blob: 483fc34d8c3800528067aa5e925d1058800b62fb [file] [log] [blame]
/*
* libjingle
* Copyright 2004 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TALK_MEDIA_BASE_VIDEOFRAME_UNITTEST_H_
#define TALK_MEDIA_BASE_VIDEOFRAME_UNITTEST_H_
#include <string>
#include "libyuv/convert.h"
#include "libyuv/convert_from.h"
#include "libyuv/format_conversion.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "talk/media/base/testutils.h"
#include "talk/media/base/videocommon.h"
#include "talk/media/base/videoframe.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/pathutils.h"
#include "webrtc/base/stream.h"
#include "webrtc/base/stringutils.h"
#if defined(_MSC_VER)
#define ALIGN16(var) __declspec(align(16)) var
#else
#define ALIGN16(var) var __attribute__((aligned(16)))
#endif
#define kImageFilename "faces.1280x720_P420.yuv"
#define kJpeg420Filename "faces_I420.jpg"
#define kJpeg422Filename "faces_I422.jpg"
#define kJpeg444Filename "faces_I444.jpg"
#define kJpeg411Filename "faces_I411.jpg"
#define kJpeg400Filename "faces_I400.jpg"
// Generic test class for testing various video frame implementations.
template <class T>
class VideoFrameTest : public testing::Test {
public:
VideoFrameTest() : repeat_(1) {}
protected:
static const int kWidth = 1280;
static const int kHeight = 720;
static const int kAlignment = 16;
static const int kMinWidthAll = 1; // Constants for ConstructYUY2AllSizes.
static const int kMinHeightAll = 1;
static const int kMaxWidthAll = 17;
static const int kMaxHeightAll = 23;
// Load a video frame from disk.
bool LoadFrameNoRepeat(T* frame) {
int save_repeat = repeat_; // This LoadFrame disables repeat.
repeat_ = 1;
bool success = LoadFrame(kImageFilename, cricket::FOURCC_I420,
kWidth, kHeight, frame);
repeat_ = save_repeat;
return success;
}
bool LoadFrame(const std::string& filename, uint32 format,
int32 width, int32 height, T* frame) {
return LoadFrame(filename, format, width, height,
width, abs(height), 0, frame);
}
bool LoadFrame(const std::string& filename, uint32 format,
int32 width, int32 height, int dw, int dh, int rotation,
T* frame) {
rtc::scoped_ptr<rtc::MemoryStream> ms(LoadSample(filename));
return LoadFrame(ms.get(), format, width, height, dw, dh, rotation, frame);
}
// Load a video frame from a memory stream.
bool LoadFrame(rtc::MemoryStream* ms, uint32 format,
int32 width, int32 height, T* frame) {
return LoadFrame(ms, format, width, height,
width, abs(height), 0, frame);
}
bool LoadFrame(rtc::MemoryStream* ms, uint32 format,
int32 width, int32 height, int dw, int dh, int rotation,
T* frame) {
if (!ms) {
return false;
}
size_t data_size;
bool ret = ms->GetSize(&data_size);
EXPECT_TRUE(ret);
if (ret) {
ret = LoadFrame(reinterpret_cast<uint8*>(ms->GetBuffer()), data_size,
format, width, height, dw, dh, rotation, frame);
}
return ret;
}
// Load a frame from a raw buffer.
bool LoadFrame(uint8* sample, size_t sample_size, uint32 format,
int32 width, int32 height, T* frame) {
return LoadFrame(sample, sample_size, format, width, height,
width, abs(height), 0, frame);
}
bool LoadFrame(uint8* sample, size_t sample_size, uint32 format,
int32 width, int32 height, int dw, int dh, int rotation,
T* frame) {
bool ret = false;
for (int i = 0; i < repeat_; ++i) {
ret = frame->Init(format, width, height, dw, dh,
sample, sample_size, 1, 1, 0, 0, rotation);
}
return ret;
}
rtc::MemoryStream* LoadSample(const std::string& filename) {
rtc::Pathname path(cricket::GetTestFilePath(filename));
rtc::scoped_ptr<rtc::FileStream> fs(
rtc::Filesystem::OpenFile(path, "rb"));
if (!fs.get()) {
LOG(LS_ERROR) << "Could not open test file path: " << path.pathname()
<< " from current dir "
<< rtc::Filesystem::GetCurrentDirectory().pathname();
return NULL;
}
char buf[4096];
rtc::scoped_ptr<rtc::MemoryStream> ms(
new rtc::MemoryStream());
rtc::StreamResult res = Flow(fs.get(), buf, sizeof(buf), ms.get());
if (res != rtc::SR_SUCCESS) {
LOG(LS_ERROR) << "Could not load test file path: " << path.pathname();
return NULL;
}
return ms.release();
}
// Write an I420 frame out to disk.
bool DumpFrame(const std::string& prefix,
const cricket::VideoFrame& frame) {
char filename[256];
rtc::sprintfn(filename, sizeof(filename), "%s.%dx%d_P420.yuv",
prefix.c_str(), frame.GetWidth(), frame.GetHeight());
size_t out_size = cricket::VideoFrame::SizeOf(frame.GetWidth(),
frame.GetHeight());
rtc::scoped_ptr<uint8[]> out(new uint8[out_size]);
frame.CopyToBuffer(out.get(), out_size);
return DumpSample(filename, out.get(), out_size);
}
bool DumpSample(const std::string& filename, const void* buffer, int size) {
rtc::Pathname path(filename);
rtc::scoped_ptr<rtc::FileStream> fs(
rtc::Filesystem::OpenFile(path, "wb"));
if (!fs.get()) {
return false;
}
return (fs->Write(buffer, size, NULL, NULL) == rtc::SR_SUCCESS);
}
// Create a test image in the desired color space.
// The image is a checkerboard pattern with 63x63 squares, which allows
// I420 chroma artifacts to easily be seen on the square boundaries.
// The pattern is { { green, orange }, { blue, purple } }
// There is also a gradient within each square to ensure that the luma
// values are handled properly.
rtc::MemoryStream* CreateYuv422Sample(uint32 fourcc,
uint32 width, uint32 height) {
int y1_pos, y2_pos, u_pos, v_pos;
if (!GetYuv422Packing(fourcc, &y1_pos, &y2_pos, &u_pos, &v_pos)) {
return NULL;
}
rtc::scoped_ptr<rtc::MemoryStream> ms(
new rtc::MemoryStream);
int awidth = (width + 1) & ~1;
int size = awidth * 2 * height;
if (!ms->ReserveSize(size)) {
return NULL;
}
for (uint32 y = 0; y < height; ++y) {
for (int x = 0; x < awidth; x += 2) {
uint8 quad[4];
quad[y1_pos] = (x % 63 + y % 63) + 64;
quad[y2_pos] = ((x + 1) % 63 + y % 63) + 64;
quad[u_pos] = ((x / 63) & 1) ? 192 : 64;
quad[v_pos] = ((y / 63) & 1) ? 192 : 64;
ms->Write(quad, sizeof(quad), NULL, NULL);
}
}
return ms.release();
}
// Create a test image for YUV 420 formats with 12 bits per pixel.
rtc::MemoryStream* CreateYuvSample(uint32 width, uint32 height,
uint32 bpp) {
rtc::scoped_ptr<rtc::MemoryStream> ms(
new rtc::MemoryStream);
if (!ms->ReserveSize(width * height * bpp / 8)) {
return NULL;
}
for (uint32 i = 0; i < width * height * bpp / 8; ++i) {
char value = ((i / 63) & 1) ? 192 : 64;
ms->Write(&value, sizeof(value), NULL, NULL);
}
return ms.release();
}
rtc::MemoryStream* CreateRgbSample(uint32 fourcc,
uint32 width, uint32 height) {
int r_pos, g_pos, b_pos, bytes;
if (!GetRgbPacking(fourcc, &r_pos, &g_pos, &b_pos, &bytes)) {
return NULL;
}
rtc::scoped_ptr<rtc::MemoryStream> ms(
new rtc::MemoryStream);
if (!ms->ReserveSize(width * height * bytes)) {
return NULL;
}
for (uint32 y = 0; y < height; ++y) {
for (uint32 x = 0; x < width; ++x) {
uint8 rgb[4] = { 255, 255, 255, 255 };
rgb[r_pos] = ((x / 63) & 1) ? 224 : 32;
rgb[g_pos] = (x % 63 + y % 63) + 96;
rgb[b_pos] = ((y / 63) & 1) ? 224 : 32;
ms->Write(rgb, bytes, NULL, NULL);
}
}
return ms.release();
}
// Simple conversion routines to verify the optimized VideoFrame routines.
// Converts from the specified colorspace to I420.
bool ConvertYuv422(const rtc::MemoryStream* ms,
uint32 fourcc, uint32 width, uint32 height,
T* frame) {
int y1_pos, y2_pos, u_pos, v_pos;
if (!GetYuv422Packing(fourcc, &y1_pos, &y2_pos, &u_pos, &v_pos)) {
return false;
}
const uint8* start = reinterpret_cast<const uint8*>(ms->GetBuffer());
int awidth = (width + 1) & ~1;
frame->InitToBlack(width, height, 1, 1, 0, 0);
int stride_y = frame->GetYPitch();
int stride_u = frame->GetUPitch();
int stride_v = frame->GetVPitch();
for (uint32 y = 0; y < height; ++y) {
for (uint32 x = 0; x < width; x += 2) {
const uint8* quad1 = start + (y * awidth + x) * 2;
frame->GetYPlane()[stride_y * y + x] = quad1[y1_pos];
if ((x + 1) < width) {
frame->GetYPlane()[stride_y * y + x + 1] = quad1[y2_pos];
}
if ((y & 1) == 0) {
const uint8* quad2 = quad1 + awidth * 2;
if ((y + 1) >= height) {
quad2 = quad1;
}
frame->GetUPlane()[stride_u * (y / 2) + x / 2] =
(quad1[u_pos] + quad2[u_pos] + 1) / 2;
frame->GetVPlane()[stride_v * (y / 2) + x / 2] =
(quad1[v_pos] + quad2[v_pos] + 1) / 2;
}
}
}
return true;
}
// Convert RGB to 420.
