blob: e6b67cd1ece8e03aa82cf4753ab896611040f200 [file] [log] [blame]
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <cmath>
#include "test-runner.h"
#include "test-utils-a64.h"
#include "vixl/a64/macro-assembler-a64.h"
#include "vixl/a64/simulator-a64.h"
#include "vixl/a64/debugger-a64.h"
#include "vixl/a64/disasm-a64.h"
#include "vixl/a64/cpu-a64.h"
namespace vixl {
// Test infrastructure.
//
// Tests are functions which accept no parameters and have no return values.
// The testing code should not perform an explicit return once completed. For
// example to test the mov immediate instruction a very simple test would be:
//
// TEST(mov_x0_one) {
// SETUP();
//
// START();
// __ mov(x0, Operand(1));
// END();
//
// RUN();
//
// ASSERT_EQUAL_64(1, x0);
//
// TEARDOWN();
// }
//
// Within a START ... END block all registers but sp can be modified. sp has to
// be explicitly saved/restored. The END() macro replaces the function return
// so it may appear multiple times in a test if the test has multiple exit
// points.
//
// Once the test has been run all integer and floating point registers as well
// as flags are accessible through a RegisterDump instance, see
// utils-a64.cc for more info on RegisterDump.
//
// We provide some helper assert to handle common cases:
//
// ASSERT_EQUAL_32(int32_t, int_32t)
// ASSERT_EQUAL_FP32(float, float)
// ASSERT_EQUAL_32(int32_t, W register)
// ASSERT_EQUAL_FP32(float, S register)
// ASSERT_EQUAL_64(int64_t, int_64t)
// ASSERT_EQUAL_FP64(double, double)
// ASSERT_EQUAL_64(int64_t, X register)
// ASSERT_EQUAL_64(X register, X register)
// ASSERT_EQUAL_FP64(double, D register)
//
// e.g. ASSERT_EQUAL_64(0.5, d30);
//
// If more advanced computation is required before the assert then access the
// RegisterDump named core directly:
//
// ASSERT_EQUAL_64(0x1234, core->reg_x0() & 0xffff);
#define __ masm.
#define TEST(name) TEST_(ASM_##name)
#define BUF_SIZE (4096)
#ifdef VIXL_INCLUDE_SIMULATOR
// Run tests with the simulator.
#define SETUP() \
MacroAssembler masm(BUF_SIZE); \
SETUP_COMMON()
#define SETUP_CUSTOM(size, pic) \
byte* buf = new byte[size + BUF_SIZE]; \
MacroAssembler masm(buf, size + BUF_SIZE, pic); \
SETUP_COMMON()
#define SETUP_COMMON() \
masm.SetAllowSimulatorInstructions(true); \
Decoder decoder; \
Simulator* simulator = Test::run_debugger() ? new Debugger(&decoder) \
: new Simulator(&decoder); \
simulator->set_coloured_trace(Test::coloured_trace()); \
simulator->set_instruction_stats(Test::instruction_stats()); \
RegisterDump core
// This is a convenience macro to avoid creating a scope for every assembler
// function called. It will still assert the buffer hasn't been exceeded.
#define ALLOW_ASM() \
CodeBufferCheckScope guard(&masm, masm.BufferCapacity())
#define START() \
masm.Reset(); \
simulator->ResetState(); \
__ PushCalleeSavedRegisters(); \
if (Test::trace_reg()) { \
__ Trace(LOG_STATE, TRACE_ENABLE); \
} \
if (Test::trace_write()) { \
__ Trace(LOG_WRITE, TRACE_ENABLE); \
} \
if (Test::trace_sim()) { \
__ Trace(LOG_DISASM, TRACE_ENABLE); \
} \
if (Test::instruction_stats()) { \
__ EnableInstrumentation(); \
}
#define END() \
if (Test::instruction_stats()) { \
__ DisableInstrumentation(); \
} \
__ Trace(LOG_ALL, TRACE_DISABLE); \
core.Dump(&masm); \
__ PopCalleeSavedRegisters(); \
__ Ret(); \
masm.FinalizeCode()
#define RUN() \
simulator->RunFrom(masm.GetStartAddress<Instruction*>())
#define TEARDOWN() TEARDOWN_COMMON()
#define TEARDOWN_CUSTOM() \
delete[] buf; \
TEARDOWN_COMMON()
#define TEARDOWN_COMMON() \
delete simulator;
#else // ifdef VIXL_INCLUDE_SIMULATOR.
// Run the test on real hardware or models.
#define SETUP() \
MacroAssembler masm(BUF_SIZE); \
SETUP_COMMON()
#define SETUP_CUSTOM(size, pic) \
byte* buf = new byte[size + BUF_SIZE]; \
MacroAssembler masm(buf, size + BUF_SIZE, pic); \
SETUP_COMMON()
#define SETUP_COMMON() \
masm.SetAllowSimulatorInstructions(false); \
RegisterDump core; \
CPU::SetUp()
// This is a convenience macro to avoid creating a scope for every assembler
// function called. It will still assert the buffer hasn't been exceeded.
#define ALLOW_ASM() \
CodeBufferCheckScope guard(&masm, masm.BufferCapacity())
#define START() \
masm.Reset(); \
__ PushCalleeSavedRegisters()
#define END() \
core.Dump(&masm); \
__ PopCalleeSavedRegisters(); \
__ Ret(); \
masm.FinalizeCode()
#define RUN() \
{ \
byte* buffer_start = masm.GetStartAddress<byte*>(); \
size_t buffer_length = masm.CursorOffset(); \
void (*test_function)(void); \
\
CPU::EnsureIAndDCacheCoherency(buffer_start, buffer_length); \
VIXL_STATIC_ASSERT(sizeof(buffer_start) == sizeof(test_function)); \
memcpy(&test_function, &buffer_start, sizeof(buffer_start)); \
test_function(); \
}
#define TEARDOWN()
#define TEARDOWN_CUSTOM() \
delete[] buf; \
#endif // ifdef VIXL_INCLUDE_SIMULATOR.
#define ASSERT_EQUAL_NZCV(expected) \
assert(EqualNzcv(expected, core.flags_nzcv()))
#define ASSERT_EQUAL_REGISTERS(expected) \
assert(EqualRegisters(&expected, &core))
#define ASSERT_EQUAL_32(expected, result) \
assert(Equal32(static_cast<uint32_t>(expected), &core, result))
#define ASSERT_EQUAL_FP32(expected, result) \
assert(EqualFP32(expected, &core, result))
#define ASSERT_EQUAL_64(expected, result) \
assert(Equal64(expected, &core, result))
#define ASSERT_EQUAL_FP64(expected, result) \
assert(EqualFP64(expected, &core, result))
#define ASSERT_EQUAL_128(expected_h, expected_l, result) \
assert(Equal128(expected_h, expected_l, &core, result))
#define ASSERT_LITERAL_POOL_SIZE(expected) \
assert((expected + kInstructionSize) == (masm.LiteralPoolSize()))
TEST(stack_ops) {
SETUP();
START();
// save sp.
__ Mov(x29, sp);
// Set the sp to a known value.
__ Mov(sp, 0x1004);
__ Mov(x0, sp);
// Add immediate to the sp, and move the result to a normal register.
__ Add(sp, sp, 0x50);
__ Mov(x1, sp);
// Add extended to the sp, and move the result to a normal register.
__ Mov(x17, 0xfff);
__ Add(sp, sp, Operand(x17, SXTB));
__ Mov(x2, sp);
// Create an sp using a logical instruction, and move to normal register.
__ Orr(sp, xzr, 0x1fff);
__ Mov(x3, sp);
// Write wsp using a logical instruction.
__ Orr(wsp, wzr, 0xfffffff8);
__ Mov(x4, sp);
// Write sp, and read back wsp.
__ Orr(sp, xzr, 0xfffffff8);
__ Mov(w5, wsp);
// restore sp.
__ Mov(sp, x29);
END();
RUN();
ASSERT_EQUAL_64(0x1004, x0);
ASSERT_EQUAL_64(0x1054, x1);
ASSERT_EQUAL_64(0x1053, x2);
ASSERT_EQUAL_64(0x1fff, x3);
ASSERT_EQUAL_64(0xfffffff8, x4);
ASSERT_EQUAL_64(0xfffffff8, x5);
TEARDOWN();
}
TEST(mvn) {
SETUP();
START();
__ Mvn(w0, 0xfff);
__ Mvn(x1, 0xfff);
__ Mvn(w2, Operand(w0, LSL, 1));
__ Mvn(x3, Operand(x1, LSL, 2));
__ Mvn(w4, Operand(w0, LSR, 3));
__ Mvn(x5, Operand(x1, LSR, 4));
__ Mvn(w6, Operand(w0, ASR, 11));
__ Mvn(x7, Operand(x1, ASR, 12));
__ Mvn(w8, Operand(w0, ROR, 13));
__ Mvn(x9, Operand(x1, ROR, 14));
__ Mvn(w10, Operand(w2, UXTB));
__ Mvn(x11, Operand(x2, SXTB, 1));
__ Mvn(w12, Operand(w2, UXTH, 2));
__ Mvn(x13, Operand(x2, SXTH, 3));
__ Mvn(x14, Operand(w2, UXTW, 4));
__ Mvn(x15, Operand(w2, SXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0xfffff000, x0);
ASSERT_EQUAL_64(0xfffffffffffff000, x1);
ASSERT_EQUAL_64(0x00001fff, x2);
ASSERT_EQUAL_64(0x0000000000003fff, x3);
ASSERT_EQUAL_64(0xe00001ff, x4);
ASSERT_EQUAL_64(0xf0000000000000ff, x5);
ASSERT_EQUAL_64(0x00000001, x6);
ASSERT_EQUAL_64(0x0000000000000000, x7);
ASSERT_EQUAL_64(0x7ff80000, x8);
ASSERT_EQUAL_64(0x3ffc000000000000, x9);
ASSERT_EQUAL_64(0xffffff00, x10);
ASSERT_EQUAL_64(0x0000000000000001, x11);
ASSERT_EQUAL_64(0xffff8003, x12);
ASSERT_EQUAL_64(0xffffffffffff0007, x13);
ASSERT_EQUAL_64(0xfffffffffffe000f, x14);
ASSERT_EQUAL_64(0xfffffffffffe000f, x15);
TEARDOWN();
}
TEST(mov_imm_w) {
SETUP();
START();
__ Mov(w0, 0xffffffff);
__ Mov(w1, 0xffff1234);
__ Mov(w2, 0x1234ffff);
__ Mov(w3, 0x00000000);
__ Mov(w4, 0x00001234);
__ Mov(w5, 0x12340000);
__ Mov(w6, 0x12345678);
__ Mov(w7, (int32_t)0x80000000);
__ Mov(w8, (int32_t)0xffff0000);
__ Mov(w9, kWMinInt);
END();
RUN();
ASSERT_EQUAL_64(0xffffffff, x0);
ASSERT_EQUAL_64(0xffff1234, x1);
ASSERT_EQUAL_64(0x1234ffff, x2);
ASSERT_EQUAL_64(0x00000000, x3);
ASSERT_EQUAL_64(0x00001234, x4);
ASSERT_EQUAL_64(0x12340000, x5);
ASSERT_EQUAL_64(0x12345678, x6);
ASSERT_EQUAL_64(0x80000000, x7);
ASSERT_EQUAL_64(0xffff0000, x8);
ASSERT_EQUAL_32(kWMinInt, w9);
TEARDOWN();
}
TEST(mov_imm_x) {
SETUP();
START();
__ Mov(x0, 0xffffffffffffffff);
__ Mov(x1, 0xffffffffffff1234);
__ Mov(x2, 0xffffffff12345678);
__ Mov(x3, 0xffff1234ffff5678);
__ Mov(x4, 0x1234ffffffff5678);
__ Mov(x5, 0x1234ffff5678ffff);
__ Mov(x6, 0x12345678ffffffff);
__ Mov(x7, 0x1234ffffffffffff);
__ Mov(x8, 0x123456789abcffff);
__ Mov(x9, 0x12345678ffff9abc);
__ Mov(x10, 0x1234ffff56789abc);
__ Mov(x11, 0xffff123456789abc);
__ Mov(x12, 0x0000000000000000);
__ Mov(x13, 0x0000000000001234);
__ Mov(x14, 0x0000000012345678);
__ Mov(x15, 0x0000123400005678);
__ Mov(x18, 0x1234000000005678);
__ Mov(x19, 0x1234000056780000);
__ Mov(x20, 0x1234567800000000);
__ Mov(x21, 0x1234000000000000);
__ Mov(x22, 0x123456789abc0000);
__ Mov(x23, 0x1234567800009abc);
__ Mov(x24, 0x1234000056789abc);
__ Mov(x25, 0x0000123456789abc);
__ Mov(x26, 0x123456789abcdef0);
__ Mov(x27, 0xffff000000000001);
__ Mov(x28, 0x8000ffff00000000);
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffff1234, x1);
ASSERT_EQUAL_64(0xffffffff12345678, x2);
ASSERT_EQUAL_64(0xffff1234ffff5678, x3);
ASSERT_EQUAL_64(0x1234ffffffff5678, x4);
ASSERT_EQUAL_64(0x1234ffff5678ffff, x5);
ASSERT_EQUAL_64(0x12345678ffffffff, x6);
ASSERT_EQUAL_64(0x1234ffffffffffff, x7);
ASSERT_EQUAL_64(0x123456789abcffff, x8);
ASSERT_EQUAL_64(0x12345678ffff9abc, x9);
ASSERT_EQUAL_64(0x1234ffff56789abc, x10);
ASSERT_EQUAL_64(0xffff123456789abc, x11);
ASSERT_EQUAL_64(0x0000000000000000, x12);
ASSERT_EQUAL_64(0x0000000000001234, x13);
ASSERT_EQUAL_64(0x0000000012345678, x14);
ASSERT_EQUAL_64(0x0000123400005678, x15);
ASSERT_EQUAL_64(0x1234000000005678, x18);
ASSERT_EQUAL_64(0x1234000056780000, x19);
ASSERT_EQUAL_64(0x1234567800000000, x20);
ASSERT_EQUAL_64(0x1234000000000000, x21);
ASSERT_EQUAL_64(0x123456789abc0000, x22);
ASSERT_EQUAL_64(0x1234567800009abc, x23);
ASSERT_EQUAL_64(0x1234000056789abc, x24);
ASSERT_EQUAL_64(0x0000123456789abc, x25);
ASSERT_EQUAL_64(0x123456789abcdef0, x26);
ASSERT_EQUAL_64(0xffff000000000001, x27);
ASSERT_EQUAL_64(0x8000ffff00000000, x28);
TEARDOWN();
}
TEST(mov) {
SETUP();
ALLOW_ASM();
START();
__ Mov(x0, 0xffffffffffffffff);
__ Mov(x1, 0xffffffffffffffff);
__ Mov(x2, 0xffffffffffffffff);
__ Mov(x3, 0xffffffffffffffff);
__ Mov(x0, 0x0123456789abcdef);
__ movz(x1, UINT64_C(0xabcd) << 16);
__ movk(x2, UINT64_C(0xabcd) << 32);
__ movn(x3, UINT64_C(0xabcd) << 48);
__ Mov(x4, 0x0123456789abcdef);
__ Mov(x5, x4);
__ Mov(w6, -1);
// Test that moves back to the same register have the desired effect. This
// is a no-op for X registers, and a truncation for W registers.
