blob: 111757b7afcb682a25a1e5cb8c4261bf38ebede4 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/rtp_rtcp/source/rtcp_sender.h"
#include <assert.h> // assert
#include <stdlib.h> // rand
#include <string.h> // memcpy
#include <algorithm> // min
#include <limits> // max
#include "webrtc/base/checks.h"
#include "webrtc/common_types.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_rtcp_impl.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
namespace webrtc {
using RTCPUtility::RTCPCnameInformation;
NACKStringBuilder::NACKStringBuilder()
: stream_(""), count_(0), prevNack_(0), consecutive_(false) {
}
NACKStringBuilder::~NACKStringBuilder() {}
void NACKStringBuilder::PushNACK(uint16_t nack)
{
if (count_ == 0) {
stream_ << nack;
} else if (nack == prevNack_ + 1) {
consecutive_ = true;
} else {
if (consecutive_) {
stream_ << "-" << prevNack_;
consecutive_ = false;
}
stream_ << "," << nack;
}
count_++;
prevNack_ = nack;
}
std::string NACKStringBuilder::GetResult() {
if (consecutive_) {
stream_ << "-" << prevNack_;
consecutive_ = false;
}
return stream_.str();
}
RTCPSender::FeedbackState::FeedbackState()
: send_payload_type(0),
frequency_hz(0),
packets_sent(0),
media_bytes_sent(0),
send_bitrate(0),
last_rr_ntp_secs(0),
last_rr_ntp_frac(0),
remote_sr(0),
has_last_xr_rr(false),
module(nullptr) {
}
struct RTCPSender::RtcpContext {
RtcpContext(const FeedbackState& feedback_state,
int32_t nack_size,
const uint16_t* nack_list,
bool repeat,
uint64_t picture_id,
uint8_t* buffer,
uint32_t buffer_size)
: feedback_state(feedback_state),
nack_size(nack_size),
nack_list(nack_list),
repeat(repeat),
picture_id(picture_id),
buffer(buffer),
buffer_size(buffer_size),
ntp_sec(0),
ntp_frac(0),
position(0) {}
uint8_t* AllocateData(uint32_t bytes) {
RTC_DCHECK_LE(position + bytes, buffer_size);
uint8_t* ptr = &buffer[position];
position += bytes;
return ptr;
}
const FeedbackState& feedback_state;
int32_t nack_size;
const uint16_t* nack_list;
bool repeat;
uint64_t picture_id;
uint8_t* buffer;
uint32_t buffer_size;
uint32_t ntp_sec;
uint32_t ntp_frac;
uint32_t position;
};
// TODO(sprang): Once all builders use RtcpPacket, call SendToNetwork() here.
class RTCPSender::PacketBuiltCallback
: public rtcp::RtcpPacket::PacketReadyCallback {
public:
PacketBuiltCallback(RtcpContext* context) : context_(context) {}
virtual ~PacketBuiltCallback() {}
void OnPacketReady(uint8_t* data, size_t length) override {
context_->position += length;
}
bool BuildPacket(const rtcp::RtcpPacket& packet) {
return packet.BuildExternalBuffer(
&context_->buffer[context_->position],
context_->buffer_size - context_->position, this);
}
private:
RtcpContext* const context_;
};
RTCPSender::RTCPSender(
bool audio,
Clock* clock,
ReceiveStatistics* receive_statistics,
RtcpPacketTypeCounterObserver* packet_type_counter_observer)
: audio_(audio),
clock_(clock),
method_(kRtcpOff),
critical_section_transport_(
CriticalSectionWrapper::CreateCriticalSection()),
cbTransport_(nullptr),
critical_section_rtcp_sender_(
CriticalSectionWrapper::CreateCriticalSection()),
using_nack_(false),
sending_(false),
remb_enabled_(false),
next_time_to_send_rtcp_(0),
start_timestamp_(0),
last_rtp_timestamp_(0),
last_frame_capture_time_ms_(-1),
ssrc_(0),
remote_ssrc_(0),
receive_statistics_(receive_statistics),
sequence_number_fir_(0),
remb_bitrate_(0),
tmmbr_help_(),
tmmbr_send_(0),
packet_oh_send_(0),
app_sub_type_(0),
app_name_(0),
app_data_(nullptr),
app_length_(0),
xr_send_receiver_reference_time_enabled_(false),
packet_type_counter_observer_(packet_type_counter_observer) {
memset(last_send_report_, 0, sizeof(last_send_report_));
memset(last_rtcp_time_, 0, sizeof(last_rtcp_time_));
builders_[kRtcpSr] = &RTCPSender::BuildSR;
builders_[kRtcpRr] = &RTCPSender::BuildRR;
builders_[kRtcpSdes] = &RTCPSender::BuildSDES;
builders_[kRtcpPli] = &RTCPSender::BuildPLI;
builders_[kRtcpFir] = &RTCPSender::BuildFIR;
builders_[kRtcpSli] = &RTCPSender::BuildSLI;
builders_[kRtcpRpsi] = &RTCPSender::BuildRPSI;
builders_[kRtcpRemb] = &RTCPSender::BuildREMB;
builders_[kRtcpBye] = &RTCPSender::BuildBYE;
builders_[kRtcpApp] = &RTCPSender::BuildAPP;
builders_[kRtcpTmmbr] = &RTCPSender::BuildTMMBR;
builders_[kRtcpTmmbn] = &RTCPSender::BuildTMMBN;
builders_[kRtcpNack] = &RTCPSender::BuildNACK;
builders_[kRtcpXrVoipMetric] = &RTCPSender::BuildVoIPMetric;
builders_[kRtcpXrReceiverReferenceTime] =
&RTCPSender::BuildReceiverReferenceTime;
