blob: b91bc16f381c9a83a3d180c1bb8dd200daa9ee92 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_processing/deflickering.h"
#include <math.h>
#include <stdlib.h>
#include "webrtc/base/logging.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/system_wrappers/include/sort.h"
namespace webrtc {
// Detection constants
// (Q4) Maximum allowed deviation for detection.
enum { kFrequencyDeviation = 39 };
// (Q4) Minimum frequency that can be detected.
enum { kMinFrequencyToDetect = 32 };
// Number of flickers before we accept detection
enum { kNumFlickerBeforeDetect = 2 };
enum { kmean_valueScaling = 4 }; // (Q4) In power of 2
// Dead-zone region in terms of pixel values
enum { kZeroCrossingDeadzone = 10 };
// Deflickering constants.
// Compute the quantiles over 1 / DownsamplingFactor of the image.
enum { kDownsamplingFactor = 8 };
enum { kLog2OfDownsamplingFactor = 3 };
// To generate in Matlab:
// >> probUW16 = round(2^11 *
// [0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.97]);
// >> fprintf('%d, ', probUW16)
// Resolution reduced to avoid overflow when multiplying with the
// (potentially) large number of pixels.
const uint16_t VPMDeflickering::prob_uw16_[kNumProbs] = {102, 205, 410, 614,
819, 1024, 1229, 1434, 1638, 1843, 1946, 1987}; // <Q11>
// To generate in Matlab:
// >> numQuants = 14; maxOnlyLength = 5;
// >> weightUW16 = round(2^15 *
// [linspace(0.5, 1.0, numQuants - maxOnlyLength)]);
// >> fprintf('%d, %d,\n ', weightUW16);
const uint16_t VPMDeflickering::weight_uw16_[kNumQuants - kMaxOnlyLength] =
{16384, 18432, 20480, 22528, 24576, 26624, 28672, 30720, 32768}; // <Q15>
VPMDeflickering::VPMDeflickering() {
Reset();
}
VPMDeflickering::~VPMDeflickering() {}
void VPMDeflickering::Reset() {
mean_buffer_length_ = 0;
detection_state_ = 0;
frame_rate_ = 0;
memset(mean_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
memset(timestamp_buffer_, 0, sizeof(int32_t) * kMeanBufferLength);
// Initialize the history with a uniformly distributed histogram.
quant_hist_uw8_[0][0] = 0;
quant_hist_uw8_[0][kNumQuants - 1] = 255;
for (int32_t i = 0; i < kNumProbs; i++) {
// Unsigned round. <Q0>
quant_hist_uw8_[0][i + 1] = static_cast<uint8_t>(
(prob_uw16_[i] * 255 + (1 << 10)) >> 11);
}
for (int32_t i = 1; i < kFrameHistory_size; i++) {
memcpy(quant_hist_uw8_[i], quant_hist_uw8_[0],
sizeof(uint8_t) * kNumQuants);
}
}
int32_t VPMDeflickering::ProcessFrame(
VideoFrame* frame,
VideoProcessingModule::FrameStats* stats) {
assert(frame);
uint32_t frame_memory;
uint8_t quant_uw8[kNumQuants];
uint8_t maxquant_uw8[kNumQuants];
uint8_t minquant_uw8[kNumQuants];
uint16_t target_quant_uw16[kNumQuants];
uint16_t increment_uw16;
uint8_t map_uw8[256];
uint16_t tmp_uw16;
uint32_t tmp_uw32;
int width = frame->width();
int height = frame->height();
if (frame->IsZeroSize()) {
return VPM_GENERAL_ERROR;
}
// Stricter height check due to subsampling size calculation below.
if (height < 2) {
LOG(LS_ERROR) << "Invalid frame size.";
return VPM_GENERAL_ERROR;
}
if (!VideoProcessingModule::ValidFrameStats(*stats)) {
return VPM_GENERAL_ERROR;
}
if (PreDetection(frame->timestamp(), *stats) == -1) return VPM_GENERAL_ERROR;
// Flicker detection
int32_t det_flicker = DetectFlicker();
if (det_flicker < 0) {
return VPM_GENERAL_ERROR;
} else if (det_flicker != 1) {
return 0;
}
// Size of luminance component.
const uint32_t y_size = height * width;
const uint32_t y_sub_size = width * (((height - 1) >>
kLog2OfDownsamplingFactor) + 1);
uint8_t* y_sorted = new uint8_t[y_sub_size];
uint32_t sort_row_idx = 0;
for (int i = 0; i < height; i += kDownsamplingFactor) {
memcpy(y_sorted + sort_row_idx * width,
frame->buffer(kYPlane) + i * width, width);
sort_row_idx++;
}
webrtc::Sort(y_sorted, y_sub_size, webrtc::TYPE_UWord8);
uint32_t prob_idx_uw32 = 0;
quant_uw8[0] = 0;
quant_uw8[kNumQuants - 1] = 255;
// Ensure we won't get an overflow below.
