blob: df98450a6d8eaf8d1a5494a41eb343784fcc8874 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h> // fabsf
#include "webrtc/modules/remote_bitrate_estimator/overuse_detector.h"
#include "webrtc/modules/remote_bitrate_estimator/remote_rate_control.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
#include "webrtc/system_wrappers/interface/trace.h"
enum { kOverUsingTimeThreshold = 100 };
enum { kMinFramePeriodHistoryLength = 60 };
namespace webrtc {
OveruseDetector::OveruseDetector(const OverUseDetectorOptions& options)
: options_(options),
current_frame_(),
prev_frame_(),
num_of_deltas_(0),
slope_(options_.initial_slope),
offset_(options_.initial_offset),
E_(),
process_noise_(),
avg_noise_(options_.initial_avg_noise),
var_noise_(options_.initial_var_noise),
threshold_(options_.initial_threshold),
ts_delta_hist_(),
prev_offset_(0.0),
time_over_using_(-1),
over_use_counter_(0),
hypothesis_(kBwNormal) {
memcpy(E_, options_.initial_e, sizeof(E_));
memcpy(process_noise_, options_.initial_process_noise,
sizeof(process_noise_));
}
OveruseDetector::~OveruseDetector() {
ts_delta_hist_.clear();
}
void OveruseDetector::Update(size_t packet_size,
int64_t timestamp_ms,
uint32_t timestamp,
const int64_t arrival_time_ms) {
bool new_timestamp = (timestamp != current_frame_.timestamp);
if (timestamp_ms >= 0) {
if (prev_frame_.timestamp_ms == -1 && current_frame_.timestamp_ms == -1) {
SwitchTimeBase();
}
new_timestamp = (timestamp_ms != current_frame_.timestamp_ms);
}
if (current_frame_.timestamp == -1) {
// This is the first incoming packet. We don't have enough data to update
// the filter, so we store it until we have two frames of data to process.
current_frame_.timestamp = timestamp;
current_frame_.timestamp_ms = timestamp_ms;
} else if (!PacketInOrder(timestamp, timestamp_ms)) {
return;
} else if (new_timestamp) {
// First packet of a later frame, the previous frame sample is ready.
if (prev_frame_.complete_time_ms >= 0) { // This is our second frame.
int64_t t_delta = 0;
double ts_delta = 0;
TimeDeltas(current_frame_, prev_frame_, &t_delta, &ts_delta);
UpdateKalman(t_delta, ts_delta, current_frame_.size, prev_frame_.size);
}
prev_frame_ = current_frame_;
// The new timestamp is now the current frame.
current_frame_.timestamp = timestamp;
current_frame_.timestamp_ms = timestamp_ms;
current_frame_.size = 0;
}
// Accumulate the frame size
current_frame_.size += packet_size;
current_frame_.complete_time_ms = arrival_time_ms;
}
BandwidthUsage OveruseDetector::State() const {
return hypothesis_;
}
double OveruseDetector::NoiseVar() const {
return var_noise_;
}
void OveruseDetector::SetRateControlRegion(RateControlRegion region) {
switch (region) {
case kRcMaxUnknown: {
threshold_ = options_.initial_threshold;
break;
}
case kRcAboveMax:
case kRcNearMax: {
threshold_ = options_.initial_threshold / 2;
break;
}
}
}
void OveruseDetector::SwitchTimeBase() {
current_frame_.size = 0;
current_frame_.complete_time_ms = -1;
current_frame_.timestamp = -1;
prev_frame_ = current_frame_;
}
void OveruseDetector::TimeDeltas(const FrameSample& current_frame,
const FrameSample& prev_frame,
int64_t* t_delta,
double* ts_delta) {
assert(t_delta);
assert(ts_delta);
num_of_deltas_++;
if (num_of_deltas_ > 1000) {
num_of_deltas_ = 1000;
}
if (current_frame.timestamp_ms == -1) {
uint32_t timestamp_diff = current_frame.timestamp - prev_frame.timestamp;
*ts_delta = timestamp_diff / 90.0;
} else {
*ts_delta = current_frame.timestamp_ms - prev_frame.timestamp_ms;
}
*t_delta = current_frame.complete_time_ms - prev_frame.complete_time_ms;
assert(*ts_delta > 0);
}
bool OveruseDetector::PacketInOrder(uint32_t timestamp, int64_t timestamp_ms) {
if (current_frame_.timestamp_ms == -1 && current_frame_.timestamp > -1) {
return InOrderTimestamp(timestamp, current_frame_.timestamp);
} else if (current_frame_.timestamp_ms > 0) {
// Using timestamps converted to NTP time.
return timestamp_ms > current_frame_.timestamp_ms;
}
// This is the first packet.
return true;
}
bool OveruseDetector::InOrderTimestamp(uint32_t timestamp,
uint32_t prev_timestamp) {
uint32_t timestamp_diff = timestamp - prev_timestamp;
// Assume that a diff this big must be due to reordering. Don't update
// with reordered samples.