__ Mov(x7, 0x0123456789abcdef);
__ Mov(x7, x7);
__ Mov(x8, 0x0123456789abcdef);
__ Mov(w8, w8);
__ Mov(x9, 0x0123456789abcdef);
__ Mov(x9, Operand(x9));
__ Mov(x10, 0x0123456789abcdef);
__ Mov(w10, Operand(w10));
__ Mov(w11, 0xfff);
__ Mov(x12, 0xfff);
__ Mov(w13, Operand(w11, LSL, 1));
__ Mov(x14, Operand(x12, LSL, 2));
__ Mov(w15, Operand(w11, LSR, 3));
__ Mov(x18, Operand(x12, LSR, 4));
__ Mov(w19, Operand(w11, ASR, 11));
__ Mov(x20, Operand(x12, ASR, 12));
__ Mov(w21, Operand(w11, ROR, 13));
__ Mov(x22, Operand(x12, ROR, 14));
__ Mov(w23, Operand(w13, UXTB));
__ Mov(x24, Operand(x13, SXTB, 1));
__ Mov(w25, Operand(w13, UXTH, 2));
__ Mov(x26, Operand(x13, SXTH, 3));
__ Mov(x27, Operand(w13, UXTW, 4));
__ Mov(x28, 0x0123456789abcdef);
__ Mov(w28, w28, kDiscardForSameWReg);
END();
RUN();
ASSERT_EQUAL_64(0x0123456789abcdef, x0);
ASSERT_EQUAL_64(0x00000000abcd0000, x1);
ASSERT_EQUAL_64(0xffffabcdffffffff, x2);
ASSERT_EQUAL_64(0x5432ffffffffffff, x3);
ASSERT_EQUAL_64(x4, x5);
ASSERT_EQUAL_32(-1, w6);
ASSERT_EQUAL_64(0x0123456789abcdef, x7);
ASSERT_EQUAL_32(0x89abcdef, w8);
ASSERT_EQUAL_64(0x0123456789abcdef, x9);
ASSERT_EQUAL_32(0x89abcdef, w10);
ASSERT_EQUAL_64(0x00000fff, x11);
ASSERT_EQUAL_64(0x0000000000000fff, x12);
ASSERT_EQUAL_64(0x00001ffe, x13);
ASSERT_EQUAL_64(0x0000000000003ffc, x14);
ASSERT_EQUAL_64(0x000001ff, x15);
ASSERT_EQUAL_64(0x00000000000000ff, x18);
ASSERT_EQUAL_64(0x00000001, x19);
ASSERT_EQUAL_64(0x0000000000000000, x20);
ASSERT_EQUAL_64(0x7ff80000, x21);
ASSERT_EQUAL_64(0x3ffc000000000000, x22);
ASSERT_EQUAL_64(0x000000fe, x23);
ASSERT_EQUAL_64(0xfffffffffffffffc, x24);
ASSERT_EQUAL_64(0x00007ff8, x25);
ASSERT_EQUAL_64(0x000000000000fff0, x26);
ASSERT_EQUAL_64(0x000000000001ffe0, x27);
ASSERT_EQUAL_64(0x0123456789abcdef, x28);
TEARDOWN();
}
TEST(orr) {
SETUP();
START();
__ Mov(x0, 0xf0f0);
__ Mov(x1, 0xf00000ff);
__ Orr(x2, x0, Operand(x1));
__ Orr(w3, w0, Operand(w1, LSL, 28));
__ Orr(x4, x0, Operand(x1, LSL, 32));
__ Orr(x5, x0, Operand(x1, LSR, 4));
__ Orr(w6, w0, Operand(w1, ASR, 4));
__ Orr(x7, x0, Operand(x1, ASR, 4));
__ Orr(w8, w0, Operand(w1, ROR, 12));
__ Orr(x9, x0, Operand(x1, ROR, 12));
__ Orr(w10, w0, 0xf);
__ Orr(x11, x0, 0xf0000000f0000000);
END();
RUN();
ASSERT_EQUAL_64(0x00000000f000f0ff, x2);
ASSERT_EQUAL_64(0xf000f0f0, x3);
ASSERT_EQUAL_64(0xf00000ff0000f0f0, x4);
ASSERT_EQUAL_64(0x000000000f00f0ff, x5);
ASSERT_EQUAL_64(0xff00f0ff, x6);
ASSERT_EQUAL_64(0x000000000f00f0ff, x7);
ASSERT_EQUAL_64(0x0ffff0f0, x8);
ASSERT_EQUAL_64(0x0ff00000000ff0f0, x9);
ASSERT_EQUAL_64(0x0000f0ff, x10);
ASSERT_EQUAL_64(0xf0000000f000f0f0, x11);
TEARDOWN();
}
TEST(orr_extend) {
SETUP();
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000080008080);
__ Orr(w6, w0, Operand(w1, UXTB));
__ Orr(x7, x0, Operand(x1, UXTH, 1));
__ Orr(w8, w0, Operand(w1, UXTW, 2));
__ Orr(x9, x0, Operand(x1, UXTX, 3));
__ Orr(w10, w0, Operand(w1, SXTB));
__ Orr(x11, x0, Operand(x1, SXTH, 1));
__ Orr(x12, x0, Operand(x1, SXTW, 2));
__ Orr(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0x00000081, x6);
ASSERT_EQUAL_64(0x0000000000010101, x7);
ASSERT_EQUAL_64(0x00020201, x8);
ASSERT_EQUAL_64(0x0000000400040401, x9);
ASSERT_EQUAL_64(0xffffff81, x10);
ASSERT_EQUAL_64(0xffffffffffff0101, x11);
ASSERT_EQUAL_64(0xfffffffe00020201, x12);
ASSERT_EQUAL_64(0x0000000400040401, x13);
TEARDOWN();
}
TEST(bitwise_wide_imm) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0xf0f0f0f0f0f0f0f0);
__ Orr(x10, x0, 0x1234567890abcdef);
__ Orr(w11, w1, 0x90abcdef);
__ Orr(w12, w0, kWMinInt);
__ Eor(w13, w0, kWMinInt);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0xf0f0f0f0f0f0f0f0, x1);
ASSERT_EQUAL_64(0x1234567890abcdef, x10);
ASSERT_EQUAL_64(0x00000000f0fbfdff, x11);
ASSERT_EQUAL_32(kWMinInt, w12);
ASSERT_EQUAL_32(kWMinInt, w13);
TEARDOWN();
}
TEST(orn) {
SETUP();
START();
__ Mov(x0, 0xf0f0);
__ Mov(x1, 0xf00000ff);
__ Orn(x2, x0, Operand(x1));
__ Orn(w3, w0, Operand(w1, LSL, 4));
__ Orn(x4, x0, Operand(x1, LSL, 4));
__ Orn(x5, x0, Operand(x1, LSR, 1));
__ Orn(w6, w0, Operand(w1, ASR, 1));
__ Orn(x7, x0, Operand(x1, ASR, 1));
__ Orn(w8, w0, Operand(w1, ROR, 16));
__ Orn(x9, x0, Operand(x1, ROR, 16));
__ Orn(w10, w0, 0x0000ffff);
__ Orn(x11, x0, 0x0000ffff0000ffff);
END();
RUN();
ASSERT_EQUAL_64(0xffffffff0ffffff0, x2);
ASSERT_EQUAL_64(0xfffff0ff, x3);
ASSERT_EQUAL_64(0xfffffff0fffff0ff, x4);
ASSERT_EQUAL_64(0xffffffff87fffff0, x5);
ASSERT_EQUAL_64(0x07fffff0, x6);
ASSERT_EQUAL_64(0xffffffff87fffff0, x7);
ASSERT_EQUAL_64(0xff00ffff, x8);
ASSERT_EQUAL_64(0xff00ffffffffffff, x9);
ASSERT_EQUAL_64(0xfffff0f0, x10);
ASSERT_EQUAL_64(0xffff0000fffff0f0, x11);
TEARDOWN();
}
TEST(orn_extend) {
SETUP();
START();
__ Mov(x0, 1);
__ Mov(x1, 0x8000000080008081);
__ Orn(w6, w0, Operand(w1, UXTB));
__ Orn(x7, x0, Operand(x1, UXTH, 1));
__ Orn(w8, w0, Operand(w1, UXTW, 2));
__ Orn(x9, x0, Operand(x1, UXTX, 3));
__ Orn(w10, w0, Operand(w1, SXTB));
__ Orn(x11, x0, Operand(x1, SXTH, 1));
__ Orn(x12, x0, Operand(x1, SXTW, 2));
__ Orn(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0xffffff7f, x6);
ASSERT_EQUAL_64(0xfffffffffffefefd, x7);
ASSERT_EQUAL_64(0xfffdfdfb, x8);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7, x9);
ASSERT_EQUAL_64(0x0000007f, x10);
ASSERT_EQUAL_64(0x000000000000fefd, x11);
ASSERT_EQUAL_64(0x00000001fffdfdfb, x12);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7, x13);
TEARDOWN();
}
TEST(and_) {
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ And(x2, x0, Operand(x1));
__ And(w3, w0, Operand(w1, LSL, 4));
__ And(x4, x0, Operand(x1, LSL, 4));
__ And(x5, x0, Operand(x1, LSR, 1));
__ And(w6, w0, Operand(w1, ASR, 20));
__ And(x7, x0, Operand(x1, ASR, 20));
__ And(w8, w0, Operand(w1, ROR, 28));
__ And(x9, x0, Operand(x1, ROR, 28));
__ And(w10, w0, Operand(0xff00));
__ And(x11, x0, Operand(0xff));
END();
RUN();
ASSERT_EQUAL_64(0x000000f0, x2);
ASSERT_EQUAL_64(0x00000ff0, x3);
ASSERT_EQUAL_64(0x00000ff0, x4);
ASSERT_EQUAL_64(0x00000070, x5);
ASSERT_EQUAL_64(0x0000ff00, x6);
ASSERT_EQUAL_64(0x00000f00, x7);
ASSERT_EQUAL_64(0x00000ff0, x8);
ASSERT_EQUAL_64(0x00000000, x9);
ASSERT_EQUAL_64(0x0000ff00, x10);
ASSERT_EQUAL_64(0x000000f0, x11);
TEARDOWN();
}
TEST(and_extend) {
SETUP();
START();
__ Mov(x0, 0xffffffffffffffff);
__ Mov(x1, 0x8000000080008081);
__ And(w6, w0, Operand(w1, UXTB));
__ And(x7, x0, Operand(x1, UXTH, 1));
__ And(w8, w0, Operand(w1, UXTW, 2));
__ And(x9, x0, Operand(x1, UXTX, 3));
__ And(w10, w0, Operand(w1, SXTB));
__ And(x11, x0, Operand(x1, SXTH, 1));
__ And(x12, x0, Operand(x1, SXTW, 2));
__ And(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0x00000081, x6);
ASSERT_EQUAL_64(0x0000000000010102, x7);
ASSERT_EQUAL_64(0x00020204, x8);
ASSERT_EQUAL_64(0x0000000400040408, x9);
ASSERT_EQUAL_64(0xffffff81, x10);
ASSERT_EQUAL_64(0xffffffffffff0102, x11);
ASSERT_EQUAL_64(0xfffffffe00020204, x12);
ASSERT_EQUAL_64(0x0000000400040408, x13);
TEARDOWN();
}
TEST(ands) {
SETUP();
START();
__ Mov(x1, 0xf00000ff);
__ Ands(w0, w1, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0xf00000ff, x0);
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Ands(w0, w0, Operand(w1, LSR, 4));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0x8000000000000000);
__ Mov(x1, 0x00000001);
__ Ands(x0, x0, Operand(x1, ROR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000000, x0);
START();
__ Mov(x0, 0xfff0);
__ Ands(w0, w0, Operand(0xf));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xff000000);
__ Ands(w0, w0, Operand(0x80000000));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x80000000, x0);
TEARDOWN();
}
TEST(bic) {
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Bic(x2, x0, Operand(x1));
__ Bic(w3, w0, Operand(w1, LSL, 4));
__ Bic(x4, x0, Operand(x1, LSL, 4));
__ Bic(x5, x0, Operand(x1, LSR, 1));
__ Bic(w6, w0, Operand(w1, ASR, 20));
__ Bic(x7, x0, Operand(x1, ASR, 20));
__ Bic(w8, w0, Operand(w1, ROR, 28));
__ Bic(x9, x0, Operand(x1, ROR, 24));
__ Bic(x10, x0, Operand(0x1f));
__ Bic(x11, x0, Operand(0x100));
// Test bic into sp when the constant cannot be encoded in the immediate
// field.
// Use x20 to preserve sp. We check for the result via x21 because the
// test infrastructure requires that sp be restored to its original value.