// In practice, the number of subsampled pixels will not become this large.
if (y_sub_size > (1 << 21) - 1) {
LOG(LS_ERROR) << "Subsampled number of pixels too large.";
return -1;
}
for (int32_t i = 0; i < kNumProbs; i++) {
// <Q0>.
prob_idx_uw32 = WEBRTC_SPL_UMUL_32_16(y_sub_size, prob_uw16_[i]) >> 11;
quant_uw8[i + 1] = y_sorted[prob_idx_uw32];
}
delete [] y_sorted;
y_sorted = NULL;
// Shift history for new frame.
memmove(quant_hist_uw8_[1], quant_hist_uw8_[0],
(kFrameHistory_size - 1) * kNumQuants * sizeof(uint8_t));
// Store current frame in history.
memcpy(quant_hist_uw8_[0], quant_uw8, kNumQuants * sizeof(uint8_t));
// We use a frame memory equal to the ceiling of half the frame rate to
// ensure we capture an entire period of flicker.
frame_memory = (frame_rate_ + (1 << 5)) >> 5; // Unsigned ceiling. <Q0>
// frame_rate_ in Q4.
if (frame_memory > kFrameHistory_size) {
frame_memory = kFrameHistory_size;
}
// Get maximum and minimum.
for (int32_t i = 0; i < kNumQuants; i++) {
maxquant_uw8[i] = 0;
minquant_uw8[i] = 255;
for (uint32_t j = 0; j < frame_memory; j++) {
if (quant_hist_uw8_[j][i] > maxquant_uw8[i]) {
maxquant_uw8[i] = quant_hist_uw8_[j][i];
}
if (quant_hist_uw8_[j][i] < minquant_uw8[i]) {
minquant_uw8[i] = quant_hist_uw8_[j][i];
}
}
}
// Get target quantiles.
for (int32_t i = 0; i < kNumQuants - kMaxOnlyLength; i++) {
// target = w * maxquant_uw8 + (1 - w) * minquant_uw8
// Weights w = |weight_uw16_| are in Q15, hence the final output has to be
// right shifted by 8 to end up in Q7.
target_quant_uw16[i] = static_cast<uint16_t>((
weight_uw16_[i] * maxquant_uw8[i] +
((1 << 15) - weight_uw16_[i]) * minquant_uw8[i]) >> 8); // <Q7>
}
for (int32_t i = kNumQuants - kMaxOnlyLength; i < kNumQuants; i++) {
target_quant_uw16[i] = ((uint16_t)maxquant_uw8[i]) << 7;
}
// Compute the map from input to output pixels.
uint16_t mapUW16; // <Q7>
for (int32_t i = 1; i < kNumQuants; i++) {
// As quant and targetQuant are limited to UWord8, it's safe to use Q7 here.
tmp_uw32 = static_cast<uint32_t>(target_quant_uw16[i] -
target_quant_uw16[i - 1]);
tmp_uw16 = static_cast<uint16_t>(quant_uw8[i] - quant_uw8[i - 1]); // <Q0>
if (tmp_uw16 > 0) {
increment_uw16 = static_cast<uint16_t>(WebRtcSpl_DivU32U16(tmp_uw32,
tmp_uw16)); // <Q7>
} else {
// The value is irrelevant; the loop below will only iterate once.
increment_uw16 = 0;
}
mapUW16 = target_quant_uw16[i - 1];
for (uint32_t j = quant_uw8[i - 1]; j < (uint32_t)(quant_uw8[i] + 1); j++) {
// Unsigned round. <Q0>
map_uw8[j] = (uint8_t)((mapUW16 + (1 << 6)) >> 7);
mapUW16 += increment_uw16;
}
}
// Map to the output frame.
uint8_t* buffer = frame->buffer(kYPlane);
for (uint32_t i = 0; i < y_size; i++) {
buffer[i] = map_uw8[buffer[i]];
}
// Frame was altered, so reset stats.
VideoProcessingModule::ClearFrameStats(stats);
return VPM_OK;
}
/**
Performs some pre-detection operations. Must be called before
DetectFlicker().
\param[in] timestamp Timestamp of the current frame.
\param[in] stats Statistics of the current frame.
\return 0: Success\n
2: Detection not possible due to flickering frequency too close to
zero.\n
-1: Error
*/
int32_t VPMDeflickering::PreDetection(const uint32_t timestamp,
const VideoProcessingModule::FrameStats& stats) {
int32_t mean_val; // Mean value of frame (Q4)
uint32_t frame_rate = 0;
int32_t meanBufferLength; // Temp variable.
mean_val = ((stats.sum << kmean_valueScaling) / stats.num_pixels);
// Update mean value buffer.
// This should be done even though we might end up in an unreliable detection.
memmove(mean_buffer_ + 1, mean_buffer_,
(kMeanBufferLength - 1) * sizeof(int32_t));
mean_buffer_[0] = mean_val;
// Update timestamp buffer.