builders_[kRtcpXrDlrrReportBlock] = &RTCPSender::BuildDlrr;
}
RTCPSender::~RTCPSender() {
}
int32_t RTCPSender::RegisterSendTransport(Transport* outgoingTransport) {
CriticalSectionScoped lock(critical_section_transport_.get());
cbTransport_ = outgoingTransport;
return 0;
}
RTCPMethod RTCPSender::Status() const {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
return method_;
}
void RTCPSender::SetRTCPStatus(RTCPMethod method) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
method_ = method;
if (method == kRtcpOff)
return;
next_time_to_send_rtcp_ =
clock_->TimeInMilliseconds() +
(audio_ ? RTCP_INTERVAL_AUDIO_MS / 2 : RTCP_INTERVAL_VIDEO_MS / 2);
}
bool RTCPSender::Sending() const {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
return sending_;
}
int32_t RTCPSender::SetSendingStatus(const FeedbackState& feedback_state,
bool sending) {
bool sendRTCPBye = false;
{
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (method_ != kRtcpOff) {
if (sending == false && sending_ == true) {
// Trigger RTCP bye
sendRTCPBye = true;
}
}
sending_ = sending;
}
if (sendRTCPBye)
return SendRTCP(feedback_state, kRtcpBye);
return 0;
}
bool RTCPSender::REMB() const {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
return remb_enabled_;
}
void RTCPSender::SetREMBStatus(bool enable) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
remb_enabled_ = enable;
}
void RTCPSender::SetREMBData(uint32_t bitrate,
const std::vector<uint32_t>& ssrcs) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
remb_bitrate_ = bitrate;
remb_ssrcs_ = ssrcs;
if (remb_enabled_)
SetFlag(kRtcpRemb, false);
// Send a REMB immediately if we have a new REMB. The frequency of REMBs is
// throttled by the caller.
next_time_to_send_rtcp_ = clock_->TimeInMilliseconds();
}
bool RTCPSender::TMMBR() const {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
return IsFlagPresent(RTCPPacketType::kRtcpTmmbr);
}
void RTCPSender::SetTMMBRStatus(bool enable) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (enable) {
SetFlag(RTCPPacketType::kRtcpTmmbr, false);
} else {
ConsumeFlag(RTCPPacketType::kRtcpTmmbr, true);
}
}
void RTCPSender::SetStartTimestamp(uint32_t start_timestamp) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
start_timestamp_ = start_timestamp;
}
void RTCPSender::SetLastRtpTime(uint32_t rtp_timestamp,
int64_t capture_time_ms) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
last_rtp_timestamp_ = rtp_timestamp;
if (capture_time_ms < 0) {
// We don't currently get a capture time from VoiceEngine.
last_frame_capture_time_ms_ = clock_->TimeInMilliseconds();
} else {
last_frame_capture_time_ms_ = capture_time_ms;
}
}
void RTCPSender::SetSSRC(uint32_t ssrc) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (ssrc_ != 0) {
// not first SetSSRC, probably due to a collision
// schedule a new RTCP report
// make sure that we send a RTP packet
next_time_to_send_rtcp_ = clock_->TimeInMilliseconds() + 100;
}
ssrc_ = ssrc;
}
void RTCPSender::SetRemoteSSRC(uint32_t ssrc) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
remote_ssrc_ = ssrc;
}
int32_t RTCPSender::SetCNAME(const char* c_name) {
if (!c_name)
return -1;
RTC_DCHECK_LT(strlen(c_name), static_cast<size_t>(RTCP_CNAME_SIZE));
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
cname_ = c_name;
return 0;
}
int32_t RTCPSender::AddMixedCNAME(uint32_t SSRC, const char* c_name) {
assert(c_name);
RTC_DCHECK_LT(strlen(c_name), static_cast<size_t>(RTCP_CNAME_SIZE));
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (csrc_cnames_.size() >= kRtpCsrcSize)
return -1;
csrc_cnames_[SSRC] = c_name;
return 0;
}
int32_t RTCPSender::RemoveMixedCNAME(uint32_t SSRC) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
auto it = csrc_cnames_.find(SSRC);
if (it == csrc_cnames_.end())
return -1;
csrc_cnames_.erase(it);
return 0;
}
bool RTCPSender::TimeToSendRTCPReport(bool sendKeyframeBeforeRTP) const {
/*
For audio we use a fix 5 sec interval
For video we use 1 sec interval fo a BW smaller than 360 kbit/s,
technicaly we break the max 5% RTCP BW for video below 10 kbit/s but
that should be extremely rare
From RFC 3550
MAX RTCP BW is 5% if the session BW
A send report is approximately 65 bytes inc CNAME
A receiver report is approximately 28 bytes
The RECOMMENDED value for the reduced minimum in seconds is 360
divided by the session bandwidth in kilobits/second. This minimum
is smaller than 5 seconds for bandwidths greater than 72 kb/s.