__ Mov(x20, sp);
__ Mov(x0, 0xffffff);
__ Bic(sp, x0, Operand(0xabcdef));
__ Mov(x21, sp);
__ Mov(sp, x20);
END();
RUN();
ASSERT_EQUAL_64(0x0000ff00, x2);
ASSERT_EQUAL_64(0x0000f000, x3);
ASSERT_EQUAL_64(0x0000f000, x4);
ASSERT_EQUAL_64(0x0000ff80, x5);
ASSERT_EQUAL_64(0x000000f0, x6);
ASSERT_EQUAL_64(0x0000f0f0, x7);
ASSERT_EQUAL_64(0x0000f000, x8);
ASSERT_EQUAL_64(0x0000ff00, x9);
ASSERT_EQUAL_64(0x0000ffe0, x10);
ASSERT_EQUAL_64(0x0000fef0, x11);
ASSERT_EQUAL_64(0x543210, x21);
TEARDOWN();
}
TEST(bic_extend) {
SETUP();
START();
__ Mov(x0, 0xffffffffffffffff);
__ Mov(x1, 0x8000000080008081);
__ Bic(w6, w0, Operand(w1, UXTB));
__ Bic(x7, x0, Operand(x1, UXTH, 1));
__ Bic(w8, w0, Operand(w1, UXTW, 2));
__ Bic(x9, x0, Operand(x1, UXTX, 3));
__ Bic(w10, w0, Operand(w1, SXTB));
__ Bic(x11, x0, Operand(x1, SXTH, 1));
__ Bic(x12, x0, Operand(x1, SXTW, 2));
__ Bic(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0xffffff7e, x6);
ASSERT_EQUAL_64(0xfffffffffffefefd, x7);
ASSERT_EQUAL_64(0xfffdfdfb, x8);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7, x9);
ASSERT_EQUAL_64(0x0000007e, x10);
ASSERT_EQUAL_64(0x000000000000fefd, x11);
ASSERT_EQUAL_64(0x00000001fffdfdfb, x12);
ASSERT_EQUAL_64(0xfffffffbfffbfbf7, x13);
TEARDOWN();
}
TEST(bics) {
SETUP();
START();
__ Mov(x1, 0xffff);
__ Bics(w0, w1, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xffffffff);
__ Bics(w0, w0, Operand(w0, LSR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x80000000, x0);
START();
__ Mov(x0, 0x8000000000000000);
__ Mov(x1, 0x00000001);
__ Bics(x0, x0, Operand(x1, ROR, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
START();
__ Mov(x0, 0xffffffffffffffff);
__ Bics(x0, x0, 0x7fffffffffffffff);
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
ASSERT_EQUAL_64(0x8000000000000000, x0);
START();
__ Mov(w0, 0xffff0000);
__ Bics(w0, w0, 0xfffffff0);
END();
RUN();
ASSERT_EQUAL_NZCV(ZFlag);
ASSERT_EQUAL_64(0x00000000, x0);
TEARDOWN();
}
TEST(eor) {
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Eor(x2, x0, Operand(x1));
__ Eor(w3, w0, Operand(w1, LSL, 4));
__ Eor(x4, x0, Operand(x1, LSL, 4));
__ Eor(x5, x0, Operand(x1, LSR, 1));
__ Eor(w6, w0, Operand(w1, ASR, 20));
__ Eor(x7, x0, Operand(x1, ASR, 20));
__ Eor(w8, w0, Operand(w1, ROR, 28));
__ Eor(x9, x0, Operand(x1, ROR, 28));
__ Eor(w10, w0, 0xff00ff00);
__ Eor(x11, x0, 0xff00ff00ff00ff00);
END();
RUN();
ASSERT_EQUAL_64(0x00000000f000ff0f, x2);
ASSERT_EQUAL_64(0x0000f000, x3);
ASSERT_EQUAL_64(0x0000000f0000f000, x4);
ASSERT_EQUAL_64(0x000000007800ff8f, x5);
ASSERT_EQUAL_64(0xffff00f0, x6);
ASSERT_EQUAL_64(0x000000000000f0f0, x7);
ASSERT_EQUAL_64(0x0000f00f, x8);
ASSERT_EQUAL_64(0x00000ff00000ffff, x9);
ASSERT_EQUAL_64(0xff0000f0, x10);
ASSERT_EQUAL_64(0xff00ff00ff0000f0, x11);
TEARDOWN();
}
TEST(eor_extend) {
SETUP();
START();
__ Mov(x0, 0x1111111111111111);
__ Mov(x1, 0x8000000080008081);
__ Eor(w6, w0, Operand(w1, UXTB));
__ Eor(x7, x0, Operand(x1, UXTH, 1));
__ Eor(w8, w0, Operand(w1, UXTW, 2));
__ Eor(x9, x0, Operand(x1, UXTX, 3));
__ Eor(w10, w0, Operand(w1, SXTB));
__ Eor(x11, x0, Operand(x1, SXTH, 1));
__ Eor(x12, x0, Operand(x1, SXTW, 2));
__ Eor(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0x11111190, x6);
ASSERT_EQUAL_64(0x1111111111101013, x7);
ASSERT_EQUAL_64(0x11131315, x8);
ASSERT_EQUAL_64(0x1111111511151519, x9);
ASSERT_EQUAL_64(0xeeeeee90, x10);
ASSERT_EQUAL_64(0xeeeeeeeeeeee1013, x11);
ASSERT_EQUAL_64(0xeeeeeeef11131315, x12);
ASSERT_EQUAL_64(0x1111111511151519, x13);
TEARDOWN();
}
TEST(eon) {
SETUP();
START();
__ Mov(x0, 0xfff0);
__ Mov(x1, 0xf00000ff);
__ Eon(x2, x0, Operand(x1));
__ Eon(w3, w0, Operand(w1, LSL, 4));
__ Eon(x4, x0, Operand(x1, LSL, 4));
__ Eon(x5, x0, Operand(x1, LSR, 1));
__ Eon(w6, w0, Operand(w1, ASR, 20));
__ Eon(x7, x0, Operand(x1, ASR, 20));
__ Eon(w8, w0, Operand(w1, ROR, 28));
__ Eon(x9, x0, Operand(x1, ROR, 28));
__ Eon(w10, w0, 0x03c003c0);
__ Eon(x11, x0, 0x0000100000001000);
END();
RUN();
ASSERT_EQUAL_64(0xffffffff0fff00f0, x2);
ASSERT_EQUAL_64(0xffff0fff, x3);
ASSERT_EQUAL_64(0xfffffff0ffff0fff, x4);
ASSERT_EQUAL_64(0xffffffff87ff0070, x5);
ASSERT_EQUAL_64(0x0000ff0f, x6);
ASSERT_EQUAL_64(0xffffffffffff0f0f, x7);
ASSERT_EQUAL_64(0xffff0ff0, x8);
ASSERT_EQUAL_64(0xfffff00fffff0000, x9);
ASSERT_EQUAL_64(0xfc3f03cf, x10);
ASSERT_EQUAL_64(0xffffefffffff100f, x11);
TEARDOWN();
}
TEST(eon_extend) {
SETUP();
START();
__ Mov(x0, 0x1111111111111111);
__ Mov(x1, 0x8000000080008081);
__ Eon(w6, w0, Operand(w1, UXTB));
__ Eon(x7, x0, Operand(x1, UXTH, 1));
__ Eon(w8, w0, Operand(w1, UXTW, 2));
__ Eon(x9, x0, Operand(x1, UXTX, 3));
__ Eon(w10, w0, Operand(w1, SXTB));
__ Eon(x11, x0, Operand(x1, SXTH, 1));
__ Eon(x12, x0, Operand(x1, SXTW, 2));
__ Eon(x13, x0, Operand(x1, SXTX, 3));
END();
RUN();
ASSERT_EQUAL_64(0xeeeeee6f, x6);
ASSERT_EQUAL_64(0xeeeeeeeeeeefefec, x7);
ASSERT_EQUAL_64(0xeeececea, x8);
ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6, x9);
ASSERT_EQUAL_64(0x1111116f, x10);
ASSERT_EQUAL_64(0x111111111111efec, x11);
ASSERT_EQUAL_64(0x11111110eeececea, x12);
ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6, x13);
TEARDOWN();
}
TEST(mul) {
SETUP();
START();
__ Mov(x25, 0);
__ Mov(x26, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffff);
__ Mul(w0, w25, w25);
__ Mul(w1, w25, w26);
__ Mul(w2, w26, w18);
__ Mul(w3, w18, w19);
__ Mul(x4, x25, x25);
__ Mul(x5, x26, x18);
__ Mul(x6, x18, x19);
__ Mul(x7, x19, x19);
__ Smull(x8, w26, w18);
__ Smull(x9, w18, w18);
__ Smull(x10, w19, w19);
__ Mneg(w11, w25, w25);
__ Mneg(w12, w25, w26);
__ Mneg(w13, w26, w18);
__ Mneg(w14, w18, w19);
__ Mneg(x20, x25, x25);
__ Mneg(x21, x26, x18);
__ Mneg(x22, x18, x19);
__ Mneg(x23, x19, x19);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0xffffffff, x2);
ASSERT_EQUAL_64(1, x3);
ASSERT_EQUAL_64(0, x4);
ASSERT_EQUAL_64(0xffffffff, x5);
ASSERT_EQUAL_64(0xffffffff00000001, x6);
ASSERT_EQUAL_64(1, x7);
ASSERT_EQUAL_64(0xffffffffffffffff, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0, x12);
ASSERT_EQUAL_64(1, x13);
ASSERT_EQUAL_64(0xffffffff, x14);
ASSERT_EQUAL_64(0, x20);
ASSERT_EQUAL_64(0xffffffff00000001, x21);
ASSERT_EQUAL_64(0xffffffff, x22);
ASSERT_EQUAL_64(0xffffffffffffffff, x23);
TEARDOWN();
}
static void SmullHelper(int64_t expected, int64_t a, int64_t b) {
SETUP();
START();
__ Mov(w0, a);
__ Mov(w1, b);
__ Smull(x2, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(expected, x2);
TEARDOWN();
}
TEST(smull) {
SmullHelper(0, 0, 0);
SmullHelper(1, 1, 1);
SmullHelper(-1, -1, 1);
SmullHelper(1, -1, -1);
SmullHelper(0xffffffff80000000, 0x80000000, 1);
SmullHelper(0x0000000080000000, 0x00010000, 0x00008000);
}
TEST(madd) {
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffff);
__ Madd(w0, w16, w16, w16);
__ Madd(w1, w16, w16, w17);
__ Madd(w2, w16, w16, w18);
__ Madd(w3, w16, w16, w19);
__ Madd(w4, w16, w17, w17);
__ Madd(w5, w17, w17, w18);
__ Madd(w6, w17, w17, w19);
__ Madd(w7, w17, w18, w16);
__ Madd(w8, w17, w18, w18);
__ Madd(w9, w18, w18, w17);
__ Madd(w10, w18, w19, w18);
__ Madd(w11, w19, w19, w19);
__ Madd(x12, x16, x16, x16);
__ Madd(x13, x16, x16, x17);
__ Madd(x14, x16, x16, x18);
__ Madd(x15, x16, x16, x19);
__ Madd(x20, x16, x17, x17);
__ Madd(x21, x17, x17, x18);
__ Madd(x22, x17, x17, x19);
__ Madd(x23, x17, x18, x16);
__ Madd(x24, x17, x18, x18);
__ Madd(x25, x18, x18, x17);
__ Madd(x26, x18, x19, x18);
__ Madd(x27, x19, x19, x19);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(0xffffffff, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0, x6);
ASSERT_EQUAL_64(0xffffffff, x7);
ASSERT_EQUAL_64(0xfffffffe, x8);
ASSERT_EQUAL_64(2, x9);
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0, x12);
ASSERT_EQUAL_64(1, x13);
ASSERT_EQUAL_64(0x00000000ffffffff, x14);
ASSERT_EQUAL_64(0xffffffffffffffff, x15);
ASSERT_EQUAL_64(1, x20);
ASSERT_EQUAL_64(0x0000000100000000, x21);
ASSERT_EQUAL_64(0, x22);
ASSERT_EQUAL_64(0x00000000ffffffff, x23);
ASSERT_EQUAL_64(0x00000001fffffffe, x24);
ASSERT_EQUAL_64(0xfffffffe00000002, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0, x27);
TEARDOWN();
}
TEST(msub) {
SETUP();
START();
__ Mov(x16, 0);
__ Mov(x17, 1);
__ Mov(x18, 0xffffffff);
__ Mov(x19, 0xffffffffffffffff);
__ Msub(w0, w16, w16, w16);
__ Msub(w1, w16, w16, w17);
__ Msub(w2, w16, w16, w18);
__ Msub(w3, w16, w16, w19);
__ Msub(w4, w16, w17, w17);
__ Msub(w5, w17, w17, w18);
__ Msub(w6, w17, w17, w19);
__ Msub(w7, w17, w18, w16);
__ Msub(w8, w17, w18, w18);
__ Msub(w9, w18, w18, w17);
__ Msub(w10, w18, w19, w18);
__ Msub(w11, w19, w19, w19);
__ Msub(x12, x16, x16, x16);
__ Msub(x13, x16, x16, x17);
__ Msub(x14, x16, x16, x18);
__ Msub(x15, x16, x16, x19);
__ Msub(x20, x16, x17, x17);
__ Msub(x21, x17, x17, x18);
__ Msub(x22, x17, x17, x19);
__ Msub(x23, x17, x18, x16);
__ Msub(x24, x17, x18, x18);
__ Msub(x25, x18, x18, x17);
__ Msub(x26, x18, x19, x18);
__ Msub(x27, x19, x19, x19);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(0xffffffff, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(0xfffffffe, x5);
ASSERT_EQUAL_64(0xfffffffe, x6);
ASSERT_EQUAL_64(1, x7);
ASSERT_EQUAL_64(0, x8);
ASSERT_EQUAL_64(0, x9);
ASSERT_EQUAL_64(0xfffffffe, x10);
ASSERT_EQUAL_64(0xfffffffe, x11);
ASSERT_EQUAL_64(0, x12);
ASSERT_EQUAL_64(1, x13);
ASSERT_EQUAL_64(0x00000000ffffffff, x14);
ASSERT_EQUAL_64(0xffffffffffffffff, x15);
