blob: 5d18bda00c3a5e1b9aa12fd5791479e560bbaea4 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/main/acm2/audio_coding_module_impl.h"
#include <assert.h>
#include <stdlib.h>
#include <vector>
#include "webrtc/base/checks.h"
#include "webrtc/base/safe_conversions.h"
#include "webrtc/engine_configurations.h"
#include "webrtc/modules/audio_coding/main/include/audio_coding_module_typedefs.h"
#include "webrtc/modules/audio_coding/main/acm2/acm_common_defs.h"
#include "webrtc/modules/audio_coding/main/acm2/acm_resampler.h"
#include "webrtc/modules/audio_coding/main/acm2/call_statistics.h"
#include "webrtc/system_wrappers/include/critical_section_wrapper.h"
#include "webrtc/system_wrappers/include/logging.h"
#include "webrtc/system_wrappers/include/metrics.h"
#include "webrtc/system_wrappers/include/rw_lock_wrapper.h"
#include "webrtc/system_wrappers/include/trace.h"
#include "webrtc/typedefs.h"
namespace webrtc {
namespace acm2 {
namespace {
// TODO(turajs): the same functionality is used in NetEq. If both classes
// need them, make it a static function in ACMCodecDB.
bool IsCodecRED(const CodecInst& codec) {
return (STR_CASE_CMP(codec.plname, "RED") == 0);
}
bool IsCodecCN(const CodecInst& codec) {
return (STR_CASE_CMP(codec.plname, "CN") == 0);
}
// Stereo-to-mono can be used as in-place.
int DownMix(const AudioFrame& frame,
size_t length_out_buff,
int16_t* out_buff) {
if (length_out_buff < frame.samples_per_channel_) {
return -1;
}
for (size_t n = 0; n < frame.samples_per_channel_; ++n)
out_buff[n] = (frame.data_[2 * n] + frame.data_[2 * n + 1]) >> 1;
return 0;
}
// Mono-to-stereo can be used as in-place.
int UpMix(const AudioFrame& frame, size_t length_out_buff, int16_t* out_buff) {
if (length_out_buff < frame.samples_per_channel_) {
return -1;
}
for (size_t n = frame.samples_per_channel_; n != 0; --n) {
size_t i = n - 1;
int16_t sample = frame.data_[i];
out_buff[2 * i + 1] = sample;
out_buff[2 * i] = sample;
}
return 0;
}
void ConvertEncodedInfoToFragmentationHeader(
const AudioEncoder::EncodedInfo& info,
RTPFragmentationHeader* frag) {
if (info.redundant.empty()) {
frag->fragmentationVectorSize = 0;
return;
}
frag->VerifyAndAllocateFragmentationHeader(
static_cast<uint16_t>(info.redundant.size()));
frag->fragmentationVectorSize = static_cast<uint16_t>(info.redundant.size());
size_t offset = 0;
for (size_t i = 0; i < info.redundant.size(); ++i) {
frag->fragmentationOffset[i] = offset;
offset += info.redundant[i].encoded_bytes;
frag->fragmentationLength[i] = info.redundant[i].encoded_bytes;
frag->fragmentationTimeDiff[i] = rtc::checked_cast<uint16_t>(
info.encoded_timestamp - info.redundant[i].encoded_timestamp);
frag->fragmentationPlType[i] = info.redundant[i].payload_type;
}
}
} // namespace
void AudioCodingModuleImpl::ChangeLogger::MaybeLog(int value) {
if (value != last_value_ || first_time_) {
first_time_ = false;
last_value_ = value;
RTC_HISTOGRAM_COUNTS_100(histogram_name_, value);
}
}
AudioCodingModuleImpl::AudioCodingModuleImpl(
const AudioCodingModule::Config& config)
: acm_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
id_(config.id),
expected_codec_ts_(0xD87F3F9F),
expected_in_ts_(0xD87F3F9F),
receiver_(config),
bitrate_logger_("WebRTC.Audio.TargetBitrateInKbps"),
previous_pltype_(255),
receiver_initialized_(false),
first_10ms_data_(false),
first_frame_(true),
callback_crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
packetization_callback_(NULL),
vad_callback_(NULL) {
if (InitializeReceiverSafe() < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot initialize receiver");
}
WEBRTC_TRACE(webrtc::kTraceMemory, webrtc::kTraceAudioCoding, id_, "Created");
}
AudioCodingModuleImpl::~AudioCodingModuleImpl() = default;
int32_t AudioCodingModuleImpl::Encode(const InputData& input_data) {
AudioEncoder::EncodedInfo encoded_info;
uint8_t previous_pltype;
// Check if there is an encoder before.