// A negative height inverts the image.
bool ConvertRgb(const rtc::MemoryStream* ms,
uint32 fourcc, int32 width, int32 height,
T* frame) {
int r_pos, g_pos, b_pos, bytes;
if (!GetRgbPacking(fourcc, &r_pos, &g_pos, &b_pos, &bytes)) {
return false;
}
int pitch = width * bytes;
const uint8* start = reinterpret_cast<const uint8*>(ms->GetBuffer());
if (height < 0) {
height = -height;
start = start + pitch * (height - 1);
pitch = -pitch;
}
frame->InitToBlack(width, height, 1, 1, 0, 0);
int stride_y = frame->GetYPitch();
int stride_u = frame->GetUPitch();
int stride_v = frame->GetVPitch();
for (int32 y = 0; y < height; y += 2) {
for (int32 x = 0; x < width; x += 2) {
const uint8* rgb[4];
uint8 yuv[4][3];
rgb[0] = start + y * pitch + x * bytes;
rgb[1] = rgb[0] + ((x + 1) < width ? bytes : 0);
rgb[2] = rgb[0] + ((y + 1) < height ? pitch : 0);
rgb[3] = rgb[2] + ((x + 1) < width ? bytes : 0);
for (size_t i = 0; i < 4; ++i) {
ConvertRgbPixel(rgb[i][r_pos], rgb[i][g_pos], rgb[i][b_pos],
&yuv[i][0], &yuv[i][1], &yuv[i][2]);
}
frame->GetYPlane()[stride_y * y + x] = yuv[0][0];
if ((x + 1) < width) {
frame->GetYPlane()[stride_y * y + x + 1] = yuv[1][0];
}
if ((y + 1) < height) {
frame->GetYPlane()[stride_y * (y + 1) + x] = yuv[2][0];
if ((x + 1) < width) {
frame->GetYPlane()[stride_y * (y + 1) + x + 1] = yuv[3][0];
}
}
frame->GetUPlane()[stride_u * (y / 2) + x / 2] =
(yuv[0][1] + yuv[1][1] + yuv[2][1] + yuv[3][1] + 2) / 4;
frame->GetVPlane()[stride_v * (y / 2) + x / 2] =
(yuv[0][2] + yuv[1][2] + yuv[2][2] + yuv[3][2] + 2) / 4;
}
}
return true;
}
// Simple and slow RGB->YUV conversion. From NTSC standard, c/o Wikipedia.
void ConvertRgbPixel(uint8 r, uint8 g, uint8 b,
uint8* y, uint8* u, uint8* v) {
*y = static_cast<int>(.257 * r + .504 * g + .098 * b) + 16;
*u = static_cast<int>(-.148 * r - .291 * g + .439 * b) + 128;
*v = static_cast<int>(.439 * r - .368 * g - .071 * b) + 128;
}
bool GetYuv422Packing(uint32 fourcc,
int* y1_pos, int* y2_pos, int* u_pos, int* v_pos) {
if (fourcc == cricket::FOURCC_YUY2) {
*y1_pos = 0; *u_pos = 1; *y2_pos = 2; *v_pos = 3;
} else if (fourcc == cricket::FOURCC_UYVY) {
*u_pos = 0; *y1_pos = 1; *v_pos = 2; *y2_pos = 3;
} else {
return false;
}
return true;
}
bool GetRgbPacking(uint32 fourcc,
int* r_pos, int* g_pos, int* b_pos, int* bytes) {
if (fourcc == cricket::FOURCC_RAW) {
*r_pos = 0; *g_pos = 1; *b_pos = 2; *bytes = 3; // RGB in memory.
} else if (fourcc == cricket::FOURCC_24BG) {
*r_pos = 2; *g_pos = 1; *b_pos = 0; *bytes = 3; // BGR in memory.
} else if (fourcc == cricket::FOURCC_ABGR) {
*r_pos = 0; *g_pos = 1; *b_pos = 2; *bytes = 4; // RGBA in memory.
} else if (fourcc == cricket::FOURCC_BGRA) {
*r_pos = 1; *g_pos = 2; *b_pos = 3; *bytes = 4; // ARGB in memory.
} else if (fourcc == cricket::FOURCC_ARGB) {
*r_pos = 2; *g_pos = 1; *b_pos = 0; *bytes = 4; // BGRA in memory.
} else {
return false;
}
return true;
}
// Comparison functions for testing.
static bool IsNull(const cricket::VideoFrame& frame) {
return !frame.GetYPlane();
}
static bool IsSize(const cricket::VideoFrame& frame,
uint32 width, uint32 height) {
return !IsNull(frame) &&
frame.GetYPitch() >= static_cast<int32>(width) &&
frame.GetUPitch() >= static_cast<int32>(width) / 2 &&
frame.GetVPitch() >= static_cast<int32>(width) / 2 &&
frame.GetWidth() == width && frame.GetHeight() == height;
}
static bool IsPlaneEqual(const std::string& name,
const uint8* plane1, uint32 pitch1,
const uint8* plane2, uint32 pitch2,
uint32 width, uint32 height,
int max_error) {
const uint8* r1 = plane1;
const uint8* r2 = plane2;
for (uint32 y = 0; y < height; ++y) {
for (uint32 x = 0; x < width; ++x) {
if (abs(static_cast<int>(r1[x] - r2[x])) > max_error) {
LOG(LS_INFO) << "IsPlaneEqual(" << name << "): pixel["
<< x << "," << y << "] differs: "
<< static_cast<int>(r1[x]) << " vs "
<< static_cast<int>(r2[x]);
return false;
}
}
r1 += pitch1;
r2 += pitch2;
}
return true;
}
static bool IsEqual(const cricket::VideoFrame& frame,
size_t width, size_t height,
size_t pixel_width, size_t pixel_height,
int64 elapsed_time, int64 time_stamp,
const uint8* y, uint32 ypitch,
const uint8* u, uint32 upitch,
const uint8* v, uint32 vpitch,
int max_error) {
return IsSize(frame,
static_cast<uint32>(width),
static_cast<uint32>(height)) &&
frame.GetPixelWidth() == pixel_width &&
frame.GetPixelHeight() == pixel_height &&
frame.GetElapsedTime() == elapsed_time &&
frame.GetTimeStamp() == time_stamp &&
IsPlaneEqual("y", frame.GetYPlane(), frame.GetYPitch(), y, ypitch,
static_cast<uint32>(width),
static_cast<uint32>(height), max_error) &&
IsPlaneEqual("u", frame.GetUPlane(), frame.GetUPitch(), u, upitch,
static_cast<uint32>((width + 1) / 2),
static_cast<uint32>((height + 1) / 2), max_error) &&
IsPlaneEqual("v", frame.GetVPlane(), frame.GetVPitch(), v, vpitch,
static_cast<uint32>((width + 1) / 2),
static_cast<uint32>((height + 1) / 2), max_error);
}
static bool IsEqual(const cricket::VideoFrame& frame1,
const cricket::VideoFrame& frame2,
int max_error) {
return IsEqual(frame1,
frame2.GetWidth(), frame2.GetHeight(),
frame2.GetPixelWidth(), frame2.GetPixelHeight(),
frame2.GetElapsedTime(), frame2.GetTimeStamp(),
frame2.GetYPlane(), frame2.GetYPitch(),
frame2.GetUPlane(), frame2.GetUPitch(),
frame2.GetVPlane(), frame2.GetVPitch(),
max_error);
}
static bool IsEqualWithCrop(const cricket::VideoFrame& frame1,
const cricket::VideoFrame& frame2,
int hcrop, int vcrop, int max_error) {
return frame1.GetWidth() <= frame2.GetWidth() &&
frame1.GetHeight() <= frame2.GetHeight() &&
IsEqual(frame1,
frame2.GetWidth() - hcrop * 2,
frame2.GetHeight() - vcrop * 2,
frame2.GetPixelWidth(), frame2.GetPixelHeight(),
frame2.GetElapsedTime(), frame2.GetTimeStamp(),
frame2.GetYPlane() + vcrop * frame2.GetYPitch()
+ hcrop,
frame2.GetYPitch(),
frame2.GetUPlane() + vcrop * frame2.GetUPitch() / 2
+ hcrop / 2,
frame2.GetUPitch(),
frame2.GetVPlane() + vcrop * frame2.GetVPitch() / 2
+ hcrop / 2,
frame2.GetVPitch(),
max_error);
}
static bool IsBlack(const cricket::VideoFrame& frame) {
return !IsNull(frame) &&
*frame.GetYPlane() == 16 &&
*frame.GetUPlane() == 128 &&
*frame.GetVPlane() == 128;
}
////////////////////////
// Construction tests //
////////////////////////
// Test constructing an image from a I420 buffer.
void ConstructI420() {
T frame;
EXPECT_TRUE(IsNull(frame));
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuvSample(kWidth, kHeight, 12));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_I420,
kWidth, kHeight, &frame));
const uint8* y = reinterpret_cast<uint8*>(ms.get()->GetBuffer());
const uint8* u = y + kWidth * kHeight;
const uint8* v = u + kWidth * kHeight / 4;
EXPECT_TRUE(IsEqual(frame, kWidth, kHeight, 1, 1, 0, 0,
y, kWidth, u, kWidth / 2, v, kWidth / 2, 0));
}
// Test constructing an image from a YV12 buffer.
void ConstructYV12() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuvSample(kWidth, kHeight, 12));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YV12,
kWidth, kHeight, &frame));
const uint8* y = reinterpret_cast<uint8*>(ms.get()->GetBuffer());
const uint8* v = y + kWidth * kHeight;
const uint8* u = v + kWidth * kHeight / 4;
EXPECT_TRUE(IsEqual(frame, kWidth, kHeight, 1, 1, 0, 0,
y, kWidth, u, kWidth / 2, v, kWidth / 2, 0));
}
// Test constructing an image from a I422 buffer.
void ConstructI422() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
size_t buf_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> buf(new uint8[buf_size + kAlignment]);
uint8* y = ALIGNP(buf.get(), kAlignment);
uint8* u = y + kWidth * kHeight;
uint8* v = u + (kWidth / 2) * kHeight;
EXPECT_EQ(0, libyuv::I420ToI422(frame1.GetYPlane(), frame1.GetYPitch(),
frame1.GetUPlane(), frame1.GetUPitch(),
frame1.GetVPlane(), frame1.GetVPitch(),
y, kWidth,
u, kWidth / 2,
v, kWidth / 2,
kWidth, kHeight));
EXPECT_TRUE(LoadFrame(y, buf_size, cricket::FOURCC_I422,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 1));
}
// Test constructing an image from a YUY2 buffer.
void ConstructYuy2() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
size_t buf_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> buf(new uint8[buf_size + kAlignment]);
uint8* yuy2 = ALIGNP(buf.get(), kAlignment);
EXPECT_EQ(0, libyuv::I420ToYUY2(frame1.GetYPlane(), frame1.GetYPitch(),
frame1.GetUPlane(), frame1.GetUPitch(),
frame1.GetVPlane(), frame1.GetVPitch(),
yuy2, kWidth * 2,
kWidth, kHeight));
EXPECT_TRUE(LoadFrame(yuy2, buf_size, cricket::FOURCC_YUY2,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
}
// Test constructing an image from a YUY2 buffer with buffer unaligned.
void ConstructYuy2Unaligned() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
size_t buf_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> buf(new uint8[buf_size + kAlignment + 1]);
uint8* yuy2 = ALIGNP(buf.get(), kAlignment) + 1;
EXPECT_EQ(0, libyuv::I420ToYUY2(frame1.GetYPlane(), frame1.GetYPitch(),
frame1.GetUPlane(), frame1.GetUPitch(),
frame1.GetVPlane(), frame1.GetVPitch(),
yuy2, kWidth * 2,
kWidth, kHeight));
EXPECT_TRUE(LoadFrame(yuy2, buf_size, cricket::FOURCC_YUY2,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
}
// Test constructing an image from a wide YUY2 buffer.