ASSERT_EQUAL_64(1, x20);
ASSERT_EQUAL_64(0x00000000fffffffe, x21);
ASSERT_EQUAL_64(0xfffffffffffffffe, x22);
ASSERT_EQUAL_64(0xffffffff00000001, x23);
ASSERT_EQUAL_64(0, x24);
ASSERT_EQUAL_64(0x0000000200000000, x25);
ASSERT_EQUAL_64(0x00000001fffffffe, x26);
ASSERT_EQUAL_64(0xfffffffffffffffe, x27);
TEARDOWN();
}
TEST(smulh) {
SETUP();
START();
__ Mov(x20, 0);
__ Mov(x21, 1);
__ Mov(x22, 0x0000000100000000);
__ Mov(x23, 0x0000000012345678);
__ Mov(x24, 0x0123456789abcdef);
__ Mov(x25, 0x0000000200000000);
__ Mov(x26, 0x8000000000000000);
__ Mov(x27, 0xffffffffffffffff);
__ Mov(x28, 0x5555555555555555);
__ Mov(x29, 0xaaaaaaaaaaaaaaaa);
__ Smulh(x0, x20, x24);
__ Smulh(x1, x21, x24);
__ Smulh(x2, x22, x23);
__ Smulh(x3, x22, x24);
__ Smulh(x4, x24, x25);
__ Smulh(x5, x23, x27);
__ Smulh(x6, x26, x26);
__ Smulh(x7, x26, x27);
__ Smulh(x8, x27, x27);
__ Smulh(x9, x28, x28);
__ Smulh(x10, x28, x29);
__ Smulh(x11, x29, x29);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0, x2);
ASSERT_EQUAL_64(0x0000000001234567, x3);
ASSERT_EQUAL_64(0x0000000002468acf, x4);
ASSERT_EQUAL_64(0xffffffffffffffff, x5);
ASSERT_EQUAL_64(0x4000000000000000, x6);
ASSERT_EQUAL_64(0, x7);
ASSERT_EQUAL_64(0, x8);
ASSERT_EQUAL_64(0x1c71c71c71c71c71, x9);
ASSERT_EQUAL_64(0xe38e38e38e38e38e, x10);
ASSERT_EQUAL_64(0x1c71c71c71c71c72, x11);
TEARDOWN();
}
TEST(umulh) {
SETUP();
START();
__ Mov(x20, 0);
__ Mov(x21, 1);
__ Mov(x22, 0x0000000100000000);
__ Mov(x23, 0x0000000012345678);
__ Mov(x24, 0x0123456789abcdef);
__ Mov(x25, 0x0000000200000000);
__ Mov(x26, 0x8000000000000000);
__ Mov(x27, 0xffffffffffffffff);
__ Mov(x28, 0x5555555555555555);
__ Mov(x29, 0xaaaaaaaaaaaaaaaa);
__ Umulh(x0, x20, x24);
__ Umulh(x1, x21, x24);
__ Umulh(x2, x22, x23);
__ Umulh(x3, x22, x24);
__ Umulh(x4, x24, x25);
__ Umulh(x5, x23, x27);
__ Umulh(x6, x26, x26);
__ Umulh(x7, x26, x27);
__ Umulh(x8, x27, x27);
__ Umulh(x9, x28, x28);
__ Umulh(x10, x28, x29);
__ Umulh(x11, x29, x29);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0, x2);
ASSERT_EQUAL_64(0x0000000001234567, x3);
ASSERT_EQUAL_64(0x0000000002468acf, x4);
ASSERT_EQUAL_64(0x0000000012345677, x5);
ASSERT_EQUAL_64(0x4000000000000000, x6);
ASSERT_EQUAL_64(0x7fffffffffffffff, x7);
ASSERT_EQUAL_64(0xfffffffffffffffe, x8);
ASSERT_EQUAL_64(0x1c71c71c71c71c71, x9);
ASSERT_EQUAL_64(0x38e38e38e38e38e3, x10);
ASSERT_EQUAL_64(0x71c71c71c71c71c6, x11);
TEARDOWN();
}
TEST(smaddl_umaddl_umull) {
SETUP();
START();
__ Mov(x17, 1);
__ Mov(x18, 0x00000000ffffffff);
__ Mov(x19, 0xffffffffffffffff);
__ Mov(x20, 4);
__ Mov(x21, 0x0000000200000000);
__ Smaddl(x9, w17, w18, x20);
__ Smaddl(x10, w18, w18, x20);
__ Smaddl(x11, w19, w19, x20);
__ Smaddl(x12, w19, w19, x21);
__ Umaddl(x13, w17, w18, x20);
__ Umaddl(x14, w18, w18, x20);
__ Umaddl(x15, w19, w19, x20);
__ Umaddl(x22, w19, w19, x21);
__ Umull(x24, w19, w19);
__ Umull(x25, w17, w18);
END();
RUN();
ASSERT_EQUAL_64(3, x9);
ASSERT_EQUAL_64(5, x10);
ASSERT_EQUAL_64(5, x11);
ASSERT_EQUAL_64(0x0000000200000001, x12);
ASSERT_EQUAL_64(0x0000000100000003, x13);
ASSERT_EQUAL_64(0xfffffffe00000005, x14);
ASSERT_EQUAL_64(0xfffffffe00000005, x15);
ASSERT_EQUAL_64(1, x22);
ASSERT_EQUAL_64(0xfffffffe00000001, x24);
ASSERT_EQUAL_64(0x00000000ffffffff, x25);
TEARDOWN();
}
TEST(smsubl_umsubl) {
SETUP();
START();
__ Mov(x17, 1);
__ Mov(x18, 0x00000000ffffffff);
__ Mov(x19, 0xffffffffffffffff);
__ Mov(x20, 4);
__ Mov(x21, 0x0000000200000000);
__ Smsubl(x9, w17, w18, x20);
__ Smsubl(x10, w18, w18, x20);
__ Smsubl(x11, w19, w19, x20);
__ Smsubl(x12, w19, w19, x21);
__ Umsubl(x13, w17, w18, x20);
__ Umsubl(x14, w18, w18, x20);
__ Umsubl(x15, w19, w19, x20);
__ Umsubl(x22, w19, w19, x21);
END();
RUN();
ASSERT_EQUAL_64(5, x9);
ASSERT_EQUAL_64(3, x10);
ASSERT_EQUAL_64(3, x11);
ASSERT_EQUAL_64(0x00000001ffffffff, x12);
ASSERT_EQUAL_64(0xffffffff00000005, x13);
ASSERT_EQUAL_64(0x0000000200000003, x14);
ASSERT_EQUAL_64(0x0000000200000003, x15);
ASSERT_EQUAL_64(0x00000003ffffffff, x22);
TEARDOWN();
}
TEST(div) {
SETUP();
START();
__ Mov(x16, 1);
__ Mov(x17, 0xffffffff);
__ Mov(x18, 0xffffffffffffffff);
__ Mov(x19, 0x80000000);
__ Mov(x20, 0x8000000000000000);
__ Mov(x21, 2);
__ Udiv(w0, w16, w16);
__ Udiv(w1, w17, w16);
__ Sdiv(w2, w16, w16);
__ Sdiv(w3, w16, w17);
__ Sdiv(w4, w17, w18);
__ Udiv(x5, x16, x16);
__ Udiv(x6, x17, x18);
__ Sdiv(x7, x16, x16);
__ Sdiv(x8, x16, x17);
__ Sdiv(x9, x17, x18);
__ Udiv(w10, w19, w21);
__ Sdiv(w11, w19, w21);
__ Udiv(x12, x19, x21);
__ Sdiv(x13, x19, x21);
__ Udiv(x14, x20, x21);
__ Sdiv(x15, x20, x21);
__ Udiv(w22, w19, w17);
__ Sdiv(w23, w19, w17);
__ Udiv(x24, x20, x18);
__ Sdiv(x25, x20, x18);
__ Udiv(x26, x16, x21);
__ Sdiv(x27, x16, x21);
__ Udiv(x28, x18, x21);
__ Sdiv(x29, x18, x21);
__ Mov(x17, 0);
__ Udiv(w18, w16, w17);
__ Sdiv(w19, w16, w17);
__ Udiv(x20, x16, x17);
__ Sdiv(x21, x16, x17);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0xffffffff, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(1, x5);
ASSERT_EQUAL_64(0, x6);
ASSERT_EQUAL_64(1, x7);
ASSERT_EQUAL_64(0, x8);
ASSERT_EQUAL_64(0xffffffff00000001, x9);
ASSERT_EQUAL_64(0x40000000, x10);
ASSERT_EQUAL_64(0xc0000000, x11);
ASSERT_EQUAL_64(0x0000000040000000, x12);
ASSERT_EQUAL_64(0x0000000040000000, x13);
ASSERT_EQUAL_64(0x4000000000000000, x14);
ASSERT_EQUAL_64(0xc000000000000000, x15);
ASSERT_EQUAL_64(0, x22);
ASSERT_EQUAL_64(0x80000000, x23);
ASSERT_EQUAL_64(0, x24);
ASSERT_EQUAL_64(0x8000000000000000, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0, x27);
ASSERT_EQUAL_64(0x7fffffffffffffff, x28);
ASSERT_EQUAL_64(0, x29);
ASSERT_EQUAL_64(0, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0, x20);
ASSERT_EQUAL_64(0, x21);
TEARDOWN();
}
TEST(rbit_rev) {
SETUP();
START();
__ Mov(x24, 0xfedcba9876543210);
__ Rbit(w0, w24);
__ Rbit(x1, x24);
__ Rev16(w2, w24);
__ Rev16(x3, x24);
__ Rev(w4, w24);
__ Rev32(x5, x24);
__ Rev(x6, x24);
END();
RUN();
ASSERT_EQUAL_64(0x084c2a6e, x0);
ASSERT_EQUAL_64(0x084c2a6e195d3b7f, x1);
ASSERT_EQUAL_64(0x54761032, x2);
ASSERT_EQUAL_64(0xdcfe98ba54761032, x3);
ASSERT_EQUAL_64(0x10325476, x4);
ASSERT_EQUAL_64(0x98badcfe10325476, x5);
ASSERT_EQUAL_64(0x1032547698badcfe, x6);
TEARDOWN();
}
TEST(clz_cls) {
SETUP();
START();
__ Mov(x24, 0x0008000000800000);
__ Mov(x25, 0xff800000fff80000);
__ Mov(x26, 0);
__ Clz(w0, w24);
__ Clz(x1, x24);
__ Clz(w2, w25);
__ Clz(x3, x25);
__ Clz(w4, w26);
__ Clz(x5, x26);
__ Cls(w6, w24);
__ Cls(x7, x24);
__ Cls(w8, w25);
__ Cls(x9, x25);
__ Cls(w10, w26);
__ Cls(x11, x26);
END();
RUN();
ASSERT_EQUAL_64(8, x0);
ASSERT_EQUAL_64(12, x1);
ASSERT_EQUAL_64(0, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(32, x4);
ASSERT_EQUAL_64(64, x5);
ASSERT_EQUAL_64(7, x6);
ASSERT_EQUAL_64(11, x7);
ASSERT_EQUAL_64(12, x8);
ASSERT_EQUAL_64(8, x9);
ASSERT_EQUAL_64(31, x10);
ASSERT_EQUAL_64(63, x11);
TEARDOWN();
}
TEST(label) {
SETUP();
Label label_1, label_2, label_3, label_4;
START();
__ Mov(x0, 0x1);
__ Mov(x1, 0x0);
__ Mov(x22, lr); // Save lr.
__ B(&label_1);
__ B(&label_1);
__ B(&label_1); // Multiple branches to the same label.
__ Mov(x0, 0x0);
__ Bind(&label_2);
__ B(&label_3); // Forward branch.
__ Mov(x0, 0x0);
__ Bind(&label_1);
__ B(&label_2); // Backward branch.
__ Mov(x0, 0x0);
__ Bind(&label_3);
__ Bl(&label_4);
END();
__ Bind(&label_4);
__ Mov(x1, 0x1);
__ Mov(lr, x22);
END();
RUN();
ASSERT_EQUAL_64(0x1, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(label_2) {
SETUP();
Label label_1, label_2, label_3;
Label first_jump_to_3;
START();
__ Mov(x0, 0x0);
__ B(&label_1);
ptrdiff_t offset_2 = masm.CursorOffset();
__ Orr(x0, x0, 1 << 1);
__ B(&label_3);
ptrdiff_t offset_1 = masm.CursorOffset();
__ Orr(x0, x0, 1 << 0);
__ B(&label_2);
ptrdiff_t offset_3 = masm.CursorOffset();
__ Tbz(x0, 2, &first_jump_to_3);
__ Orr(x0, x0, 1 << 3);
__ Bind(&first_jump_to_3);
__ Orr(x0, x0, 1 << 2);
__ Tbz(x0, 3, &label_3);
// Labels 1, 2, and 3 are bound before the current buffer offset. Branches to
// label_1 and label_2 branch respectively forward and backward. Branches to
// label 3 include both forward and backward branches.
masm.BindToOffset(&label_1, offset_1);
masm.BindToOffset(&label_2, offset_2);
masm.BindToOffset(&label_3, offset_3);
END();
RUN();
ASSERT_EQUAL_64(0xf, x0);
TEARDOWN();
}
TEST(adr) {
SETUP();
Label label_1, label_2, label_3, label_4;
START();
__ Mov(x0, 0x0); // Set to non-zero to indicate failure.
__ Adr(x1, &label_3); // Set to zero to indicate success.
__ Adr(x2, &label_1); // Multiple forward references to the same label.
__ Adr(x3, &label_1);
__ Adr(x4, &label_1);
__ Bind(&label_2);
__ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical.
__ Eor(x6, x2, Operand(x4));
__ Orr(x0, x0, Operand(x5));
__ Orr(x0, x0, Operand(x6));
__ Br(x2); // label_1, label_3
__ Bind(&label_3);
__ Adr(x2, &label_3); // Self-reference (offset 0).
__ Eor(x1, x1, Operand(x2));
__ Adr(x2, &label_4); // Simple forward reference.
__ Br(x2); // label_4
__ Bind(&label_1);
__ Adr(x2, &label_3); // Multiple reverse references to the same label.
__ Adr(x3, &label_3);
__ Adr(x4, &label_3);
__ Adr(x5, &label_2); // Simple reverse reference.
__ Br(x5); // label_2
__ Bind(&label_4);
END();
RUN();
ASSERT_EQUAL_64(0x0, x0);
ASSERT_EQUAL_64(0x0, x1);
TEARDOWN();
}
// Simple adrp tests: check that labels are linked and handled properly.