if (!HaveValidEncoder("Process"))
return -1;
AudioEncoder* audio_encoder = codec_manager_.CurrentEncoder();
// Scale the timestamp to the codec's RTP timestamp rate.
uint32_t rtp_timestamp =
first_frame_ ? input_data.input_timestamp
: last_rtp_timestamp_ +
rtc::CheckedDivExact(
input_data.input_timestamp - last_timestamp_,
static_cast<uint32_t>(rtc::CheckedDivExact(
audio_encoder->SampleRateHz(),
audio_encoder->RtpTimestampRateHz())));
last_timestamp_ = input_data.input_timestamp;
last_rtp_timestamp_ = rtp_timestamp;
first_frame_ = false;
encode_buffer_.SetSize(audio_encoder->MaxEncodedBytes());
encoded_info = audio_encoder->Encode(
rtp_timestamp, rtc::ArrayView<const int16_t>(
input_data.audio, input_data.audio_channel *
input_data.length_per_channel),
encode_buffer_.size(), encode_buffer_.data());
encode_buffer_.SetSize(encoded_info.encoded_bytes);
bitrate_logger_.MaybeLog(audio_encoder->GetTargetBitrate() / 1000);
if (encode_buffer_.size() == 0 && !encoded_info.send_even_if_empty) {
// Not enough data.
return 0;
}
previous_pltype = previous_pltype_; // Read it while we have the critsect.
RTPFragmentationHeader my_fragmentation;
ConvertEncodedInfoToFragmentationHeader(encoded_info, &my_fragmentation);
FrameType frame_type;
if (encode_buffer_.size() == 0 && encoded_info.send_even_if_empty) {
frame_type = kEmptyFrame;
encoded_info.payload_type = previous_pltype;
} else {
RTC_DCHECK_GT(encode_buffer_.size(), 0u);
frame_type = encoded_info.speech ? kAudioFrameSpeech : kAudioFrameCN;
}
{
CriticalSectionScoped lock(callback_crit_sect_.get());
if (packetization_callback_) {
packetization_callback_->SendData(
frame_type, encoded_info.payload_type, encoded_info.encoded_timestamp,
encode_buffer_.data(), encode_buffer_.size(),
my_fragmentation.fragmentationVectorSize > 0 ? &my_fragmentation
: nullptr);
}
if (vad_callback_) {
// Callback with VAD decision.
vad_callback_->InFrameType(frame_type);
}
}
previous_pltype_ = encoded_info.payload_type;
return static_cast<int32_t>(encode_buffer_.size());
}
/////////////////////////////////////////
// Sender
//
// Can be called multiple times for Codec, CNG, RED.
int AudioCodingModuleImpl::RegisterSendCodec(const CodecInst& send_codec) {
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.RegisterEncoder(send_codec);
}
void AudioCodingModuleImpl::RegisterExternalSendCodec(
AudioEncoder* external_speech_encoder) {
CriticalSectionScoped lock(acm_crit_sect_.get());
codec_manager_.RegisterEncoder(external_speech_encoder);
}
// Get current send codec.
rtc::Optional<CodecInst> AudioCodingModuleImpl::SendCodec() const {
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.GetCodecInst();
}
// Get current send frequency.