If the participant has not yet sent an RTCP packet (the variable
initial is true), the constant Tmin is set to 2.5 seconds, else it
is set to 5 seconds.
The interval between RTCP packets is varied randomly over the
range [0.5,1.5] times the calculated interval to avoid unintended
synchronization of all participants
if we send
If the participant is a sender (we_sent true), the constant C is
set to the average RTCP packet size (avg_rtcp_size) divided by 25%
of the RTCP bandwidth (rtcp_bw), and the constant n is set to the
number of senders.
if we receive only
If we_sent is not true, the constant C is set
to the average RTCP packet size divided by 75% of the RTCP
bandwidth. The constant n is set to the number of receivers
(members - senders). If the number of senders is greater than
25%, senders and receivers are treated together.
reconsideration NOT required for peer-to-peer
"timer reconsideration" is
employed. This algorithm implements a simple back-off mechanism
which causes users to hold back RTCP packet transmission if the
group sizes are increasing.
n = number of members
C = avg_size/(rtcpBW/4)
3. The deterministic calculated interval Td is set to max(Tmin, n*C).
4. The calculated interval T is set to a number uniformly distributed
between 0.5 and 1.5 times the deterministic calculated interval.
5. The resulting value of T is divided by e-3/2=1.21828 to compensate
for the fact that the timer reconsideration algorithm converges to
a value of the RTCP bandwidth below the intended average
*/
int64_t now = clock_->TimeInMilliseconds();
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (method_ == kRtcpOff)
return false;
if (!audio_ && sendKeyframeBeforeRTP) {
// for video key-frames we want to send the RTCP before the large key-frame
// if we have a 100 ms margin
now += RTCP_SEND_BEFORE_KEY_FRAME_MS;
}
if (now >= next_time_to_send_rtcp_) {
return true;
} else if (now < 0x0000ffff &&
next_time_to_send_rtcp_ > 0xffff0000) { // 65 sec margin
// wrap
return true;
}
return false;
}
int64_t RTCPSender::SendTimeOfSendReport(uint32_t sendReport) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
// This is only saved when we are the sender
if ((last_send_report_[0] == 0) || (sendReport == 0)) {
return 0; // will be ignored
} else {
for (int i = 0; i < RTCP_NUMBER_OF_SR; ++i) {
if (last_send_report_[i] == sendReport)
return last_rtcp_time_[i];
}
}
return 0;
}
bool RTCPSender::SendTimeOfXrRrReport(uint32_t mid_ntp,
int64_t* time_ms) const {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (last_xr_rr_.empty()) {
return false;
}
std::map<uint32_t, int64_t>::const_iterator it = last_xr_rr_.find(mid_ntp);
if (it == last_xr_rr_.end()) {
return false;
}
*time_ms = it->second;
return true;
}
int32_t RTCPSender::AddReportBlock(const RTCPReportBlock& report_block) {
if (report_blocks_.size() >= RTCP_MAX_REPORT_BLOCKS) {
LOG(LS_WARNING) << "Too many report blocks.";
return -1;
}
rtcp::ReportBlock* block = &report_blocks_[report_block.remoteSSRC];
block->To(report_block.remoteSSRC);
block->WithFractionLost(report_block.fractionLost);
block->WithCumulativeLost(report_block.cumulativeLost);
block->WithExtHighestSeqNum(report_block.extendedHighSeqNum);
block->WithJitter(report_block.jitter);
block->WithLastSr(report_block.lastSR);
block->WithDelayLastSr(report_block.delaySinceLastSR);
return 0;
}
RTCPSender::BuildResult RTCPSender::BuildSR(RtcpContext* ctx) {
for (int i = (RTCP_NUMBER_OF_SR - 2); i >= 0; i--) {
// shift old
last_send_report_[i + 1] = last_send_report_[i];
last_rtcp_time_[i + 1] = last_rtcp_time_[i];
}
last_rtcp_time_[0] = Clock::NtpToMs(ctx->ntp_sec, ctx->ntp_frac);
last_send_report_[0] = (ctx->ntp_sec << 16) + (ctx->ntp_frac >> 16);
// The timestamp of this RTCP packet should be estimated as the timestamp of
// the frame being captured at this moment. We are calculating that
// timestamp as the last frame's timestamp + the time since the last frame
// was captured.
