blob: c8c3168bb0b094af175d32590b2a33fa905bbabb [file] [log] [blame]
/* Copyright (c) 2018-2019 The Khronos Group Inc.
* Copyright (c) 2018-2019 Valve Corporation
* Copyright (c) 2018-2019 LunarG, Inc.
* Copyright (C) 2018-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Allow use of STL min and max functions in Windows
#define NOMINMAX
#include "chassis.h"
#include "core_validation.h"
// This define indicates to build the VMA routines themselves
#define VMA_IMPLEMENTATION
// This define indicates that we will supply Vulkan function pointers at initialization
#define VMA_STATIC_VULKAN_FUNCTIONS 0
#include "gpu_validation.h"
#include "shader_validation.h"
#include "spirv-tools/libspirv.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <SPIRV/spirv.hpp>
#include <algorithm>
#include <regex>
// This is the number of bindings in the debug descriptor set.
static const uint32_t kNumBindingsInSet = 2;
static const VkShaderStageFlags kShaderStageAllRayTracing =
VK_SHADER_STAGE_ANY_HIT_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV | VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV |
VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_RAYGEN_BIT_NV;
// Implementation for Descriptor Set Manager class
GpuDescriptorSetManager::GpuDescriptorSetManager(CoreChecks *dev_data) { dev_data_ = dev_data; }
GpuDescriptorSetManager::~GpuDescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
DispatchDestroyDescriptorPool(dev_data_->device, pool.first, NULL);
}
desc_pool_map_.clear();
}
VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
std::vector<VkDescriptorSet> *desc_sets) {
const uint32_t default_pool_size = kItemsPerChunk;
VkResult result = VK_SUCCESS;
VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
if (0 == count) {
return result;
}
desc_sets->clear();
desc_sets->resize(count);
for (auto &pool : desc_pool_map_) {
if (pool.second.used + count < pool.second.size) {
pool_to_use = pool.first;
break;
}
}
if (VK_NULL_HANDLE == pool_to_use) {
uint32_t pool_count = default_pool_size;
if (count > default_pool_size) {
pool_count = count;
}
const VkDescriptorPoolSize size_counts = {
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pool_count * kNumBindingsInSet,
};
VkDescriptorPoolCreateInfo desc_pool_info = {};
desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
desc_pool_info.pNext = NULL;
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = pool_count;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &size_counts;
result = DispatchCreateDescriptorPool(dev_data_->device, &desc_pool_info, NULL, &pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, dev_data_->gpu_validation_state->debug_desc_layout);
VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
desc_layouts.data()};
result = DispatchAllocateDescriptorSets(dev_data_->device, &alloc_info, desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*pool = pool_to_use;
desc_pool_map_[pool_to_use].used += count;
return result;
}
void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
auto iter = desc_pool_map_.find(desc_pool);
if (iter != desc_pool_map_.end()) {
VkResult result = DispatchFreeDescriptorSets(dev_data_->device, desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (0 == desc_pool_map_[desc_pool].used) {
DispatchDestroyDescriptorPool(dev_data_->device, desc_pool, NULL);
desc_pool_map_.erase(desc_pool);
}
}
return;
}
// Trampolines to make VMA call Dispatch for Vulkan calls
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties) {
DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
DispatchFreeMemory(device, memory, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData) {
return DispatchMapMemory(device, memory, offset, size, flags, ppData);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindImageMemory(device, image, memory, memoryOffset);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
return DispatchDestroyBuffer(device, buffer, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
DispatchDestroyImage(device, image, pAllocator);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
VkResult CoreChecks::GpuInitializeVma() {
VmaVulkanFunctions functions;
VmaAllocatorCreateInfo allocatorInfo = {};
allocatorInfo.device = device;
ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(allocatorInfo.device), layer_data_map);
ValidationObject *validation_data =
ValidationObject::GetValidationObject(device_object->object_dispatch, LayerObjectTypeCoreValidation);
CoreChecks *core_checks = static_cast<CoreChecks *>(validation_data);
allocatorInfo.physicalDevice = core_checks->physical_device;
functions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)gpuVkGetPhysicalDeviceProperties;
functions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)gpuVkGetPhysicalDeviceMemoryProperties;
functions.vkAllocateMemory = (PFN_vkAllocateMemory)gpuVkAllocateMemory;
functions.vkFreeMemory = (PFN_vkFreeMemory)gpuVkFreeMemory;
functions.vkMapMemory = (PFN_vkMapMemory)gpuVkMapMemory;
functions.vkUnmapMemory = (PFN_vkUnmapMemory)gpuVkUnmapMemory;
functions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)gpuVkFlushMappedMemoryRanges;
functions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)gpuVkInvalidateMappedMemoryRanges;
functions.vkBindBufferMemory = (PFN_vkBindBufferMemory)gpuVkBindBufferMemory;
functions.vkBindImageMemory = (PFN_vkBindImageMemory)gpuVkBindImageMemory;
functions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)gpuVkGetBufferMemoryRequirements;
functions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)gpuVkGetImageMemoryRequirements;
functions.vkCreateBuffer = (PFN_vkCreateBuffer)gpuVkCreateBuffer;
functions.vkDestroyBuffer = (PFN_vkDestroyBuffer)gpuVkDestroyBuffer;
functions.vkCreateImage = (PFN_vkCreateImage)gpuVkCreateImage;
functions.vkDestroyImage = (PFN_vkDestroyImage)gpuVkDestroyImage;
functions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)gpuVkCmdCopyBuffer;
allocatorInfo.pVulkanFunctions = &functions;
return vmaCreateAllocator(&allocatorInfo, &gpu_validation_state->vmaAllocator);
}
// Convenience function for reporting problems with setting up GPU Validation.
