blob: 5524ba5a0f658745c34609eda2911b0846407bcb [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video_engine/overuse_frame_detector.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace {
const int kWidth = 640;
const int kHeight = 480;
const int kFrameInterval33ms = 33;
const int kProcessIntervalMs = 5000;
const int kProcessTime5ms = 5;
} // namespace
class MockCpuOveruseObserver : public CpuOveruseObserver {
public:
MockCpuOveruseObserver() {}
virtual ~MockCpuOveruseObserver() {}
MOCK_METHOD0(OveruseDetected, void());
MOCK_METHOD0(NormalUsage, void());
};
class CpuOveruseObserverImpl : public CpuOveruseObserver {
public:
CpuOveruseObserverImpl() :
overuse_(0),
normaluse_(0) {}
virtual ~CpuOveruseObserverImpl() {}
void OveruseDetected() { ++overuse_; }
void NormalUsage() { ++normaluse_; }
int overuse_;
int normaluse_;
};
class OveruseFrameDetectorTest : public ::testing::Test,
public CpuOveruseMetricsObserver {
protected:
virtual void SetUp() {
clock_.reset(new SimulatedClock(1234));
observer_.reset(new MockCpuOveruseObserver());
options_.min_process_count = 0;
ReinitializeOveruseDetector();
}
void ReinitializeOveruseDetector() {
overuse_detector_.reset(new OveruseFrameDetector(clock_.get(), options_,
observer_.get(), this));
}
void CpuOveruseMetricsUpdated(const CpuOveruseMetrics& metrics) override {
metrics_ = metrics;
}
int InitialUsage() {
return ((options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5;
}
void InsertAndSendFramesWithInterval(
int num_frames, int interval_ms, int width, int height, int delay_ms) {
while (num_frames-- > 0) {
int64_t capture_time_ms = clock_->TimeInMilliseconds();
overuse_detector_->FrameCaptured(width, height, capture_time_ms);
clock_->AdvanceTimeMilliseconds(delay_ms);
overuse_detector_->FrameEncoded(delay_ms);
overuse_detector_->FrameSent(capture_time_ms);
clock_->AdvanceTimeMilliseconds(interval_ms - delay_ms);
}
}
void TriggerOveruse(int num_times) {
const int kDelayMs = 32;
for (int i = 0; i < num_times; ++i) {
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kDelayMs);
overuse_detector_->Process();
}
}
void TriggerUnderuse() {
const int kDelayMs1 = 5;
const int kDelayMs2 = 6;
InsertAndSendFramesWithInterval(
1300, kFrameInterval33ms, kWidth, kHeight, kDelayMs1);
InsertAndSendFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kDelayMs2);
overuse_detector_->Process();
}
int AvgEncodeTimeMs() { return metrics_.avg_encode_time_ms; }
int UsagePercent() { return metrics_.encode_usage_percent; }
CpuOveruseOptions options_;
rtc::scoped_ptr<SimulatedClock> clock_;
rtc::scoped_ptr<MockCpuOveruseObserver> observer_;
rtc::scoped_ptr<OveruseFrameDetector> overuse_detector_;
CpuOveruseMetrics metrics_;
};
// enable_encode_usage_method = true;
// enable_extended_processing_usage = false;
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
options_.enable_extended_processing_usage = false;
ReinitializeOveruseDetector();
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
options_.enable_extended_processing_usage = false;
ReinitializeOveruseDetector();
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
options_.enable_extended_processing_usage = false;
overuse_detector_.reset(
new OveruseFrameDetector(clock_.get(), options_, nullptr, this));
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithMethodDisabled) {
options_.enable_encode_usage_method = false;
options_.enable_extended_processing_usage = false;
ReinitializeOveruseDetector();
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
options_.enable_extended_processing_usage = false;
ReinitializeOveruseDetector();
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(2);
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
options_.enable_extended_processing_usage = false;
options_.min_process_count = 1;
CpuOveruseObserverImpl overuse_observer;
overuse_detector_.reset(new OveruseFrameDetector(clock_.get(), options_,
&overuse_observer, this));
InsertAndSendFramesWithInterval(
1200, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
overuse_detector_->Process();
EXPECT_EQ(0, overuse_observer.normaluse_);
clock_->AdvanceTimeMilliseconds(kProcessIntervalMs);
overuse_detector_->Process();
EXPECT_EQ(1, overuse_observer.normaluse_);
}
TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
options_.enable_extended_processing_usage = false;
ReinitializeOveruseDetector();
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(64);
for (size_t i = 0; i < 64; ++i) {
TriggerOveruse(options_.high_threshold_consecutive_count);
}
}
TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
options_.enable_extended_processing_usage = false;
options_.high_threshold_consecutive_count = 2;
ReinitializeOveruseDetector();
TriggerOveruse(2);
}
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
options_.enable_extended_processing_usage = false;
options_.high_threshold_consecutive_count = 2;
ReinitializeOveruseDetector();
TriggerOveruse(1);
}
TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_EQ(kProcessTime5ms * 100 / kFrameInterval33ms, UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) {
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset.
InsertAndSendFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight + 1, kProcessTime5ms);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset.
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms + 1, kWidth, kHeight,
kProcessTime5ms);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) {
options_.min_frame_samples = 40;
ReinitializeOveruseDetector();
InsertAndSendFramesWithInterval(
40, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_OneFrameDisabled) {
options_.enable_extended_processing_usage = false;
ReinitializeOveruseDetector();
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameSent(33);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_OneFrame) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
overuse_detector_->FrameSent(33);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(0, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_TwoFrames) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
const int kProcessingTimeMs1 = 100;
const int kProcessingTimeMs2 = 50;
const int kTimeBetweenFramesMs = 200;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs1);
overuse_detector_->FrameSent(33);
EXPECT_EQ(kProcessingTimeMs1, overuse_detector_->LastProcessingTimeMs());
clock_->AdvanceTimeMilliseconds(kTimeBetweenFramesMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 66);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs2);
overuse_detector_->FrameSent(66);
EXPECT_EQ(kProcessingTimeMs2, overuse_detector_->LastProcessingTimeMs());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_MaxQueueSize) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
const int kMaxQueueSize = 91;
for (int i = 0; i < kMaxQueueSize * 2; ++i) {
overuse_detector_->FrameCaptured(kWidth, kHeight, i);
}
EXPECT_EQ(kMaxQueueSize, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_NonProcessedFramesRemoved) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 35);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 66);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameCaptured(kWidth, kHeight, 99);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(4, overuse_detector_->FramesInQueue());
overuse_detector_->FrameSent(66);
// Frame 33, 35 removed, 66 processed, 99 not processed.
EXPECT_EQ(2 * kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(1, overuse_detector_->FramesInQueue());
overuse_detector_->FrameSent(99);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(0, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_ResetClearsFrames) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
EXPECT_EQ(1, overuse_detector_->FramesInQueue());
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
// Verify reset (resolution changed).
overuse_detector_->FrameCaptured(kWidth, kHeight + 1, 66);
EXPECT_EQ(1, overuse_detector_->FramesInQueue());
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameSent(66);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
EXPECT_EQ(0, overuse_detector_->FramesInQueue());
}
TEST_F(OveruseFrameDetectorTest, FrameDelay_NonMatchingSendFrameIgnored) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
const int kProcessingTimeMs = 100;
overuse_detector_->FrameCaptured(kWidth, kHeight, 33);
clock_->AdvanceTimeMilliseconds(kProcessingTimeMs);
overuse_detector_->FrameSent(34);
EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs());
overuse_detector_->FrameSent(33);
EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs());
}
TEST_F(OveruseFrameDetectorTest, EncodedFrame) {
const int kInitialAvgEncodeTimeInMs = 5;
EXPECT_EQ(kInitialAvgEncodeTimeInMs, AvgEncodeTimeMs());
for (int i = 0; i < 30; i++) {
clock_->AdvanceTimeMilliseconds(33);
overuse_detector_->FrameEncoded(2);
}
EXPECT_EQ(2, AvgEncodeTimeMs());
}
// enable_encode_usage_method = true;
// enable_extended_processing_usage = true;
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithExtendedProcessingUsage) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithExtendedProcessingUsage) {
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest,
OveruseAndRecoverWithExtendedProcessingUsageMethodDisabled) {
options_.enable_encode_usage_method = false;
options_.enable_extended_processing_usage = true;
ReinitializeOveruseDetector();
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerUnderuse();
}
} // namespace webrtc