// Normal is 1280x720. Wide is 12800x72
void ConstructYuy2Wide() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, kWidth * 10, kHeight / 10));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertYuv422(ms.get(), cricket::FOURCC_YUY2,
kWidth * 10, kHeight / 10,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2,
kWidth * 10, kHeight / 10, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
}
// Test constructing an image from a UYVY buffer.
void ConstructUyvy() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_UYVY, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertYuv422(ms.get(), cricket::FOURCC_UYVY, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_UYVY,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
}
// Test constructing an image from a random buffer.
// We are merely verifying that the code succeeds and is free of crashes.
void ConstructM420() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuvSample(kWidth, kHeight, 12));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_M420,
kWidth, kHeight, &frame));
}
void ConstructQ420() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuvSample(kWidth, kHeight, 12));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_Q420,
kWidth, kHeight, &frame));
}
void ConstructNV21() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuvSample(kWidth, kHeight, 12));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_NV21,
kWidth, kHeight, &frame));
}
void ConstructNV12() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuvSample(kWidth, kHeight, 12));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_NV12,
kWidth, kHeight, &frame));
}
// Test constructing an image from a ABGR buffer
// Due to rounding, some pixels may differ slightly from the VideoFrame impl.
void ConstructABGR() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_ABGR, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ABGR, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_ABGR,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 2));
}
// Test constructing an image from a ARGB buffer
// Due to rounding, some pixels may differ slightly from the VideoFrame impl.
void ConstructARGB() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ARGB, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_ARGB,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 2));
}
// Test constructing an image from a wide ARGB buffer
// Normal is 1280x720. Wide is 12800x72
void ConstructARGBWide() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_ARGB, kWidth * 10, kHeight / 10));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ARGB,
kWidth * 10, kHeight / 10, &frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_ARGB,
kWidth * 10, kHeight / 10, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 2));
}
// Test constructing an image from an BGRA buffer.
// Due to rounding, some pixels may differ slightly from the VideoFrame impl.
void ConstructBGRA() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_BGRA, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_BGRA, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_BGRA,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 2));
}
// Test constructing an image from a 24BG buffer.
// Due to rounding, some pixels may differ slightly from the VideoFrame impl.
void Construct24BG() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_24BG, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_24BG, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_24BG,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 2));
}
// Test constructing an image from a raw RGB buffer.
// Due to rounding, some pixels may differ slightly from the VideoFrame impl.
void ConstructRaw() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_RAW, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_RAW, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_RAW,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 2));
}
// Test constructing an image from a RGB565 buffer
void ConstructRGB565() {
T frame1, frame2;
size_t out_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> outbuf(new uint8[out_size + kAlignment]);
uint8* out = ALIGNP(outbuf.get(), kAlignment);
T frame;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
EXPECT_EQ(out_size, frame1.ConvertToRgbBuffer(cricket::FOURCC_RGBP,
out,
out_size, kWidth * 2));
EXPECT_TRUE(LoadFrame(out, out_size, cricket::FOURCC_RGBP,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 20));
}
// Test constructing an image from a ARGB1555 buffer
void ConstructARGB1555() {
T frame1, frame2;
size_t out_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> outbuf(new uint8[out_size + kAlignment]);
uint8* out = ALIGNP(outbuf.get(), kAlignment);
T frame;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
EXPECT_EQ(out_size, frame1.ConvertToRgbBuffer(cricket::FOURCC_RGBO,
out,
out_size, kWidth * 2));
EXPECT_TRUE(LoadFrame(out, out_size, cricket::FOURCC_RGBO,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 20));
}
// Test constructing an image from a ARGB4444 buffer
void ConstructARGB4444() {
T frame1, frame2;
size_t out_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> outbuf(new uint8[out_size + kAlignment]);
uint8* out = ALIGNP(outbuf.get(), kAlignment);
T frame;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
EXPECT_EQ(out_size, frame1.ConvertToRgbBuffer(cricket::FOURCC_R444,
out,
out_size, kWidth * 2));
EXPECT_TRUE(LoadFrame(out, out_size, cricket::FOURCC_R444,
kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 20));
}
// Macro to help test different Bayer formats.
// Error threshold of 60 allows for Bayer format subsampling.
// TODO(fbarchard): Refactor this test to go from Bayer to I420 and
// back to bayer, which would be less lossy.
#define TEST_BYR(NAME, BAYER) \
void NAME() { \
size_t bayer_size = kWidth * kHeight; \
rtc::scoped_ptr<uint8[]> bayerbuf(new uint8[ \
bayer_size + kAlignment]); \
uint8* bayer = ALIGNP(bayerbuf.get(), kAlignment); \
T frame1, frame2; \
rtc::scoped_ptr<rtc::MemoryStream> ms( \
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight)); \
ASSERT_TRUE(ms.get() != NULL); \
libyuv::ARGBToBayer##BAYER(reinterpret_cast<uint8* >(ms->GetBuffer()), \
kWidth * 4, \
bayer, kWidth, \
kWidth, kHeight); \
EXPECT_TRUE(LoadFrame(bayer, bayer_size, cricket::FOURCC_##BAYER, \
kWidth, kHeight, &frame1)); \
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ARGB, kWidth, kHeight, \
&frame2)); \
EXPECT_TRUE(IsEqual(frame1, frame2, 60)); \
}
// Test constructing an image from Bayer formats.
TEST_BYR(ConstructBayerGRBG, GRBG)
TEST_BYR(ConstructBayerGBRG, GBRG)
TEST_BYR(ConstructBayerBGGR, BGGR)
TEST_BYR(ConstructBayerRGGB, RGGB)
// Macro to help test different rotations
#define TEST_MIRROR(FOURCC, BPP) \
void Construct##FOURCC##Mirror() { \
T frame1, frame2, frame3; \
rtc::scoped_ptr<rtc::MemoryStream> ms( \
CreateYuvSample(kWidth, kHeight, BPP)); \
ASSERT_TRUE(ms.get() != NULL); \
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_##FOURCC, \
kWidth, -kHeight, kWidth, kHeight, \
cricket::ROTATION_180, &frame1)); \
size_t data_size; \
bool ret = ms->GetSize(&data_size); \
EXPECT_TRUE(ret); \
EXPECT_TRUE(frame2.Init(cricket::FOURCC_##FOURCC, \
kWidth, kHeight, kWidth, kHeight, \
reinterpret_cast<uint8*>(ms->GetBuffer()), \
data_size, \
1, 1, 0, 0, 0)); \
int width_rotate = static_cast<int>(frame1.GetWidth()); \
int height_rotate = static_cast<int>(frame1.GetHeight()); \
EXPECT_TRUE(frame3.InitToBlack(width_rotate, height_rotate, 1, 1, 0, 0)); \
libyuv::I420Mirror(frame2.GetYPlane(), frame2.GetYPitch(), \
frame2.GetUPlane(), frame2.GetUPitch(), \
frame2.GetVPlane(), frame2.GetVPitch(), \
frame3.GetYPlane(), frame3.GetYPitch(), \
frame3.GetUPlane(), frame3.GetUPitch(), \
frame3.GetVPlane(), frame3.GetVPitch(), \
kWidth, kHeight); \
EXPECT_TRUE(IsEqual(frame1, frame3, 0)); \
}
TEST_MIRROR(I420, 420)
// Macro to help test different rotations
#define TEST_ROTATE(FOURCC, BPP, ROTATE) \
void Construct##FOURCC##Rotate##ROTATE() { \
T frame1, frame2, frame3; \
rtc::scoped_ptr<rtc::MemoryStream> ms( \
CreateYuvSample(kWidth, kHeight, BPP)); \
ASSERT_TRUE(ms.get() != NULL); \
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_##FOURCC, \
kWidth, kHeight, kWidth, kHeight, \
cricket::ROTATION_##ROTATE, &frame1)); \
size_t data_size; \
bool ret = ms->GetSize(&data_size); \
EXPECT_TRUE(ret); \
EXPECT_TRUE(frame2.Init(cricket::FOURCC_##FOURCC, \
kWidth, kHeight, kWidth, kHeight, \
reinterpret_cast<uint8*>(ms->GetBuffer()), \
data_size, \
1, 1, 0, 0, 0)); \
int width_rotate = static_cast<int>(frame1.GetWidth()); \
int height_rotate = static_cast<int>(frame1.GetHeight()); \
EXPECT_TRUE(frame3.InitToBlack(width_rotate, height_rotate, 1, 1, 0, 0)); \
libyuv::I420Rotate(frame2.GetYPlane(), frame2.GetYPitch(), \
frame2.GetUPlane(), frame2.GetUPitch(), \
frame2.GetVPlane(), frame2.GetVPitch(), \
frame3.GetYPlane(), frame3.GetYPitch(), \
frame3.GetUPlane(), frame3.GetUPitch(), \
frame3.GetVPlane(), frame3.GetVPitch(), \
kWidth, kHeight, libyuv::kRotate##ROTATE); \
EXPECT_TRUE(IsEqual(frame1, frame3, 0)); \
}
// Test constructing an image with rotation.