// This is similar to the adr test, but all the adrp instructions are put on the
// same page so that they return the same value.
TEST(adrp) {
Label start;
Label label_1, label_2, label_3;
SETUP_CUSTOM(2 * kPageSize, PageOffsetDependentCode);
START();
// Waste space until the start of a page.
{
InstructionAccurateScope scope(&masm,
kPageSize / kInstructionSize,
InstructionAccurateScope::kMaximumSize);
const uintptr_t kPageOffsetMask = kPageSize - 1;
while ((masm.GetCursorAddress<uintptr_t>() & kPageOffsetMask) != 0) {
__ b(&start);
}
__ bind(&start);
}
// Simple forward reference.
__ Adrp(x0, &label_2);
__ Bind(&label_1);
// Multiple forward references to the same label.
__ Adrp(x1, &label_3);
__ Adrp(x2, &label_3);
__ Adrp(x3, &label_3);
__ Bind(&label_2);
// Self-reference (offset 0).
__ Adrp(x4, &label_2);
__ Bind(&label_3);
// Simple reverse reference.
__ Adrp(x5, &label_1);
// Multiple reverse references to the same label.
__ Adrp(x6, &label_2);
__ Adrp(x7, &label_2);
__ Adrp(x8, &label_2);
VIXL_ASSERT(masm.SizeOfCodeGeneratedSince(&start) < kPageSize);
END();
RUN();
uint64_t expected = reinterpret_cast<uint64_t>(
AlignDown(masm.GetLabelAddress<uint64_t*>(&start), kPageSize));
ASSERT_EQUAL_64(expected, x0);
ASSERT_EQUAL_64(expected, x1);
ASSERT_EQUAL_64(expected, x2);
ASSERT_EQUAL_64(expected, x3);
ASSERT_EQUAL_64(expected, x4);
ASSERT_EQUAL_64(expected, x5);
ASSERT_EQUAL_64(expected, x6);
ASSERT_EQUAL_64(expected, x7);
ASSERT_EQUAL_64(expected, x8);
TEARDOWN_CUSTOM();
}
static void AdrpPageBoundaryHelper(unsigned offset_into_page) {
VIXL_ASSERT(offset_into_page < kPageSize);
VIXL_ASSERT((offset_into_page % kInstructionSize) == 0);
const uintptr_t kPageOffsetMask = kPageSize - 1;
// The test label is always bound on page 0. Adrp instructions are generated
// on pages from kStartPage to kEndPage (inclusive).
const int kStartPage = -16;
const int kEndPage = 16;
const int kMaxCodeSize = (kEndPage - kStartPage + 2) * kPageSize;
SETUP_CUSTOM(kMaxCodeSize, PageOffsetDependentCode);
START();
Label test;
Label start;
{
InstructionAccurateScope scope(&masm,
kMaxCodeSize / kInstructionSize,
InstructionAccurateScope::kMaximumSize);
// Initialize NZCV with `eq` flags.
__ cmp(wzr, wzr);
// Waste space until the start of a page.
while ((masm.GetCursorAddress<uintptr_t>() & kPageOffsetMask) != 0) {
__ b(&start);
}
// The first page.
VIXL_STATIC_ASSERT(kStartPage < 0);
{
InstructionAccurateScope scope_page(&masm, kPageSize / kInstructionSize);
__ bind(&start);
__ adrp(x0, &test);
__ adrp(x1, &test);
for (size_t i = 2; i < (kPageSize / kInstructionSize); i += 2) {
__ ccmp(x0, x1, NoFlag, eq);
__ adrp(x1, &test);
}
}
// Subsequent pages.
VIXL_STATIC_ASSERT(kEndPage >= 0);
for (int page = (kStartPage + 1); page <= kEndPage; page++) {
InstructionAccurateScope scope_page(&masm, kPageSize / kInstructionSize);
if (page == 0) {
for (size_t i = 0; i < (kPageSize / kInstructionSize);) {
if (i++ == (offset_into_page / kInstructionSize)) __ bind(&test);
__ ccmp(x0, x1, NoFlag, eq);
if (i++ == (offset_into_page / kInstructionSize)) __ bind(&test);
__ adrp(x1, &test);
}
} else {
for (size_t i = 0; i < (kPageSize / kInstructionSize); i += 2) {
__ ccmp(x0, x1, NoFlag, eq);
__ adrp(x1, &test);
}
}
}
}
// Every adrp instruction pointed to the same label (`test`), so they should
// all have produced the same result.
END();
RUN();
uintptr_t expected =
AlignDown(masm.GetLabelAddress<uintptr_t>(&test), kPageSize);
ASSERT_EQUAL_64(expected, x0);
ASSERT_EQUAL_64(expected, x1);
ASSERT_EQUAL_NZCV(ZCFlag);
TEARDOWN_CUSTOM();
}
// Test that labels are correctly referenced by adrp across page boundaries.
TEST(adrp_page_boundaries) {
VIXL_STATIC_ASSERT(kPageSize == 4096);
AdrpPageBoundaryHelper(kInstructionSize * 0);
AdrpPageBoundaryHelper(kInstructionSize * 1);
AdrpPageBoundaryHelper(kInstructionSize * 512);
AdrpPageBoundaryHelper(kInstructionSize * 1022);
AdrpPageBoundaryHelper(kInstructionSize * 1023);
}
static void AdrpOffsetHelper(int64_t offset) {
const size_t kPageOffsetMask = kPageSize - 1;
const int kMaxCodeSize = 2 * kPageSize;
SETUP_CUSTOM(kMaxCodeSize, PageOffsetDependentCode);
START();
Label page;
{
InstructionAccurateScope scope(&masm,
kMaxCodeSize / kInstructionSize,
InstructionAccurateScope::kMaximumSize);
// Initialize NZCV with `eq` flags.
__ cmp(wzr, wzr);
// Waste space until the start of a page.
while ((masm.GetCursorAddress<uintptr_t>() & kPageOffsetMask) != 0) {
__ b(&page);
}
__ bind(&page);
{
int imm21 = static_cast<int>(offset);
InstructionAccurateScope scope_page(&masm, kPageSize / kInstructionSize);
// Every adrp instruction on this page should return the same value.
__ adrp(x0, imm21);
__ adrp(x1, imm21);
for (size_t i = 2; i < kPageSize / kInstructionSize; i += 2) {
__ ccmp(x0, x1, NoFlag, eq);
__ adrp(x1, imm21);
}
}
}
END();
RUN();
uintptr_t expected =
masm.GetLabelAddress<uintptr_t>(&page) + (kPageSize * offset);
ASSERT_EQUAL_64(expected, x0);
ASSERT_EQUAL_64(expected, x1);
ASSERT_EQUAL_NZCV(ZCFlag);
TEARDOWN_CUSTOM();
}
// Check that adrp produces the correct result for a specific offset.
TEST(adrp_offset) {
AdrpOffsetHelper(0);
AdrpOffsetHelper(1);
AdrpOffsetHelper(-1);
AdrpOffsetHelper(4);
AdrpOffsetHelper(-4);
AdrpOffsetHelper(0x000fffff);
AdrpOffsetHelper(-0x000fffff);
AdrpOffsetHelper(-0x00100000);
}
TEST(branch_cond) {
SETUP();
ALLOW_ASM();
Label done, wrong;
START();
__ Mov(x0, 0x1);
__ Mov(x1, 0x1);
__ Mov(x2, 0x8000000000000000);
// For each 'cmp' instruction below, condition codes other than the ones
// following it would branch.
__ Cmp(x1, 0);
__ B(&wrong, eq);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vs);
__ B(&wrong, ls);
__ B(&wrong, lt);
__ B(&wrong, le);
Label ok_1;
__ B(&ok_1, ne);
__ Mov(x0, 0x0);
__ Bind(&ok_1);
__ Cmp(x1, 1);
__ B(&wrong, ne);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vs);
__ B(&wrong, hi);
__ B(&wrong, lt);
__ B(&wrong, gt);
Label ok_2;
__ B(&ok_2, pl);
__ Mov(x0, 0x0);
__ Bind(&ok_2);
__ Cmp(x1, 2);
__ B(&wrong, eq);
__ B(&wrong, hs);
__ B(&wrong, pl);
__ B(&wrong, vs);
__ B(&wrong, hi);
__ B(&wrong, ge);
__ B(&wrong, gt);
Label ok_3;
__ B(&ok_3, vc);
__ Mov(x0, 0x0);
__ Bind(&ok_3);
__ Cmp(x2, 1);
__ B(&wrong, eq);
__ B(&wrong, lo);
__ B(&wrong, mi);
__ B(&wrong, vc);
__ B(&wrong, ls);
__ B(&wrong, ge);
__ B(&wrong, gt);
Label ok_4;
__ B(&ok_4, le);
__ Mov(x0, 0x0);
__ Bind(&ok_4);
// The MacroAssembler does not allow al as a branch condition.
Label ok_5;
__ b(&ok_5, al);
__ Mov(x0, 0x0);
__ Bind(&ok_5);
// The MacroAssembler does not allow nv as a branch condition.
Label ok_6;
__ b(&ok_6, nv);
__ Mov(x0, 0x0);
__ Bind(&ok_6);
__ B(&done);
__ Bind(&wrong);
__ Mov(x0, 0x0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x1, x0);
TEARDOWN();
}
TEST(branch_to_reg) {
SETUP();
// Test br.
Label fn1, after_fn1;
START();
__ Mov(x29, lr);
__ Mov(x1, 0);
__ B(&after_fn1);
__ Bind(&fn1);
__ Mov(x0, lr);
__ Mov(x1, 42);
__ Br(x0);
__ Bind(&after_fn1);
__ Bl(&fn1);
// Test blr.
Label fn2, after_fn2;
__ Mov(x2, 0);
__ B(&after_fn2);
__ Bind(&fn2);
__ Mov(x0, lr);
__ Mov(x2, 84);
__ Blr(x0);
__ Bind(&after_fn2);
__ Bl(&fn2);
__ Mov(x3, lr);
__ Mov(lr, x29);
END();
RUN();
ASSERT_EQUAL_64(core.xreg(3) + kInstructionSize, x0);
ASSERT_EQUAL_64(42, x1);
ASSERT_EQUAL_64(84, x2);
TEARDOWN();
}
TEST(compare_branch) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
__ Mov(x3, 0);
__ Mov(x4, 0);
__ Mov(x5, 0);
__ Mov(x16, 0);
__ Mov(x17, 42);
Label zt, zt_end;
__ Cbz(w16, &zt);
__ B(&zt_end);
__ Bind(&zt);
__ Mov(x0, 1);
__ Bind(&zt_end);
Label zf, zf_end;
__ Cbz(x17, &zf);
__ B(&zf_end);
__ Bind(&zf);
__ Mov(x1, 1);
__ Bind(&zf_end);
Label nzt, nzt_end;
__ Cbnz(w17, &nzt);
__ B(&nzt_end);
__ Bind(&nzt);
__ Mov(x2, 1);
__ Bind(&nzt_end);
Label nzf, nzf_end;
__ Cbnz(x16, &nzf);
__ B(&nzf_end);
__ Bind(&nzf);
__ Mov(x3, 1);
__ Bind(&nzf_end);
__ Mov(x18, 0xffffffff00000000);
Label a, a_end;
__ Cbz(w18, &a);
__ B(&a_end);
__ Bind(&a);
__ Mov(x4, 1);
__ Bind(&a_end);
Label b, b_end;
__ Cbnz(w18, &b);
__ B(&b_end);
__ Bind(&b);
__ Mov(x5, 1);
__ Bind(&b_end);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(1, x4);
ASSERT_EQUAL_64(0, x5);
TEARDOWN();
}
TEST(test_branch) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
__ Mov(x3, 0);
__ Mov(x16, 0xaaaaaaaaaaaaaaaa);
Label bz, bz_end;
__ Tbz(w16, 0, &bz);
__ B(&bz_end);
__ Bind(&bz);
__ Mov(x0, 1);
__ Bind(&bz_end);
Label bo, bo_end;
__ Tbz(x16, 63, &bo);
__ B(&bo_end);
__ Bind(&bo);
__ Mov(x1, 1);
__ Bind(&bo_end);
Label nbz, nbz_end;
__ Tbnz(x16, 61, &nbz);
__ B(&nbz_end);
__ Bind(&nbz);
__ Mov(x2, 1);
__ Bind(&nbz_end);
Label nbo, nbo_end;
__ Tbnz(w16, 2, &nbo);
__ B(&nbo_end);
__ Bind(&nbo);
__ Mov(x3, 1);
__ Bind(&nbo_end);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
TEARDOWN();
}
TEST(branch_type) {
SETUP();
Label fail, done;
START();
__ Mov(x0, 0x0);
__ Mov(x10, 0x7);
__ Mov(x11, 0x0);
// Test non taken branches.
__ Cmp(x10, 0x7);
__ B(&fail, ne);
__ B(&fail, never);
__ B(&fail, reg_zero, x10);
__ B(&fail, reg_not_zero, x11);
__ B(&fail, reg_bit_clear, x10, 0);
__ B(&fail, reg_bit_set, x10, 3);
// Test taken branches.