int AudioCodingModuleImpl::SendFrequency() const {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"SendFrequency()");
CriticalSectionScoped lock(acm_crit_sect_.get());
if (!codec_manager_.CurrentEncoder()) {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"SendFrequency Failed, no codec is registered");
return -1;
}
return codec_manager_.CurrentEncoder()->SampleRateHz();
}
void AudioCodingModuleImpl::SetBitRate(int bitrate_bps) {
CriticalSectionScoped lock(acm_crit_sect_.get());
if (codec_manager_.CurrentEncoder()) {
codec_manager_.CurrentEncoder()->SetTargetBitrate(bitrate_bps);
}
}
// Register a transport callback which will be called to deliver
// the encoded buffers.
int AudioCodingModuleImpl::RegisterTransportCallback(
AudioPacketizationCallback* transport) {
CriticalSectionScoped lock(callback_crit_sect_.get());
packetization_callback_ = transport;
return 0;
}
// Add 10MS of raw (PCM) audio data to the encoder.
int AudioCodingModuleImpl::Add10MsData(const AudioFrame& audio_frame) {
InputData input_data;
CriticalSectionScoped lock(acm_crit_sect_.get());
int r = Add10MsDataInternal(audio_frame, &input_data);
return r < 0 ? r : Encode(input_data);
}
int AudioCodingModuleImpl::Add10MsDataInternal(const AudioFrame& audio_frame,
InputData* input_data) {
if (audio_frame.samples_per_channel_ == 0) {
assert(false);
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, payload length is zero");
return -1;
}
if (audio_frame.sample_rate_hz_ > 48000) {
assert(false);
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, input frequency not valid");
return -1;
}
// If the length and frequency matches. We currently just support raw PCM.
if (static_cast<size_t>(audio_frame.sample_rate_hz_ / 100) !=
audio_frame.samples_per_channel_) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, input frequency and length doesn't"
" match");
return -1;
}
if (audio_frame.num_channels_ != 1 && audio_frame.num_channels_ != 2) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot Add 10 ms audio, invalid number of channels.");
return -1;
}
// Do we have a codec registered?
if (!HaveValidEncoder("Add10MsData")) {
return -1;
}
const AudioFrame* ptr_frame;
// Perform a resampling, also down-mix if it is required and can be
// performed before resampling (a down mix prior to resampling will take
// place if both primary and secondary encoders are mono and input is in
// stereo).
if (PreprocessToAddData(audio_frame, &ptr_frame) < 0) {
return -1;
}
// Check whether we need an up-mix or down-mix?
bool remix = ptr_frame->num_channels_ !=
codec_manager_.CurrentEncoder()->NumChannels();
if (remix) {
if (ptr_frame->num_channels_ == 1) {
if (UpMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
return -1;
} else {
if (DownMix(*ptr_frame, WEBRTC_10MS_PCM_AUDIO, input_data->buffer) < 0)
return -1;
}
}
// When adding data to encoders this pointer is pointing to an audio buffer
// with correct number of channels.
const int16_t* ptr_audio = ptr_frame->data_;
// For pushing data to primary, point the |ptr_audio| to correct buffer.
if (codec_manager_.CurrentEncoder()->NumChannels() !=
ptr_frame->num_channels_)
ptr_audio = input_data->buffer;
input_data->input_timestamp = ptr_frame->timestamp_;
input_data->audio = ptr_audio;
input_data->length_per_channel = ptr_frame->samples_per_channel_;
input_data->audio_channel = codec_manager_.CurrentEncoder()->NumChannels();
return 0;
}
// Perform a resampling and down-mix if required. We down-mix only if
// encoder is mono and input is stereo. In case of dual-streaming, both
// encoders has to be mono for down-mix to take place.