TEST_ROTATE(I420, 12, 0)
TEST_ROTATE(I420, 12, 90)
TEST_ROTATE(I420, 12, 180)
TEST_ROTATE(I420, 12, 270)
TEST_ROTATE(YV12, 12, 0)
TEST_ROTATE(YV12, 12, 90)
TEST_ROTATE(YV12, 12, 180)
TEST_ROTATE(YV12, 12, 270)
TEST_ROTATE(NV12, 12, 0)
TEST_ROTATE(NV12, 12, 90)
TEST_ROTATE(NV12, 12, 180)
TEST_ROTATE(NV12, 12, 270)
TEST_ROTATE(NV21, 12, 0)
TEST_ROTATE(NV21, 12, 90)
TEST_ROTATE(NV21, 12, 180)
TEST_ROTATE(NV21, 12, 270)
TEST_ROTATE(UYVY, 16, 0)
TEST_ROTATE(UYVY, 16, 90)
TEST_ROTATE(UYVY, 16, 180)
TEST_ROTATE(UYVY, 16, 270)
TEST_ROTATE(YUY2, 16, 0)
TEST_ROTATE(YUY2, 16, 90)
TEST_ROTATE(YUY2, 16, 180)
TEST_ROTATE(YUY2, 16, 270)
// Test constructing an image from a UYVY buffer rotated 90 degrees.
void ConstructUyvyRotate90() {
T frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_UYVY, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_UYVY,
kWidth, kHeight, kWidth, kHeight,
cricket::ROTATION_90, &frame2));
}
// Test constructing an image from a UYVY buffer rotated 180 degrees.
void ConstructUyvyRotate180() {
T frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_UYVY, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_UYVY,
kWidth, kHeight, kWidth, kHeight,
cricket::ROTATION_180, &frame2));
}
// Test constructing an image from a UYVY buffer rotated 270 degrees.
void ConstructUyvyRotate270() {
T frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_UYVY, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_UYVY,
kWidth, kHeight, kWidth, kHeight,
cricket::ROTATION_270, &frame2));
}
// Test constructing an image from a YUY2 buffer rotated 90 degrees.
void ConstructYuy2Rotate90() {
T frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2,
kWidth, kHeight, kWidth, kHeight,
cricket::ROTATION_90, &frame2));
}
// Test constructing an image from a YUY2 buffer rotated 180 degrees.
void ConstructYuy2Rotate180() {
T frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2,
kWidth, kHeight, kWidth, kHeight,
cricket::ROTATION_180, &frame2));
}
// Test constructing an image from a YUY2 buffer rotated 270 degrees.
void ConstructYuy2Rotate270() {
T frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2,
kWidth, kHeight, kWidth, kHeight,
cricket::ROTATION_270, &frame2));
}
// Test 1 pixel edge case image I420 buffer.
void ConstructI4201Pixel() {
T frame;
uint8 pixel[3] = { 1, 2, 3 };
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame.Init(cricket::FOURCC_I420, 1, 1, 1, 1,
pixel, sizeof(pixel),
1, 1, 0, 0, 0));
}
const uint8* y = pixel;
const uint8* u = y + 1;
const uint8* v = u + 1;
EXPECT_TRUE(IsEqual(frame, 1, 1, 1, 1, 0, 0,
y, 1, u, 1, v, 1, 0));
}
// Test 5 pixel edge case image I420 buffer rounds down to 4.
void ConstructI4205Pixel() {
T frame;
uint8 pixels5x5[5 * 5 + ((5 + 1) / 2 * (5 + 1) / 2) * 2];
memset(pixels5x5, 1, 5 * 5 + ((5 + 1) / 2 * (5 + 1) / 2) * 2);
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame.Init(cricket::FOURCC_I420, 5, 5, 5, 5,
pixels5x5, sizeof(pixels5x5),
1, 1, 0, 0, 0));
}
EXPECT_EQ(4u, frame.GetWidth());
EXPECT_EQ(4u, frame.GetHeight());
EXPECT_EQ(4, frame.GetYPitch());
EXPECT_EQ(2, frame.GetUPitch());
EXPECT_EQ(2, frame.GetVPitch());
}
// Test 1 pixel edge case image ARGB buffer.
void ConstructARGB1Pixel() {
T frame;
uint8 pixel[4] = { 64, 128, 192, 255 };
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame.Init(cricket::FOURCC_ARGB, 1, 1, 1, 1,
pixel, sizeof(pixel),
1, 1, 0, 0, 0));
}
// Convert back to ARGB.
size_t out_size = 4;
rtc::scoped_ptr<uint8[]> outbuf(new uint8[out_size + kAlignment]);
uint8* out = ALIGNP(outbuf.get(), kAlignment);
EXPECT_EQ(out_size, frame.ConvertToRgbBuffer(cricket::FOURCC_ARGB,
out,
out_size, // buffer size
out_size)); // stride
#ifdef USE_LMI_CONVERT
// TODO(fbarchard): Expected to fail, but not crash.
EXPECT_FALSE(IsPlaneEqual("argb", pixel, 4, out, 4, 3, 1, 2));
#else
// TODO(fbarchard): Check for overwrite.
EXPECT_TRUE(IsPlaneEqual("argb", pixel, 4, out, 4, 3, 1, 2));
#endif
}
// Test Black, White and Grey pixels.
void ConstructARGBBlackWhitePixel() {
T frame;
uint8 pixel[10 * 4] = { 0, 0, 0, 255, // Black.
0, 0, 0, 255,
64, 64, 64, 255, // Dark Grey.
64, 64, 64, 255,
128, 128, 128, 255, // Grey.
128, 128, 128, 255,
196, 196, 196, 255, // Light Grey.
196, 196, 196, 255,
255, 255, 255, 255, // White.
255, 255, 255, 255 };
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame.Init(cricket::FOURCC_ARGB, 10, 1, 10, 1,
pixel, sizeof(pixel),
1, 1, 0, 0, 0));
}
// Convert back to ARGB
size_t out_size = 10 * 4;
rtc::scoped_ptr<uint8[]> outbuf(new uint8[out_size + kAlignment]);
uint8* out = ALIGNP(outbuf.get(), kAlignment);
EXPECT_EQ(out_size, frame.ConvertToRgbBuffer(cricket::FOURCC_ARGB,
out,
out_size, // buffer size.
out_size)); // stride.
EXPECT_TRUE(IsPlaneEqual("argb", pixel, out_size,
out, out_size,
out_size, 1, 2));
}
// Test constructing an image from an I420 buffer with horizontal cropping.
void ConstructI420CropHorizontal() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kImageFilename, cricket::FOURCC_I420, kWidth, kHeight,
kWidth * 3 / 4, kHeight, 0, &frame2));
EXPECT_TRUE(IsEqualWithCrop(frame2, frame1, kWidth / 8, 0, 0));
}
// Test constructing an image from a YUY2 buffer with horizontal cropping.
void ConstructYuy2CropHorizontal() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertYuv422(ms.get(), cricket::FOURCC_YUY2, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2, kWidth, kHeight,
kWidth * 3 / 4, kHeight, 0, &frame2));
EXPECT_TRUE(IsEqualWithCrop(frame2, frame1, kWidth / 8, 0, 0));
}
// Test constructing an image from an ARGB buffer with horizontal cropping.
void ConstructARGBCropHorizontal() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ARGB, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_ARGB, kWidth, kHeight,
kWidth * 3 / 4, kHeight, 0, &frame2));
EXPECT_TRUE(IsEqualWithCrop(frame2, frame1, kWidth / 8, 0, 2));
}
// Test constructing an image from an I420 buffer, cropping top and bottom.
void ConstructI420CropVertical() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kImageFilename, cricket::FOURCC_I420, kWidth, kHeight,
kWidth, kHeight * 3 / 4, 0, &frame2));
EXPECT_TRUE(IsEqualWithCrop(frame2, frame1, 0, kHeight / 8, 0));
}
// Test constructing an image from I420 synonymous formats.
void ConstructI420Aliases() {
T frame1, frame2, frame3;
ASSERT_TRUE(LoadFrame(kImageFilename, cricket::FOURCC_I420, kWidth, kHeight,
&frame1));
ASSERT_TRUE(LoadFrame(kImageFilename, cricket::FOURCC_IYUV, kWidth, kHeight,
&frame2));
ASSERT_TRUE(LoadFrame(kImageFilename, cricket::FOURCC_YU12, kWidth, kHeight,
&frame3));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
EXPECT_TRUE(IsEqual(frame1, frame3, 0));
}
// Test constructing an image from an I420 MJPG buffer.
void ConstructMjpgI420() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kJpeg420Filename,
cricket::FOURCC_MJPG, kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 32));
}
// Test constructing an image from an I422 MJPG buffer.
void ConstructMjpgI422() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kJpeg422Filename,
cricket::FOURCC_MJPG, kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 32));
}
// Test constructing an image from an I444 MJPG buffer.
void ConstructMjpgI444() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kJpeg444Filename,
cricket::FOURCC_MJPG, kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 32));
}
// Test constructing an image from an I444 MJPG buffer.
void ConstructMjpgI411() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kJpeg411Filename,
cricket::FOURCC_MJPG, kWidth, kHeight, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 32));
}
// Test constructing an image from an I400 MJPG buffer.