return (timestamp_diff < 0x80000000);
}
double OveruseDetector::CurrentDrift() {
return 1.0;
}
void OveruseDetector::UpdateKalman(int64_t t_delta,
double ts_delta,
size_t frame_size,
size_t prev_frame_size) {
const double min_frame_period = UpdateMinFramePeriod(ts_delta);
const double drift = CurrentDrift();
// Compensate for drift
const double t_ts_delta = t_delta - ts_delta / drift;
double fs_delta = static_cast<double>(frame_size) - prev_frame_size;
// Update the Kalman filter
const double scale_factor = min_frame_period / (1000.0 / 30.0);
E_[0][0] += process_noise_[0] * scale_factor;
E_[1][1] += process_noise_[1] * scale_factor;
if ((hypothesis_ == kBwOverusing && offset_ < prev_offset_) ||
(hypothesis_ == kBwUnderusing && offset_ > prev_offset_)) {
E_[1][1] += 10 * process_noise_[1] * scale_factor;
}
const double h[2] = {fs_delta, 1.0};
const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1],
E_[1][0]*h[0] + E_[1][1]*h[1]};
const double residual = t_ts_delta - slope_*h[0] - offset_;
const bool stable_state =
(BWE_MIN(num_of_deltas_, 60) * fabs(offset_) < threshold_);
// We try to filter out very late frames. For instance periodic key
// frames doesn't fit the Gaussian model well.
if (fabs(residual) < 3 * sqrt(var_noise_)) {
UpdateNoiseEstimate(residual, min_frame_period, stable_state);
} else {
UpdateNoiseEstimate(3 * sqrt(var_noise_), min_frame_period, stable_state);
}
const double denom = var_noise_ + h[0]*Eh[0] + h[1]*Eh[1];
const double K[2] = {Eh[0] / denom,
Eh[1] / denom};
const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
{-K[1]*h[0], 1.0 - K[1]*h[1]}};
const double e00 = E_[0][0];
const double e01 = E_[0][1];
// Update state
E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1];
E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1];
E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1];
E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1];
// Covariance matrix, must be positive semi-definite
assert(E_[0][0] + E_[1][1] >= 0 &&
E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 &&
E_[0][0] >= 0);
slope_ = slope_ + K[0] * residual;
prev_offset_ = offset_;
offset_ = offset_ + K[1] * residual;
Detect(ts_delta);
}
double OveruseDetector::UpdateMinFramePeriod(double ts_delta) {
double min_frame_period = ts_delta;
if (ts_delta_hist_.size() >= kMinFramePeriodHistoryLength) {
std::list<double>::iterator first_item = ts_delta_hist_.begin();
ts_delta_hist_.erase(first_item);
}
std::list<double>::iterator it = ts_delta_hist_.begin();
for (; it != ts_delta_hist_.end(); it++) {
min_frame_period = BWE_MIN(*it, min_frame_period);
}
ts_delta_hist_.push_back(ts_delta);
return min_frame_period;
}
void OveruseDetector::UpdateNoiseEstimate(double residual,
double ts_delta,
bool stable_state) {
if (!stable_state) {
return;
}
// Faster filter during startup to faster adapt to the jitter level
// of the network alpha is tuned for 30 frames per second, but
double alpha = 0.01;
if (num_of_deltas_ > 10*30) {
alpha = 0.002;
}
// Only update the noise estimate if we're not over-using
// beta is a function of alpha and the time delta since
// the previous update.
const double beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0);
avg_noise_ = beta * avg_noise_
+ (1 - beta) * residual;
var_noise_ = beta * var_noise_
+ (1 - beta) * (avg_noise_ - residual) * (avg_noise_ - residual);
if (var_noise_ < 1e-7) {
var_noise_ = 1e-7;
}
}
BandwidthUsage OveruseDetector::Detect(double ts_delta) {
if (num_of_deltas_ < 2) {
return kBwNormal;
}
const double T = BWE_MIN(num_of_deltas_, 60) * offset_;
if (fabs(T) > threshold_) {
if (offset_ > 0) {
if (time_over_using_ == -1) {
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
time_over_using_ = ts_delta / 2;
} else {
// Increment timer
time_over_using_ += ts_delta;
}
over_use_counter_++;
if (time_over_using_ > kOverUsingTimeThreshold
&& over_use_counter_ > 1) {
if (offset_ >= prev_offset_) {
time_over_using_ = 0;
over_use_counter_ = 0;
hypothesis_ = kBwOverusing;
}
}
} else {
time_over_using_ = -1;
over_use_counter_ = 0;
hypothesis_ = kBwUnderusing;
}
} else {
time_over_using_ = -1;
over_use_counter_ = 0;
hypothesis_ = kBwNormal;
}
return hypothesis_;
}
} // namespace webrtc