blob: 63341b1c2e15230281ce1b0ffcc07ff2f14bf5bf [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <deque>
#include <map>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/thread_annotations.h"
#include "webrtc/call.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_header_parser.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/cpu_info.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/event_wrapper.h"
#include "webrtc/system_wrappers/interface/sleep.h"
#include "webrtc/test/call_test.h"
#include "webrtc/test/direct_transport.h"
#include "webrtc/test/encoder_settings.h"
#include "webrtc/test/fake_encoder.h"
#include "webrtc/test/frame_generator.h"
#include "webrtc/test/frame_generator_capturer.h"
#include "webrtc/test/statistics.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/typedefs.h"
namespace webrtc {
static const int kFullStackTestDurationSecs = 60;
struct FullStackTestParams {
const char* test_label;
struct {
const char* name;
size_t width, height;
int fps;
} clip;
bool screenshare;
int min_bitrate_bps;
int target_bitrate_bps;
int max_bitrate_bps;
double avg_psnr_threshold;
double avg_ssim_threshold;
int test_durations_secs;
FakeNetworkPipe::Config link;
};
class FullStackTest : public test::CallTest {
protected:
void RunTest(const FullStackTestParams& params);
};
class VideoAnalyzer : public PacketReceiver,
public newapi::Transport,
public VideoRenderer,
public VideoSendStreamInput {
public:
VideoAnalyzer(VideoSendStreamInput* input,
Transport* transport,
const char* test_label,
double avg_psnr_threshold,
double avg_ssim_threshold,
int duration_frames)
: input_(input),
transport_(transport),
receiver_(nullptr),
test_label_(test_label),
frames_to_process_(duration_frames),
frames_recorded_(0),
frames_processed_(0),
dropped_frames_(0),
last_render_time_(0),
rtp_timestamp_delta_(0),
avg_psnr_threshold_(avg_psnr_threshold),
avg_ssim_threshold_(avg_ssim_threshold),
comparison_available_event_(EventWrapper::Create()),
done_(EventWrapper::Create()) {
// Create thread pool for CPU-expensive PSNR/SSIM calculations.
// Try to use about as many threads as cores, but leave kMinCoresLeft alone,
// so that we don't accidentally starve "real" worker threads (codec etc).
// Also, don't allocate more than kMaxComparisonThreads, even if there are
// spare cores.
uint32_t num_cores = CpuInfo::DetectNumberOfCores();
DCHECK_GE(num_cores, 1u);
static const uint32_t kMinCoresLeft = 4;
static const uint32_t kMaxComparisonThreads = 8;
if (num_cores <= kMinCoresLeft) {
num_cores = 1;
} else {
num_cores -= kMinCoresLeft;
num_cores = std::min(num_cores, kMaxComparisonThreads);
}
for (uint32_t i = 0; i < num_cores; ++i) {
rtc::scoped_ptr<ThreadWrapper> thread =
ThreadWrapper::CreateThread(&FrameComparisonThread, this, "Analyzer");
EXPECT_TRUE(thread->Start());
comparison_thread_pool_.push_back(thread.release());
}
}
~VideoAnalyzer() {
for (ThreadWrapper* thread : comparison_thread_pool_) {
EXPECT_TRUE(thread->Stop());
delete thread;
}
}
virtual void SetReceiver(PacketReceiver* receiver) { receiver_ = receiver; }
DeliveryStatus DeliverPacket(MediaType media_type, const uint8_t* packet,
size_t length) override {
rtc::scoped_ptr<RtpHeaderParser> parser(RtpHeaderParser::Create());
RTPHeader header;
parser->Parse(packet, length, &header);
{
rtc::CritScope lock(&crit_);
recv_times_[header.timestamp - rtp_timestamp_delta_] =
Clock::GetRealTimeClock()->CurrentNtpInMilliseconds();
}
return receiver_->DeliverPacket(media_type, packet, length);
}
void IncomingCapturedFrame(const VideoFrame& video_frame) override {
VideoFrame copy = video_frame;
copy.set_timestamp(copy.ntp_time_ms() * 90);
{
rtc::CritScope lock(&crit_);
if (first_send_frame_.IsZeroSize() && rtp_timestamp_delta_ == 0)
first_send_frame_ = copy;