void CoreChecks::ReportSetupProblem(VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
const char *const specific_message) {
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
"Detail: (%s)", specific_message);
}
// Turn on necessary device features.
void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, safe_VkDeviceCreateInfo *modified_create_info,
VkPhysicalDeviceFeatures *supported_features) {
if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
VkPhysicalDeviceFeatures *features = nullptr;
if (modified_create_info->pEnabledFeatures) {
// If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
} else {
VkPhysicalDeviceFeatures2 *features2 = nullptr;
features2 =
const_cast<VkPhysicalDeviceFeatures2 *>(lvl_find_in_chain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
if (features2) features = &features2->features;
}
if (features) {
features->fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
features->vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
} else {
VkPhysicalDeviceFeatures new_features = {};
new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
delete modified_create_info->pEnabledFeatures;
modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
}
}
}
// Perform initializations that can be done at Create Device time.
void CoreChecks::GpuPostCallRecordCreateDevice(const CHECK_ENABLED *enables, const VkDeviceCreateInfo *pCreateInfo) {
// Set instance-level enables in device-enable data structure if using legacy settings
enabled.gpu_validation = enables->gpu_validation;
enabled.gpu_validation_reserve_binding_slot = enables->gpu_validation_reserve_binding_slot;
gpu_validation_state = std::unique_ptr<GpuValidationState>(new GpuValidationState);
gpu_validation_state->reserve_binding_slot = enables->gpu_validation_reserve_binding_slot;
if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
gpu_validation_state->aborted = true;
return;
}
// If api version 1.1 or later, SetDeviceLoaderData will be in the loader
auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
assert(chain_info->u.pfnSetDeviceLoaderData);
gpu_validation_state->vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
// Some devices have extremely high limits here, so set a reasonable max because we have to pad
// the pipeline layout with dummy descriptor set layouts.
gpu_validation_state->adjusted_max_desc_sets = phys_dev_props.limits.maxBoundDescriptorSets;
gpu_validation_state->adjusted_max_desc_sets = std::min(33U, gpu_validation_state->adjusted_max_desc_sets);
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (gpu_validation_state->adjusted_max_desc_sets == 1) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Device can bind only a single descriptor set. GPU-Assisted Validation disabled.");
gpu_validation_state->aborted = true;
return;
}
gpu_validation_state->desc_set_bind_index = gpu_validation_state->adjusted_max_desc_sets - 1;
log_msg(report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
gpu_validation_state->desc_set_bind_index);
gpu_validation_state->output_buffer_size = sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1);
VkResult result = GpuInitializeVma();
assert(result == VK_SUCCESS);
std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(this));
// The descriptor indexing checks require only the first "output" binding.
const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
{
0, // output
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
NULL,
},
{
1, // input
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
NULL,
},
};
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
kNumBindingsInSet, debug_desc_layout_bindings};
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
NULL};
result = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, NULL, &gpu_validation_state->debug_desc_layout);
// This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
VkResult result2 =
DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, NULL, &gpu_validation_state->dummy_desc_layout);
assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create descriptor set layout. GPU-Assisted Validation disabled.");
if (result == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL);
}
if (result2 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL);
}
gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE;
gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE;
gpu_validation_state->aborted = true;
return;
}
gpu_validation_state->desc_set_manager = std::move(desc_set_manager);
}
// Clean up device-related resources
void CoreChecks::GpuPreCallRecordDestroyDevice() {
for (auto &queue_barrier_command_info_kv : gpu_validation_state->queue_barrier_command_infos) {
GpuQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_kv.second;
DispatchFreeCommandBuffers(device, queue_barrier_command_info.barrier_command_pool, 1,
&queue_barrier_command_info.barrier_command_buffer);
queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
DispatchDestroyCommandPool(device, queue_barrier_command_info.barrier_command_pool, NULL);
queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
}
gpu_validation_state->queue_barrier_command_infos.clear();
if (gpu_validation_state->debug_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL);
gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE;
}
if (gpu_validation_state->dummy_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL);
gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE;
}
gpu_validation_state->desc_set_manager.reset();
if (gpu_validation_state->vmaAllocator) {
vmaDestroyAllocator(gpu_validation_state->vmaAllocator);
}
}
// Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
bool CoreChecks::GpuPreCallCreatePipelineLayout(const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
std::vector<VkDescriptorSetLayout> *new_layouts,
VkPipelineLayoutCreateInfo *modified_create_info) {
if (gpu_validation_state->aborted) {
return false;
}
if (modified_create_info->setLayoutCount >= gpu_validation_state->adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_validation_state->desc_set_bind_index
<< ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
<< "Validation is not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
new_layouts->reserve(gpu_validation_state->adjusted_max_desc_sets);
new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_validation_state->adjusted_max_desc_sets - 1; ++i) {
new_layouts->push_back(gpu_validation_state->dummy_desc_layout);
}
new_layouts->push_back(gpu_validation_state->debug_desc_layout);
modified_create_info->pSetLayouts = new_layouts->data();
modified_create_info->setLayoutCount = gpu_validation_state->adjusted_max_desc_sets;
}
return true;
}
// Clean up GPU validation after the CreatePipelineLayout call is made
void CoreChecks::GpuPostCallCreatePipelineLayout(VkResult result) {
// Clean up GPU validation
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create pipeline layout. Device could become unstable.");
gpu_validation_state->aborted = true;
}
}
// Free the device memory and descriptor set associated with a command buffer.
