangeParams> p(
static_cast<StateChangeParams*>(message->pdata));
SignalStateChange(this, p->data());
break;
}
case MSG_DO_PAUSE: {
Pause(true);
break;
}
case MSG_DO_UNPAUSE: {
Pause(false);
break;
}
default: {
ASSERT(false);
}
}
}
// Get the distance between the supported and desired formats.
// Prioritization is done according to this algorithm:
// 1) Width closeness. If not same, we prefer wider.
// 2) Height closeness. If not same, we prefer higher.
// 3) Framerate closeness. If not same, we prefer faster.
// 4) Compression. If desired format has a specific fourcc, we need exact match;
// otherwise, we use preference.
int64 VideoCapturer::GetFormatDistance(const VideoFormat& desired,
const VideoFormat& supported) {
int64 distance = kMaxDistance;
// Check fourcc.
uint32 supported_fourcc = CanonicalFourCC(supported.fourcc);
int64 delta_fourcc = kMaxDistance;
if (FOURCC_ANY == desired.fourcc) {
// Any fourcc is OK for the desired. Use preference to find best fourcc.
std::vector<uint32> preferred_fourccs;
if (!GetPreferredFourccs(&preferred_fourccs)) {
return distance;
}
for (size_t i = 0; i < preferred_fourccs.size(); ++i) {
if (supported_fourcc == CanonicalFourCC(preferred_fourccs[i])) {
delta_fourcc = i;
#ifdef LINUX
// For HD avoid YU12 which is a software conversion and has 2 bugs
// b/7326348 b/6960899. Reenable when fixed.
if (supported.height >= 720 && (supported_fourcc == FOURCC_YU12 ||
supported_fourcc == FOURCC_YV12)) {
delta_fourcc += kYU12Penalty;
}
#endif
break;
}
}
} else if (supported_fourcc == CanonicalFourCC(desired.fourcc)) {
delta_fourcc = 0; // Need exact match.
}
if (kMaxDistance == delta_fourcc) {
// Failed to match fourcc.
return distance;
}
// Check resolution and fps.
int desired_width = desired.width;
int desired_height = desired.height;
int64 delta_w = supported.width - desired_width;
float supported_fps = VideoFormat::IntervalToFpsFloat(supported.interval);
float delta_fps =
supported_fps - VideoFormat::IntervalToFpsFloat(desired.interval);
// Check height of supported height compared to height we would like it to be.
int64 aspect_h =
desired_width ? supported.width * desired_height / desired_width
: desired_height;
int64 delta_h = supported.height - aspect_h;
distance = 0;
// Set high penalty if the supported format is lower than the desired format.
// 3x means we would prefer down to down to 3/4, than up to double.
// But we'd prefer up to double than down to 1/2. This is conservative,
// strongly avoiding going down in resolution, similar to
// the old method, but not completely ruling it out in extreme situations.
// It also ignores framerate, which is often very low at high resolutions.
// TODO(fbarchard): Improve logic to use weighted factors.
static const int kDownPenalty = -3;
if (delta_w < 0) {
delta_w = delta_w * kDownPenalty;
}
if (delta_h < 0) {
delta_h = delta_h * kDownPenalty;
}
// Require camera fps to be at least 80% of what is requested if resolution
// matches.
// Require camera fps to be at least 96% of what is requested, or higher,
// if resolution differs. 96% allows for slight variations in fps. e.g. 29.97
if (delta_fps < 0) {
float min_desirable_fps = delta_w ?
VideoFormat::IntervalToFpsFloat(desired.interval) * 28.f / 30.f :
VideoFormat::IntervalToFpsFloat(desired.interval) * 23.f / 30.f;
delta_fps = -delta_fps;
if (supported_fps < min_desirable_fps) {
distance |= static_cast<int64>(1) << 62;
} else {
distance |= static_cast<int64>(1) << 15;
}
}
int64 idelta_fps = static_cast<int>(delta_fps);
// 12 bits for width and height and 8 bits for fps and fourcc.
distance |=
(delta_w << 28) | (delta_h << 16) | (idelta_fps << 8) | delta_fourcc;
return distance;
}
bool VideoCapturer::ApplyProcessors(VideoFrame* video_frame) {
bool drop_frame = false;
rtc::CritScope cs(&crit_);
for (VideoProcessors::iterator iter = video_processors_.begin();
iter != video_processors_.end(); ++iter) {
(*iter)->OnFrame(kDummyVideoSsrc, video_frame, &drop_frame);
if (drop_frame) {
return false;
}
}
return true;
}
void VideoCapturer::UpdateFilteredSupportedFormats() {
filtered_supported_formats_.clear();
filtered_supported_formats_ = supported_formats_;
if (!max_format_) {
return;
}
std::vector<VideoFormat>::iterator iter = filtered_supported_formats_.begin();
while (iter != filtered_supported_formats_.end()) {
if (ShouldFilterFormat(*iter)) {
iter = filtered_supported_formats_.erase(iter);
} else {
++iter;
}
}
if (filtered_supported_formats_.empty()) {
// The device only captures at resolutions higher than |max_format_| this
// indicates that |max_format_| should be ignored as it is better to capture
// at too high a resolution than to not capture at all.
filtered_supported_formats_ = supported_formats_;
}
}
bool VideoCapturer::ShouldFilterFormat(const VideoFormat& format) const {
if (!enable_camera_list_) {
return false;
}
return format.width > max_format_->width ||
format.height > max_format_->height;
}
void VideoCapturer::UpdateStats(const CapturedFrame* captured_frame) {
// Update stats protected from fetches from different thread.
rtc::CritScope cs(&frame_stats_crit_);
last_captured_frame_format_.width = captured_frame->width;
last_captured_frame_format_.height = captured_frame->height;
// TODO(ronghuawu): Useful to report interval as well?
last_captured_frame_format_.interval = 0;
last_captured_frame_format_.fourcc = captured_frame->fourcc;
double time_now = frame_length_time_reporter_.TimerNow();
if (previous_frame_time_ != 0.0) {
adapt_frame_drops_data_.AddSample(adapt_frame_drops_);
effect_frame_drops_data_.AddSample(effect_frame_drops_);
frame_time_data_.AddSample(time_now - previous_frame_time_);
}
previous_frame_time_ = time_now;
effect_frame_drops_ = 0;
adapt_frame_drops_ = 0;
}
template<class T>
void VideoCapturer::GetVariableSnapshot(
const rtc::RollingAccumulator<T>& data,
VariableInfo<T>* stats) {
stats->max_val = data.ComputeMax();
stats->mean = data.ComputeMean();
stats->min_val = data.ComputeMin();
stats->variance = data.ComputeVariance();
}
} // namespace cricket