frames_.push_back(copy);
}
input_->IncomingCapturedFrame(video_frame);
}
bool SendRtp(const uint8_t* packet, size_t length) override {
rtc::scoped_ptr<RtpHeaderParser> parser(RtpHeaderParser::Create());
RTPHeader header;
parser->Parse(packet, length, &header);
{
rtc::CritScope lock(&crit_);
if (rtp_timestamp_delta_ == 0) {
rtp_timestamp_delta_ =
header.timestamp - first_send_frame_.timestamp();
first_send_frame_.Reset();
}
send_times_[header.timestamp - rtp_timestamp_delta_] =
Clock::GetRealTimeClock()->CurrentNtpInMilliseconds();
}
return transport_->SendRtp(packet, length);
}
bool SendRtcp(const uint8_t* packet, size_t length) override {
return transport_->SendRtcp(packet, length);
}
void RenderFrame(const VideoFrame& video_frame,
int time_to_render_ms) override {
int64_t render_time_ms =
Clock::GetRealTimeClock()->CurrentNtpInMilliseconds();
uint32_t send_timestamp = video_frame.timestamp() - rtp_timestamp_delta_;
rtc::CritScope lock(&crit_);
while (frames_.front().timestamp() < send_timestamp) {
AddFrameComparison(frames_.front(), last_rendered_frame_, true,
render_time_ms);
frames_.pop_front();
}
VideoFrame reference_frame = frames_.front();
frames_.pop_front();
assert(!reference_frame.IsZeroSize());
EXPECT_EQ(reference_frame.timestamp(), send_timestamp);
assert(reference_frame.timestamp() == send_timestamp);
AddFrameComparison(reference_frame, video_frame, false, render_time_ms);
last_rendered_frame_ = video_frame;
}
bool IsTextureSupported() const override { return false; }
void Wait() {
// Frame comparisons can be very expensive. Wait for test to be done, but
// at time-out check if frames_processed is going up. If so, give it more
// time, otherwise fail. Hopefully this will reduce test flakiness.
int last_frames_processed = -1;
EventTypeWrapper eventType;
while ((eventType = done_->Wait(FullStackTest::kDefaultTimeoutMs)) !=
kEventSignaled) {
int frames_processed;
{
rtc::CritScope crit(&comparison_lock_);
frames_processed = frames_processed_;
}
if (last_frames_processed == -1) {
last_frames_processed = frames_processed;
continue;
}
ASSERT_GT(frames_processed, last_frames_processed)
<< "Analyzer stalled while waiting for test to finish.";
last_frames_processed = frames_processed;
}
}
VideoSendStreamInput* input_;
Transport* transport_;
PacketReceiver* receiver_;
private:
struct FrameComparison {
FrameComparison()
: dropped(false), send_time_ms(0), recv_time_ms(0), render_time_ms(0) {}
FrameComparison(const VideoFrame& reference,
const VideoFrame& render,
bool dropped,
int64_t send_time_ms,
int64_t recv_time_ms,
int64_t render_time_ms)
: reference(reference),
render(render),
dropped(dropped),
send_time_ms(send_time_ms),
recv_time_ms(recv_time_ms),
render_time_ms(render_time_ms) {}
VideoFrame reference;
VideoFrame render;
bool dropped;
int64_t send_time_ms;
int64_t recv_time_ms;
int64_t render_time_ms;
};
void AddFrameComparison(const VideoFrame& reference,
const VideoFrame& render,
bool dropped,
int64_t render_time_ms)
EXCLUSIVE_LOCKS_REQUIRED(crit_) {
int64_t send_time_ms = send_times_[reference.timestamp()];
send_times_.erase(reference.timestamp());
int64_t recv_time_ms = recv_times_[reference.timestamp()];
recv_times_.erase(reference.timestamp());
rtc::CritScope crit(&comparison_lock_);
comparisons_.push_back(FrameComparison(reference,
render,
dropped,
send_time_ms,
recv_time_ms,
render_time_ms));
comparison_available_event_->Set();
}
static bool FrameComparisonThread(void* obj) {
return static_cast<VideoAnalyzer*>(obj)->CompareFrames();
}
bool CompareFrames() {
if (AllFramesRecorded())
return false;
VideoFrame reference;
VideoFrame render;
FrameComparison comparison;
if (!PopComparison(&comparison)) {
// Wait until new comparison task is available, or test is done.