// TODO(fbarchard): Stronger compare on chroma. Compare agaisnt a grey image.
void ConstructMjpgI400() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
ASSERT_TRUE(LoadFrame(kJpeg400Filename,
cricket::FOURCC_MJPG, kWidth, kHeight, &frame2));
EXPECT_TRUE(IsPlaneEqual("y", frame1.GetYPlane(), frame1.GetYPitch(),
frame2.GetYPlane(), frame2.GetYPitch(),
kWidth, kHeight, 32));
EXPECT_TRUE(IsEqual(frame1, frame2, 128));
}
// Test constructing an image from an I420 MJPG buffer.
void ValidateFrame(const char* name, uint32 fourcc, int data_adjust,
int size_adjust, bool expected_result) {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(LoadSample(name));
ASSERT_TRUE(ms.get() != NULL);
const uint8* sample = reinterpret_cast<const uint8*>(ms.get()->GetBuffer());
size_t sample_size;
ms->GetSize(&sample_size);
// Optional adjust size to test invalid size.
size_t data_size = sample_size + data_adjust;
// Allocate a buffer with end page aligned.
const int kPadToHeapSized = 16 * 1024 * 1024;
rtc::scoped_ptr<uint8[]> page_buffer(
new uint8[((data_size + kPadToHeapSized + 4095) & ~4095)]);
uint8* data_ptr = page_buffer.get();
if (!data_ptr) {
LOG(LS_WARNING) << "Failed to allocate memory for ValidateFrame test.";
EXPECT_FALSE(expected_result); // NULL is okay if failure was expected.
return;
}
data_ptr += kPadToHeapSized + (-(static_cast<int>(data_size)) & 4095);
memcpy(data_ptr, sample, rtc::_min(data_size, sample_size));
for (int i = 0; i < repeat_; ++i) {
EXPECT_EQ(expected_result, frame.Validate(fourcc, kWidth, kHeight,
data_ptr,
sample_size + size_adjust));
}
}
// Test validate for I420 MJPG buffer.
void ValidateMjpgI420() {
ValidateFrame(kJpeg420Filename, cricket::FOURCC_MJPG, 0, 0, true);
}
// Test validate for I422 MJPG buffer.
void ValidateMjpgI422() {
ValidateFrame(kJpeg422Filename, cricket::FOURCC_MJPG, 0, 0, true);
}
// Test validate for I444 MJPG buffer.
void ValidateMjpgI444() {
ValidateFrame(kJpeg444Filename, cricket::FOURCC_MJPG, 0, 0, true);
}
// Test validate for I411 MJPG buffer.
void ValidateMjpgI411() {
ValidateFrame(kJpeg411Filename, cricket::FOURCC_MJPG, 0, 0, true);
}
// Test validate for I400 MJPG buffer.
void ValidateMjpgI400() {
ValidateFrame(kJpeg400Filename, cricket::FOURCC_MJPG, 0, 0, true);
}
// Test validate for I420 buffer.
void ValidateI420() {
ValidateFrame(kImageFilename, cricket::FOURCC_I420, 0, 0, true);
}
// Test validate for I420 buffer where size is too small
void ValidateI420SmallSize() {
ValidateFrame(kImageFilename, cricket::FOURCC_I420, 0, -16384, false);
}
// Test validate for I420 buffer where size is too large (16 MB)
// Will produce warning but pass.
void ValidateI420LargeSize() {
ValidateFrame(kImageFilename, cricket::FOURCC_I420, 16000000, 16000000,
true);
}
// Test validate for I420 buffer where size is 1 GB (not reasonable).
void ValidateI420HugeSize() {
#ifndef WIN32 // TODO(fbarchard): Reenable when fixing bug 9603762.
ValidateFrame(kImageFilename, cricket::FOURCC_I420, 1000000000u,
1000000000u, false);
#endif
}
// The following test that Validate crashes if the size is greater than the
// actual buffer size.
// TODO(fbarchard): Consider moving a filter into the capturer/plugin.
#if defined(_MSC_VER) && defined(_DEBUG)
int ExceptionFilter(unsigned int code, struct _EXCEPTION_POINTERS *ep) {
if (code == EXCEPTION_ACCESS_VIOLATION) {
LOG(LS_INFO) << "Caught EXCEPTION_ACCESS_VIOLATION as expected.";
return EXCEPTION_EXECUTE_HANDLER;
} else {
LOG(LS_INFO) << "Did not catch EXCEPTION_ACCESS_VIOLATION. Unexpected.";
return EXCEPTION_CONTINUE_SEARCH;
}
}
// Test validate fails for truncated MJPG data buffer. If ValidateFrame
// crashes the exception handler will return and unittest passes with OK.
void ValidateMjpgI420InvalidSize() {
__try {
ValidateFrame(kJpeg420Filename, cricket::FOURCC_MJPG, -16384, 0, false);
FAIL() << "Validate was expected to cause EXCEPTION_ACCESS_VIOLATION.";
} __except(ExceptionFilter(GetExceptionCode(), GetExceptionInformation())) {
return; // Successfully crashed in ValidateFrame.
}
}
// Test validate fails for truncated I420 buffer.
void ValidateI420InvalidSize() {
__try {
ValidateFrame(kImageFilename, cricket::FOURCC_I420, -16384, 0, false);
FAIL() << "Validate was expected to cause EXCEPTION_ACCESS_VIOLATION.";
} __except(ExceptionFilter(GetExceptionCode(), GetExceptionInformation())) {
return; // Successfully crashed in ValidateFrame.
}
}
#endif
// Test constructing an image from a YUY2 buffer (and synonymous formats).
void ConstructYuy2Aliases() {
T frame1, frame2, frame3, frame4;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertYuv422(ms.get(), cricket::FOURCC_YUY2, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2,
kWidth, kHeight, &frame2));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUVS,
kWidth, kHeight, &frame3));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUYV,
kWidth, kHeight, &frame4));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
EXPECT_TRUE(IsEqual(frame1, frame3, 0));
EXPECT_TRUE(IsEqual(frame1, frame4, 0));
}
// Test constructing an image from a UYVY buffer (and synonymous formats).
void ConstructUyvyAliases() {
T frame1, frame2, frame3, frame4;
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_UYVY, kWidth, kHeight));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertYuv422(ms.get(), cricket::FOURCC_UYVY, kWidth, kHeight,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_UYVY,
kWidth, kHeight, &frame2));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_2VUY,
kWidth, kHeight, &frame3));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_HDYC,
kWidth, kHeight, &frame4));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
EXPECT_TRUE(IsEqual(frame1, frame3, 0));
EXPECT_TRUE(IsEqual(frame1, frame4, 0));
}
// Test creating a copy.
void ConstructCopy() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame2.Init(frame1));
}
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
}
// Test creating a copy and check that it just increments the refcount.
void ConstructCopyIsRef() {
T frame1, frame2;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame2.Init(frame1));
}
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
EXPECT_EQ(frame1.GetYPlane(), frame2.GetYPlane());
EXPECT_EQ(frame1.GetUPlane(), frame2.GetUPlane());
EXPECT_EQ(frame1.GetVPlane(), frame2.GetVPlane());
}
// Test creating an empty image and initing it to black.
void ConstructBlack() {
T frame;
for (int i = 0; i < repeat_; ++i) {
EXPECT_TRUE(frame.InitToBlack(kWidth, kHeight, 1, 1, 0, 0));
}
EXPECT_TRUE(IsSize(frame, kWidth, kHeight));
EXPECT_TRUE(IsBlack(frame));
}
// Test constructing an image from a YUY2 buffer with a range of sizes.
// Only tests that conversion does not crash or corrupt heap.
void ConstructYuy2AllSizes() {
T frame1, frame2;
for (int height = kMinHeightAll; height <= kMaxHeightAll; ++height) {
for (int width = kMinWidthAll; width <= kMaxWidthAll; ++width) {
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateYuv422Sample(cricket::FOURCC_YUY2, width, height));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertYuv422(ms.get(), cricket::FOURCC_YUY2, width, height,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_YUY2,
width, height, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
}
}
}
// Test constructing an image from a ARGB buffer with a range of sizes.
// Only tests that conversion does not crash or corrupt heap.
void ConstructARGBAllSizes() {
T frame1, frame2;
for (int height = kMinHeightAll; height <= kMaxHeightAll; ++height) {
for (int width = kMinWidthAll; width <= kMaxWidthAll; ++width) {
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_ARGB, width, height));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ARGB, width, height,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_ARGB,
width, height, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 64));
}
}
// Test a practical window size for screencasting usecase.
const int kOddWidth = 1228;
const int kOddHeight = 260;
for (int j = 0; j < 2; ++j) {
for (int i = 0; i < 2; ++i) {
rtc::scoped_ptr<rtc::MemoryStream> ms(
CreateRgbSample(cricket::FOURCC_ARGB, kOddWidth + i, kOddHeight + j));
ASSERT_TRUE(ms.get() != NULL);
EXPECT_TRUE(ConvertRgb(ms.get(), cricket::FOURCC_ARGB,
kOddWidth + i, kOddHeight + j,
&frame1));
EXPECT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_ARGB,
kOddWidth + i, kOddHeight + j, &frame2));
EXPECT_TRUE(IsEqual(frame1, frame2, 64));
}
}
}
// Tests re-initing an existing image.
void Reset() {
T frame1, frame2;
rtc::scoped_ptr<rtc::MemoryStream> ms(
LoadSample(kImageFilename));
ASSERT_TRUE(ms.get() != NULL);
size_t data_size;
ms->GetSize(&data_size);
EXPECT_TRUE(frame1.InitToBlack(kWidth, kHeight, 1, 1, 0, 0));
EXPECT_TRUE(frame2.InitToBlack(kWidth, kHeight, 1, 1, 0, 0));
EXPECT_TRUE(IsBlack(frame1));
EXPECT_TRUE(IsEqual(frame1, frame2, 0));
EXPECT_TRUE(frame1.Reset(cricket::FOURCC_I420,
kWidth, kHeight, kWidth, kHeight,
reinterpret_cast<uint8*>(ms->GetBuffer()),
data_size, 1, 1, 0, 0, 0));
EXPECT_FALSE(IsBlack(frame1));
EXPECT_FALSE(IsEqual(frame1, frame2, 0));
}
//////////////////////
// Conversion tests //
//////////////////////
enum ToFrom { TO, FROM };
// Helper function for test converting from I420 to packed formats.
inline void ConvertToBuffer(int bpp, int rowpad, bool invert, ToFrom to_from,
int error, uint32 fourcc,
int (*RGBToI420)(const uint8* src_frame, int src_stride_frame,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height)) {
T frame1, frame2;
int repeat_to = (to_from == TO) ? repeat_ : 1;
int repeat_from = (to_from == FROM) ? repeat_ : 1;
int astride = kWidth * bpp + rowpad;
size_t out_size = astride * kHeight;
rtc::scoped_ptr<uint8[]> outbuf(new uint8[out_size + kAlignment + 1]);
memset(outbuf.get(), 0, out_size + kAlignment + 1);
uint8* outtop = ALIGNP(outbuf.get(), kAlignment);
uint8* out = outtop;
int stride = astride;
if (invert) {
out += (kHeight - 1) * stride; // Point to last row.
stride = -stride;
}
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
for (int i = 0; i < repeat_to; ++i) {
EXPECT_EQ(out_size, frame1.ConvertToRgbBuffer(fourcc,
out,
out_size, stride));
}
EXPECT_TRUE(frame2.InitToBlack(kWidth, kHeight, 1, 1, 0, 0));
for (int i = 0; i < repeat_from; ++i) {
EXPECT_EQ(0, RGBToI420(out, stride,
frame2.GetYPlane(), frame2.GetYPitch(),
frame2.GetUPlane(), frame2.GetUPitch(),
frame2.GetVPlane(), frame2.GetVPitch(),
kWidth, kHeight));
}
if (rowpad) {
EXPECT_EQ(0, outtop[kWidth * bpp]); // Ensure stride skipped end of row.