// |*ptr_out| will point to the pre-processed audio-frame. If no pre-processing
// is required, |*ptr_out| points to |in_frame|.
int AudioCodingModuleImpl::PreprocessToAddData(const AudioFrame& in_frame,
const AudioFrame** ptr_out) {
bool resample = (in_frame.sample_rate_hz_ !=
codec_manager_.CurrentEncoder()->SampleRateHz());
// This variable is true if primary codec and secondary codec (if exists)
// are both mono and input is stereo.
bool down_mix = (in_frame.num_channels_ == 2) &&
(codec_manager_.CurrentEncoder()->NumChannels() == 1);
if (!first_10ms_data_) {
expected_in_ts_ = in_frame.timestamp_;
expected_codec_ts_ = in_frame.timestamp_;
first_10ms_data_ = true;
} else if (in_frame.timestamp_ != expected_in_ts_) {
// TODO(turajs): Do we need a warning here.
expected_codec_ts_ +=
(in_frame.timestamp_ - expected_in_ts_) *
static_cast<uint32_t>(
(static_cast<double>(
codec_manager_.CurrentEncoder()->SampleRateHz()) /
static_cast<double>(in_frame.sample_rate_hz_)));
expected_in_ts_ = in_frame.timestamp_;
}
if (!down_mix && !resample) {
// No pre-processing is required.
expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
expected_codec_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
*ptr_out = &in_frame;
return 0;
}
*ptr_out = &preprocess_frame_;
preprocess_frame_.num_channels_ = in_frame.num_channels_;
int16_t audio[WEBRTC_10MS_PCM_AUDIO];
const int16_t* src_ptr_audio = in_frame.data_;
int16_t* dest_ptr_audio = preprocess_frame_.data_;
if (down_mix) {
// If a resampling is required the output of a down-mix is written into a
// local buffer, otherwise, it will be written to the output frame.
if (resample)
dest_ptr_audio = audio;
if (DownMix(in_frame, WEBRTC_10MS_PCM_AUDIO, dest_ptr_audio) < 0)
return -1;
preprocess_frame_.num_channels_ = 1;
// Set the input of the resampler is the down-mixed signal.
src_ptr_audio = audio;
}
preprocess_frame_.timestamp_ = expected_codec_ts_;
preprocess_frame_.samples_per_channel_ = in_frame.samples_per_channel_;
preprocess_frame_.sample_rate_hz_ = in_frame.sample_rate_hz_;
// If it is required, we have to do a resampling.
if (resample) {
// The result of the resampler is written to output frame.
dest_ptr_audio = preprocess_frame_.data_;
int samples_per_channel = resampler_.Resample10Msec(
src_ptr_audio, in_frame.sample_rate_hz_,
codec_manager_.CurrentEncoder()->SampleRateHz(),
preprocess_frame_.num_channels_, AudioFrame::kMaxDataSizeSamples,
dest_ptr_audio);
if (samples_per_channel < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot add 10 ms audio, resampling failed");
return -1;
}
preprocess_frame_.samples_per_channel_ =
static_cast<size_t>(samples_per_channel);
preprocess_frame_.sample_rate_hz_ =
codec_manager_.CurrentEncoder()->SampleRateHz();
}
expected_codec_ts_ +=
static_cast<uint32_t>(preprocess_frame_.samples_per_channel_);
expected_in_ts_ += static_cast<uint32_t>(in_frame.samples_per_channel_);
return 0;
}
/////////////////////////////////////////
// (RED) Redundant Coding
//
bool AudioCodingModuleImpl::REDStatus() const {
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.red_enabled();
}
// Configure RED status i.e on/off.
int AudioCodingModuleImpl::SetREDStatus(
#ifdef WEBRTC_CODEC_RED
bool enable_red) {
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.SetCopyRed(enable_red) ? 0 : -1;
#else
bool /* enable_red */) {
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceAudioCoding, id_,
" WEBRTC_CODEC_RED is undefined");
return -1;
#endif
}
/////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
bool AudioCodingModuleImpl::CodecFEC() const {
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.codec_fec_enabled();
}
int AudioCodingModuleImpl::SetCodecFEC(bool enable_codec_fec) {
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.SetCodecFEC(enable_codec_fec);
}
int AudioCodingModuleImpl::SetPacketLossRate(int loss_rate) {
CriticalSectionScoped lock(acm_crit_sect_.get());
if (HaveValidEncoder("SetPacketLossRate")) {
codec_manager_.CurrentEncoder()->SetProjectedPacketLossRate(loss_rate /
100.0);
}
return 0;
}
/////////////////////////////////////////
// (VAD) Voice Activity Detection
//
int AudioCodingModuleImpl::SetVAD(bool enable_dtx,
bool enable_vad,
ACMVADMode mode) {
// Note: |enable_vad| is not used; VAD is enabled based on the DTX setting.