// If done, wake up remaining threads waiting.
comparison_available_event_->Wait(1000);
if (AllFramesRecorded()) {
comparison_available_event_->Set();
return false;
}
return true; // Try again.
}
PerformFrameComparison(comparison);
if (FrameProcessed()) {
PrintResults();
done_->Set();
comparison_available_event_->Set();
return false;
}
return true;
}
bool PopComparison(FrameComparison* comparison) {
rtc::CritScope crit(&comparison_lock_);
// If AllFramesRecorded() is true, it means we have already popped
// frames_to_process_ frames from comparisons_, so there is no more work
// for this thread to be done. frames_processed_ might still be lower if
// all comparisons are not done, but those frames are currently being
// worked on by other threads.
if (comparisons_.empty() || AllFramesRecorded())
return false;
*comparison = comparisons_.front();
comparisons_.pop_front();
FrameRecorded();
return true;
}
// Increment counter for number of frames received for comparison.
void FrameRecorded() {
rtc::CritScope crit(&comparison_lock_);
++frames_recorded_;
}
// Returns true if all frames to be compared have been taken from the queue.
bool AllFramesRecorded() {
rtc::CritScope crit(&comparison_lock_);
assert(frames_recorded_ <= frames_to_process_);
return frames_recorded_ == frames_to_process_;
}
// Increase count of number of frames processed. Returns true if this was the
// last frame to be processed.
bool FrameProcessed() {
rtc::CritScope crit(&comparison_lock_);
++frames_processed_;
assert(frames_processed_ <= frames_to_process_);
return frames_processed_ == frames_to_process_;
}
void PrintResults() {
rtc::CritScope crit(&comparison_lock_);
PrintResult("psnr", psnr_, " dB");
PrintResult("ssim", ssim_, "");
PrintResult("sender_time", sender_time_, " ms");
printf("RESULT dropped_frames: %s = %d frames\n", test_label_,
dropped_frames_);
PrintResult("receiver_time", receiver_time_, " ms");
PrintResult("total_delay_incl_network", end_to_end_, " ms");
PrintResult("time_between_rendered_frames", rendered_delta_, " ms");
EXPECT_GT(psnr_.Mean(), avg_psnr_threshold_);
EXPECT_GT(ssim_.Mean(), avg_ssim_threshold_);
}
void PerformFrameComparison(const FrameComparison& comparison) {
// Perform expensive psnr and ssim calculations while not holding lock.
double psnr = I420PSNR(&comparison.reference, &comparison.render);
double ssim = I420SSIM(&comparison.reference, &comparison.render);
rtc::CritScope crit(&comparison_lock_);
psnr_.AddSample(psnr);
ssim_.AddSample(ssim);
if (comparison.dropped) {
++dropped_frames_;
return;
}
if (last_render_time_ != 0)
rendered_delta_.AddSample(comparison.render_time_ms - last_render_time_);
last_render_time_ = comparison.render_time_ms;
int64_t input_time_ms = comparison.reference.ntp_time_ms();
sender_time_.AddSample(comparison.send_time_ms - input_time_ms);
receiver_time_.AddSample(comparison.render_time_ms -
comparison.recv_time_ms);
end_to_end_.AddSample(comparison.render_time_ms - input_time_ms);
}
void PrintResult(const char* result_type,
test::Statistics stats,
const char* unit) {
printf("RESULT %s: %s = {%f, %f}%s\n",
result_type,
test_label_,
stats.Mean(),
stats.StandardDeviation(),
unit);
}
const char* const test_label_;
test::Statistics sender_time_;
test::Statistics receiver_time_;
test::Statistics psnr_;
test::Statistics ssim_;
test::Statistics end_to_end_;
test::Statistics rendered_delta_;
const int frames_to_process_;
int frames_recorded_;