EXPECT_NE(0, outtop[astride]); // Ensure pixel at start of 2nd row.
} else {
EXPECT_NE(0, outtop[kWidth * bpp]); // Expect something to be here.
}
EXPECT_EQ(0, outtop[out_size]); // Ensure no overrun.
EXPECT_TRUE(IsEqual(frame1, frame2, error));
}
static const int kError = 20;
static const int kErrorHigh = 40;
static const int kOddStride = 23;
// Tests ConvertToRGBBuffer formats.
void ConvertToARGBBuffer() {
ConvertToBuffer(4, 0, false, TO, kError,
cricket::FOURCC_ARGB, libyuv::ARGBToI420);
}
void ConvertToBGRABuffer() {
ConvertToBuffer(4, 0, false, TO, kError,
cricket::FOURCC_BGRA, libyuv::BGRAToI420);
}
void ConvertToABGRBuffer() {
ConvertToBuffer(4, 0, false, TO, kError,
cricket::FOURCC_ABGR, libyuv::ABGRToI420);
}
void ConvertToRGB24Buffer() {
ConvertToBuffer(3, 0, false, TO, kError,
cricket::FOURCC_24BG, libyuv::RGB24ToI420);
}
void ConvertToRAWBuffer() {
ConvertToBuffer(3, 0, false, TO, kError,
cricket::FOURCC_RAW, libyuv::RAWToI420);
}
void ConvertToRGB565Buffer() {
ConvertToBuffer(2, 0, false, TO, kError,
cricket::FOURCC_RGBP, libyuv::RGB565ToI420);
}
void ConvertToARGB1555Buffer() {
ConvertToBuffer(2, 0, false, TO, kError,
cricket::FOURCC_RGBO, libyuv::ARGB1555ToI420);
}
void ConvertToARGB4444Buffer() {
ConvertToBuffer(2, 0, false, TO, kError,
cricket::FOURCC_R444, libyuv::ARGB4444ToI420);
}
void ConvertToBayerBGGRBuffer() {
ConvertToBuffer(1, 0, false, TO, kErrorHigh,
cricket::FOURCC_BGGR, libyuv::BayerBGGRToI420);
}
void ConvertToBayerGBRGBuffer() {
ConvertToBuffer(1, 0, false, TO, kErrorHigh,
cricket::FOURCC_GBRG, libyuv::BayerGBRGToI420);
}
void ConvertToBayerGRBGBuffer() {
ConvertToBuffer(1, 0, false, TO, kErrorHigh,
cricket::FOURCC_GRBG, libyuv::BayerGRBGToI420);
}
void ConvertToBayerRGGBBuffer() {
ConvertToBuffer(1, 0, false, TO, kErrorHigh,
cricket::FOURCC_RGGB, libyuv::BayerRGGBToI420);
}
void ConvertToI400Buffer() {
ConvertToBuffer(1, 0, false, TO, 128,
cricket::FOURCC_I400, libyuv::I400ToI420);
}
void ConvertToYUY2Buffer() {
ConvertToBuffer(2, 0, false, TO, kError,
cricket::FOURCC_YUY2, libyuv::YUY2ToI420);
}
void ConvertToUYVYBuffer() {
ConvertToBuffer(2, 0, false, TO, kError,
cricket::FOURCC_UYVY, libyuv::UYVYToI420);
}
// Tests ConvertToRGBBuffer formats with odd stride.
void ConvertToARGBBufferStride() {
ConvertToBuffer(4, kOddStride, false, TO, kError,
cricket::FOURCC_ARGB, libyuv::ARGBToI420);
}
void ConvertToBGRABufferStride() {
ConvertToBuffer(4, kOddStride, false, TO, kError,
cricket::FOURCC_BGRA, libyuv::BGRAToI420);
}
void ConvertToABGRBufferStride() {
ConvertToBuffer(4, kOddStride, false, TO, kError,
cricket::FOURCC_ABGR, libyuv::ABGRToI420);
}
void ConvertToRGB24BufferStride() {
ConvertToBuffer(3, kOddStride, false, TO, kError,
cricket::FOURCC_24BG, libyuv::RGB24ToI420);
}
void ConvertToRAWBufferStride() {
ConvertToBuffer(3, kOddStride, false, TO, kError,
cricket::FOURCC_RAW, libyuv::RAWToI420);
}
void ConvertToRGB565BufferStride() {
ConvertToBuffer(2, kOddStride, false, TO, kError,
cricket::FOURCC_RGBP, libyuv::RGB565ToI420);
}
void ConvertToARGB1555BufferStride() {
ConvertToBuffer(2, kOddStride, false, TO, kError,
cricket::FOURCC_RGBO, libyuv::ARGB1555ToI420);
}
void ConvertToARGB4444BufferStride() {
ConvertToBuffer(2, kOddStride, false, TO, kError,
cricket::FOURCC_R444, libyuv::ARGB4444ToI420);
}
void ConvertToBayerBGGRBufferStride() {
ConvertToBuffer(1, kOddStride, false, TO, kErrorHigh,
cricket::FOURCC_BGGR, libyuv::BayerBGGRToI420);
}
void ConvertToBayerGBRGBufferStride() {
ConvertToBuffer(1, kOddStride, false, TO, kErrorHigh,
cricket::FOURCC_GBRG, libyuv::BayerGBRGToI420);
}
void ConvertToBayerGRBGBufferStride() {
ConvertToBuffer(1, kOddStride, false, TO, kErrorHigh,
cricket::FOURCC_GRBG, libyuv::BayerGRBGToI420);
}
void ConvertToBayerRGGBBufferStride() {
ConvertToBuffer(1, kOddStride, false, TO, kErrorHigh,
cricket::FOURCC_RGGB, libyuv::BayerRGGBToI420);
}
void ConvertToI400BufferStride() {
ConvertToBuffer(1, kOddStride, false, TO, 128,
cricket::FOURCC_I400, libyuv::I400ToI420);
}
void ConvertToYUY2BufferStride() {
ConvertToBuffer(2, kOddStride, false, TO, kError,
cricket::FOURCC_YUY2, libyuv::YUY2ToI420);
}
void ConvertToUYVYBufferStride() {
ConvertToBuffer(2, kOddStride, false, TO, kError,
cricket::FOURCC_UYVY, libyuv::UYVYToI420);
}
// Tests ConvertToRGBBuffer formats with negative stride to invert image.
void ConvertToARGBBufferInverted() {
ConvertToBuffer(4, 0, true, TO, kError,
cricket::FOURCC_ARGB, libyuv::ARGBToI420);
}
void ConvertToBGRABufferInverted() {
ConvertToBuffer(4, 0, true, TO, kError,
cricket::FOURCC_BGRA, libyuv::BGRAToI420);
}
void ConvertToABGRBufferInverted() {
ConvertToBuffer(4, 0, true, TO, kError,
cricket::FOURCC_ABGR, libyuv::ABGRToI420);
}
void ConvertToRGB24BufferInverted() {
ConvertToBuffer(3, 0, true, TO, kError,
cricket::FOURCC_24BG, libyuv::RGB24ToI420);
}
void ConvertToRAWBufferInverted() {
ConvertToBuffer(3, 0, true, TO, kError,
cricket::FOURCC_RAW, libyuv::RAWToI420);
}
void ConvertToRGB565BufferInverted() {
ConvertToBuffer(2, 0, true, TO, kError,
cricket::FOURCC_RGBP, libyuv::RGB565ToI420);
}
void ConvertToARGB1555BufferInverted() {
ConvertToBuffer(2, 0, true, TO, kError,
cricket::FOURCC_RGBO, libyuv::ARGB1555ToI420);
}
void ConvertToARGB4444BufferInverted() {
ConvertToBuffer(2, 0, true, TO, kError,
cricket::FOURCC_R444, libyuv::ARGB4444ToI420);
}
void ConvertToBayerBGGRBufferInverted() {
ConvertToBuffer(1, 0, true, TO, kErrorHigh,
cricket::FOURCC_BGGR, libyuv::BayerBGGRToI420);
}
void ConvertToBayerGBRGBufferInverted() {
ConvertToBuffer(1, 0, true, TO, kErrorHigh,
cricket::FOURCC_GBRG, libyuv::BayerGBRGToI420);
}
void ConvertToBayerGRBGBufferInverted() {
ConvertToBuffer(1, 0, true, TO, kErrorHigh,
cricket::FOURCC_GRBG, libyuv::BayerGRBGToI420);
}
void ConvertToBayerRGGBBufferInverted() {
ConvertToBuffer(1, 0, true, TO, kErrorHigh,
cricket::FOURCC_RGGB, libyuv::BayerRGGBToI420);
}
void ConvertToI400BufferInverted() {
ConvertToBuffer(1, 0, true, TO, 128,
cricket::FOURCC_I400, libyuv::I400ToI420);
}
void ConvertToYUY2BufferInverted() {
ConvertToBuffer(2, 0, true, TO, kError,
cricket::FOURCC_YUY2, libyuv::YUY2ToI420);
}
void ConvertToUYVYBufferInverted() {
ConvertToBuffer(2, 0, true, TO, kError,
cricket::FOURCC_UYVY, libyuv::UYVYToI420);
}
// Tests ConvertFrom formats.