RTC_DCHECK_EQ(enable_dtx, enable_vad);
CriticalSectionScoped lock(acm_crit_sect_.get());
return codec_manager_.SetVAD(enable_dtx, mode);
}
// Get VAD/DTX settings.
int AudioCodingModuleImpl::VAD(bool* dtx_enabled, bool* vad_enabled,
ACMVADMode* mode) const {
CriticalSectionScoped lock(acm_crit_sect_.get());
codec_manager_.VAD(dtx_enabled, vad_enabled, mode);
return 0;
}
/////////////////////////////////////////
// Receiver
//
int AudioCodingModuleImpl::InitializeReceiver() {
CriticalSectionScoped lock(acm_crit_sect_.get());
return InitializeReceiverSafe();
}
// Initialize receiver, resets codec database etc.
int AudioCodingModuleImpl::InitializeReceiverSafe() {
// If the receiver is already initialized then we want to destroy any
// existing decoders. After a call to this function, we should have a clean
// start-up.
if (receiver_initialized_) {
if (receiver_.RemoveAllCodecs() < 0)
return -1;
}
receiver_.set_id(id_);
receiver_.ResetInitialDelay();
receiver_.SetMinimumDelay(0);
receiver_.SetMaximumDelay(0);
receiver_.FlushBuffers();
// Register RED and CN.
auto db = RentACodec::Database();
for (size_t i = 0; i < db.size(); i++) {
if (IsCodecRED(db[i]) || IsCodecCN(db[i])) {
if (receiver_.AddCodec(static_cast<int>(i),
static_cast<uint8_t>(db[i].pltype), 1,
db[i].plfreq, nullptr) < 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Cannot register master codec.");
return -1;
}
}
}
receiver_initialized_ = true;
return 0;
}
// Get current receive frequency.
int AudioCodingModuleImpl::ReceiveFrequency() const {
const auto last_packet_sample_rate = receiver_.last_packet_sample_rate_hz();
return last_packet_sample_rate ? *last_packet_sample_rate
: receiver_.last_output_sample_rate_hz();
}
// Get current playout frequency.
int AudioCodingModuleImpl::PlayoutFrequency() const {
WEBRTC_TRACE(webrtc::kTraceStream, webrtc::kTraceAudioCoding, id_,
"PlayoutFrequency()");
return receiver_.last_output_sample_rate_hz();
}
// Register possible receive codecs, can be called multiple times,
// for codecs, CNG (NB, WB and SWB), DTMF, RED.
int AudioCodingModuleImpl::RegisterReceiveCodec(const CodecInst& codec) {
CriticalSectionScoped lock(acm_crit_sect_.get());
RTC_DCHECK(receiver_initialized_);
if (codec.channels > 2 || codec.channels < 0) {
LOG_F(LS_ERROR) << "Unsupported number of channels: " << codec.channels;
return -1;
}
auto codec_id =
RentACodec::CodecIdByParams(codec.plname, codec.plfreq, codec.channels);
if (!codec_id) {
LOG_F(LS_ERROR) << "Wrong codec params to be registered as receive codec";
return -1;
}
auto codec_index = RentACodec::CodecIndexFromId(*codec_id);
RTC_CHECK(codec_index) << "Invalid codec ID: " << static_cast<int>(*codec_id);
// Check if the payload-type is valid.
if (!RentACodec::IsPayloadTypeValid(codec.pltype)) {
LOG_F(LS_ERROR) << "Invalid payload type " << codec.pltype << " for "
<< codec.plname;
return -1;
}
// Get |decoder| associated with |codec|. |decoder| is NULL if |codec| does
// not own its decoder.
