blob: 9caa2eb0a158b6c0c54cdb00864bf5a3344df3c3 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
//
// Unit tests for intelligibility utils.
//
#include <math.h>
#include <complex>
#include <iostream>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/arraysize.h"
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
using std::complex;
using std::vector;
namespace webrtc {
namespace intelligibility {
vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) {
vector<vector<complex<float>>> data(samples);
for (int i = 0; i < samples; i++) {
for (int j = 0; j < freqs; j++) {
const float val = 0.99f / ((i + 1) * (j + 1));
data[i].push_back(complex<float>(val, val));
}
}
return data;
}
// Tests UpdateFactor.
TEST(IntelligibilityUtilsTest, TestUpdateFactor) {
EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0));
EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3));
EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1));
EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3));
EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1));
}
// Tests zerofudge.
TEST(IntelligibilityUtilsTest, TestCplx) {
complex<float> t0(1.f, 0.f);
t0 = intelligibility::zerofudge(t0);
EXPECT_NE(t0.imag(), 0.f);
EXPECT_NE(t0.real(), 0.f);
}
// Tests NewMean and AddToMean.
TEST(IntelligibilityUtilsTest, TestMeanUpdate) {
const complex<float> data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}};
const complex<float> means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}};
complex<float> mean(3, 8);
for (size_t i = 0; i < arraysize(data); i++) {
EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1));
AddToMean(data[i], i + 1, &mean);
EXPECT_EQ(means[i], mean);
}
}
// Tests VarianceArray, for all variance step types.
TEST(IntelligibilityUtilsTest, TestVarianceArray) {
const int kFreqs = 10;
const int kSamples = 100;
const int kWindowSize = 10; // Should pass for all kWindowSize > 1.
const float kDecay = 0.5f;
vector<VarianceArray::StepType> step_types;
step_types.push_back(VarianceArray::kStepInfinite);
step_types.push_back(VarianceArray::kStepDecaying);
step_types.push_back(VarianceArray::kStepWindowed);
step_types.push_back(VarianceArray::kStepBlocked);
step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
const vector<vector<complex<float>>> test_data(
GenerateTestData(kFreqs, kSamples));
for (auto step_type : step_types) {
VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay);
EXPECT_EQ(0, variance_array.variance()[0]);
EXPECT_EQ(0, variance_array.array_mean());
variance_array.ApplyScale(2.0f);
EXPECT_EQ(0, variance_array.variance()[0]);
EXPECT_EQ(0, variance_array.array_mean());
// Makes sure Step is doing something.
variance_array.Step(&test_data[0][0]);
for (int i = 1; i < kSamples; i++) {
variance_array.Step(&test_data[i][0]);
EXPECT_GE(variance_array.array_mean(), 0.0f);
EXPECT_LE(variance_array.array_mean(), 1.0f);
for (int j = 0; j < kFreqs; j++) {
EXPECT_GE(variance_array.variance()[j], 0.0f);
EXPECT_LE(variance_array.variance()[j], 1.0f);
}
}
variance_array.Clear();
EXPECT_EQ(0, variance_array.variance()[0]);
EXPECT_EQ(0, variance_array.array_mean());
}
}
// Tests exact computation on synthetic data.
TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) {
// Exact, not unbiased estimates.
const float kTestVarianceBufferNotFull = 16.5f;
const float kTestVarianceBufferFull1 = 66.5f;
const float kTestVarianceBufferFull2 = 333.375f;
const int kFreqs = 2;
const int kSamples = 50;
const int kWindowSize = 2;
const float kDecay = 0.5f;
const float kMaxError = 0.0001f;
VarianceArray variance_array(
kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay);
vector<vector<complex<float>>> test_data(kSamples);
for (int i = 0; i < kSamples; i++) {
for (int j = 0; j < kFreqs; j++) {
if (i < 30) {
test_data[i].push_back(complex<float>(static_cast<float>(kSamples - i),
static_cast<float>(i + 1)));
} else {
test_data[i].push_back(complex<float>(0.f, 0.f));
}
}
}
for (int i = 0; i < kSamples; i++) {
variance_array.Step(&test_data[i][0]);
for (int j = 0; j < kFreqs; j++) {
if (i < 9) { // In utils, kWindowBlockSize = 10.
EXPECT_EQ(0, variance_array.variance()[j]);
} else if (i < 19) {
EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j],
kMaxError);
} else if (i < 39) {
EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j],
kMaxError);
} else if (i < 49) {
EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j],
kMaxError);
} else {
EXPECT_EQ(0, variance_array.variance()[j]);
}
}
}
}
// Tests gain applier.
TEST(IntelligibilityUtilsTest, TestGainApplier) {
const int kFreqs = 10;
const int kSamples = 100;
const float kChangeLimit = 0.1f;
GainApplier gain_applier(kFreqs, kChangeLimit);
const vector<vector<complex<float>>> in_data(
GenerateTestData(kFreqs, kSamples));
vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples));
for (int i = 0; i < kSamples; i++) {
gain_applier.Apply(&in_data[i][0], &out_data[i][0]);
for (int j = 0; j < kFreqs; j++) {
EXPECT_GT(out_data[i][j].real(), 0.0f);
EXPECT_LT(out_data[i][j].real(), 1.0f);
EXPECT_GT(out_data[i][j].imag(), 0.0f);
EXPECT_LT(out_data[i][j].imag(), 1.0f);
}
}
}
} // namespace intelligibility
} // namespace webrtc