blob: 0e1805a44a16e263d565691b23f015176e41e229 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_processing/content_analysis.h"
#include <emmintrin.h>
#include <math.h>
namespace webrtc {
int32_t VPMContentAnalysis::TemporalDiffMetric_SSE2() {
uint32_t num_pixels = 0; // counter for # of pixels
const uint8_t* imgBufO = orig_frame_ + border_*width_ + border_;
const uint8_t* imgBufP = prev_frame_ + border_*width_ + border_;
const int32_t width_end = ((width_ - 2*border_) & -16) + border_;
__m128i sad_64 = _mm_setzero_si128();
__m128i sum_64 = _mm_setzero_si128();
__m128i sqsum_64 = _mm_setzero_si128();
const __m128i z = _mm_setzero_si128();
for (uint16_t i = 0; i < (height_ - 2*border_); i += skip_num_) {
__m128i sqsum_32 = _mm_setzero_si128();
const uint8_t *lineO = imgBufO;
const uint8_t *lineP = imgBufP;
// Work on 16 pixels at a time. For HD content with a width of 1920
// this loop will run ~67 times (depending on border). Maximum for
// abs(o-p) and sum(o) will be 255. _mm_sad_epu8 produces 2 64 bit
// results which are then accumulated. There is no chance of
// rollover for these two accumulators.
// o*o will have a maximum of 255*255 = 65025. This will roll over
// a 16 bit accumulator as 67*65025 > 65535, but will fit in a
// 32 bit accumulator.
for (uint16_t j = 0; j < width_end - border_; j += 16) {
const __m128i o = _mm_loadu_si128((__m128i*)(lineO));
const __m128i p = _mm_loadu_si128((__m128i*)(lineP));
lineO += 16;
lineP += 16;
// Abs pixel difference between frames.
sad_64 = _mm_add_epi64 (sad_64, _mm_sad_epu8(o, p));
// sum of all pixels in frame
sum_64 = _mm_add_epi64 (sum_64, _mm_sad_epu8(o, z));
// Squared sum of all pixels in frame.
const __m128i olo = _mm_unpacklo_epi8(o,z);
const __m128i ohi = _mm_unpackhi_epi8(o,z);
const __m128i sqsum_32_lo = _mm_madd_epi16(olo, olo);
const __m128i sqsum_32_hi = _mm_madd_epi16(ohi, ohi);
sqsum_32 = _mm_add_epi32(sqsum_32, sqsum_32_lo);
sqsum_32 = _mm_add_epi32(sqsum_32, sqsum_32_hi);
}
// Add to 64 bit running sum as to not roll over.
sqsum_64 = _mm_add_epi64(sqsum_64,
_mm_add_epi64(_mm_unpackhi_epi32(sqsum_32,z),
_mm_unpacklo_epi32(sqsum_32,z)));
imgBufO += width_ * skip_num_;
imgBufP += width_ * skip_num_;
num_pixels += (width_end - border_);
}
__m128i sad_final_128;
__m128i sum_final_128;
__m128i sqsum_final_128;
// Bring sums out of vector registers and into integer register
// domain, summing them along the way.
_mm_store_si128 (&sad_final_128, sad_64);
_mm_store_si128 (&sum_final_128, sum_64);
_mm_store_si128 (&sqsum_final_128, sqsum_64);
uint64_t *sad_final_64 = reinterpret_cast<uint64_t*>(&sad_final_128);
uint64_t *sum_final_64 = reinterpret_cast<uint64_t*>(&sum_final_128);
uint64_t *sqsum_final_64 = reinterpret_cast<uint64_t*>(&sqsum_final_128);
const uint32_t pixelSum = sum_final_64[0] + sum_final_64[1];
const uint64_t pixelSqSum = sqsum_final_64[0] + sqsum_final_64[1];
const uint32_t tempDiffSum = sad_final_64[0] + sad_final_64[1];
// Default.
motion_magnitude_ = 0.0f;
if (tempDiffSum == 0) return VPM_OK;
// Normalize over all pixels.