int frames_processed_;
int dropped_frames_;
int64_t last_render_time_;
uint32_t rtp_timestamp_delta_;
rtc::CriticalSection crit_;
std::deque<VideoFrame> frames_ GUARDED_BY(crit_);
VideoFrame last_rendered_frame_ GUARDED_BY(crit_);
std::map<uint32_t, int64_t> send_times_ GUARDED_BY(crit_);
std::map<uint32_t, int64_t> recv_times_ GUARDED_BY(crit_);
VideoFrame first_send_frame_ GUARDED_BY(crit_);
const double avg_psnr_threshold_;
const double avg_ssim_threshold_;
rtc::CriticalSection comparison_lock_;
std::vector<ThreadWrapper*> comparison_thread_pool_;
const rtc::scoped_ptr<EventWrapper> comparison_available_event_;
std::deque<FrameComparison> comparisons_ GUARDED_BY(comparison_lock_);
const rtc::scoped_ptr<EventWrapper> done_;
};
void FullStackTest::RunTest(const FullStackTestParams& params) {
test::DirectTransport send_transport(params.link);
test::DirectTransport recv_transport(params.link);
VideoAnalyzer analyzer(nullptr, &send_transport, params.test_label,
params.avg_psnr_threshold, params.avg_ssim_threshold,
params.test_durations_secs * params.clip.fps);
CreateCalls(Call::Config(&analyzer), Call::Config(&recv_transport));
analyzer.SetReceiver(receiver_call_->Receiver());
send_transport.SetReceiver(&analyzer);
recv_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1);
rtc::scoped_ptr<VideoEncoder> encoder(
VideoEncoder::Create(VideoEncoder::kVp8));
send_config_.encoder_settings.encoder = encoder.get();
send_config_.encoder_settings.payload_name = "VP8";
send_config_.encoder_settings.payload_type = 124;
send_config_.rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config_.rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[0]);
send_config_.rtp.rtx.payload_type = kSendRtxPayloadType;
VideoStream* stream = &encoder_config_.streams[0];
stream->width = params.clip.width;
stream->height = params.clip.height;
stream->min_bitrate_bps = params.min_bitrate_bps;
stream->target_bitrate_bps = params.target_bitrate_bps;
stream->max_bitrate_bps = params.max_bitrate_bps;
stream->max_framerate = params.clip.fps;
if (params.screenshare) {
encoder_config_.content_type = VideoEncoderConfig::ContentType::kScreen;
encoder_config_.min_transmit_bitrate_bps = 400 * 1000;
VideoCodecVP8 vp8_settings = VideoEncoder::GetDefaultVp8Settings();
vp8_settings.denoisingOn = false;
vp8_settings.frameDroppingOn = false;
vp8_settings.numberOfTemporalLayers = 2;
encoder_config_.encoder_specific_settings = &vp8_settings;
stream->temporal_layer_thresholds_bps.clear();
stream->temporal_layer_thresholds_bps.push_back(stream->target_bitrate_bps);
}
CreateMatchingReceiveConfigs();
receive_configs_[0].renderer = &analyzer;
receive_configs_[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
receive_configs_[0].rtp.rtx[kSendRtxPayloadType].ssrc = kSendRtxSsrcs[0];
receive_configs_[0].rtp.rtx[kSendRtxPayloadType].payload_type =
kSendRtxPayloadType;
CreateStreams();
analyzer.input_ = send_stream_->Input();
if (params.screenshare) {
std::vector<std::string> slides;
slides.push_back(test::ResourcePath("web_screenshot_1850_1110", "yuv"));
slides.push_back(test::ResourcePath("presentation_1850_1110", "yuv"));
slides.push_back(test::ResourcePath("photo_1850_1110", "yuv"));
slides.push_back(test::ResourcePath("difficult_photo_1850_1110", "yuv"));
rtc::scoped_ptr<test::FrameGenerator> frame_generator(
test::FrameGenerator::CreateFromYuvFile(
slides, 1850, 1110,
10 * params.clip.fps) // Cycle image every 10 seconds.