Label l1, l2, l3, l4, l5;
__ Cmp(x10, 0x7);
__ B(&l1, eq);
__ B(&fail);
__ Bind(&l1);
__ B(&l2, always);
__ B(&fail);
__ Bind(&l2);
__ B(&l3, reg_not_zero, x10);
__ B(&fail);
__ Bind(&l3);
__ B(&l4, reg_bit_clear, x10, 15);
__ B(&fail);
__ Bind(&l4);
__ B(&l5, reg_bit_set, x10, 1);
__ B(&fail);
__ Bind(&l5);
__ B(&done);
__ Bind(&fail);
__ Mov(x0, 0x1);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x0, x0);
TEARDOWN();
}
TEST(ldr_str_offset) {
SETUP();
uint64_t src[2] = {0xfedcba9876543210, 0x0123456789abcdef};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Ldr(w0, MemOperand(x17));
__ Str(w0, MemOperand(x18));
__ Ldr(w1, MemOperand(x17, 4));
__ Str(w1, MemOperand(x18, 12));
__ Ldr(x2, MemOperand(x17, 8));
__ Str(x2, MemOperand(x18, 16));
__ Ldrb(w3, MemOperand(x17, 1));
__ Strb(w3, MemOperand(x18, 25));
__ Ldrh(w4, MemOperand(x17, 2));
__ Strh(w4, MemOperand(x18, 33));
END();
RUN();
ASSERT_EQUAL_64(0x76543210, x0);
ASSERT_EQUAL_64(0x76543210, dst[0]);
ASSERT_EQUAL_64(0xfedcba98, x1);
ASSERT_EQUAL_64(0xfedcba9800000000, dst[1]);
ASSERT_EQUAL_64(0x0123456789abcdef, x2);
ASSERT_EQUAL_64(0x0123456789abcdef, dst[2]);
ASSERT_EQUAL_64(0x32, x3);
ASSERT_EQUAL_64(0x3200, dst[3]);
ASSERT_EQUAL_64(0x7654, x4);
ASSERT_EQUAL_64(0x765400, dst[4]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base, x18);
TEARDOWN();
}
TEST(ldr_str_wide) {
SETUP();
uint32_t src[8192];
uint32_t dst[8192];
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
memset(src, 0xaa, 8192 * sizeof(src[0]));
memset(dst, 0xaa, 8192 * sizeof(dst[0]));
src[0] = 0;
src[6144] = 6144;
src[8191] = 8191;
START();
__ Mov(x22, src_base);
__ Mov(x23, dst_base);
__ Mov(x24, src_base);
__ Mov(x25, dst_base);
__ Mov(x26, src_base);
__ Mov(x27, dst_base);
__ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0])));
__ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0])));
__ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex));
__ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex));
__ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex));
__ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex));
END();
RUN();
ASSERT_EQUAL_32(8191, w0);
ASSERT_EQUAL_32(8191, dst[8191]);
ASSERT_EQUAL_64(src_base, x22);
ASSERT_EQUAL_64(dst_base, x23);
ASSERT_EQUAL_32(0, w1);
ASSERT_EQUAL_32(0, dst[0]);
ASSERT_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24);
ASSERT_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25);
ASSERT_EQUAL_32(6144, w2);
ASSERT_EQUAL_32(6144, dst[6144]);
ASSERT_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26);
ASSERT_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27);
TEARDOWN();
}
TEST(ldr_str_preindex) {
SETUP();
uint64_t src[2] = {0xfedcba9876543210, 0x0123456789abcdef};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base + 16);
__ Mov(x22, dst_base + 40);
__ Mov(x23, src_base);
__ Mov(x24, dst_base);
__ Mov(x25, src_base);
__ Mov(x26, dst_base);
__ Ldr(w0, MemOperand(x17, 4, PreIndex));
__ Str(w0, MemOperand(x18, 12, PreIndex));
__ Ldr(x1, MemOperand(x19, 8, PreIndex));
__ Str(x1, MemOperand(x20, 16, PreIndex));
__ Ldr(w2, MemOperand(x21, -4, PreIndex));
__ Str(w2, MemOperand(x22, -4, PreIndex));
__ Ldrb(w3, MemOperand(x23, 1, PreIndex));
__ Strb(w3, MemOperand(x24, 25, PreIndex));
__ Ldrh(w4, MemOperand(x25, 3, PreIndex));
__ Strh(w4, MemOperand(x26, 41, PreIndex));
END();
RUN();
ASSERT_EQUAL_64(0xfedcba98, x0);
ASSERT_EQUAL_64(0xfedcba9800000000, dst[1]);
ASSERT_EQUAL_64(0x0123456789abcdef, x1);
ASSERT_EQUAL_64(0x0123456789abcdef, dst[2]);
ASSERT_EQUAL_64(0x01234567, x2);
ASSERT_EQUAL_64(0x0123456700000000, dst[4]);
ASSERT_EQUAL_64(0x32, x3);
ASSERT_EQUAL_64(0x3200, dst[3]);
ASSERT_EQUAL_64(0x9876, x4);
ASSERT_EQUAL_64(0x987600, dst[5]);
ASSERT_EQUAL_64(src_base + 4, x17);
ASSERT_EQUAL_64(dst_base + 12, x18);
ASSERT_EQUAL_64(src_base + 8, x19);
ASSERT_EQUAL_64(dst_base + 16, x20);
ASSERT_EQUAL_64(src_base + 12, x21);
ASSERT_EQUAL_64(dst_base + 36, x22);
ASSERT_EQUAL_64(src_base + 1, x23);
ASSERT_EQUAL_64(dst_base + 25, x24);
ASSERT_EQUAL_64(src_base + 3, x25);
ASSERT_EQUAL_64(dst_base + 41, x26);
TEARDOWN();
}
TEST(ldr_str_postindex) {
SETUP();
uint64_t src[2] = {0xfedcba9876543210, 0x0123456789abcdef};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base + 4);
__ Mov(x18, dst_base + 12);
__ Mov(x19, src_base + 8);
__ Mov(x20, dst_base + 16);
__ Mov(x21, src_base + 8);
__ Mov(x22, dst_base + 32);
__ Mov(x23, src_base + 1);
__ Mov(x24, dst_base + 25);
__ Mov(x25, src_base + 3);
__ Mov(x26, dst_base + 41);
__ Ldr(w0, MemOperand(x17, 4, PostIndex));
__ Str(w0, MemOperand(x18, 12, PostIndex));
__ Ldr(x1, MemOperand(x19, 8, PostIndex));
__ Str(x1, MemOperand(x20, 16, PostIndex));
__ Ldr(x2, MemOperand(x21, -8, PostIndex));
__ Str(x2, MemOperand(x22, -32, PostIndex));
__ Ldrb(w3, MemOperand(x23, 1, PostIndex));
__ Strb(w3, MemOperand(x24, 5, PostIndex));
__ Ldrh(w4, MemOperand(x25, -3, PostIndex));
__ Strh(w4, MemOperand(x26, -41, PostIndex));
END();
RUN();
ASSERT_EQUAL_64(0xfedcba98, x0);
ASSERT_EQUAL_64(0xfedcba9800000000, dst[1]);
ASSERT_EQUAL_64(0x0123456789abcdef, x1);
ASSERT_EQUAL_64(0x0123456789abcdef, dst[2]);
ASSERT_EQUAL_64(0x0123456789abcdef, x2);
ASSERT_EQUAL_64(0x0123456789abcdef, dst[4]);
ASSERT_EQUAL_64(0x32, x3);
ASSERT_EQUAL_64(0x3200, dst[3]);
ASSERT_EQUAL_64(0x9876, x4);
ASSERT_EQUAL_64(0x987600, dst[5]);
ASSERT_EQUAL_64(src_base + 8, x17);
ASSERT_EQUAL_64(dst_base + 24, x18);
ASSERT_EQUAL_64(src_base + 16, x19);
ASSERT_EQUAL_64(dst_base + 32, x20);
ASSERT_EQUAL_64(src_base, x21);
ASSERT_EQUAL_64(dst_base, x22);
ASSERT_EQUAL_64(src_base + 2, x23);
ASSERT_EQUAL_64(dst_base + 30, x24);
ASSERT_EQUAL_64(src_base, x25);
ASSERT_EQUAL_64(dst_base, x26);
TEARDOWN();
}
TEST(ldr_str_largeindex) {
SETUP();
// This value won't fit in the immediate offset field of ldr/str instructions.
int largeoffset = 0xabcdef;
int64_t data[3] = { 0x1122334455667788, 0, 0 };
uint64_t base_addr = reinterpret_cast<uintptr_t>(data);
uint64_t drifted_addr = base_addr - largeoffset;
// This test checks that we we can use large immediate offsets when
// using PreIndex or PostIndex addressing mode of the MacroAssembler
// Ldr/Str instructions.
START();
__ Mov(x19, drifted_addr);
__ Ldr(x0, MemOperand(x19, largeoffset, PreIndex));
__ Mov(x20, base_addr);
__ Ldr(x1, MemOperand(x20, largeoffset, PostIndex));
__ Mov(x21, drifted_addr);
__ Str(x0, MemOperand(x21, largeoffset + 8, PreIndex));
__ Mov(x22, base_addr + 16);
__ Str(x0, MemOperand(x22, largeoffset, PostIndex));
END();
RUN();
ASSERT_EQUAL_64(0x1122334455667788, data[0]);
ASSERT_EQUAL_64(0x1122334455667788, data[1]);
ASSERT_EQUAL_64(0x1122334455667788, data[2]);
ASSERT_EQUAL_64(0x1122334455667788, x0);
ASSERT_EQUAL_64(0x1122334455667788, x1);
ASSERT_EQUAL_64(base_addr, x19);
ASSERT_EQUAL_64(base_addr + largeoffset, x20);
ASSERT_EQUAL_64(base_addr + 8, x21);
ASSERT_EQUAL_64(base_addr + 16 + largeoffset, x22);
TEARDOWN();
}
TEST(load_signed) {
SETUP();
uint32_t src[2] = {0x80008080, 0x7fff7f7f};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x24, src_base);
__ Ldrsb(w0, MemOperand(x24));
__ Ldrsb(w1, MemOperand(x24, 4));
__ Ldrsh(w2, MemOperand(x24));
__ Ldrsh(w3, MemOperand(x24, 4));
__ Ldrsb(x4, MemOperand(x24));
__ Ldrsb(x5, MemOperand(x24, 4));
__ Ldrsh(x6, MemOperand(x24));
__ Ldrsh(x7, MemOperand(x24, 4));
__ Ldrsw(x8, MemOperand(x24));
__ Ldrsw(x9, MemOperand(x24, 4));
END();
RUN();
ASSERT_EQUAL_64(0xffffff80, x0);
ASSERT_EQUAL_64(0x0000007f, x1);
ASSERT_EQUAL_64(0xffff8080, x2);
ASSERT_EQUAL_64(0x00007f7f, x3);
ASSERT_EQUAL_64(0xffffffffffffff80, x4);
ASSERT_EQUAL_64(0x000000000000007f, x5);
ASSERT_EQUAL_64(0xffffffffffff8080, x6);
ASSERT_EQUAL_64(0x0000000000007f7f, x7);
ASSERT_EQUAL_64(0xffffffff80008080, x8);
ASSERT_EQUAL_64(0x000000007fff7f7f, x9);
TEARDOWN();
}
TEST(load_store_regoffset) {
SETUP();
uint32_t src[3] = {1, 2, 3};
uint32_t dst[4] = {0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 3 * sizeof(src[0]));