return receiver_.AddCodec(*codec_index, codec.pltype, codec.channels,
codec.plfreq,
codec_manager_.GetAudioDecoder(codec));
}
int AudioCodingModuleImpl::RegisterExternalReceiveCodec(
int rtp_payload_type,
AudioDecoder* external_decoder,
int sample_rate_hz,
int num_channels) {
CriticalSectionScoped lock(acm_crit_sect_.get());
RTC_DCHECK(receiver_initialized_);
if (num_channels > 2 || num_channels < 0) {
LOG_F(LS_ERROR) << "Unsupported number of channels: " << num_channels;
return -1;
}
// Check if the payload-type is valid.
if (!RentACodec::IsPayloadTypeValid(rtp_payload_type)) {
LOG_F(LS_ERROR) << "Invalid payload-type " << rtp_payload_type
<< " for external decoder.";
return -1;
}
return receiver_.AddCodec(-1 /* external */, rtp_payload_type, num_channels,
sample_rate_hz, external_decoder);
}
// Get current received codec.
int AudioCodingModuleImpl::ReceiveCodec(CodecInst* current_codec) const {
CriticalSectionScoped lock(acm_crit_sect_.get());
return receiver_.LastAudioCodec(current_codec);
}
// Incoming packet from network parsed and ready for decode.
int AudioCodingModuleImpl::IncomingPacket(const uint8_t* incoming_payload,
const size_t payload_length,
const WebRtcRTPHeader& rtp_header) {
return receiver_.InsertPacket(
rtp_header,
rtc::ArrayView<const uint8_t>(incoming_payload, payload_length));
}
// Minimum playout delay (Used for lip-sync).
int AudioCodingModuleImpl::SetMinimumPlayoutDelay(int time_ms) {
if ((time_ms < 0) || (time_ms > 10000)) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Delay must be in the range of 0-1000 milliseconds.");
return -1;
}
return receiver_.SetMinimumDelay(time_ms);
}
int AudioCodingModuleImpl::SetMaximumPlayoutDelay(int time_ms) {
if ((time_ms < 0) || (time_ms > 10000)) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"Delay must be in the range of 0-1000 milliseconds.");
return -1;
}
return receiver_.SetMaximumDelay(time_ms);
}
// Get 10 milliseconds of raw audio data to play out.
// Automatic resample to the requested frequency.
int AudioCodingModuleImpl::PlayoutData10Ms(int desired_freq_hz,
AudioFrame* audio_frame) {
// GetAudio always returns 10 ms, at the requested sample rate.
if (receiver_.GetAudio(desired_freq_hz, audio_frame) != 0) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"PlayoutData failed, RecOut Failed");
return -1;
}
audio_frame->id_ = id_;
return 0;
}
/////////////////////////////////////////
// Statistics
//
// TODO(turajs) change the return value to void. Also change the corresponding
// NetEq function.
int AudioCodingModuleImpl::GetNetworkStatistics(NetworkStatistics* statistics) {
receiver_.GetNetworkStatistics(statistics);
return 0;
}
int AudioCodingModuleImpl::RegisterVADCallback(ACMVADCallback* vad_callback) {
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceAudioCoding, id_,
"RegisterVADCallback()");
CriticalSectionScoped lock(callback_crit_sect_.get());
vad_callback_ = vad_callback;
return 0;
}
// TODO(kwiberg): Remove this method, and have callers call IncomingPacket
// instead. The translation logic and state belong with them, not with
// AudioCodingModuleImpl.
int AudioCodingModuleImpl::IncomingPayload(const uint8_t* incoming_payload,
size_t payload_length,
uint8_t payload_type,
uint32_t timestamp) {
// We are not acquiring any lock when interacting with |aux_rtp_header_| no
// other method uses this member variable.
if (!aux_rtp_header_) {
// This is the first time that we are using |dummy_rtp_header_|
// so we have to create it.