void CoreChecks::GpuResetCommandBuffer(const VkCommandBuffer commandBuffer) {
if (gpu_validation_state->aborted) {
return;
}
auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(commandBuffer);
for (auto buffer_info : gpu_buffer_list) {
vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.buffer,
buffer_info.output_mem_block.allocation);
if (buffer_info.input_mem_block.buffer) {
vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.buffer,
buffer_info.input_mem_block.allocation);
}
if (buffer_info.desc_set != VK_NULL_HANDLE) {
gpu_validation_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
}
gpu_validation_state->command_buffer_map.erase(commandBuffer);
}
// Just gives a warning about a possible deadlock.
void CoreChecks::GpuPreCallValidateCmdWaitEvents(VkPipelineStageFlags sourceStageMask) {
if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
"GPU_Assisted validation waits on queue completion. "
"This wait could block the host's signaling of this event, resulting in deadlock.");
}
}
std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_GRAPHICS);
return new_pipeline_create_infos;
}
std::vector<safe_VkComputePipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateComputePipelines(
VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_COMPUTE);
return new_pipeline_create_infos;
}
std::vector<safe_VkRayTracingPipelineCreateInfoNV> CoreChecks::GpuPreCallRecordCreateRayTracingPipelinesNV(
VkPipelineCache pipelineCache, uint32_t count, const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
std::vector<safe_VkRayTracingPipelineCreateInfoNV> new_pipeline_create_infos;
GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
return new_pipeline_create_infos;
}
template <typename CreateInfo>
struct CreatePipelineTraits {};
template <>
struct CreatePipelineTraits<VkGraphicsPipelineCreateInfo> {
using SafeType = safe_VkGraphicsPipelineCreateInfo;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->graphicsPipelineCI; }
static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkComputePipelineCreateInfo> {
using SafeType = safe_VkComputePipelineCreateInfo;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->computePipelineCI; }
static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; }
static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) {
return createInfo.stage.module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
assert(stage == 0);
createInfo->stage.module = shader_module;
}
};
template <>
struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoNV> {
using SafeType = safe_VkRayTracingPipelineCreateInfoNV;
static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->raytracingPipelineCI; }
static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; }
static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) {
return createInfo.pStages[stage].module;
}
static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
createInfo->pStages[stage].module = shader_module;
}
};
// Examine the pipelines to see if they use the debug descriptor set binding index.
// If any do, create new non-instrumented shader modules and use them to replace the instrumented
// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
template <typename CreateInfo, typename SafeCreateInfo>
void CoreChecks::GpuPreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state,
std::vector<SafeCreateInfo> *new_pipeline_create_infos,
const VkPipelineBindPoint bind_point) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
// Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
// descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]);
new_pipeline_create_infos->push_back(Accessor::GetPipelineCI(pipe_state[pipeline].get()));
bool replace_shaders = false;
if (pipe_state[pipeline]->active_slots.find(gpu_validation_state->desc_set_bind_index) !=
pipe_state[pipeline]->active_slots.end()) {
replace_shaders = true;
}
// If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the already
// instrumented shaders need to be replaced with uninstrumented shaders
if (pipe_state[pipeline]->pipeline_layout.set_layouts.size() >= gpu_validation_state->adjusted_max_desc_sets) {
replace_shaders = true;
}
if (replace_shaders) {
for (uint32_t stage = 0; stage < stageCount; ++stage) {
const SHADER_MODULE_STATE *shader = GetShaderModuleState(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
VkShaderModuleCreateInfo create_info = {};
VkShaderModule shader_module;
create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
create_info.pCode = shader->words.data();
create_info.codeSize = shader->words.size() * sizeof(uint32_t);
VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module);
if (result == VK_SUCCESS) {
Accessor::SetShaderModule(new_pipeline_create_infos[pipeline].data(), shader_module, stage);
} else {
uint64_t moduleHandle = HandleToUint64(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, moduleHandle,
"Unable to replace instrumented shader with non-instrumented one. "
"Device could become unstable.");
}
}
}
}
}
void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(const uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void CoreChecks::GpuPostCallRecordCreateComputePipelines(const uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void CoreChecks::GpuPostCallRecordCreateRayTracingPipelinesNV(const uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
}
// For every pipeline:
// - For every shader in a pipeline:
// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
// - Track the shader in the shader_map
// - Save the shader binary if it contains debug code
template <typename CreateInfo>
void CoreChecks::GpuPostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const VkPipelineBindPoint bind_point) {
using Accessor = CreatePipelineTraits<CreateInfo>;
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
auto pipeline_state = ValidationStateTracker::GetPipelineState(pPipelines[pipeline]);
if (nullptr == pipeline_state) continue;
uint32_t stageCount = 0;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
stageCount = pipeline_state->graphicsPipelineCI.stageCount;
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
stageCount = 1;
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
stageCount = pipeline_state->raytracingPipelineCI.stageCount;
} else {
assert(false);
}
for (uint32_t stage = 0; stage < stageCount; ++stage) {
if (pipeline_state->active_slots.find(gpu_validation_state->desc_set_bind_index) !=
pipeline_state->active_slots.end()) {
DispatchDestroyShaderModule(device, Accessor::GetShaderModule(pCreateInfos[pipeline], stage), pAllocator);
}
const SHADER_MODULE_STATE *shader_state = nullptr;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
assert(stage == 0);
shader_state = GetShaderModuleState(pipeline_state->computePipelineCI.stage.module);
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
shader_state = GetShaderModuleState(pipeline_state->raytracingPipelineCI.pStages[stage].module);
} else {
assert(false);
}
std::vector<unsigned int> code;
// Save the shader binary if debug info is present.