__ Mov(x19, dst_base + 3 * sizeof(dst[0]));
__ Mov(x20, dst_base + 4 * sizeof(dst[0]));
__ Mov(x24, 0);
__ Mov(x25, 4);
__ Mov(x26, -4);
__ Mov(x27, 0xfffffffc); // 32-bit -4.
__ Mov(x28, 0xfffffffe); // 32-bit -2.
__ Mov(x29, 0xffffffff); // 32-bit -1.
__ Ldr(w0, MemOperand(x16, x24));
__ Ldr(x1, MemOperand(x16, x25));
__ Ldr(w2, MemOperand(x18, x26));
__ Ldr(w3, MemOperand(x18, x27, SXTW));
__ Ldr(w4, MemOperand(x18, x28, SXTW, 2));
__ Str(w0, MemOperand(x17, x24));
__ Str(x1, MemOperand(x17, x25));
__ Str(w2, MemOperand(x20, x29, SXTW, 2));
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(0x0000000300000002, x1);
ASSERT_EQUAL_64(3, x2);
ASSERT_EQUAL_64(3, x3);
ASSERT_EQUAL_64(2, x4);
ASSERT_EQUAL_32(1, dst[0]);
ASSERT_EQUAL_32(2, dst[1]);
ASSERT_EQUAL_32(3, dst[2]);
ASSERT_EQUAL_32(3, dst[3]);
TEARDOWN();
}
TEST(load_store_float) {
SETUP();
float src[3] = {1.0, 2.0, 3.0};
float dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(s0, MemOperand(x17, sizeof(src[0])));
__ Str(s0, MemOperand(x18, sizeof(dst[0]), PostIndex));
__ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(s2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
ASSERT_EQUAL_FP32(2.0, s0);
ASSERT_EQUAL_FP32(2.0, dst[0]);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, dst[2]);
ASSERT_EQUAL_FP32(3.0, s2);
ASSERT_EQUAL_FP32(3.0, dst[1]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18);
ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(load_store_double) {
SETUP();
double src[3] = {1.0, 2.0, 3.0};
double dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(d0, MemOperand(x17, sizeof(src[0])));
__ Str(d0, MemOperand(x18, sizeof(dst[0]), PostIndex));
__ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(d2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
ASSERT_EQUAL_FP64(2.0, d0);
ASSERT_EQUAL_FP64(2.0, dst[0]);
ASSERT_EQUAL_FP64(1.0, d1);
ASSERT_EQUAL_FP64(1.0, dst[2]);
ASSERT_EQUAL_FP64(3.0, d2);
ASSERT_EQUAL_FP64(3.0, dst[1]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18);
ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(load_store_b) {
SETUP();
uint8_t src[3] = {0x12, 0x23, 0x34};
uint8_t dst[3] = {0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(b0, MemOperand(x17, sizeof(src[0])));
__ Str(b0, MemOperand(x18, sizeof(dst[0]), PostIndex));
__ Ldr(b1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(b1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(b2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(b2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
ASSERT_EQUAL_128(0, 0x23, q0);
ASSERT_EQUAL_64(0x23, dst[0]);
ASSERT_EQUAL_128(0, 0x12, q1);
ASSERT_EQUAL_64(0x12, dst[2]);
ASSERT_EQUAL_128(0, 0x34, q2);
ASSERT_EQUAL_64(0x34, dst[1]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18);
ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(load_store_h) {
SETUP();
uint16_t src[3] = {0x1234, 0x2345, 0x3456};
uint16_t dst[3] = {0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(h0, MemOperand(x17, sizeof(src[0])));
__ Str(h0, MemOperand(x18, sizeof(dst[0]), PostIndex));
__ Ldr(h1, MemOperand(x19, sizeof(src[0]), PostIndex));
__ Str(h1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex));
__ Ldr(h2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex));
__ Str(h2, MemOperand(x22, sizeof(dst[0])));
END();
RUN();
ASSERT_EQUAL_128(0, 0x2345, q0);
ASSERT_EQUAL_64(0x2345, dst[0]);
ASSERT_EQUAL_128(0, 0x1234, q1);
ASSERT_EQUAL_64(0x1234, dst[2]);
ASSERT_EQUAL_128(0, 0x3456, q2);
ASSERT_EQUAL_64(0x3456, dst[1]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18);
ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(load_store_q) {
SETUP();
uint8_t src[48] = {0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe,
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x21, 0x43, 0x65, 0x87, 0xa9, 0xcb, 0xed, 0x0f,
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x24, 0x46, 0x68, 0x8a, 0xac, 0xce, 0xe0, 0x02,
0x42, 0x64, 0x86, 0xa8, 0xca, 0xec, 0x0e, 0x20};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base);
__ Mov(x20, dst_base);
__ Mov(x21, src_base);
__ Mov(x22, dst_base);
__ Ldr(q0, MemOperand(x17, 16));
__ Str(q0, MemOperand(x18, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Str(q1, MemOperand(x20, 32, PreIndex));
__ Ldr(q2, MemOperand(x21, 32, PreIndex));
__ Str(q2, MemOperand(x22, 16));
END();
RUN();
ASSERT_EQUAL_128(0xf0debc9a78563412, 0x0fedcba987654321, q0);
ASSERT_EQUAL_64(0x0fedcba987654321, dst[0]);
ASSERT_EQUAL_64(0xf0debc9a78563412, dst[1]);
ASSERT_EQUAL_128(0xefcdab8967452301, 0xfedcba9876543210, q1);
ASSERT_EQUAL_64(0xfedcba9876543210, dst[4]);
ASSERT_EQUAL_64(0xefcdab8967452301, dst[5]);
ASSERT_EQUAL_128(0x200eeccaa8866442, 0x02e0ceac8a684624, q2);
ASSERT_EQUAL_64(0x02e0ceac8a684624, dst[2]);
ASSERT_EQUAL_64(0x200eeccaa8866442, dst[3]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base + 16, x18);
ASSERT_EQUAL_64(src_base + 16, x19);
ASSERT_EQUAL_64(dst_base + 32, x20);
ASSERT_EQUAL_64(src_base + 32, x21);
ASSERT_EQUAL_64(dst_base, x22);
TEARDOWN();
}
TEST(load_store_v_regoffset) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uint8_t dst[64];
memset(dst, 0, sizeof(dst));
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base + 16);
__ Mov(x18, 1);
__ Mov(w19, -1);
__ Mov(x20, dst_base - 1);
__ Ldr(b0, MemOperand(x17, x18));
__ Ldr(b1, MemOperand(x17, x19, SXTW));
__ Ldr(h2, MemOperand(x17, x18));
__ Ldr(h3, MemOperand(x17, x18, UXTW, 1));
__ Ldr(h4, MemOperand(x17, x19, SXTW, 1));
__ Ldr(h5, MemOperand(x17, x18, LSL, 1));
__ Ldr(s16, MemOperand(x17, x18));
__ Ldr(s17, MemOperand(x17, x18, UXTW, 2));
__ Ldr(s18, MemOperand(x17, x19, SXTW, 2));
__ Ldr(s19, MemOperand(x17, x18, LSL, 2));
__ Ldr(d20, MemOperand(x17, x18));
__ Ldr(d21, MemOperand(x17, x18, UXTW, 3));
__ Ldr(d22, MemOperand(x17, x19, SXTW, 3));
__ Ldr(d23, MemOperand(x17, x18, LSL, 3));
__ Ldr(q24, MemOperand(x17, x18));
__ Ldr(q25, MemOperand(x17, x18, UXTW, 4));
__ Ldr(q26, MemOperand(x17, x19, SXTW, 4));
__ Ldr(q27, MemOperand(x17, x18, LSL, 4));
// Store [bhsdq]27 to adjacent memory locations, then load again to check.
__ Str(b27, MemOperand(x20, x18));
__ Str(h27, MemOperand(x20, x18, UXTW, 1));
__ Add(x20, x20, 8);
__ Str(s27, MemOperand(x20, x19, SXTW, 2));
__ Sub(x20, x20, 8);
__ Str(d27, MemOperand(x20, x18, LSL, 3));
__ Add(x20, x20, 32);
__ Str(q27, MemOperand(x20, x19, SXTW, 4));
__ Sub(x20, x20, 32);
__ Ldr(q6, MemOperand(x20, x18));
__ Ldr(q7, MemOperand(x20, x18, LSL, 4));
END();
RUN();
ASSERT_EQUAL_128(0, 0x11, q0);
ASSERT_EQUAL_128(0, 0x0f, q1);
ASSERT_EQUAL_128(0, 0x1211, q2);
ASSERT_EQUAL_128(0, 0x1312, q3);
ASSERT_EQUAL_128(0, 0x0f0e, q4);
ASSERT_EQUAL_128(0, 0x1312, q5);
ASSERT_EQUAL_128(0, 0x14131211, q16);
ASSERT_EQUAL_128(0, 0x17161514, q17);
ASSERT_EQUAL_128(0, 0x0f0e0d0c, q18);
ASSERT_EQUAL_128(0, 0x17161514, q19);
ASSERT_EQUAL_128(0, 0x1817161514131211, q20);
ASSERT_EQUAL_128(0, 0x1f1e1d1c1b1a1918, q21);
ASSERT_EQUAL_128(0, 0x0f0e0d0c0b0a0908, q22);
ASSERT_EQUAL_128(0, 0x1f1e1d1c1b1a1918, q23);
ASSERT_EQUAL_128(0x201f1e1d1c1b1a19, 0x1817161514131211, q24);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q25);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q26);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q27);
ASSERT_EQUAL_128(0x2027262524232221, 0x2023222120212020, q6);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q7);
TEARDOWN();
}
TEST(neon_ld1_d) {
SETUP();
uint8_t src[32 + 5];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ldr(q2, MemOperand(x17)); // Initialise top 64-bits of Q register.
__ Ld1(v2.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v3.V8B(), v4.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v5.V4H(), v6.V4H(), v7.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v20.V1D(), v21.V1D(), v22.V1D(), v23.V1D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0706050403020100, q2);
ASSERT_EQUAL_128(0, 0x0807060504030201, q3);
ASSERT_EQUAL_128(0, 0x100f0e0d0c0b0a09, q4);
ASSERT_EQUAL_128(0, 0x0908070605040302, q5);
ASSERT_EQUAL_128(0, 0x11100f0e0d0c0b0a, q6);
ASSERT_EQUAL_128(0, 0x1918171615141312, q7);
ASSERT_EQUAL_128(0, 0x0a09080706050403, q16);
ASSERT_EQUAL_128(0, 0x1211100f0e0d0c0b, q17);
ASSERT_EQUAL_128(0, 0x1a19181716151413, q18);
ASSERT_EQUAL_128(0, 0x2221201f1e1d1c1b, q19);
ASSERT_EQUAL_128(0, 0x0b0a090807060504, q30);
ASSERT_EQUAL_128(0, 0x131211100f0e0d0c, q31);
ASSERT_EQUAL_128(0, 0x1b1a191817161514, q0);
ASSERT_EQUAL_128(0, 0x232221201f1e1d1c, q1);
ASSERT_EQUAL_128(0, 0x0c0b0a0908070605, q20);
ASSERT_EQUAL_128(0, 0x14131211100f0e0d, q21);
ASSERT_EQUAL_128(0, 0x1c1b1a1918171615, q22);
ASSERT_EQUAL_128(0, 0x24232221201f1e1d, q23);
TEARDOWN();
}
TEST(neon_ld1_d_postindex) {
SETUP();
uint8_t src[32 + 5];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, src_base + 5);
__ Mov(x23, 1);
__ Ldr(q2, MemOperand(x17)); // Initialise top 64-bits of Q register.
__ Ld1(v2.V8B(), MemOperand(x17, x23, PostIndex));
__ Ld1(v3.V8B(), v4.V8B(), MemOperand(x18, 16, PostIndex));
__ Ld1(v5.V4H(), v6.V4H(), v7.V4H(), MemOperand(x19, 24, PostIndex));
__ Ld1(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(),
MemOperand(x20, 32, PostIndex));
__ Ld1(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(),
MemOperand(x21, 32, PostIndex));
__ Ld1(v20.V1D(), v21.V1D(), v22.V1D(), v23.V1D(),
MemOperand(x22, 32, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0706050403020100, q2);
ASSERT_EQUAL_128(0, 0x0807060504030201, q3);
ASSERT_EQUAL_128(0, 0x100f0e0d0c0b0a09, q4);
ASSERT_EQUAL_128(0, 0x0908070605040302, q5);
ASSERT_EQUAL_128(0, 0x11100f0e0d0c0b0a, q6);
ASSERT_EQUAL_128(0, 0x1918171615141312, q7);
ASSERT_EQUAL_128(0, 0x0a09080706050403, q16);
ASSERT_EQUAL_128(0, 0x1211100f0e0d0c0b, q17);
ASSERT_EQUAL_128(0, 0x1a19181716151413, q18);
ASSERT_EQUAL_128(0, 0x2221201f1e1d1c1b, q19);
ASSERT_EQUAL_128(0, 0x0b0a090807060504, q30);
ASSERT_EQUAL_128(0, 0x131211100f0e0d0c, q31);
ASSERT_EQUAL_128(0, 0x1b1a191817161514, q0);
ASSERT_EQUAL_128(0, 0x232221201f1e1d1c, q1);
ASSERT_EQUAL_128(0, 0x0c0b0a0908070605, q20);
ASSERT_EQUAL_128(0, 0x14131211100f0e0d, q21);
ASSERT_EQUAL_128(0, 0x1c1b1a1918171615, q22);
ASSERT_EQUAL_128(0, 0x24232221201f1e1d, q23);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 16, x18);
ASSERT_EQUAL_64(src_base + 2 + 24, x19);
ASSERT_EQUAL_64(src_base + 3 + 32, x20);
ASSERT_EQUAL_64(src_base + 4 + 32, x21);
ASSERT_EQUAL_64(src_base + 5 + 32, x22);
TEARDOWN();
}
TEST(neon_ld1_q) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld1(v2.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v3.V16B(), v4.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v5.V8H(), v6.V8H(), v7.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q2);
ASSERT_EQUAL_128(0x100f0e0d0c0b0a09, 0x0807060504030201, q3);
ASSERT_EQUAL_128(0x201f1e1d1c1b1a19, 0x1817161514131211, q4);
ASSERT_EQUAL_128(0x11100f0e0d0c0b0a, 0x0908070605040302, q5);
ASSERT_EQUAL_128(0x21201f1e1d1c1b1a, 0x1918171615141312, q6);
ASSERT_EQUAL_128(0x31302f2e2d2c2b2a, 0x2928272625242322, q7);
ASSERT_EQUAL_128(0x1211100f0e0d0c0b, 0x0a09080706050403, q16);
ASSERT_EQUAL_128(0x2221201f1e1d1c1b, 0x1a19181716151413, q17);
ASSERT_EQUAL_128(0x3231302f2e2d2c2b, 0x2a29282726252423, q18);
ASSERT_EQUAL_128(0x4241403f3e3d3c3b, 0x3a39383736353433, q19);
ASSERT_EQUAL_128(0x131211100f0e0d0c, 0x0b0a090807060504, q30);
ASSERT_EQUAL_128(0x232221201f1e1d1c, 0x1b1a191817161514, q31);
ASSERT_EQUAL_128(0x333231302f2e2d2c, 0x2b2a292827262524, q0);
ASSERT_EQUAL_128(0x434241403f3e3d3c, 0x3b3a393837363534, q1);
TEARDOWN();
}
TEST(neon_ld1_q_postindex) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld1(v2.V16B(), MemOperand(x17, x22, PostIndex));
__ Ld1(v3.V16B(), v4.V16B(), MemOperand(x18, 32, PostIndex));
__ Ld1(v5.V8H(), v6.V8H(), v7.V8H(), MemOperand(x19, 48, PostIndex));
__ Ld1(v16.V4S(), v17.V4S(), v18.V4S(), v19.V4S(),
MemOperand(x20, 64, PostIndex));
__ Ld1(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(),
MemOperand(x21, 64, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q2);
ASSERT_EQUAL_128(0x100f0e0d0c0b0a09, 0x0807060504030201, q3);
ASSERT_EQUAL_128(0x201f1e1d1c1b1a19, 0x1817161514131211, q4);
