blob: 84a9527d1263b20bc210570072293a9342abf735 [file] [log] [blame]
/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string.h>
#include <list>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/video_coding/main/source/packet.h"
#include "webrtc/modules/video_coding/main/source/receiver.h"
#include "webrtc/modules/video_coding/main/source/test/stream_generator.h"
#include "webrtc/modules/video_coding/main/source/timing.h"
#include "webrtc/modules/video_coding/main/test/test_util.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
namespace webrtc {
class TestVCMReceiver : public ::testing::Test {
protected:
enum { kWidth = 640 };
enum { kHeight = 480 };
TestVCMReceiver()
: clock_(new SimulatedClock(0)),
timing_(clock_.get()),
receiver_(&timing_, clock_.get(), &event_factory_) {
stream_generator_.reset(new
StreamGenerator(0, 0, clock_->TimeInMilliseconds()));
}
virtual void SetUp() {
receiver_.Reset();
}
int32_t InsertPacket(int index) {
VCMPacket packet;
bool packet_available = stream_generator_->GetPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kGeneralError; // Return here to avoid crashes below.
return receiver_.InsertPacket(packet, kWidth, kHeight);
}
int32_t InsertPacketAndPop(int index) {
VCMPacket packet;
bool packet_available = stream_generator_->PopPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kGeneralError; // Return here to avoid crashes below.
return receiver_.InsertPacket(packet, kWidth, kHeight);
}
int32_t InsertFrame(FrameType frame_type, bool complete) {
int num_of_packets = complete ? 1 : 2;
stream_generator_->GenerateFrame(
frame_type,
(frame_type != kFrameEmpty) ? num_of_packets : 0,
(frame_type == kFrameEmpty) ? 1 : 0,
clock_->TimeInMilliseconds());
int32_t ret = InsertPacketAndPop(0);
if (!complete) {
// Drop the second packet.
VCMPacket packet;
stream_generator_->PopPacket(&packet, 0);
}
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
return ret;
}
bool DecodeNextFrame() {
int64_t render_time_ms = 0;
VCMEncodedFrame* frame =
receiver_.FrameForDecoding(0, render_time_ms, false);
if (!frame)
return false;
receiver_.ReleaseFrame(frame);
return true;
}
rtc::scoped_ptr<SimulatedClock> clock_;
VCMTiming timing_;
NullEventFactory event_factory_;
VCMReceiver receiver_;
rtc::scoped_ptr<StreamGenerator> stream_generator_;
};
TEST_F(TestVCMReceiver, RenderBufferSize_AllComplete) {
EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
int num_of_frames = 10;
for (int i = 0; i < num_of_frames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
EXPECT_EQ(num_of_frames * kDefaultFramePeriodMs,
receiver_.RenderBufferSizeMs());
}
TEST_F(TestVCMReceiver, RenderBufferSize_SkipToKeyFrame) {
EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
const int kNumOfNonDecodableFrames = 2;
for (int i = 0; i < kNumOfNonDecodableFrames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
const int kNumOfFrames = 10;
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
for (int i = 0; i < kNumOfFrames - 1; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
EXPECT_EQ((kNumOfFrames - 1) * kDefaultFramePeriodMs,
receiver_.RenderBufferSizeMs());
}
TEST_F(TestVCMReceiver, RenderBufferSize_NotAllComplete) {
EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
int num_of_frames = 10;
for (int i = 0; i < num_of_frames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
num_of_frames++;
EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
for (int i = 0; i < num_of_frames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
EXPECT_EQ((num_of_frames - 1) * kDefaultFramePeriodMs,
receiver_.RenderBufferSizeMs());
}
TEST_F(TestVCMReceiver, RenderBufferSize_NoKeyFrame) {
EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
int num_of_frames = 10;
for (int i = 0; i < num_of_frames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
int64_t next_render_time_ms = 0;
VCMEncodedFrame* frame = receiver_.FrameForDecoding(10, next_render_time_ms);
EXPECT_TRUE(frame == NULL);
receiver_.ReleaseFrame(frame);
EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
for (int i = 0; i < num_of_frames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
EXPECT_EQ(0, receiver_.RenderBufferSizeMs());
}
TEST_F(TestVCMReceiver, NonDecodableDuration_Empty) {
// Enable NACK and with no RTT thresholds for disabling retransmission delay.
receiver_.SetNackMode(kNack, -1, -1);
const size_t kMaxNackListSize = 1000;
const int kMaxPacketAgeToNack = 1000;
const int kMaxNonDecodableDuration = 500;
const int kMinDelayMs = 500;
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
kMaxNonDecodableDuration);
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
// Advance time until it's time to decode the key frame.
clock_->AdvanceTimeMilliseconds(kMinDelayMs);
EXPECT_TRUE(DecodeNextFrame());
uint16_t nack_list[kMaxNackListSize];
uint16_t nack_list_length = 0;
VCMNackStatus ret = receiver_.NackList(nack_list, kMaxNackListSize,
&nack_list_length);
EXPECT_EQ(kNackOk, ret);
}
TEST_F(TestVCMReceiver, NonDecodableDuration_NoKeyFrame) {
// Enable NACK and with no RTT thresholds for disabling retransmission delay.
receiver_.SetNackMode(kNack, -1, -1);
const size_t kMaxNackListSize = 1000;
const int kMaxPacketAgeToNack = 1000;
const int kMaxNonDecodableDuration = 500;
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
kMaxNonDecodableDuration);
const int kNumFrames = kDefaultFrameRate * kMaxNonDecodableDuration / 1000;
for (int i = 0; i < kNumFrames; ++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
uint16_t nack_list[kMaxNackListSize];
uint16_t nack_list_length = 0;
VCMNackStatus ret = receiver_.NackList(nack_list, kMaxNackListSize,
&nack_list_length);
EXPECT_EQ(kNackKeyFrameRequest, ret);
}
TEST_F(TestVCMReceiver, NonDecodableDuration_OneIncomplete) {
// Enable NACK and with no RTT thresholds for disabling retransmission delay.
receiver_.SetNackMode(kNack, -1, -1);
const size_t kMaxNackListSize = 1000;
const int kMaxPacketAgeToNack = 1000;
const int kMaxNonDecodableDuration = 500;
const int kMaxNonDecodableDurationFrames = (kDefaultFrameRate *
kMaxNonDecodableDuration + 500) / 1000;
const int kMinDelayMs = 500;
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
kMaxNonDecodableDuration);
receiver_.SetMinReceiverDelay(kMinDelayMs);
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
// Insert an incomplete frame.
EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
// Insert enough frames to have too long non-decodable sequence.
for (int i = 0; i < kMaxNonDecodableDurationFrames;
++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
// Advance time until it's time to decode the key frame.
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
key_frame_inserted);
EXPECT_TRUE(DecodeNextFrame());
// Make sure we get a key frame request.
uint16_t nack_list[kMaxNackListSize];
uint16_t nack_list_length = 0;
VCMNackStatus ret = receiver_.NackList(nack_list, kMaxNackListSize,
&nack_list_length);
EXPECT_EQ(kNackKeyFrameRequest, ret);
}
TEST_F(TestVCMReceiver, NonDecodableDuration_NoTrigger) {
// Enable NACK and with no RTT thresholds for disabling retransmission delay.
receiver_.SetNackMode(kNack, -1, -1);
const size_t kMaxNackListSize = 1000;
const int kMaxPacketAgeToNack = 1000;
const int kMaxNonDecodableDuration = 500;
const int kMaxNonDecodableDurationFrames = (kDefaultFrameRate *
kMaxNonDecodableDuration + 500) / 1000;
const int kMinDelayMs = 500;
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
kMaxNonDecodableDuration);
receiver_.SetMinReceiverDelay(kMinDelayMs);
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
// Insert an incomplete frame.
EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
// Insert all but one frame to not trigger a key frame request due to
// too long duration of non-decodable frames.
for (int i = 0; i < kMaxNonDecodableDurationFrames - 1;
++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
// Advance time until it's time to decode the key frame.
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
key_frame_inserted);
EXPECT_TRUE(DecodeNextFrame());
// Make sure we don't get a key frame request since we haven't generated
// enough frames.
uint16_t nack_list[kMaxNackListSize];
uint16_t nack_list_length = 0;
VCMNackStatus ret = receiver_.NackList(nack_list, kMaxNackListSize,
&nack_list_length);
EXPECT_EQ(kNackOk, ret);
}
TEST_F(TestVCMReceiver, NonDecodableDuration_NoTrigger2) {
// Enable NACK and with no RTT thresholds for disabling retransmission delay.
receiver_.SetNackMode(kNack, -1, -1);
const size_t kMaxNackListSize = 1000;
const int kMaxPacketAgeToNack = 1000;
const int kMaxNonDecodableDuration = 500;
const int kMaxNonDecodableDurationFrames = (kDefaultFrameRate *
kMaxNonDecodableDuration + 500) / 1000;
const int kMinDelayMs = 500;
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
kMaxNonDecodableDuration);
receiver_.SetMinReceiverDelay(kMinDelayMs);
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
// Insert enough frames to have too long non-decodable sequence, except that
// we don't have any losses.
for (int i = 0; i < kMaxNonDecodableDurationFrames;
++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
// Insert an incomplete frame.
EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
// Advance time until it's time to decode the key frame.
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
key_frame_inserted);
EXPECT_TRUE(DecodeNextFrame());
// Make sure we don't get a key frame request since the non-decodable duration
// is only one frame.
uint16_t nack_list[kMaxNackListSize];
uint16_t nack_list_length = 0;
VCMNackStatus ret = receiver_.NackList(nack_list, kMaxNackListSize,
&nack_list_length);
EXPECT_EQ(kNackOk, ret);
}
TEST_F(TestVCMReceiver, NonDecodableDuration_KeyFrameAfterIncompleteFrames) {
// Enable NACK and with no RTT thresholds for disabling retransmission delay.
receiver_.SetNackMode(kNack, -1, -1);
const size_t kMaxNackListSize = 1000;
const int kMaxPacketAgeToNack = 1000;
const int kMaxNonDecodableDuration = 500;
const int kMaxNonDecodableDurationFrames = (kDefaultFrameRate *
kMaxNonDecodableDuration + 500) / 1000;
const int kMinDelayMs = 500;
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
kMaxNonDecodableDuration);
receiver_.SetMinReceiverDelay(kMinDelayMs);
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
// Insert an incomplete frame.
EXPECT_GE(InsertFrame(kVideoFrameDelta, false), kNoError);
// Insert enough frames to have too long non-decodable sequence.
for (int i = 0; i < kMaxNonDecodableDurationFrames;
++i) {
EXPECT_GE(InsertFrame(kVideoFrameDelta, true), kNoError);
}
EXPECT_GE(InsertFrame(kVideoFrameKey, true), kNoError);
// Advance time until it's time to decode the key frame.
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
key_frame_inserted);
EXPECT_TRUE(DecodeNextFrame());
// Make sure we don't get a key frame request since we have a key frame
// in the list.
uint16_t nack_list[kMaxNackListSize];
uint16_t nack_list_length = 0;
VCMNackStatus ret = receiver_.NackList(nack_list, kMaxNackListSize,
&nack_list_length);
EXPECT_EQ(kNackOk, ret);
}
} // namespace webrtc