// The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
// is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
// the pipeline is used, so we have to keep another copy.
if (shader_state && shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code.
for (auto insn : *shader_state) {
if (insn.opcode() == spv::OpLine) {
code = shader_state->words;
break;
}
}
}
gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
// Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
// out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
VkShaderModule shader_module = VK_NULL_HANDLE;
if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
shader_module = pipeline_state->graphicsPipelineCI.pStages[stage].module;
} else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
assert(stage == 0);
shader_module = pipeline_state->computePipelineCI.stage.module;
} else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
shader_module = pipeline_state->raytracingPipelineCI.pStages[stage].module;
} else {
assert(false);
}
gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].shader_module = shader_module;
gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
}
}
}
// Remove all the shader trackers associated with this destroyed pipeline.
void CoreChecks::GpuPreCallRecordDestroyPipeline(const VkPipeline pipeline) {
for (auto it = gpu_validation_state->shader_map.begin(); it != gpu_validation_state->shader_map.end();) {
if (it->second.pipeline == pipeline) {
it = gpu_validation_state->shader_map.erase(it);
} else {
++it;
}
}
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool CoreChecks::GpuInstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector<unsigned int> &new_pgm,
uint32_t *unique_shader_id) {
if (gpu_validation_state->aborted) return false;
if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
// Load original shader SPIR-V
uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
new_pgm.clear();
new_pgm.reserve(num_words);
new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
const bool descriptor_indexing = device_extensions.vk_ext_descriptor_indexing;
using namespace spvtools;
spv_target_env target_env = SPV_ENV_VULKAN_1_1;
Optimizer optimizer(target_env);
optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_validation_state->desc_set_bind_index,
gpu_validation_state->unique_shader_module_id, descriptor_indexing,
descriptor_indexing));
optimizer.RegisterPass(CreateAggressiveDCEPass());
bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
if (!pass) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
"Failure to instrument shader. Proceeding with non-instrumented shader.");
}
*unique_shader_id = gpu_validation_state->unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
bool CoreChecks::GpuPreCallCreateShaderModule(const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
VkShaderModule *pShaderModule, uint32_t *unique_shader_id,
VkShaderModuleCreateInfo *instrumented_create_info,
std::vector<unsigned int> *instrumented_pgm) {
bool pass = GpuInstrumentShader(pCreateInfo, *instrumented_pgm, unique_shader_id);
if (pass) {
instrumented_create_info->pCode = instrumented_pgm->data();
instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
}
return pass;
}
// Generate the stage-specific part of the message.
static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstCommonOutStageIdx]) {
case spv::ExecutionModelVertex: {
strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
<< " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
} break;
case spv::ExecutionModelTessellationControl: {
strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". ";
} break;
case spv::ExecutionModelTessellationEvaluation: {
strm << "Stage = Tessellation Eval. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". ";
} break;
case spv::ExecutionModelGeometry: {
strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
<< " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
} break;
case spv::ExecutionModelFragment: {
strm << "Stage = Fragment. Fragment coord (x,y) = ("
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
} break;
case spv::ExecutionModelGLCompute: {
strm << "Stage = Compute. Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationIdX] << ". ";
} break;
case spv::ExecutionModelRayGenerationNV: {
strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelIntersectionNV: {
strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelAnyHitNV: {
strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelClosestHitNV: {
strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelMissNV: {
strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelCallableNV: {
strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
default: {
strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
assert(false);
} break;
}
msg = strm.str();
}
// Generate the part of the message describing the violation.
static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstValidationOutError]) {
case 0: {
strm << "Index of " << debug_record[kInstBindlessBoundsOutDescIndex] << " used to index descriptor array of length "
<< debug_record[kInstBindlessBoundsOutDescBound] << ". ";
vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
} break;
case 1: {
strm << "Descriptor index " << debug_record[kInstBindlessBoundsOutDescIndex] << " is uninitialized. ";
vuid_msg = "UNASSIGNED-Descriptor uninitialized";
} break;
default: {
strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
vuid_msg = "UNASSIGNED-Internal Error";
assert(false);
} break;
}
msg = strm.str();
}
static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
auto object_label = report_data->DebugReportGetUtilsObjectName(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate message from the common portion of the debug report record.