// This should be done even though we might end up in an unreliable detection.
memmove(timestamp_buffer_ + 1, timestamp_buffer_, (kMeanBufferLength - 1) *
sizeof(uint32_t));
timestamp_buffer_[0] = timestamp;
/* Compute current frame rate (Q4) */
if (timestamp_buffer_[kMeanBufferLength - 1] != 0) {
frame_rate = ((90000 << 4) * (kMeanBufferLength - 1));
frame_rate /=
(timestamp_buffer_[0] - timestamp_buffer_[kMeanBufferLength - 1]);
} else if (timestamp_buffer_[1] != 0) {
frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
}
/* Determine required size of mean value buffer (mean_buffer_length_) */
if (frame_rate == 0) {
meanBufferLength = 1;
} else {
meanBufferLength =
(kNumFlickerBeforeDetect * frame_rate) / kMinFrequencyToDetect;
}
/* Sanity check of buffer length */
if (meanBufferLength >= kMeanBufferLength) {
/* Too long buffer. The flickering frequency is too close to zero, which
* makes the estimation unreliable.
*/
mean_buffer_length_ = 0;
return 2;
}
mean_buffer_length_ = meanBufferLength;
if ((timestamp_buffer_[mean_buffer_length_ - 1] != 0) &&
(mean_buffer_length_ != 1)) {
frame_rate = ((90000 << 4) * (mean_buffer_length_ - 1));
frame_rate /=
(timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
} else if (timestamp_buffer_[1] != 0) {
frame_rate = (90000 << 4) / (timestamp_buffer_[0] - timestamp_buffer_[1]);
}
frame_rate_ = frame_rate;
return VPM_OK;
}
/**
This function detects flicker in the video stream. As a side effect the
mean value buffer is updated with the new mean value.
\return 0: No flickering detected\n
1: Flickering detected\n
2: Detection not possible due to unreliable frequency interval
-1: Error
*/
int32_t VPMDeflickering::DetectFlicker() {
uint32_t i;
int32_t freqEst; // (Q4) Frequency estimate to base detection upon
int32_t ret_val = -1;
/* Sanity check for mean_buffer_length_ */
if (mean_buffer_length_ < 2) {
/* Not possible to estimate frequency */
return(2);
}
// Count zero crossings with a dead zone to be robust against noise. If the
// noise std is 2 pixel this corresponds to about 95% confidence interval.
int32_t deadzone = (kZeroCrossingDeadzone << kmean_valueScaling); // Q4
int32_t meanOfBuffer = 0; // Mean value of mean value buffer.
int32_t numZeros = 0; // Number of zeros that cross the dead-zone.
int32_t cntState = 0; // State variable for zero crossing regions.
int32_t cntStateOld = 0; // Previous state for zero crossing regions.
for (i = 0; i < mean_buffer_length_; i++) {
meanOfBuffer += mean_buffer_[i];
}
meanOfBuffer += (mean_buffer_length_ >> 1); // Rounding, not truncation.
meanOfBuffer /= mean_buffer_length_;
// Count zero crossings.
cntStateOld = (mean_buffer_[0] >= (meanOfBuffer + deadzone));
cntStateOld -= (mean_buffer_[0] <= (meanOfBuffer - deadzone));
for (i = 1; i < mean_buffer_length_; i++) {
cntState = (mean_buffer_[i] >= (meanOfBuffer + deadzone));
cntState -= (mean_buffer_[i] <= (meanOfBuffer - deadzone));
if (cntStateOld == 0) {
cntStateOld = -cntState;
}
if (((cntState + cntStateOld) == 0) && (cntState != 0)) {
numZeros++;
cntStateOld = cntState;
}
}
// END count zero crossings.
/* Frequency estimation according to:
* freqEst = numZeros * frame_rate / 2 / mean_buffer_length_;
*
* Resolution is set to Q4
*/
freqEst = ((numZeros * 90000) << 3);
freqEst /=
(timestamp_buffer_[0] - timestamp_buffer_[mean_buffer_length_ - 1]);
/* Translate frequency estimate to regions close to 100 and 120 Hz */
uint8_t freqState = 0; // Current translation state;
// (0) Not in interval,
// (1) Within valid interval,
// (2) Out of range
int32_t freqAlias = freqEst;
if (freqEst > kMinFrequencyToDetect) {
uint8_t aliasState = 1;
while(freqState == 0) {
/* Increase frequency */
freqAlias += (aliasState * frame_rate_);
freqAlias += ((freqEst << 1) * (1 - (aliasState << 1)));
/* Compute state */
freqState = (abs(freqAlias - (100 << 4)) <= kFrequencyDeviation);
freqState += (abs(freqAlias - (120 << 4)) <= kFrequencyDeviation);
freqState += 2 * (freqAlias > ((120 << 4) + kFrequencyDeviation));
/* Switch alias state */
aliasState++;
aliasState &= 0x01;
}
}
/* Is frequency estimate within detection region? */
if (freqState == 1) {
ret_val = 1;
} else if (freqState == 0) {
ret_val = 2;
} else {
ret_val = 0;
}
return ret_val;
}
} // namespace webrtc