void ConvertFromARGBBuffer() {
ConvertToBuffer(4, 0, false, FROM, kError,
cricket::FOURCC_ARGB, libyuv::ARGBToI420);
}
void ConvertFromBGRABuffer() {
ConvertToBuffer(4, 0, false, FROM, kError,
cricket::FOURCC_BGRA, libyuv::BGRAToI420);
}
void ConvertFromABGRBuffer() {
ConvertToBuffer(4, 0, false, FROM, kError,
cricket::FOURCC_ABGR, libyuv::ABGRToI420);
}
void ConvertFromRGB24Buffer() {
ConvertToBuffer(3, 0, false, FROM, kError,
cricket::FOURCC_24BG, libyuv::RGB24ToI420);
}
void ConvertFromRAWBuffer() {
ConvertToBuffer(3, 0, false, FROM, kError,
cricket::FOURCC_RAW, libyuv::RAWToI420);
}
void ConvertFromRGB565Buffer() {
ConvertToBuffer(2, 0, false, FROM, kError,
cricket::FOURCC_RGBP, libyuv::RGB565ToI420);
}
void ConvertFromARGB1555Buffer() {
ConvertToBuffer(2, 0, false, FROM, kError,
cricket::FOURCC_RGBO, libyuv::ARGB1555ToI420);
}
void ConvertFromARGB4444Buffer() {
ConvertToBuffer(2, 0, false, FROM, kError,
cricket::FOURCC_R444, libyuv::ARGB4444ToI420);
}
void ConvertFromBayerBGGRBuffer() {
ConvertToBuffer(1, 0, false, FROM, kErrorHigh,
cricket::FOURCC_BGGR, libyuv::BayerBGGRToI420);
}
void ConvertFromBayerGBRGBuffer() {
ConvertToBuffer(1, 0, false, FROM, kErrorHigh,
cricket::FOURCC_GBRG, libyuv::BayerGBRGToI420);
}
void ConvertFromBayerGRBGBuffer() {
ConvertToBuffer(1, 0, false, FROM, kErrorHigh,
cricket::FOURCC_GRBG, libyuv::BayerGRBGToI420);
}
void ConvertFromBayerRGGBBuffer() {
ConvertToBuffer(1, 0, false, FROM, kErrorHigh,
cricket::FOURCC_RGGB, libyuv::BayerRGGBToI420);
}
void ConvertFromI400Buffer() {
ConvertToBuffer(1, 0, false, FROM, 128,
cricket::FOURCC_I400, libyuv::I400ToI420);
}
void ConvertFromYUY2Buffer() {
ConvertToBuffer(2, 0, false, FROM, kError,
cricket::FOURCC_YUY2, libyuv::YUY2ToI420);
}
void ConvertFromUYVYBuffer() {
ConvertToBuffer(2, 0, false, FROM, kError,
cricket::FOURCC_UYVY, libyuv::UYVYToI420);
}
// Tests ConvertFrom formats with odd stride.
void ConvertFromARGBBufferStride() {
ConvertToBuffer(4, kOddStride, false, FROM, kError,
cricket::FOURCC_ARGB, libyuv::ARGBToI420);
}
void ConvertFromBGRABufferStride() {
ConvertToBuffer(4, kOddStride, false, FROM, kError,
cricket::FOURCC_BGRA, libyuv::BGRAToI420);
}
void ConvertFromABGRBufferStride() {
ConvertToBuffer(4, kOddStride, false, FROM, kError,
cricket::FOURCC_ABGR, libyuv::ABGRToI420);
}
void ConvertFromRGB24BufferStride() {
ConvertToBuffer(3, kOddStride, false, FROM, kError,
cricket::FOURCC_24BG, libyuv::RGB24ToI420);
}
void ConvertFromRAWBufferStride() {
ConvertToBuffer(3, kOddStride, false, FROM, kError,
cricket::FOURCC_RAW, libyuv::RAWToI420);
}
void ConvertFromRGB565BufferStride() {
ConvertToBuffer(2, kOddStride, false, FROM, kError,
cricket::FOURCC_RGBP, libyuv::RGB565ToI420);
}
void ConvertFromARGB1555BufferStride() {
ConvertToBuffer(2, kOddStride, false, FROM, kError,
cricket::FOURCC_RGBO, libyuv::ARGB1555ToI420);
}
void ConvertFromARGB4444BufferStride() {
ConvertToBuffer(2, kOddStride, false, FROM, kError,
cricket::FOURCC_R444, libyuv::ARGB4444ToI420);
}
void ConvertFromBayerBGGRBufferStride() {
ConvertToBuffer(1, kOddStride, false, FROM, kErrorHigh,
cricket::FOURCC_BGGR, libyuv::BayerBGGRToI420);
}
void ConvertFromBayerGBRGBufferStride() {
ConvertToBuffer(1, kOddStride, false, FROM, kErrorHigh,
cricket::FOURCC_GBRG, libyuv::BayerGBRGToI420);
}
void ConvertFromBayerGRBGBufferStride() {
ConvertToBuffer(1, kOddStride, false, FROM, kErrorHigh,
cricket::FOURCC_GRBG, libyuv::BayerGRBGToI420);
}
void ConvertFromBayerRGGBBufferStride() {
ConvertToBuffer(1, kOddStride, false, FROM, kErrorHigh,
cricket::FOURCC_RGGB, libyuv::BayerRGGBToI420);
}
void ConvertFromI400BufferStride() {
ConvertToBuffer(1, kOddStride, false, FROM, 128,
cricket::FOURCC_I400, libyuv::I400ToI420);
}
void ConvertFromYUY2BufferStride() {
ConvertToBuffer(2, kOddStride, false, FROM, kError,
cricket::FOURCC_YUY2, libyuv::YUY2ToI420);
}
void ConvertFromUYVYBufferStride() {
ConvertToBuffer(2, kOddStride, false, FROM, kError,
cricket::FOURCC_UYVY, libyuv::UYVYToI420);
}
// Tests ConvertFrom formats with negative stride to invert image.
void ConvertFromARGBBufferInverted() {
ConvertToBuffer(4, 0, true, FROM, kError,
cricket::FOURCC_ARGB, libyuv::ARGBToI420);
}
void ConvertFromBGRABufferInverted() {
ConvertToBuffer(4, 0, true, FROM, kError,
cricket::FOURCC_BGRA, libyuv::BGRAToI420);
}
void ConvertFromABGRBufferInverted() {
ConvertToBuffer(4, 0, true, FROM, kError,
cricket::FOURCC_ABGR, libyuv::ABGRToI420);
}
void ConvertFromRGB24BufferInverted() {
ConvertToBuffer(3, 0, true, FROM, kError,
cricket::FOURCC_24BG, libyuv::RGB24ToI420);
}
void ConvertFromRAWBufferInverted() {
ConvertToBuffer(3, 0, true, FROM, kError,
cricket::FOURCC_RAW, libyuv::RAWToI420);
}
void ConvertFromRGB565BufferInverted() {
ConvertToBuffer(2, 0, true, FROM, kError,
cricket::FOURCC_RGBP, libyuv::RGB565ToI420);
}
void ConvertFromARGB1555BufferInverted() {
ConvertToBuffer(2, 0, true, FROM, kError,
cricket::FOURCC_RGBO, libyuv::ARGB1555ToI420);
}
void ConvertFromARGB4444BufferInverted() {
ConvertToBuffer(2, 0, true, FROM, kError,
cricket::FOURCC_R444, libyuv::ARGB4444ToI420);
}
void ConvertFromBayerBGGRBufferInverted() {
ConvertToBuffer(1, 0, true, FROM, kErrorHigh,
cricket::FOURCC_BGGR, libyuv::BayerBGGRToI420);
}
void ConvertFromBayerGBRGBufferInverted() {
ConvertToBuffer(1, 0, true, FROM, kErrorHigh,
cricket::FOURCC_GBRG, libyuv::BayerGBRGToI420);
}
void ConvertFromBayerGRBGBufferInverted() {
ConvertToBuffer(1, 0, true, FROM, kErrorHigh,
cricket::FOURCC_GRBG, libyuv::BayerGRBGToI420);
}
void ConvertFromBayerRGGBBufferInverted() {
ConvertToBuffer(1, 0, true, FROM, kErrorHigh,
cricket::FOURCC_RGGB, libyuv::BayerRGGBToI420);
}
void ConvertFromI400BufferInverted() {
ConvertToBuffer(1, 0, true, FROM, 128,
cricket::FOURCC_I400, libyuv::I400ToI420);
}
void ConvertFromYUY2BufferInverted() {
ConvertToBuffer(2, 0, true, FROM, kError,
cricket::FOURCC_YUY2, libyuv::YUY2ToI420);
}
void ConvertFromUYVYBufferInverted() {
ConvertToBuffer(2, 0, true, FROM, kError,
cricket::FOURCC_UYVY, libyuv::UYVYToI420);
}
// Test converting from I420 to I422.