static void GenerateCommonMessage(const debug_report_data *report_data, const CMD_BUFFER_STATE *cb_node,
const uint32_t *debug_record, const VkShaderModule shader_module_handle,
const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
const uint32_t operation_index, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
if (shader_module_handle == VK_NULL_HANDLE) {
strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
<< HandleToUint64(cb_node->commandBuffer) << "). ";
assert(true);
} else {
strm << std::hex << std::showbase << "Command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
<< HandleToUint64(cb_node->commandBuffer) << "). ";
if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
strm << "Draw ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
strm << "Compute ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
strm << "Ray Trace ";
} else {
assert(false);
strm << "Unknown Pipeline Operation ";
}
strm << "Index " << operation_index << ". "
<< "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
<< HandleToUint64(pipeline_handle) << "). "
<< "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
<< HandleToUint64(shader_module_handle) << "). ";
}
strm << std::dec << std::noshowbase;
strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
msg = strm.str();
}
// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
// Split the single string into a vector of strings, one for each line, for easier processing.
static void ReadOpSource(const SHADER_MODULE_STATE &shader, const uint32_t reported_file_id,
std::vector<std::string> &opsource_lines) {
for (auto insn : shader) {
if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
std::istringstream in_stream;
std::string cur_line;
in_stream.str((char *)&insn.word(4));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
while ((++insn).opcode() == spv::OpSourceContinued) {
in_stream.str((char *)&insn.word(1));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
}
break;
}
}
}
// The task here is to search the OpSource content to find the #line directive with the
// line number that is closest to, but still prior to the reported error line number and
// still within the reported filename.
// From this known position in the OpSource content we can add the difference between
// the #line line number and the reported error line number to determine the location
// in the OpSource content of the reported error line.
//
// Considerations:
// - Look only at #line directives that specify the reported_filename since
// the reported error line number refers to its location in the reported filename.
// - If a #line directive does not have a filename, the file is the reported filename, or
// the filename found in a prior #line directive. (This is C-preprocessor behavior)
// - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
// original order and the #line directives are used to keep the numbering correct. This
// is why we need to examine the entire contents of the source, instead of leaving early
// when finding a #line line number larger than the reported error line number.
//
// GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if defined(__GNUC__) && GCC_VERSION < 40900
static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
// # line <linenumber> "<filename>" or
// #line <linenumber> "<filename>"
std::vector<std::string> tokens;
std::stringstream stream(string);
std::string temp;
uint32_t line_index = 0;
while (stream >> temp) tokens.push_back(temp);
auto size = tokens.size();
if (size > 1) {
if (tokens[0] == "#" && tokens[1] == "line") {
line_index = 2;
} else if (tokens[0] == "#line") {
line_index = 1;
}
}
if (0 == line_index) return false;
*linenumber = std::stoul(tokens[line_index]);
uint32_t filename_index = line_index + 1;
// Remove enclosing double quotes around filename
if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
return true;
}
#else
static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
static const std::regex line_regex( // matches #line directives
"^" // beginning of line
"\\s*" // optional whitespace
"#" // required text
"\\s*" // optional whitespace
"line" // required text
"\\s+" // required whitespace
"([0-9]+)" // required first capture - line number
"(\\s+)?" // optional second capture - whitespace
"(\".+\")?" // optional third capture - quoted filename with at least one char inside
".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
std::smatch captures;
bool found_line = std::regex_match(string, captures, line_regex);
if (!found_line) return false;
// filename is optional and considered found only if the whitespace and the filename are captured
if (captures[2].matched && captures[3].matched) {
// Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
filename = captures[3].str().substr(1, captures[3].str().size() - 2);
}
*linenumber = std::stoul(captures[1]);
return true;
}
#endif // GCC_VERSION
// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
std::string &source_msg) {
using namespace spvtools;
std::ostringstream filename_stream;
std::ostringstream source_stream;
SHADER_MODULE_STATE shader;
shader.words = pgm;
// Find the OpLine just before the failing instruction indicated by the debug info.
// SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
uint32_t instruction_index = 0;
uint32_t reported_file_id = 0;
uint32_t reported_line_number = 0;
uint32_t reported_column_number = 0;
if (shader.words.size() > 0) {
for (auto insn : shader) {
if (insn.opcode() == spv::OpLine) {
reported_file_id = insn.word(1);
reported_line_number = insn.word(2);
reported_column_number = insn.word(3);
}
if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
break;
}
instruction_index++;
}
}
// Create message with file information obtained from the OpString pointed to by the discovered OpLine.
std::string reported_filename;
if (reported_file_id == 0) {
filename_stream
<< "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
} else {
bool found_opstring = false;
for (auto insn : shader) {
if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
found_opstring = true;
reported_filename = (char *)&insn.word(2);
if (reported_filename.empty()) {
filename_stream << "Shader validation error occurred at line " << reported_line_number;
} else {
filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
<< reported_line_number;
}
if (reported_column_number > 0) {
filename_stream << ", column " << reported_column_number;
}
filename_stream << ".";
break;
}
}
if (!found_opstring) {
filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
}
}
filename_msg = filename_stream.str();
// Create message to display source code line containing error.
if ((reported_file_id != 0)) {
// Read the source code and split it up into separate lines.