uint32_t rtp_timestamp =
start_timestamp_ + last_rtp_timestamp_ +
(clock_->TimeInMilliseconds() - last_frame_capture_time_ms_) *
(ctx->feedback_state.frequency_hz / 1000);
rtcp::SenderReport report;
report.From(ssrc_);
report.WithNtpSec(ctx->ntp_sec);
report.WithNtpFrac(ctx->ntp_frac);
report.WithRtpTimestamp(rtp_timestamp);
report.WithPacketCount(ctx->feedback_state.packets_sent);
report.WithOctetCount(ctx->feedback_state.media_bytes_sent);
for (auto it : report_blocks_)
report.WithReportBlock(it.second);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(report))
return BuildResult::kTruncated;
report_blocks_.clear();
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildSDES(RtcpContext* ctx) {
size_t length_cname = cname_.length();
RTC_CHECK_LT(length_cname, static_cast<size_t>(RTCP_CNAME_SIZE));
rtcp::Sdes sdes;
sdes.WithCName(ssrc_, cname_);
for (const auto it : csrc_cnames_)
sdes.WithCName(it.first, it.second);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(sdes))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildRR(RtcpContext* ctx) {
rtcp::ReceiverReport report;
report.From(ssrc_);
for (auto it : report_blocks_)
report.WithReportBlock(it.second);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(report))
return BuildResult::kTruncated;
report_blocks_.clear();
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildPLI(RtcpContext* ctx) {
rtcp::Pli pli;
pli.From(ssrc_);
pli.To(remote_ssrc_);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(pli))
return BuildResult::kTruncated;
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::PLI");
++packet_type_counter_.pli_packets;
TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTCP_PLICount",
ssrc_, packet_type_counter_.pli_packets);
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildFIR(RtcpContext* ctx) {
if (!ctx->repeat)
++sequence_number_fir_; // Do not increase if repetition.
rtcp::Fir fir;
fir.From(ssrc_);
fir.To(remote_ssrc_);
fir.WithCommandSeqNum(sequence_number_fir_);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(fir))
return BuildResult::kTruncated;
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::FIR");
++packet_type_counter_.fir_packets;
TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTCP_FIRCount",
ssrc_, packet_type_counter_.fir_packets);
return BuildResult::kSuccess;
}
/*
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| First | Number | PictureID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
RTCPSender::BuildResult RTCPSender::BuildSLI(RtcpContext* ctx) {
rtcp::Sli sli;
sli.From(ssrc_);
sli.To(remote_ssrc_);
// Crop picture id to 6 least significant bits.
sli.WithPictureId(ctx->picture_id & 0x3F);
sli.WithFirstMb(0);
sli.WithNumberOfMb(0x1FFF); // 13 bits, only ones for now.
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(sli))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
/*
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PB |0| Payload Type| Native RPSI bit string |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| defined per codec ... | Padding (0) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
/*
* Note: not generic made for VP8
*/
RTCPSender::BuildResult RTCPSender::BuildRPSI(RtcpContext* ctx) {
if (ctx->feedback_state.send_payload_type == 0xFF)
return BuildResult::kError;
rtcp::Rpsi rpsi;
rpsi.From(ssrc_);
rpsi.To(remote_ssrc_);
rpsi.WithPayloadType(ctx->feedback_state.send_payload_type);
rpsi.WithPictureId(ctx->picture_id);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(rpsi))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildREMB(RtcpContext* ctx) {
rtcp::Remb remb;
remb.From(ssrc_);
for (uint32_t ssrc : remb_ssrcs_)
remb.AppliesTo(ssrc);
remb.WithBitrateBps(remb_bitrate_);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(remb))
return BuildResult::kTruncated;
TRACE_EVENT_INSTANT0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::REMB");
return BuildResult::kSuccess;
}
void RTCPSender::SetTargetBitrate(unsigned int target_bitrate) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
tmmbr_send_ = target_bitrate / 1000;
}
RTCPSender::BuildResult RTCPSender::BuildTMMBR(RtcpContext* ctx) {
if (ctx->feedback_state.module == NULL)
return BuildResult::kError;