);
frame_generator_capturer_.reset(new test::FrameGeneratorCapturer(
Clock::GetRealTimeClock(), &analyzer, frame_generator.release(),
params.clip.fps));
ASSERT_TRUE(frame_generator_capturer_->Init());
} else {
frame_generator_capturer_.reset(
test::FrameGeneratorCapturer::CreateFromYuvFile(
&analyzer, test::ResourcePath(params.clip.name, "yuv"),
params.clip.width, params.clip.height, params.clip.fps,
Clock::GetRealTimeClock()));
ASSERT_TRUE(frame_generator_capturer_.get() != nullptr)
<< "Could not create capturer for " << params.clip.name
<< ".yuv. Is this resource file present?";
}
Start();
analyzer.Wait();
send_transport.StopSending();
recv_transport.StopSending();
Stop();
DestroyStreams();
}
TEST_F(FullStackTest, ParisQcifWithoutPacketLoss) {
FullStackTestParams paris_qcif = {"net_delay_0_0_plr_0",
{"paris_qcif", 176, 144, 30},
false,
300000,
300000,
300000,
36.0,
0.96,
kFullStackTestDurationSecs};
RunTest(paris_qcif);
}
TEST_F(FullStackTest, ForemanCifWithoutPacketLoss) {
// TODO(pbos): Decide on psnr/ssim thresholds for foreman_cif.
FullStackTestParams foreman_cif = {"foreman_cif_net_delay_0_0_plr_0",
{"foreman_cif", 352, 288, 30},
false,
700000,
700000,
700000,
0.0,
0.0,
kFullStackTestDurationSecs};
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ForemanCifPlr5) {
FullStackTestParams foreman_cif = {"foreman_cif_delay_50_0_plr_5",
{"foreman_cif", 352, 288, 30},
false,
30000,
500000,
2000000,
0.0,
0.0,
kFullStackTestDurationSecs};
foreman_cif.link.loss_percent = 5;
foreman_cif.link.queue_delay_ms = 50;
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ForemanCif500kbps) {
FullStackTestParams foreman_cif = {"foreman_cif_500kbps",
{"foreman_cif", 352, 288, 30},
false,
30000,
500000,
2000000,
0.0,
0.0,
kFullStackTestDurationSecs};
foreman_cif.link.queue_length_packets = 0;
foreman_cif.link.queue_delay_ms = 0;
foreman_cif.link.link_capacity_kbps = 500;
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ForemanCif500kbpsLimitedQueue) {
FullStackTestParams foreman_cif = {"foreman_cif_500kbps_32pkts_queue",
{"foreman_cif", 352, 288, 30},
false,
30000,
500000,
2000000,
0.0,
0.0,
kFullStackTestDurationSecs};
foreman_cif.link.queue_length_packets = 32;
foreman_cif.link.queue_delay_ms = 0;
foreman_cif.link.link_capacity_kbps = 500;
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ForemanCif500kbps100ms) {
FullStackTestParams foreman_cif = {"foreman_cif_500kbps_100ms",
{"foreman_cif", 352, 288, 30},
false,
30000,
500000,
2000000,
0.0,
0.0,
kFullStackTestDurationSecs};
foreman_cif.link.queue_length_packets = 0;
foreman_cif.link.queue_delay_ms = 100;
foreman_cif.link.link_capacity_kbps = 500;
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ForemanCif500kbps100msLimitedQueue) {
FullStackTestParams foreman_cif = {"foreman_cif_500kbps_100ms_32pkts_queue",
{"foreman_cif", 352, 288, 30},
false,
30000,
500000,
2000000,
0.0,
0.0,
kFullStackTestDurationSecs};
foreman_cif.link.queue_length_packets = 32;
foreman_cif.link.queue_delay_ms = 100;
foreman_cif.link.link_capacity_kbps = 500;
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ForemanCif1000kbps100msLimitedQueue) {
FullStackTestParams foreman_cif = {"foreman_cif_1000kbps_100ms_32pkts_queue",
{"foreman_cif", 352, 288, 30},
false,
30000,
2000000,
2000000,
0.0,
0.0,
kFullStackTestDurationSecs};
foreman_cif.link.queue_length_packets = 32;
foreman_cif.link.queue_delay_ms = 100;
foreman_cif.link.link_capacity_kbps = 1000;
RunTest(foreman_cif);
}
TEST_F(FullStackTest, ScreenshareSlides) {
FullStackTestParams screenshare_params = {
"screenshare_slides",
{"screenshare_slides", 1850, 1110, 5},
true,
50000,
100000,
1000000,
0.0,
0.0,
kFullStackTestDurationSecs};
RunTest(screenshare_params);
}
} // namespace webrtc