std::vector<std::string> opsource_lines;
ReadOpSource(shader, reported_file_id, opsource_lines);
// Find the line in the OpSource content that corresponds to the reported error file and line.
if (!opsource_lines.empty()) {
uint32_t saved_line_number = 0;
std::string current_filename = reported_filename; // current "preprocessor" filename state.
std::vector<std::string>::size_type saved_opsource_offset = 0;
bool found_best_line = false;
for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
uint32_t parsed_line_number;
std::string parsed_filename;
bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
if (!found_line) continue;
bool found_filename = parsed_filename.size() > 0;
if (found_filename) {
current_filename = parsed_filename;
}
if ((!found_filename) || (current_filename == reported_filename)) {
// Update the candidate best line directive, if the current one is prior and closer to the reported line
if (reported_line_number >= parsed_line_number) {
if (!found_best_line ||
(reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
saved_line_number = parsed_line_number;
saved_opsource_offset = std::distance(opsource_lines.begin(), it);
found_best_line = true;
}
}
}
}
if (found_best_line) {
assert(reported_line_number >= saved_line_number);
std::vector<std::string>::size_type opsource_index =
(reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
if (opsource_index < opsource_lines.size()) {
source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
} else {
source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
<< opsource_lines.size() << " lines.";
}
} else {
source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
}
} else {
source_stream << "Unable to find SPIR-V OpSource.";
}
}
source_msg = source_stream.str();
}
// Pull together all the information from the debug record to build the error message strings,
// and then assemble them into a single message string.
// Retrieve the shader program referenced by the unique shader ID provided in the debug record.
// We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
// sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
// keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
//
void CoreChecks::AnalyzeAndReportError(CMD_BUFFER_STATE *cb_node, VkQueue queue, VkPipelineBindPoint pipeline_bind_point,
uint32_t operation_index, uint32_t *const debug_output_buffer) {
using namespace spvtools;
const uint32_t total_words = debug_output_buffer[0];
// A zero here means that the shader instrumentation didn't write anything.
// If you have nothing to say, don't say it here.
if (0 == total_words) {
return;
}
// The first word in the debug output buffer is the number of words that would have
// been written by the shader instrumentation, if there was enough room in the buffer we provided.
// The number of words actually written by the shaders is determined by the size of the buffer
// we provide via the descriptor. So, we process only the number of words that can fit in the
// buffer.
// Each "report" written by the shader instrumentation is considered a "record". This function
// is hard-coded to process only one record because it expects the buffer to be large enough to
// hold only one record. If there is a desire to process more than one record, this function needs
// to be modified to loop over records and the buffer size increased.
std::string validation_message;
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
std::string vuid_msg;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<unsigned int> pgm;
// The first record starts at this offset after the total_words.
const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = gpu_validation_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
if (it != gpu_validation_state->shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
GenerateValidationMessage(debug_record, validation_message, vuid_msg);
GenerateStageMessage(debug_record, stage_message);
GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, pipeline_bind_point,
operation_index, common_message);
GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
filename_message.c_str(), source_message.c_str());
// The debug record at word kInstCommonOutSize is the number of words in the record
// written by the shader. Clear the entire record plus the total_words word at the start.
const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
}
// For the given command buffer, map its debug data buffers and read their contents for analysis.
void CoreChecks::ProcessInstrumentationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node) {
auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer);
if (cb_node && (cb_node->hasDrawCmd || cb_node->hasTraceRaysCmd || cb_node->hasDispatchCmd) && gpu_buffer_list.size() > 0) {
VkResult result;
char *pData;
uint32_t draw_index = 0;
uint32_t compute_index = 0;
uint32_t ray_trace_index = 0;
for (auto &buffer_info : gpu_buffer_list) {
result = vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&pData);
// Analyze debug output buffer
if (result == VK_SUCCESS) {
uint32_t operation_index = 0;
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
operation_index = draw_index;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
operation_index = compute_index;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
operation_index = ray_trace_index;
} else {
assert(false);
}
AnalyzeAndReportError(cb_node, queue, buffer_info.pipeline_bind_point, operation_index, (uint32_t *)pData);
vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation);
}
if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
draw_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
compute_index++;
} else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
ray_trace_index++;
} else {
assert(false);
}
}
}
}
// For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors
void CoreChecks::UpdateInstrumentationBuffer(CMD_BUFFER_STATE *cb_node) {
auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer);
uint32_t *pData;
for (auto &buffer_info : gpu_buffer_list) {
if (buffer_info.input_mem_block.update_at_submit.size() > 0) {
VkResult result =
vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation, (void **)&pData);
if (result == VK_SUCCESS) {
for (auto update : buffer_info.input_mem_block.update_at_submit) {
if (update.second->updated) pData[update.first] = 1;
}
vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation);
}
}
}
}
// Submit a memory barrier on graphics queues.