// Before sending the TMMBR check the received TMMBN, only an owner is
// allowed to raise the bitrate:
// * If the sender is an owner of the TMMBN -> send TMMBR
// * If not an owner but the TMMBR would enter the TMMBN -> send TMMBR
// get current bounding set from RTCP receiver
bool tmmbrOwner = false;
// store in candidateSet, allocates one extra slot
TMMBRSet* candidateSet = tmmbr_help_.CandidateSet();
// holding critical_section_rtcp_sender_ while calling RTCPreceiver which
// will accuire criticalSectionRTCPReceiver_ is a potental deadlock but
// since RTCPreceiver is not doing the reverse we should be fine
int32_t lengthOfBoundingSet =
ctx->feedback_state.module->BoundingSet(tmmbrOwner, candidateSet);
if (lengthOfBoundingSet > 0) {
for (int32_t i = 0; i < lengthOfBoundingSet; i++) {
if (candidateSet->Tmmbr(i) == tmmbr_send_ &&
candidateSet->PacketOH(i) == packet_oh_send_) {
// do not send the same tuple
return BuildResult::kAborted;
}
}
if (!tmmbrOwner) {
// use received bounding set as candidate set
// add current tuple
candidateSet->SetEntry(lengthOfBoundingSet, tmmbr_send_, packet_oh_send_,
ssrc_);
int numCandidates = lengthOfBoundingSet + 1;
// find bounding set
TMMBRSet* boundingSet = NULL;
int numBoundingSet = tmmbr_help_.FindTMMBRBoundingSet(boundingSet);
if (numBoundingSet > 0 || numBoundingSet <= numCandidates)
tmmbrOwner = tmmbr_help_.IsOwner(ssrc_, numBoundingSet);
if (!tmmbrOwner) {
// did not enter bounding set, no meaning to send this request
return BuildResult::kAborted;
}
}
}
if (tmmbr_send_) {
rtcp::Tmmbr tmmbr;
tmmbr.From(ssrc_);
tmmbr.To(remote_ssrc_);
tmmbr.WithBitrateKbps(tmmbr_send_);
tmmbr.WithOverhead(packet_oh_send_);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(tmmbr))
return BuildResult::kTruncated;
}
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildTMMBN(RtcpContext* ctx) {
TMMBRSet* boundingSet = tmmbr_help_.BoundingSetToSend();
if (boundingSet == NULL)
return BuildResult::kError;
rtcp::Tmmbn tmmbn;
tmmbn.From(ssrc_);
for (uint32_t i = 0; i < boundingSet->lengthOfSet(); i++) {
if (boundingSet->Tmmbr(i) > 0) {
tmmbn.WithTmmbr(boundingSet->Ssrc(i), boundingSet->Tmmbr(i),
boundingSet->PacketOH(i));
}
}
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(tmmbn))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildAPP(RtcpContext* ctx) {
rtcp::App app;
app.From(ssrc_);
app.WithSubType(app_sub_type_);
app.WithName(app_name_);
app.WithData(app_data_.get(), app_length_);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(app))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildNACK(RtcpContext* ctx) {
// sanity
if (ctx->position + 16 >= IP_PACKET_SIZE) {
LOG(LS_WARNING) << "Failed to build NACK.";
return BuildResult::kTruncated;
}
// int size, uint16_t* nack_list
// add nack list
uint8_t FMT = 1;
*ctx->AllocateData(1) = 0x80 + FMT;
*ctx->AllocateData(1) = 205;
*ctx->AllocateData(1) = 0;
int nack_size_pos_ = ctx->position;
*ctx->AllocateData(1) = 3; // setting it to one kNACK signal as default
// Add our own SSRC
ByteWriter<uint32_t>::WriteBigEndian(ctx->AllocateData(4), ssrc_);
// Add the remote SSRC
ByteWriter<uint32_t>::WriteBigEndian(ctx->AllocateData(4), remote_ssrc_);
// Build NACK bitmasks and write them to the RTCP message.
// The nack list should be sorted and not contain duplicates if one
// wants to build the smallest rtcp nack packet.
int numOfNackFields = 0;
int maxNackFields =
std::min<int>(kRtcpMaxNackFields, (IP_PACKET_SIZE - ctx->position) / 4);
int i = 0;
while (i < ctx->nack_size && numOfNackFields < maxNackFields) {
uint16_t nack = ctx->nack_list[i++];
uint16_t bitmask = 0;
while (i < ctx->nack_size) {
int shift = static_cast<uint16_t>(ctx->nack_list[i] - nack) - 1;
if (shift >= 0 && shift <= 15) {
bitmask |= (1 << shift);
++i;
} else {
break;
}
}
// Write the sequence number and the bitmask to the packet.
assert(ctx->position + 4 < IP_PACKET_SIZE);
ByteWriter<uint16_t>::WriteBigEndian(ctx->AllocateData(2), nack);
ByteWriter<uint16_t>::WriteBigEndian(ctx->AllocateData(2), bitmask);
numOfNackFields++;
}
ctx->buffer[nack_size_pos_] = static_cast<uint8_t>(2 + numOfNackFields);
if (i != ctx->nack_size)
LOG(LS_WARNING) << "Nack list too large for one packet.";
// Report stats.