void ConvertToI422Buffer() {
T frame1, frame2;
size_t out_size = kWidth * kHeight * 2;
rtc::scoped_ptr<uint8[]> buf(new uint8[out_size + kAlignment]);
uint8* y = ALIGNP(buf.get(), kAlignment);
uint8* u = y + kWidth * kHeight;
uint8* v = u + (kWidth / 2) * kHeight;
ASSERT_TRUE(LoadFrameNoRepeat(&frame1));
for (int i = 0; i < repeat_; ++i) {
EXPECT_EQ(0, libyuv::I420ToI422(frame1.GetYPlane(), frame1.GetYPitch(),
frame1.GetUPlane(), frame1.GetUPitch(),
frame1.GetVPlane(), frame1.GetVPitch(),
y, kWidth,
u, kWidth / 2,
v, kWidth / 2,
kWidth, kHeight));
}
EXPECT_TRUE(frame2.Init(cricket::FOURCC_I422,
kWidth, kHeight, kWidth, kHeight,
y,
out_size, 1, 1, 0, 0, cricket::ROTATION_0));
EXPECT_TRUE(IsEqual(frame1, frame2, 1));
}
#define TEST_TOBYR(NAME, BAYER) \
void NAME() { \
size_t bayer_size = kWidth * kHeight; \
rtc::scoped_ptr<uint8[]> bayerbuf(new uint8[ \
bayer_size + kAlignment]); \
uint8* bayer = ALIGNP(bayerbuf.get(), kAlignment); \
T frame; \
rtc::scoped_ptr<rtc::MemoryStream> ms( \
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight)); \
ASSERT_TRUE(ms.get() != NULL); \
for (int i = 0; i < repeat_; ++i) { \
libyuv::ARGBToBayer##BAYER(reinterpret_cast<uint8*>(ms->GetBuffer()), \
kWidth * 4, \
bayer, kWidth, \
kWidth, kHeight); \
} \
rtc::scoped_ptr<rtc::MemoryStream> ms2( \
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight)); \
size_t data_size; \
bool ret = ms2->GetSize(&data_size); \
EXPECT_TRUE(ret); \
libyuv::Bayer##BAYER##ToARGB(bayer, kWidth, \
reinterpret_cast<uint8*>(ms2->GetBuffer()), \
kWidth * 4, \
kWidth, kHeight); \
EXPECT_TRUE(IsPlaneEqual("argb", \
reinterpret_cast<uint8*>(ms->GetBuffer()), kWidth * 4, \
reinterpret_cast<uint8*>(ms2->GetBuffer()), kWidth * 4, \
kWidth * 4, kHeight, 240)); \
} \
void NAME##Unaligned() { \
size_t bayer_size = kWidth * kHeight; \
rtc::scoped_ptr<uint8[]> bayerbuf(new uint8[ \
bayer_size + 1 + kAlignment]); \
uint8* bayer = ALIGNP(bayerbuf.get(), kAlignment) + 1; \
T frame; \
rtc::scoped_ptr<rtc::MemoryStream> ms( \
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight)); \
ASSERT_TRUE(ms.get() != NULL); \
for (int i = 0; i < repeat_; ++i) { \
libyuv::ARGBToBayer##BAYER(reinterpret_cast<uint8*>(ms->GetBuffer()), \
kWidth * 4, \
bayer, kWidth, \
kWidth, kHeight); \
} \
rtc::scoped_ptr<rtc::MemoryStream> ms2( \
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight)); \
size_t data_size; \
bool ret = ms2->GetSize(&data_size); \
EXPECT_TRUE(ret); \
libyuv::Bayer##BAYER##ToARGB(bayer, kWidth, \
reinterpret_cast<uint8*>(ms2->GetBuffer()), \
kWidth * 4, \
kWidth, kHeight); \
EXPECT_TRUE(IsPlaneEqual("argb", \
reinterpret_cast<uint8*>(ms->GetBuffer()), kWidth * 4, \
reinterpret_cast<uint8*>(ms2->GetBuffer()), kWidth * 4, \
kWidth * 4, kHeight, 240)); \
}
// Tests ARGB to Bayer formats.
TEST_TOBYR(ConvertARGBToBayerGRBG, GRBG)
TEST_TOBYR(ConvertARGBToBayerGBRG, GBRG)
TEST_TOBYR(ConvertARGBToBayerBGGR, BGGR)
TEST_TOBYR(ConvertARGBToBayerRGGB, RGGB)
#define TEST_BYRTORGB(NAME, BAYER) \
void NAME() { \
size_t bayer_size = kWidth * kHeight; \
rtc::scoped_ptr<uint8[]> bayerbuf(new uint8[ \
bayer_size + kAlignment]); \
uint8* bayer1 = ALIGNP(bayerbuf.get(), kAlignment); \
for (int i = 0; i < kWidth * kHeight; ++i) { \
bayer1[i] = static_cast<uint8>(i * 33u + 183u); \
} \
T frame; \
rtc::scoped_ptr<rtc::MemoryStream> ms( \
CreateRgbSample(cricket::FOURCC_ARGB, kWidth, kHeight)); \
ASSERT_TRUE(ms.get() != NULL); \
for (int i = 0; i < repeat_; ++i) { \
libyuv::Bayer##BAYER##ToARGB(bayer1, kWidth, \
reinterpret_cast<uint8*>(ms->GetBuffer()), \
kWidth * 4, \
kWidth, kHeight); \
} \
rtc::scoped_ptr<uint8[]> bayer2buf(new uint8[ \
bayer_size + kAlignment]); \
uint8* bayer2 = ALIGNP(bayer2buf.get(), kAlignment); \
libyuv::ARGBToBayer##BAYER(reinterpret_cast<uint8*>(ms->GetBuffer()), \
kWidth * 4, \
bayer2, kWidth, \
kWidth, kHeight); \
EXPECT_TRUE(IsPlaneEqual("bayer", \
bayer1, kWidth, \
bayer2, kWidth, \
kWidth, kHeight, 0)); \
}
// Tests Bayer formats to ARGB.
TEST_BYRTORGB(ConvertBayerGRBGToARGB, GRBG)
TEST_BYRTORGB(ConvertBayerGBRGToARGB, GBRG)
TEST_BYRTORGB(ConvertBayerBGGRToARGB, BGGR)
TEST_BYRTORGB(ConvertBayerRGGBToARGB, RGGB)
///////////////////
// General tests //
///////////////////
void Copy() {
rtc::scoped_ptr<T> source(new T);
rtc::scoped_ptr<cricket::VideoFrame> target;
ASSERT_TRUE(LoadFrameNoRepeat(source.get()));
target.reset(source->Copy());
EXPECT_TRUE(IsEqual(*source, *target, 0));
source.reset();
EXPECT_TRUE(target->GetYPlane() != NULL);
}
void CopyIsRef() {
rtc::scoped_ptr<T> source(new T);
rtc::scoped_ptr<cricket::VideoFrame> target;
ASSERT_TRUE(LoadFrameNoRepeat(source.get()));
target.reset(source->Copy());
EXPECT_TRUE(IsEqual(*source, *target, 0));
EXPECT_EQ(source->GetYPlane(), target->GetYPlane());
EXPECT_EQ(source->GetUPlane(), target->GetUPlane());
EXPECT_EQ(source->GetVPlane(), target->GetVPlane());
}
void MakeExclusive() {
rtc::scoped_ptr<T> source(new T);
rtc::scoped_ptr<cricket::VideoFrame> target;
ASSERT_TRUE(LoadFrameNoRepeat(source.get()));
target.reset(source->Copy());
EXPECT_TRUE(target->MakeExclusive());
EXPECT_TRUE(IsEqual(*source, *target, 0));
EXPECT_NE(target->GetYPlane(), source->GetYPlane());
EXPECT_NE(target->GetUPlane(), source->GetUPlane());
EXPECT_NE(target->GetVPlane(), source->GetVPlane());
}
void CopyToBuffer() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
LoadSample(kImageFilename));
ASSERT_TRUE(ms.get() != NULL);
ASSERT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_I420, kWidth, kHeight,
&frame));
size_t out_size = kWidth * kHeight * 3 / 2;
rtc::scoped_ptr<uint8[]> out(new uint8[out_size]);
for (int i = 0; i < repeat_; ++i) {
EXPECT_EQ(out_size, frame.CopyToBuffer(out.get(), out_size));
}
EXPECT_EQ(0, memcmp(out.get(), ms->GetBuffer(), out_size));
}
void CopyToFrame() {
T source;
rtc::scoped_ptr<rtc::MemoryStream> ms(
LoadSample(kImageFilename));
ASSERT_TRUE(ms.get() != NULL);
ASSERT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_I420, kWidth, kHeight,
&source));
// Create the target frame by loading from a file.
T target;
ASSERT_TRUE(LoadFrameNoRepeat(&target));
EXPECT_FALSE(IsBlack(target));
// Stretch and check if the stretched target is black.
source.CopyToFrame(&target);
EXPECT_TRUE(IsEqual(source, target, 0));
}
void Write() {
T frame;
rtc::scoped_ptr<rtc::MemoryStream> ms(
LoadSample(kImageFilename));
ASSERT_TRUE(ms.get() != NULL);
rtc::MemoryStream ms2;
size_t size;
ASSERT_TRUE(ms->GetSize(&size));
ASSERT_TRUE(ms2.ReserveSize(size));
ASSERT_TRUE(LoadFrame(ms.get(), cricket::FOURCC_I420, kWidth, kHeight,
&frame));
for (int i = 0; i < repeat_; ++i) {
ms2.SetPosition(0u); // Useful when repeat_ > 1.
int error;
EXPECT_EQ(rtc::SR_SUCCESS, frame.Write(&ms2, &error));
}
size_t out_size = cricket::VideoFrame::SizeOf(kWidth, kHeight);
EXPECT_EQ(0, memcmp(ms2.GetBuffer(), ms->GetBuffer(), out_size));
}
void CopyToBuffer1Pixel() {
size_t out_size = 3;
rtc::scoped_ptr<uint8[]> out(new uint8[out_size + 1]);
memset(out.get(), 0xfb, out_size + 1); // Fill buffer
uint8 pixel[3] = { 1, 2, 3 };
T frame;
EXPECT_TRUE(frame.Init(cricket::FOURCC_I420, 1, 1, 1, 1,
pixel, sizeof(pixel),
1, 1, 0, 0, 0));
for (int i = 0; i < repeat_; ++i) {
EXPECT_EQ(out_size, frame.CopyToBuffer(out.get(), out_size));
}
EXPECT_EQ(1, out.get()[0]); // Check Y. Should be 1.
EXPECT_EQ(2, out.get()[1]); // Check U. Should be 2.
EXPECT_EQ(3, out.get()[2]); // Check V. Should be 3.
EXPECT_EQ(0xfb, out.get()[3]); // Check sentinel is still intact.
}
void StretchToFrame() {
// Create the source frame as a black frame.
T source;
EXPECT_TRUE(source.InitToBlack(kWidth * 2, kHeight * 2, 1, 1, 0, 0));
EXPECT_TRUE(IsSize(source, kWidth * 2, kHeight * 2));
// Create the target frame by loading from a file.
T target1;
ASSERT_TRUE(LoadFrameNoRepeat(&target1));
EXPECT_FALSE(IsBlack(target1));
// Stretch and check if the stretched target is black.
source.StretchToFrame(&target1, true, false);
EXPECT_TRUE(IsBlack(target1));
// Crop and stretch and check if the stretched target is black.
T target2;
ASSERT_TRUE(LoadFrameNoRepeat(&target2));
source.StretchToFrame(&target2, true, true);
EXPECT_TRUE(IsBlack(target2));
EXPECT_EQ(source.GetElapsedTime(), target2.GetElapsedTime());
EXPECT_EQ(source.GetTimeStamp(), target2.GetTimeStamp());
}
int repeat_;
};
#endif // TALK_MEDIA_BASE_VIDEOFRAME_UNITTEST_H_