blob: 4d9b4efe3a455a490685793348a3fba77678f88d [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The core AEC algorithm, SSE2 version of speed-critical functions.
*/
#include <emmintrin.h>
#include <math.h>
#include <string.h> // memset
#include "webrtc/modules/audio_processing/aec/aec_common.h"
#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm) {
return aRe * bRe - aIm * bIm;
}
__inline static float MulIm(float aRe, float aIm, float bRe, float bIm) {
return aRe * bIm + aIm * bRe;
}
static void FilterFarSSE2(AecCore* aec, float yf[2][PART_LEN1]) {
int i;
const int num_partitions = aec->num_partitions;
for (i = 0; i < num_partitions; i++) {
int j;
int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= num_partitions) {
xPos -= num_partitions * (PART_LEN1);
}
// vectorized code (four at once)
for (j = 0; j + 3 < PART_LEN1; j += 4) {
const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
const __m128 yf_re = _mm_loadu_ps(&yf[0][j]);
const __m128 yf_im = _mm_loadu_ps(&yf[1][j]);
const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re);
const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im);
const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im);
const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re);
const __m128 e = _mm_sub_ps(a, b);
const __m128 f = _mm_add_ps(c, d);
const __m128 g = _mm_add_ps(yf_re, e);
const __m128 h = _mm_add_ps(yf_im, f);
_mm_storeu_ps(&yf[0][j], g);
_mm_storeu_ps(&yf[1][j], h);
}
// scalar code for the remaining items.
for (; j < PART_LEN1; j++) {
yf[0][j] += MulRe(aec->xfBuf[0][xPos + j],
aec->xfBuf[1][xPos + j],
aec->wfBuf[0][pos + j],
aec->wfBuf[1][pos + j]);
yf[1][j] += MulIm(aec->xfBuf[0][xPos + j],
aec->xfBuf[1][xPos + j],
aec->wfBuf[0][pos + j],
aec->wfBuf[1][pos + j]);
}
}
}
static void ScaleErrorSignalSSE2(AecCore* aec, float ef[2][PART_LEN1]) {
const __m128 k1e_10f = _mm_set1_ps(1e-10f);
const __m128 kMu = aec->extended_filter_enabled ? _mm_set1_ps(kExtendedMu)
: _mm_set1_ps(aec->normal_mu);
const __m128 kThresh = aec->extended_filter_enabled
? _mm_set1_ps(kExtendedErrorThreshold)
: _mm_set1_ps(aec->normal_error_threshold);
int i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]);
const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f);
__m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
__m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
const __m128 absEf = _mm_sqrt_ps(ef_sum2);
const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
__m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
__m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
__m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
ef_re_if = _mm_and_ps(bigger, ef_re_if);
ef_im_if = _mm_and_ps(bigger, ef_im_if);
ef_re = _mm_andnot_ps(bigger, ef_re);
ef_im = _mm_andnot_ps(bigger, ef_im);
ef_re = _mm_or_ps(ef_re, ef_re_if);
ef_im = _mm_or_ps(ef_im, ef_im_if);
ef_re = _mm_mul_ps(ef_re, kMu);
ef_im = _mm_mul_ps(ef_im, kMu);
_mm_storeu_ps(&ef[0][i], ef_re);
_mm_storeu_ps(&ef[1][i], ef_im);
}
// scalar code for the remaining items.
{
const float mu =
aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu;
const float error_threshold = aec->extended_filter_enabled
? kExtendedErrorThreshold
: aec->normal_error_threshold;
for (; i < (PART_LEN1); i++) {
float abs_ef;
ef[0][i] /= (aec->xPow[i] + 1e-10f);
ef[1][i] /= (aec->xPow[i] + 1e-10f);
abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
if (abs_ef > error_threshold) {
abs_ef = error_threshold / (abs_ef + 1e-10f);
ef[0][i] *= abs_ef;
ef[1][i] *= abs_ef;
}
// Stepsize factor
ef[0][i] *= mu;
ef[1][i] *= mu;
}
}
}
static void FilterAdaptationSSE2(AecCore* aec,
float* fft,
float ef[2][PART_LEN1]) {
int i, j;
const int num_partitions = aec->num_partitions;
for (i = 0; i < num_partitions; i++) {
int xPos = (i + aec->xfBufBlockPos) * (PART_LEN1);
int pos = i * PART_LEN1;
// Check for wrap
if (i + aec->xfBufBlockPos >= num_partitions) {
xPos -= num_partitions * PART_LEN1;
}
// Process the whole array...