const float tempDiffAvg = (float)tempDiffSum / (float)(num_pixels);
const float pixelSumAvg = (float)pixelSum / (float)(num_pixels);
const float pixelSqSumAvg = (float)pixelSqSum / (float)(num_pixels);
float contrast = pixelSqSumAvg - (pixelSumAvg * pixelSumAvg);
if (contrast > 0.0) {
contrast = sqrt(contrast);
motion_magnitude_ = tempDiffAvg/contrast;
}
return VPM_OK;
}
int32_t VPMContentAnalysis::ComputeSpatialMetrics_SSE2() {
const uint8_t* imgBuf = orig_frame_ + border_*width_;
const int32_t width_end = ((width_ - 2 * border_) & -16) + border_;
__m128i se_32 = _mm_setzero_si128();
__m128i sev_32 = _mm_setzero_si128();
__m128i seh_32 = _mm_setzero_si128();
__m128i msa_32 = _mm_setzero_si128();
const __m128i z = _mm_setzero_si128();
// Error is accumulated as a 32 bit value. Looking at HD content with a
// height of 1080 lines, or about 67 macro blocks. If the 16 bit row
// value is maxed out at 65529 for every row, 65529*1080 = 70777800, which
// will not roll over a 32 bit accumulator.
// skip_num_ is also used to reduce the number of rows
for (int32_t i = 0; i < (height_ - 2*border_); i += skip_num_) {
__m128i se_16 = _mm_setzero_si128();
__m128i sev_16 = _mm_setzero_si128();
__m128i seh_16 = _mm_setzero_si128();
__m128i msa_16 = _mm_setzero_si128();
// Row error is accumulated as a 16 bit value. There are 8
// accumulators. Max value of a 16 bit number is 65529. Looking
// at HD content, 1080p, has a width of 1920, 120 macro blocks.
// A mb at a time is processed at a time. Absolute max error at
// a point would be abs(0-255+255+255+255) which equals 1020.
// 120*1020 = 122400. The probability of hitting this is quite low
// on well behaved content. A specially crafted image could roll over.
// border_ could also be adjusted to concentrate on just the center of
// the images for an HD capture in order to reduce the possiblity of
// rollover.
const uint8_t *lineTop = imgBuf - width_ + border_;
const uint8_t *lineCen = imgBuf + border_;
const uint8_t *lineBot = imgBuf + width_ + border_;
for (int32_t j = 0; j < width_end - border_; j += 16) {
const __m128i t = _mm_loadu_si128((__m128i*)(lineTop));
const __m128i l = _mm_loadu_si128((__m128i*)(lineCen - 1));
const __m128i c = _mm_loadu_si128((__m128i*)(lineCen));
const __m128i r = _mm_loadu_si128((__m128i*)(lineCen + 1));
const __m128i b = _mm_loadu_si128((__m128i*)(lineBot));
lineTop += 16;
lineCen += 16;
lineBot += 16;
// center pixel unpacked
__m128i clo = _mm_unpacklo_epi8(c,z);
__m128i chi = _mm_unpackhi_epi8(c,z);
// left right pixels unpacked and added together
const __m128i lrlo = _mm_add_epi16(_mm_unpacklo_epi8(l,z),
_mm_unpacklo_epi8(r,z));
const __m128i lrhi = _mm_add_epi16(_mm_unpackhi_epi8(l,z),
_mm_unpackhi_epi8(r,z));
// top & bottom pixels unpacked and added together
const __m128i tblo = _mm_add_epi16(_mm_unpacklo_epi8(t,z),
_mm_unpacklo_epi8(b,z));
const __m128i tbhi = _mm_add_epi16(_mm_unpackhi_epi8(t,z),
_mm_unpackhi_epi8(b,z));
// running sum of all pixels