NACKStringBuilder stringBuilder;
for (int idx = 0; idx < i; ++idx) {
stringBuilder.PushNACK(ctx->nack_list[idx]);
nack_stats_.ReportRequest(ctx->nack_list[idx]);
}
packet_type_counter_.nack_requests = nack_stats_.requests();
packet_type_counter_.unique_nack_requests = nack_stats_.unique_requests();
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"),
"RTCPSender::NACK", "nacks",
TRACE_STR_COPY(stringBuilder.GetResult().c_str()));
++packet_type_counter_.nack_packets;
TRACE_COUNTER_ID1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTCP_NACKCount",
ssrc_, packet_type_counter_.nack_packets);
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildBYE(RtcpContext* ctx) {
rtcp::Bye bye;
bye.From(ssrc_);
for (uint32_t csrc : csrcs_)
bye.WithCsrc(csrc);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(bye))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildReceiverReferenceTime(
RtcpContext* ctx) {
if (last_xr_rr_.size() >= RTCP_NUMBER_OF_SR)
last_xr_rr_.erase(last_xr_rr_.begin());
last_xr_rr_.insert(std::pair<uint32_t, int64_t>(
RTCPUtility::MidNtp(ctx->ntp_sec, ctx->ntp_frac),
Clock::NtpToMs(ctx->ntp_sec, ctx->ntp_frac)));
rtcp::Xr xr;
xr.From(ssrc_);
rtcp::Rrtr rrtr;
rrtr.WithNtpSec(ctx->ntp_sec);
rrtr.WithNtpFrac(ctx->ntp_frac);
xr.WithRrtr(&rrtr);
// TODO(sprang): Merge XR report sending to contain all of RRTR, DLRR, VOIP?
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(xr))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
RTCPSender::BuildResult RTCPSender::BuildDlrr(RtcpContext* ctx) {
rtcp::Xr xr;
xr.From(ssrc_);
rtcp::Dlrr dlrr;
const RtcpReceiveTimeInfo& info = ctx->feedback_state.last_xr_rr;
dlrr.WithDlrrItem(info.sourceSSRC, info.lastRR, info.delaySinceLastRR);
xr.WithDlrr(&dlrr);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(xr))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
// TODO(sprang): Add a unit test for this, or remove if the code isn't used.
RTCPSender::BuildResult RTCPSender::BuildVoIPMetric(RtcpContext* ctx) {
rtcp::Xr xr;
xr.From(ssrc_);
rtcp::VoipMetric voip;
voip.To(remote_ssrc_);
voip.LossRate(xr_voip_metric_.lossRate);
voip.DiscardRate(xr_voip_metric_.discardRate);
voip.BurstDensity(xr_voip_metric_.burstDensity);
voip.GapDensity(xr_voip_metric_.gapDensity);
voip.BurstDuration(xr_voip_metric_.burstDuration);
voip.GapDuration(xr_voip_metric_.gapDuration);
voip.RoundTripDelay(xr_voip_metric_.roundTripDelay);
voip.EndSystemDelay(xr_voip_metric_.endSystemDelay);
voip.SignalLevel(xr_voip_metric_.signalLevel);
voip.NoiseLevel(xr_voip_metric_.noiseLevel);
voip.Rerl(xr_voip_metric_.RERL);
voip.Gmin(xr_voip_metric_.Gmin);
voip.Rfactor(xr_voip_metric_.Rfactor);
voip.ExtRfactor(xr_voip_metric_.extRfactor);
voip.MosLq(xr_voip_metric_.MOSLQ);
voip.MosCq(xr_voip_metric_.MOSCQ);
voip.RxConfig(xr_voip_metric_.RXconfig);
voip.JbNominal(xr_voip_metric_.JBnominal);
voip.JbMax(xr_voip_metric_.JBmax);
voip.JbAbsMax(xr_voip_metric_.JBabsMax);
xr.WithVoipMetric(&voip);
PacketBuiltCallback callback(ctx);
if (!callback.BuildPacket(xr))
return BuildResult::kTruncated;
return BuildResult::kSuccess;
}
int32_t RTCPSender::SendRTCP(const FeedbackState& feedback_state,
RTCPPacketType packetType,
int32_t nack_size,
const uint16_t* nack_list,
bool repeat,
uint64_t pictureID) {
return SendCompoundRTCP(
feedback_state, std::set<RTCPPacketType>(&packetType, &packetType + 1),
nack_size, nack_list, repeat, pictureID);
}
int32_t RTCPSender::SendCompoundRTCP(
const FeedbackState& feedback_state,
const std::set<RTCPPacketType>& packetTypes,
int32_t nack_size,
const uint16_t* nack_list,
bool repeat,
uint64_t pictureID) {
{
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (method_ == kRtcpOff) {
LOG(LS_WARNING) << "Can't send rtcp if it is disabled.";
return -1;
}
}
uint8_t rtcp_buffer[IP_PACKET_SIZE];
int rtcp_length =
PrepareRTCP(feedback_state, packetTypes, nack_size, nack_list, repeat,
pictureID, rtcp_buffer, IP_PACKET_SIZE);
// Sanity don't send empty packets.
if (rtcp_length <= 0)
return -1;
return SendToNetwork(rtcp_buffer, static_cast<size_t>(rtcp_length));
}
int RTCPSender::PrepareRTCP(const FeedbackState& feedback_state,
const std::set<RTCPPacketType>& packetTypes,
int32_t nack_size,
const uint16_t* nack_list,
bool repeat,
uint64_t pictureID,
uint8_t* rtcp_buffer,
int buffer_size) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
RtcpContext context(feedback_state, nack_size, nack_list, repeat, pictureID,
rtcp_buffer, buffer_size);
// Add all flags as volatile. Non volatile entries will not be overwritten
// and all new volatile flags added will be consumed by the end of this call.