// Lazy-create and record the needed command buffer.
void CoreChecks::SubmitBarrier(VkQueue queue) {
auto queue_barrier_command_info_it =
gpu_validation_state->queue_barrier_command_infos.emplace(queue, GpuQueueBarrierCommandInfo{});
if (queue_barrier_command_info_it.second) {
GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second;
uint32_t queue_family_index = 0;
auto queue_state_it = queueMap.find(queue);
if (queue_state_it != queueMap.end()) {
queue_family_index = queue_state_it->second.queueFamilyIndex;
}
VkResult result = VK_SUCCESS;
VkCommandPoolCreateInfo pool_create_info = {};
pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
pool_create_info.queueFamilyIndex = queue_family_index;
result = DispatchCreateCommandPool(device, &pool_create_info, nullptr, &quere_barrier_command_info.barrier_command_pool);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create command pool for barrier CB.");
quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
return;
}
VkCommandBufferAllocateInfo buffer_alloc_info = {};
buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
buffer_alloc_info.commandPool = quere_barrier_command_info.barrier_command_pool;
buffer_alloc_info.commandBufferCount = 1;
buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(device, &buffer_alloc_info, &quere_barrier_command_info.barrier_command_buffer);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to create barrier command buffer.");
DispatchDestroyCommandPool(device, quere_barrier_command_info.barrier_command_pool, nullptr);
quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
quere_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
return;
}
// Hook up command buffer dispatch
gpu_validation_state->vkSetDeviceLoaderData(device, quere_barrier_command_info.barrier_command_buffer);
// Record a global memory barrier to force availability of device memory operations to the host domain.
VkCommandBufferBeginInfo command_buffer_begin_info = {};
command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
result = DispatchBeginCommandBuffer(quere_barrier_command_info.barrier_command_buffer, &command_buffer_begin_info);
if (result == VK_SUCCESS) {
VkMemoryBarrier memory_barrier = {};
memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
DispatchCmdPipelineBarrier(quere_barrier_command_info.barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
DispatchEndCommandBuffer(quere_barrier_command_info.barrier_command_buffer);
}
}
GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second;
if (quere_barrier_command_info.barrier_command_buffer != VK_NULL_HANDLE) {
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &quere_barrier_command_info.barrier_command_buffer;
DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
}
}
void CoreChecks::GpuPreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto cb_node = GetCBState(submit->pCommandBuffers[i]);
UpdateInstrumentationBuffer(cb_node);
for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
UpdateInstrumentationBuffer(secondaryCmdBuffer);
}
}
}
}
// Issue a memory barrier to make GPU-written data available to host.
// Wait for the queue to complete execution.
// Check the debug buffers for all the command buffers that were submitted.
void CoreChecks::GpuPostCallQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
if (gpu_validation_state->aborted) return;
SubmitBarrier(queue);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
auto cb_node = GetCBState(submit->pCommandBuffers[i]);
ProcessInstrumentationBuffer(queue, cb_node);
for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
ProcessInstrumentationBuffer(queue, secondaryCmdBuffer);
}
}
}
}
void CoreChecks::GpuAllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
VkResult result;
if (!(enabled.gpu_validation)) return;
if (gpu_validation_state->aborted) return;
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = gpu_validation_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate descriptor sets. Device could become unstable.");
gpu_validation_state->aborted = true;
return;
}
VkDescriptorBufferInfo output_desc_buffer_info = {};
output_desc_buffer_info.range = gpu_validation_state->output_buffer_size;
auto cb_node = GetCBState(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unrecognized command buffer");
gpu_validation_state->aborted = true;
return;
}
// Allocate memory for the output block that the gpu will use to return any error information
GpuDeviceMemoryBlock output_block = {};
VkBufferCreateInfo bufferInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
bufferInfo.size = gpu_validation_state->output_buffer_size;
bufferInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo allocInfo = {};
allocInfo.usage = VMA_MEMORY_USAGE_GPU_TO_CPU;
result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &output_block.buffer,
&output_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory. Device could become unstable.");
gpu_validation_state->aborted = true;
return;
}
// Clear the output block to zeros so that only error information from the gpu will be present
uint32_t *pData;
result = vmaMapMemory(gpu_validation_state->vmaAllocator, output_block.allocation, (void **)&pData);
if (result == VK_SUCCESS) {
memset(pData, 0, gpu_validation_state->output_buffer_size);
vmaUnmapMemory(gpu_validation_state->vmaAllocator, output_block.allocation);
}
GpuDeviceMemoryBlock input_block = {};
VkWriteDescriptorSet desc_writes[2] = {};
uint32_t desc_count = 1;
auto const &state = cb_node->lastBound[bind_point];
uint32_t number_of_sets = (uint32_t)state.per_set.size();
// Figure out how much memory we need for the input block based on how many sets and bindings there are
// and how big each of the bindings is
if (number_of_sets > 0 && device_extensions.vk_ext_descriptor_indexing) {
uint32_t descriptor_count = 0; // Number of descriptors, including all array elements
uint32_t binding_count = 0; // Number of bindings based on the max binding number used
for (auto s : state.per_set) {
auto desc = s.bound_descriptor_set;
auto bindings = desc->GetLayout()->GetSortedBindingSet();
if (bindings.size() > 0) {
binding_count += desc->GetLayout()->GetMaxBinding() + 1;
for (auto binding : bindings) {
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
descriptor_count++;