msa_16 = _mm_add_epi16(msa_16, _mm_add_epi16(chi, clo));
clo = _mm_slli_epi16(clo, 1);
chi = _mm_slli_epi16(chi, 1);
const __m128i sevtlo = _mm_subs_epi16(clo, tblo);
const __m128i sevthi = _mm_subs_epi16(chi, tbhi);
const __m128i sehtlo = _mm_subs_epi16(clo, lrlo);
const __m128i sehthi = _mm_subs_epi16(chi, lrhi);
clo = _mm_slli_epi16(clo, 1);
chi = _mm_slli_epi16(chi, 1);
const __m128i setlo = _mm_subs_epi16(clo, _mm_add_epi16(lrlo, tblo));
const __m128i sethi = _mm_subs_epi16(chi, _mm_add_epi16(lrhi, tbhi));
// Add to 16 bit running sum
se_16 = _mm_add_epi16(se_16, _mm_max_epi16(setlo,
_mm_subs_epi16(z, setlo)));
se_16 = _mm_add_epi16(se_16, _mm_max_epi16(sethi,
_mm_subs_epi16(z, sethi)));
sev_16 = _mm_add_epi16(sev_16, _mm_max_epi16(sevtlo,
_mm_subs_epi16(z, sevtlo)));
sev_16 = _mm_add_epi16(sev_16, _mm_max_epi16(sevthi,
_mm_subs_epi16(z, sevthi)));
seh_16 = _mm_add_epi16(seh_16, _mm_max_epi16(sehtlo,
_mm_subs_epi16(z, sehtlo)));
seh_16 = _mm_add_epi16(seh_16, _mm_max_epi16(sehthi,
_mm_subs_epi16(z, sehthi)));
}
// Add to 32 bit running sum as to not roll over.
se_32 = _mm_add_epi32(se_32, _mm_add_epi32(_mm_unpackhi_epi16(se_16,z),
_mm_unpacklo_epi16(se_16,z)));
sev_32 = _mm_add_epi32(sev_32, _mm_add_epi32(_mm_unpackhi_epi16(sev_16,z),
_mm_unpacklo_epi16(sev_16,z)));
seh_32 = _mm_add_epi32(seh_32, _mm_add_epi32(_mm_unpackhi_epi16(seh_16,z),
_mm_unpacklo_epi16(seh_16,z)));
msa_32 = _mm_add_epi32(msa_32, _mm_add_epi32(_mm_unpackhi_epi16(msa_16,z),
_mm_unpacklo_epi16(msa_16,z)));
imgBuf += width_ * skip_num_;
}
__m128i se_128;
__m128i sev_128;
__m128i seh_128;
__m128i msa_128;
// Bring sums out of vector registers and into integer register
// domain, summing them along the way.
_mm_store_si128 (&se_128, _mm_add_epi64(_mm_unpackhi_epi32(se_32,z),
_mm_unpacklo_epi32(se_32,z)));
_mm_store_si128 (&sev_128, _mm_add_epi64(_mm_unpackhi_epi32(sev_32,z),
_mm_unpacklo_epi32(sev_32,z)));
_mm_store_si128 (&seh_128, _mm_add_epi64(_mm_unpackhi_epi32(seh_32,z),
_mm_unpacklo_epi32(seh_32,z)));
_mm_store_si128 (&msa_128, _mm_add_epi64(_mm_unpackhi_epi32(msa_32,z),
_mm_unpacklo_epi32(msa_32,z)));
uint64_t *se_64 = reinterpret_cast<uint64_t*>(&se_128);
uint64_t *sev_64 = reinterpret_cast<uint64_t*>(&sev_128);
uint64_t *seh_64 = reinterpret_cast<uint64_t*>(&seh_128);
uint64_t *msa_64 = reinterpret_cast<uint64_t*>(&msa_128);
const uint32_t spatialErrSum = se_64[0] + se_64[1];
const uint32_t spatialErrVSum = sev_64[0] + sev_64[1];
const uint32_t spatialErrHSum = seh_64[0] + seh_64[1];
const uint32_t pixelMSA = msa_64[0] + msa_64[1];
// Normalize over all pixels.
const float spatialErr = (float)(spatialErrSum >> 2);
const float spatialErrH = (float)(spatialErrHSum >> 1);
const float spatialErrV = (float)(spatialErrVSum >> 1);
const float norm = (float)pixelMSA;
// 2X2:
spatial_pred_err_ = spatialErr / norm;
// 1X2:
spatial_pred_err_h_ = spatialErrH / norm;
// 2X1:
spatial_pred_err_v_ = spatialErrV / norm;
return VPM_OK;
}
} // namespace webrtc