SetFlags(packetTypes, true);
if (packet_type_counter_.first_packet_time_ms == -1)
packet_type_counter_.first_packet_time_ms = clock_->TimeInMilliseconds();
bool generate_report;
if (IsFlagPresent(kRtcpSr) || IsFlagPresent(kRtcpRr)) {
// Report type already explicitly set, don't automatically populate.
generate_report = true;
RTC_DCHECK(ConsumeFlag(kRtcpReport) == false);
} else {
generate_report =
(ConsumeFlag(kRtcpReport) && method_ == kRtcpNonCompound) ||
method_ == kRtcpCompound;
if (generate_report)
SetFlag(sending_ ? kRtcpSr : kRtcpRr, true);
}
if (IsFlagPresent(kRtcpSr) || (IsFlagPresent(kRtcpRr) && !cname_.empty()))
SetFlag(kRtcpSdes, true);
// We need to send our NTP even if we haven't received any reports.
clock_->CurrentNtp(context.ntp_sec, context.ntp_frac);
if (generate_report) {
if (!sending_ && xr_send_receiver_reference_time_enabled_)
SetFlag(kRtcpXrReceiverReferenceTime, true);
if (feedback_state.has_last_xr_rr)
SetFlag(kRtcpXrDlrrReportBlock, true);
// generate next time to send an RTCP report
// seeded from RTP constructor
int32_t random = rand() % 1000;
int32_t timeToNext = RTCP_INTERVAL_AUDIO_MS;
if (audio_) {
timeToNext = (RTCP_INTERVAL_AUDIO_MS / 2) +
(RTCP_INTERVAL_AUDIO_MS * random / 1000);
} else {
uint32_t minIntervalMs = RTCP_INTERVAL_AUDIO_MS;
if (sending_) {
// Calculate bandwidth for video; 360 / send bandwidth in kbit/s.
uint32_t send_bitrate_kbit = feedback_state.send_bitrate / 1000;
if (send_bitrate_kbit != 0)
minIntervalMs = 360000 / send_bitrate_kbit;
}
if (minIntervalMs > RTCP_INTERVAL_VIDEO_MS)
minIntervalMs = RTCP_INTERVAL_VIDEO_MS;
timeToNext = (minIntervalMs / 2) + (minIntervalMs * random / 1000);
}
next_time_to_send_rtcp_ = clock_->TimeInMilliseconds() + timeToNext;
StatisticianMap statisticians =
receive_statistics_->GetActiveStatisticians();
if (!statisticians.empty()) {
for (auto it = statisticians.begin(); it != statisticians.end(); ++it) {
RTCPReportBlock report_block;
if (PrepareReport(feedback_state, it->first, it->second,
&report_block)) {
AddReportBlock(report_block);
}
}
}
}
auto it = report_flags_.begin();
while (it != report_flags_.end()) {
auto builder = builders_.find(it->type);
RTC_DCHECK(builder != builders_.end());
if (it->is_volatile) {
report_flags_.erase(it++);
} else {
++it;
}
uint32_t start_position = context.position;
BuildResult result = (this->*(builder->second))(&context);
switch (result) {
case BuildResult::kError:
return -1;
case BuildResult::kTruncated:
return context.position;
case BuildResult::kAborted:
context.position = start_position;
FALLTHROUGH();
case BuildResult::kSuccess:
continue;
default:
abort();
}
}
if (packet_type_counter_observer_ != NULL) {
packet_type_counter_observer_->RtcpPacketTypesCounterUpdated(
remote_ssrc_, packet_type_counter_);
}
RTC_DCHECK(AllVolatileFlagsConsumed());
return context.position;
}
bool RTCPSender::PrepareReport(const FeedbackState& feedback_state,
uint32_t ssrc,
StreamStatistician* statistician,
RTCPReportBlock* report_block) {
// Do we have receive statistics to send?
RtcpStatistics stats;
if (!statistician->GetStatistics(&stats, true))
return false;
report_block->fractionLost = stats.fraction_lost;
report_block->cumulativeLost = stats.cumulative_lost;
report_block->extendedHighSeqNum =
stats.extended_max_sequence_number;
report_block->jitter = stats.jitter;
report_block->remoteSSRC = ssrc;
// TODO(sprang): Do we really need separate time stamps for each report?