aux_rtp_header_.reset(new WebRtcRTPHeader);
aux_rtp_header_->header.payloadType = payload_type;
// Don't matter in this case.
aux_rtp_header_->header.ssrc = 0;
aux_rtp_header_->header.markerBit = false;
// Start with random numbers.
aux_rtp_header_->header.sequenceNumber = 0x1234; // Arbitrary.
aux_rtp_header_->type.Audio.channel = 1;
}
aux_rtp_header_->header.timestamp = timestamp;
IncomingPacket(incoming_payload, payload_length, *aux_rtp_header_);
// Get ready for the next payload.
aux_rtp_header_->header.sequenceNumber++;
return 0;
}
int AudioCodingModuleImpl::SetOpusApplication(OpusApplicationMode application) {
CriticalSectionScoped lock(acm_crit_sect_.get());
if (!HaveValidEncoder("SetOpusApplication")) {
return -1;
}
if (!codec_manager_.CurrentEncoderIsOpus())
return -1;
AudioEncoder::Application app;
switch (application) {
case kVoip:
app = AudioEncoder::Application::kSpeech;
break;
case kAudio:
app = AudioEncoder::Application::kAudio;
break;
default:
FATAL();
return 0;
}
return codec_manager_.CurrentEncoder()->SetApplication(app) ? 0 : -1;
}
// Informs Opus encoder of the maximum playback rate the receiver will render.
int AudioCodingModuleImpl::SetOpusMaxPlaybackRate(int frequency_hz) {
CriticalSectionScoped lock(acm_crit_sect_.get());
if (!HaveValidEncoder("SetOpusMaxPlaybackRate")) {
return -1;
}
if (!codec_manager_.CurrentEncoderIsOpus())
return -1;
codec_manager_.CurrentEncoder()->SetMaxPlaybackRate(frequency_hz);
return 0;
}
int AudioCodingModuleImpl::EnableOpusDtx() {
CriticalSectionScoped lock(acm_crit_sect_.get());
if (!HaveValidEncoder("EnableOpusDtx")) {
return -1;
}
if (!codec_manager_.CurrentEncoderIsOpus())
return -1;
return codec_manager_.CurrentEncoder()->SetDtx(true) ? 0 : -1;
}
int AudioCodingModuleImpl::DisableOpusDtx() {
CriticalSectionScoped lock(acm_crit_sect_.get());
if (!HaveValidEncoder("DisableOpusDtx")) {
return -1;
}
if (!codec_manager_.CurrentEncoderIsOpus())
return -1;
return codec_manager_.CurrentEncoder()->SetDtx(false) ? 0 : -1;
}
int AudioCodingModuleImpl::PlayoutTimestamp(uint32_t* timestamp) {
return receiver_.GetPlayoutTimestamp(timestamp) ? 0 : -1;
}
bool AudioCodingModuleImpl::HaveValidEncoder(const char* caller_name) const {
if (!codec_manager_.CurrentEncoder()) {
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceAudioCoding, id_,
"%s failed: No send codec is registered.", caller_name);
return false;
}
return true;
}
int AudioCodingModuleImpl::UnregisterReceiveCodec(uint8_t payload_type) {
return receiver_.RemoveCodec(payload_type);
}
int AudioCodingModuleImpl::EnableNack(size_t max_nack_list_size) {
return receiver_.EnableNack(max_nack_list_size);
}
void AudioCodingModuleImpl::DisableNack() {
receiver_.DisableNack();
}
std::vector<uint16_t> AudioCodingModuleImpl::GetNackList(
int64_t round_trip_time_ms) const {
return receiver_.GetNackList(round_trip_time_ms);
}
int AudioCodingModuleImpl::LeastRequiredDelayMs() const {
return receiver_.LeastRequiredDelayMs();
}
void AudioCodingModuleImpl::GetDecodingCallStatistics(
AudioDecodingCallStats* call_stats) const {
receiver_.GetDecodingCallStatistics(call_stats);
}
} // namespace acm2
} // namespace webrtc