for (j = 0; j < PART_LEN; j += 4) {
// Load xfBuf and ef.
const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
const __m128 ef_re = _mm_loadu_ps(&ef[0][j]);
const __m128 ef_im = _mm_loadu_ps(&ef[1][j]);
// Calculate the product of conjugate(xfBuf) by ef.
// re(conjugate(a) * b) = aRe * bRe + aIm * bIm
// im(conjugate(a) * b)= aRe * bIm - aIm * bRe
const __m128 a = _mm_mul_ps(xfBuf_re, ef_re);
const __m128 b = _mm_mul_ps(xfBuf_im, ef_im);
const __m128 c = _mm_mul_ps(xfBuf_re, ef_im);
const __m128 d = _mm_mul_ps(xfBuf_im, ef_re);
const __m128 e = _mm_add_ps(a, b);
const __m128 f = _mm_sub_ps(c, d);
// Interleave real and imaginary parts.
const __m128 g = _mm_unpacklo_ps(e, f);
const __m128 h = _mm_unpackhi_ps(e, f);
// Store
_mm_storeu_ps(&fft[2 * j + 0], g);
_mm_storeu_ps(&fft[2 * j + 4], h);
}
// ... and fixup the first imaginary entry.
fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
-aec->xfBuf[1][xPos + PART_LEN],
ef[0][PART_LEN],
ef[1][PART_LEN]);
aec_rdft_inverse_128(fft);
memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN);
// fft scaling
{
float scale = 2.0f / PART_LEN2;
const __m128 scale_ps = _mm_load_ps1(&scale);
for (j = 0; j < PART_LEN; j += 4) {
const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
_mm_storeu_ps(&fft[j], fft_scale);
}
}
aec_rdft_forward_128(fft);
{
float wt1 = aec->wfBuf[1][pos];
aec->wfBuf[0][pos + PART_LEN] += fft[1];
for (j = 0; j < PART_LEN; j += 4) {
__m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
__m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
const __m128 fft_re =
_mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 fft_im =
_mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1));
wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
_mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re);
_mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im);
}
aec->wfBuf[1][pos] = wt1;
}
}
}
static __m128 mm_pow_ps(__m128 a, __m128 b) {
// a^b = exp2(b * log2(a))
// exp2(x) and log2(x) are calculated using polynomial approximations.
__m128 log2_a, b_log2_a, a_exp_b;
// Calculate log2(x), x = a.
{
// To calculate log2(x), we decompose x like this:
// x = y * 2^n
// n is an integer
// y is in the [1.0, 2.0) range
//
// log2(x) = log2(y) + n
// n can be evaluated by playing with float representation.
// log2(y) in a small range can be approximated, this code uses an order
// five polynomial approximation. The coefficients have been
// estimated with the Remez algorithm and the resulting
// polynomial has a maximum relative error of 0.00086%.
// Compute n.
// This is done by masking the exponent, shifting it into the top bit of
// the mantissa, putting eight into the biased exponent (to shift/
// compensate the fact that the exponent has been shifted in the top/
// fractional part and finally getting rid of the implicit leading one
// from the mantissa by substracting it out.
static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = {
0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = {
0x43800000, 0x43800000, 0x43800000, 0x43800000};
static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = {
0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
static const int shift_exponent_into_top_mantissa = 8;
const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask));
const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(
_mm_castps_si128(two_n), shift_exponent_into_top_mantissa));
const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent));
const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one));
// Compute y.
static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = {
0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = {
0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask));
const __m128 y =
_mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one));
// Approximate log2(y) ~= (y - 1) * pol5(y).
// pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
static const ALIGN16_BEG float ALIGN16_END C5[4] = {
-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
static const ALIGN16_BEG float ALIGN16_END
C4[4] = {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
static const ALIGN16_BEG float ALIGN16_END
C3[4] = {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
static const ALIGN16_BEG float ALIGN16_END
C2[4] = {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f};
static const ALIGN16_BEG float ALIGN16_END
C1[4] = {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
static const ALIGN16_BEG float ALIGN16_END
C0[4] = {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f};
const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5));
const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4));
const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3));
const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2));
const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1));
const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0));
const __m128 y_minus_one =
_mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one));
const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y);
// Combine parts.
log2_a = _mm_add_ps(n, log2_y);
}
// b * log2(a)
b_log2_a = _mm_mul_ps(b, log2_a);
// Calculate exp2(x), x = b * log2(a).
{
// To calculate 2^x, we decompose x like this:
// x = n + y
// n is an integer, the value of x - 0.5 rounded down, therefore
// y is in the [0.5, 1.5) range
//
// 2^x = 2^n * 2^y
// 2^n can be evaluated by playing with float representation.
// 2^y in a small range can be approximated, this code uses an order two
// polynomial approximation. The coefficients have been estimated
// with the Remez algorithm and the resulting polynomial has a
// maximum relative error of 0.17%.
// To avoid over/underflow, we reduce the range of input to ]-127, 129].
static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f,
129.f, 129.f};
static const ALIGN16_BEG float min_input[4] ALIGN16_END = {
-126.99999f, -126.99999f, -126.99999f, -126.99999f};
const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input));
const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input));
// Compute n.
static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f,
0.5f, 0.5f};
const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half));
const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
// Compute 2^n.
static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = {
127, 127, 127, 127};
static const int float_exponent_shift = 23;
const __m128i two_n_exponent =
_mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias));
const __m128 two_n =
_mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift));
// Compute y.
const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
// Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
static const ALIGN16_BEG float C2[4] ALIGN16_END = {
3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
static const ALIGN16_BEG float C1[4] ALIGN16_END = {
6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f,
1.0017247f, 1.0017247f};
const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2));
const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1));
const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0));
// Combine parts.
a_exp_b = _mm_mul_ps(exp2_y, two_n);
}
return a_exp_b;
}
static void OverdriveAndSuppressSSE2(AecCore* aec,
float hNl[PART_LEN1],
const float hNlFb,
float efw[2][PART_LEN1]) {
int i;
const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
const __m128 vec_one = _mm_set1_ps(1.0f);
const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
// vectorized code (four at once)
for (i = 0; i + 3 < PART_LEN1; i += 4) {
// Weight subbands
__m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb);
const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
const __m128 vec_one_weightCurve_hNl =
_mm_mul_ps(vec_one_weightCurve, vec_hNl);
const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
const __m128 vec_if1 = _mm_and_ps(
bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
vec_hNl = _mm_or_ps(vec_if0, vec_if1);
{
const __m128 vec_overDriveCurve =
_mm_loadu_ps(&WebRtcAec_overDriveCurve[i]);
const __m128 vec_overDriveSm_overDriveCurve =
_mm_mul_ps(vec_overDriveSm, vec_overDriveCurve);
vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
_mm_storeu_ps(&hNl[i], vec_hNl);
}
// Suppress error signal
{
__m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
__m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
_mm_storeu_ps(&efw[0][i], vec_efw_re);
_mm_storeu_ps(&efw[1][i], vec_efw_im);
}
}
// scalar code for the remaining items.
for (; i < PART_LEN1; i++) {
// Weight subbands
if (hNl[i] > hNlFb) {
hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
(1 - WebRtcAec_weightCurve[i]) * hNl[i];
}
hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
// Suppress error signal
efw[0][i] *= hNl[i];
efw[1][i] *= hNl[i];
// Ooura fft returns incorrect sign on imaginary component. It matters
// here because we are making an additive change with comfort noise.
efw[1][i] *= -1;
}
}
void WebRtcAec_InitAec_SSE2(void) {
WebRtcAec_FilterFar = FilterFarSSE2;
WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
}