// Get our NTP as late as possible to avoid a race.
uint32_t ntp_secs;
uint32_t ntp_frac;
clock_->CurrentNtp(ntp_secs, ntp_frac);
// Delay since last received report.
uint32_t delaySinceLastReceivedSR = 0;
if ((feedback_state.last_rr_ntp_secs != 0) ||
(feedback_state.last_rr_ntp_frac != 0)) {
// Get the 16 lowest bits of seconds and the 16 highest bits of fractions.
uint32_t now = ntp_secs & 0x0000FFFF;
now <<= 16;
now += (ntp_frac & 0xffff0000) >> 16;
uint32_t receiveTime = feedback_state.last_rr_ntp_secs & 0x0000FFFF;
receiveTime <<= 16;
receiveTime += (feedback_state.last_rr_ntp_frac & 0xffff0000) >> 16;
delaySinceLastReceivedSR = now-receiveTime;
}
report_block->delaySinceLastSR = delaySinceLastReceivedSR;
report_block->lastSR = feedback_state.remote_sr;
return true;
}
int32_t RTCPSender::SendToNetwork(const uint8_t* dataBuffer, size_t length) {
CriticalSectionScoped lock(critical_section_transport_.get());
if (cbTransport_) {
if (cbTransport_->SendRtcp(dataBuffer, length))
return 0;
}
return -1;
}
void RTCPSender::SetCsrcs(const std::vector<uint32_t>& csrcs) {
assert(csrcs.size() <= kRtpCsrcSize);
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
csrcs_ = csrcs;
}
int32_t RTCPSender::SetApplicationSpecificData(uint8_t subType,
uint32_t name,
const uint8_t* data,
uint16_t length) {
if (length % 4 != 0) {
LOG(LS_ERROR) << "Failed to SetApplicationSpecificData.";
return -1;
}
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
SetFlag(kRtcpApp, true);
app_sub_type_ = subType;
app_name_ = name;
app_data_.reset(new uint8_t[length]);
app_length_ = length;
memcpy(app_data_.get(), data, length);
return 0;
}
int32_t RTCPSender::SetRTCPVoIPMetrics(const RTCPVoIPMetric* VoIPMetric) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
memcpy(&xr_voip_metric_, VoIPMetric, sizeof(RTCPVoIPMetric));
SetFlag(kRtcpXrVoipMetric, true);
return 0;
}
void RTCPSender::SendRtcpXrReceiverReferenceTime(bool enable) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
xr_send_receiver_reference_time_enabled_ = enable;
}
bool RTCPSender::RtcpXrReceiverReferenceTime() const {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
return xr_send_receiver_reference_time_enabled_;
}
// no callbacks allowed inside this function
int32_t RTCPSender::SetTMMBN(const TMMBRSet* boundingSet,
uint32_t maxBitrateKbit) {
CriticalSectionScoped lock(critical_section_rtcp_sender_.get());
if (0 == tmmbr_help_.SetTMMBRBoundingSetToSend(boundingSet, maxBitrateKbit)) {
SetFlag(kRtcpTmmbn, true);
return 0;
}
return -1;
}
void RTCPSender::SetFlag(RTCPPacketType type, bool is_volatile) {
report_flags_.insert(ReportFlag(type, is_volatile));
}
void RTCPSender::SetFlags(const std::set<RTCPPacketType>& types,
bool is_volatile) {
for (RTCPPacketType type : types)
SetFlag(type, is_volatile);
}
bool RTCPSender::IsFlagPresent(RTCPPacketType type) const {
return report_flags_.find(ReportFlag(type, false)) != report_flags_.end();
}
bool RTCPSender::ConsumeFlag(RTCPPacketType type, bool forced) {
auto it = report_flags_.find(ReportFlag(type, false));
if (it == report_flags_.end())
return false;
if (it->is_volatile || forced)
report_flags_.erase((it));
return true;
}
bool RTCPSender::AllVolatileFlagsConsumed() const {
for (const ReportFlag& flag : report_flags_) {
if (flag.is_volatile)
return false;
}
return true;
}
bool RTCPSender::SendFeedbackPacket(const rtcp::TransportFeedback& packet) {
CriticalSectionScoped lock(critical_section_transport_.get());
if (!cbTransport_)
return false;
class Sender : public rtcp::RtcpPacket::PacketReadyCallback {
public:
Sender(Transport* transport)
: transport_(transport), send_failure_(false) {}
void OnPacketReady(uint8_t* data, size_t length) override {
if (!transport_->SendRtcp(data, length))
send_failure_ = true;
}
Transport* const transport_;
bool send_failure_;
} sender(cbTransport_);
uint8_t buffer[IP_PACKET_SIZE];
return packet.BuildExternalBuffer(buffer, IP_PACKET_SIZE, &sender) &&
!sender.send_failure_;
}
} // namespace webrtc