log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
VK_NULL_HANDLE, "UNASSIGNED-GPU-Assisted Validation Warning",
"VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted "
"validation");
} else if (binding == desc->GetLayout()->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
descriptor_count += desc->GetVariableDescriptorCount();
} else {
descriptor_count += desc->GetDescriptorCountFromBinding(binding);
}
}
}
}
// Note that the size of the input buffer is dependent on the maximum binding number, which
// can be very large. This is because for (set = s, binding = b, index = i), the validation
// code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
// see if descriptors have been written. In gpu_validation.md, we note this and advise
// using densely packed bindings as a best practice when using gpu-av with descriptor indexing
uint32_t words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count;
allocInfo.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
bufferInfo.size = words_needed * 4;
result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &input_block.buffer,
&input_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
"Unable to allocate device memory. Device could become unstable.");
gpu_validation_state->aborted = true;
return;
}
// Populate input buffer first with the sizes of every descriptor in every set, then with whether
// each element of each descriptor has been written or not. See gpu_validation.md for a more thourough
// outline of the input buffer format
result = vmaMapMemory(gpu_validation_state->vmaAllocator, input_block.allocation, (void **)&pData);
memset(pData, 0, static_cast<size_t>(bufferInfo.size));
// Pointer to a sets array that points into the sizes array
uint32_t *sets_to_sizes = pData + 1;
// Pointer to the sizes array that contains the array size of the descriptor at each binding
uint32_t *sizes = sets_to_sizes + number_of_sets;
// Pointer to another sets array that points into the bindings array that points into the written array
uint32_t *sets_to_bindings = sizes + binding_count;
// Pointer to the bindings array that points at the start of the writes in the writes array for each binding
uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
// Index of the next entry in the written array to be updated
uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2);
uint32_t bindCounter = number_of_sets + 1;
// Index of the start of the sets_to_bindings array
pData[0] = number_of_sets + binding_count + 1;
for (auto s : state.per_set) {
auto desc = s.bound_descriptor_set;
auto layout = desc->GetLayout();
auto bindings = layout->GetSortedBindingSet();
if (bindings.size() > 0) {
// For each set, fill in index of its bindings sizes in the sizes array
*sets_to_sizes++ = bindCounter;
// For each set, fill in the index of its bindings in the bindings_to_written array
*sets_to_bindings++ = bindCounter + number_of_sets + binding_count;
for (auto binding : bindings) {
// For each binding, fill in its size in the sizes array
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
sizes[binding] = 1;
} else if (binding == layout->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
sizes[binding] = desc->GetVariableDescriptorCount();
} else {
sizes[binding] = desc->GetDescriptorCountFromBinding(binding);
}
// Fill in the starting index for this binding in the written array in the bindings_to_written array
bindings_to_written[binding] = written_index;
// Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
// blocks
if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
pData[written_index++] = 1;
continue;
}
auto index_range = desc->GetGlobalIndexRangeFromBinding(binding, true);
// For each array element in the binding, update the written array with whether it has been written
for (uint32_t i = index_range.start; i < index_range.end; ++i) {
auto *descriptor = desc->GetDescriptorFromGlobalIndex(i);
if (descriptor->updated) {
pData[written_index] = 1;
} else if (desc->IsUpdateAfterBind(binding)) {
// If it hasn't been written now and it's update after bind, put it in a list to check at QueueSubmit
input_block.update_at_submit[written_index] = descriptor;
}
written_index++;
}
}
auto last = desc->GetLayout()->GetMaxBinding();
bindings_to_written += last + 1;
bindCounter += last + 1;
sizes += last + 1;
} else {
*sets_to_sizes++ = 0;
*sets_to_bindings++ = 0;
}
}
vmaUnmapMemory(gpu_validation_state->vmaAllocator, input_block.allocation);
VkDescriptorBufferInfo input_desc_buffer_info = {};
input_desc_buffer_info.range = (words_needed * 4);
input_desc_buffer_info.buffer = input_block.buffer;
input_desc_buffer_info.offset = 0;
desc_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_writes[1].dstBinding = 1;
desc_writes[1].descriptorCount = 1;
desc_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[1].pBufferInfo = &input_desc_buffer_info;
desc_writes[1].dstSet = desc_sets[0];
desc_count = 2;
}
// Write the descriptor
output_desc_buffer_info.buffer = output_block.buffer;
output_desc_buffer_info.offset = 0;
desc_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
desc_writes[0].descriptorCount = 1;
desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes[0].pBufferInfo = &output_desc_buffer_info;
desc_writes[0].dstSet = desc_sets[0];
DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL);
auto iter = cb_node->lastBound.find(bind_point); // find() allows read-only access to cb_state
if (iter != cb_node->lastBound.end()) {
auto pipeline_state = iter->second.pipeline_state;
if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_validation_state->desc_set_bind_index)) {
DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_state->pipeline_layout.layout,
gpu_validation_state->desc_set_bind_index, 1, desc_sets.data(), 0, nullptr);
}
// Record buffer and memory info in CB state tracking
gpu_validation_state->GetGpuBufferInfo(cmd_buffer)
.emplace_back(output_block, input_block, desc_sets[0], desc_pool, bind_point);
} else {
ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to find pipeline state");
vmaDestroyBuffer(gpu_validation_state->vmaAllocator, input_block.buffer, input_block.allocation);
vmaDestroyBuffer(gpu_validation_state->vmaAllocator, output_block.buffer, output_block.allocation);
gpu_validation_state->aborted = true;
return;
}
}