ASSERT_EQUAL_128(0x11100f0e0d0c0b0a, 0x0908070605040302, q5);
ASSERT_EQUAL_128(0x21201f1e1d1c1b1a, 0x1918171615141312, q6);
ASSERT_EQUAL_128(0x31302f2e2d2c2b2a, 0x2928272625242322, q7);
ASSERT_EQUAL_128(0x1211100f0e0d0c0b, 0x0a09080706050403, q16);
ASSERT_EQUAL_128(0x2221201f1e1d1c1b, 0x1a19181716151413, q17);
ASSERT_EQUAL_128(0x3231302f2e2d2c2b, 0x2a29282726252423, q18);
ASSERT_EQUAL_128(0x4241403f3e3d3c3b, 0x3a39383736353433, q19);
ASSERT_EQUAL_128(0x131211100f0e0d0c, 0x0b0a090807060504, q30);
ASSERT_EQUAL_128(0x232221201f1e1d1c, 0x1b1a191817161514, q31);
ASSERT_EQUAL_128(0x333231302f2e2d2c, 0x2b2a292827262524, q0);
ASSERT_EQUAL_128(0x434241403f3e3d3c, 0x3b3a393837363534, q1);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 32, x18);
ASSERT_EQUAL_64(src_base + 2 + 48, x19);
ASSERT_EQUAL_64(src_base + 3 + 64, x20);
ASSERT_EQUAL_64(src_base + 4 + 64, x21);
TEARDOWN();
}
TEST(neon_ld1_lane) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld1(v0.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld1(v1.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld1(v2.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld1(v3.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Ldr(q4, MemOperand(x17));
__ Ld1(v4.B(), 4, MemOperand(x17));
__ Ldr(q5, MemOperand(x17));
__ Ld1(v5.H(), 3, MemOperand(x17));
__ Ldr(q6, MemOperand(x17));
__ Ld1(v6.S(), 2, MemOperand(x17));
__ Ldr(q7, MemOperand(x17));
__ Ld1(v7.D(), 1, MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q0);
ASSERT_EQUAL_128(0x0100020103020403, 0x0504060507060807, q1);
ASSERT_EQUAL_128(0x0302010004030201, 0x0504030206050403, q2);
ASSERT_EQUAL_128(0x0706050403020100, 0x0807060504030201, q3);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q4);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q5);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q6);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q7);
TEARDOWN();
}
TEST(neon_ld2_d) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld2(v2.V8B(), v3.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v4.V8B(), v5.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v6.V4H(), v7.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v31.V2S(), v0.V2S(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0e0c0a0806040200, q2);
ASSERT_EQUAL_128(0, 0x0f0d0b0907050301, q3);
ASSERT_EQUAL_128(0, 0x0f0d0b0907050301, q4);
ASSERT_EQUAL_128(0, 0x100e0c0a08060402, q5);
ASSERT_EQUAL_128(0, 0x0f0e0b0a07060302, q6);
ASSERT_EQUAL_128(0, 0x11100d0c09080504, q7);
ASSERT_EQUAL_128(0, 0x0e0d0c0b06050403, q31);
ASSERT_EQUAL_128(0, 0x1211100f0a090807, q0);
TEARDOWN();
}
TEST(neon_ld2_d_postindex) {
SETUP();
uint8_t src[32 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld2(v2.V8B(), v3.V8B(), MemOperand(x17, x22, PostIndex));
__ Ld2(v4.V8B(), v5.V8B(), MemOperand(x18, 16, PostIndex));
__ Ld2(v5.V4H(), v6.V4H(), MemOperand(x19, 16, PostIndex));
__ Ld2(v16.V2S(), v17.V2S(), MemOperand(x20, 16, PostIndex));
__ Ld2(v31.V2S(), v0.V2S(), MemOperand(x21, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0e0c0a0806040200, q2);
ASSERT_EQUAL_128(0, 0x0f0d0b0907050301, q3);
ASSERT_EQUAL_128(0, 0x0f0d0b0907050301, q4);
ASSERT_EQUAL_128(0, 0x0f0e0b0a07060302, q5);
ASSERT_EQUAL_128(0, 0x11100d0c09080504, q6);
ASSERT_EQUAL_128(0, 0x0e0d0c0b06050403, q16);
ASSERT_EQUAL_128(0, 0x1211100f0a090807, q17);
ASSERT_EQUAL_128(0, 0x0f0e0d0c07060504, q31);
ASSERT_EQUAL_128(0, 0x131211100b0a0908, q0);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 16, x18);
ASSERT_EQUAL_64(src_base + 2 + 16, x19);
ASSERT_EQUAL_64(src_base + 3 + 16, x20);
ASSERT_EQUAL_64(src_base + 4 + 16, x21);
TEARDOWN();
}
TEST(neon_ld2_q) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld2(v2.V16B(), v3.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v4.V16B(), v5.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v6.V8H(), v7.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v16.V4S(), v17.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2(v31.V2D(), v0.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x1e1c1a1816141210, 0x0e0c0a0806040200, q2);
ASSERT_EQUAL_128(0x1f1d1b1917151311, 0x0f0d0b0907050301, q3);
ASSERT_EQUAL_128(0x1f1d1b1917151311, 0x0f0d0b0907050301, q4);
ASSERT_EQUAL_128(0x201e1c1a18161412, 0x100e0c0a08060402, q5);
ASSERT_EQUAL_128(0x1f1e1b1a17161312, 0x0f0e0b0a07060302, q6);
ASSERT_EQUAL_128(0x21201d1c19181514, 0x11100d0c09080504, q7);
ASSERT_EQUAL_128(0x1e1d1c1b16151413, 0x0e0d0c0b06050403, q16);
ASSERT_EQUAL_128(0x2221201f1a191817, 0x1211100f0a090807, q17);
ASSERT_EQUAL_128(0x1b1a191817161514, 0x0b0a090807060504, q31);
ASSERT_EQUAL_128(0x232221201f1e1d1c, 0x131211100f0e0d0c, q0);
TEARDOWN();
}
TEST(neon_ld2_q_postindex) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld2(v2.V16B(), v3.V16B(), MemOperand(x17, x22, PostIndex));
__ Ld2(v4.V16B(), v5.V16B(), MemOperand(x18, 32, PostIndex));
__ Ld2(v6.V8H(), v7.V8H(), MemOperand(x19, 32, PostIndex));
__ Ld2(v16.V4S(), v17.V4S(), MemOperand(x20, 32, PostIndex));
__ Ld2(v31.V2D(), v0.V2D(), MemOperand(x21, 32, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1e1c1a1816141210, 0x0e0c0a0806040200, q2);
ASSERT_EQUAL_128(0x1f1d1b1917151311, 0x0f0d0b0907050301, q3);
ASSERT_EQUAL_128(0x1f1d1b1917151311, 0x0f0d0b0907050301, q4);
ASSERT_EQUAL_128(0x201e1c1a18161412, 0x100e0c0a08060402, q5);
ASSERT_EQUAL_128(0x1f1e1b1a17161312, 0x0f0e0b0a07060302, q6);
ASSERT_EQUAL_128(0x21201d1c19181514, 0x11100d0c09080504, q7);
ASSERT_EQUAL_128(0x1e1d1c1b16151413, 0x0e0d0c0b06050403, q16);
ASSERT_EQUAL_128(0x2221201f1a191817, 0x1211100f0a090807, q17);
ASSERT_EQUAL_128(0x1b1a191817161514, 0x0b0a090807060504, q31);
ASSERT_EQUAL_128(0x232221201f1e1d1c, 0x131211100f0e0d0c, q0);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 32, x18);
ASSERT_EQUAL_64(src_base + 2 + 32, x19);
ASSERT_EQUAL_64(src_base + 3 + 32, x20);
ASSERT_EQUAL_64(src_base + 4 + 32, x21);
TEARDOWN();
}
TEST(neon_ld2_lane) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld2(v0.B(), v1.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld2(v2.H(), v3.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld2(v4.S(), v5.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld2(v6.D(), v7.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Mov(x4, x17);
__ Ldr(q8, MemOperand(x4, 16, PostIndex));
__ Ldr(q9, MemOperand(x4));
__ Ld2(v8.B(), v9.B(), 4, MemOperand(x17));
__ Mov(x5, x17);
__ Ldr(q10, MemOperand(x5, 16, PostIndex));
__ Ldr(q11, MemOperand(x5));
__ Ld2(v10.H(), v11.H(), 3, MemOperand(x17));
__ Mov(x6, x17);
__ Ldr(q12, MemOperand(x6, 16, PostIndex));
__ Ldr(q13, MemOperand(x6));
__ Ld2(v12.S(), v13.S(), 2, MemOperand(x17));
__ Mov(x7, x17);
__ Ldr(q14, MemOperand(x7, 16, PostIndex));
__ Ldr(q15, MemOperand(x7));
__ Ld2(v14.D(), v15.D(), 1, MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q0);
ASSERT_EQUAL_128(0x0102030405060708, 0x090a0b0c0d0e0f10, q1);
ASSERT_EQUAL_128(0x0100020103020403, 0x0504060507060807, q2);
ASSERT_EQUAL_128(0x0302040305040605, 0x0706080709080a09, q3);
ASSERT_EQUAL_128(0x0302010004030201, 0x0504030206050403, q4);
ASSERT_EQUAL_128(0x0706050408070605, 0x090807060a090807, q5);
ASSERT_EQUAL_128(0x0706050403020100, 0x0807060504030201, q6);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x100f0e0d0c0b0a09, q7);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q8);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716150113121110, q9);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q10);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0302151413121110, q11);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q12);
ASSERT_EQUAL_128(0x1f1e1d1c07060504, 0x1716151413121110, q13);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q14);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x1716151413121110, q15);
TEARDOWN();
}
TEST(neon_ld2_lane_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Mov(x19, src_base);
__ Mov(x20, src_base);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
// Test loading whole register by element.
for (int i = 15; i >= 0; i--) {
__ Ld2(v0.B(), v1.B(), i, MemOperand(x17, 2, PostIndex));
}
for (int i = 7; i >= 0; i--) {
__ Ld2(v2.H(), v3.H(), i, MemOperand(x18, 4, PostIndex));
}
for (int i = 3; i >= 0; i--) {
__ Ld2(v4.S(), v5.S(), i, MemOperand(x19, 8, PostIndex));
}
for (int i = 1; i >= 0; i--) {
__ Ld2(v6.D(), v7.D(), i, MemOperand(x20, 16, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Mov(x4, x21);
__ Ldr(q8, MemOperand(x4, 16, PostIndex));
__ Ldr(q9, MemOperand(x4));
__ Ld2(v8.B(), v9.B(), 4, MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x5, x22);
__ Ldr(q10, MemOperand(x5, 16, PostIndex));
__ Ldr(q11, MemOperand(x5));
__ Ld2(v10.H(), v11.H(), 3, MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x6, x23);
__ Ldr(q12, MemOperand(x6, 16, PostIndex));
__ Ldr(q13, MemOperand(x6));
__ Ld2(v12.S(), v13.S(), 2, MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x7, x24);
__ Ldr(q14, MemOperand(x7, 16, PostIndex));
__ Ldr(q15, MemOperand(x7));
__ Ld2(v14.D(), v15.D(), 1, MemOperand(x24, x25, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x00020406080a0c0e, 0x10121416181a1c1e, q0);
ASSERT_EQUAL_128(0x01030507090b0d0f, 0x11131517191b1d1f, q1);
ASSERT_EQUAL_128(0x0100050409080d0c, 0x1110151419181d1c, q2);
ASSERT_EQUAL_128(0x030207060b0a0f0e, 0x131217161b1a1f1e, q3);
ASSERT_EQUAL_128(0x030201000b0a0908, 0x131211101b1a1918, q4);
ASSERT_EQUAL_128(0x070605040f0e0d0c, 0x171615141f1e1d1c, q5);
ASSERT_EQUAL_128(0x0706050403020100, 0x1716151413121110, q6);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x1f1e1d1c1b1a1918, q7);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q8);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716150113121110, q9);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q10);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0302151413121110, q11);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q12);
ASSERT_EQUAL_128(0x1f1e1d1c07060504, 0x1716151413121110, q13);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q14);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x1716151413121110, q15);
ASSERT_EQUAL_64(src_base + 32, x17);
ASSERT_EQUAL_64(src_base + 32, x18);
ASSERT_EQUAL_64(src_base + 32, x19);
ASSERT_EQUAL_64(src_base + 32, x20);
ASSERT_EQUAL_64(src_base + 1, x21);
ASSERT_EQUAL_64(src_base + 2, x22);
ASSERT_EQUAL_64(src_base + 3, x23);
ASSERT_EQUAL_64(src_base + 4, x24);
TEARDOWN();
}
TEST(neon_ld2_alllanes) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld2r(v0.V8B(), v1.V8B(), MemOperand(x17));
__ Add(x17, x17, 2);
__ Ld2r(v2.V16B(), v3.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2r(v4.V4H(), v5.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2r(v6.V8H(), v7.V8H(), MemOperand(x17));
__ Add(x17, x17, 4);
__ Ld2r(v8.V2S(), v9.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld2r(v10.V4S(), v11.V4S(), MemOperand(x17));
__ Add(x17, x17, 8);
__ Ld2r(v12.V2D(), v13.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0x0303030303030303, 0x0303030303030303, q2);
ASSERT_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
ASSERT_EQUAL_128(0x0000000000000000, 0x0504050405040504, q4);
ASSERT_EQUAL_128(0x0000000000000000, 0x0706070607060706, q5);
ASSERT_EQUAL_128(0x0605060506050605, 0x0605060506050605, q6);
ASSERT_EQUAL_128(0x0807080708070807, 0x0807080708070807, q7);
ASSERT_EQUAL_128(0x0000000000000000, 0x0c0b0a090c0b0a09, q8);
ASSERT_EQUAL_128(0x0000000000000000, 0x100f0e0d100f0e0d, q9);
ASSERT_EQUAL_128(0x0d0c0b0a0d0c0b0a, 0x0d0c0b0a0d0c0b0a, q10);
ASSERT_EQUAL_128(0x11100f0e11100f0e, 0x11100f0e11100f0e, q11);
ASSERT_EQUAL_128(0x1918171615141312, 0x1918171615141312, q12);
ASSERT_EQUAL_128(0x21201f1e1d1c1b1a, 0x21201f1e1d1c1b1a, q13);
TEARDOWN();
}
TEST(neon_ld2_alllanes_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld2r(v0.V8B(), v1.V8B(), MemOperand(x17, 2, PostIndex));
__ Ld2r(v2.V16B(), v3.V16B(), MemOperand(x17, x18, PostIndex));
__ Ld2r(v4.V4H(), v5.V4H(), MemOperand(x17, x18, PostIndex));
__ Ld2r(v6.V8H(), v7.V8H(), MemOperand(x17, 4, PostIndex));
__ Ld2r(v8.V2S(), v9.V2S(), MemOperand(x17, x18, PostIndex));
__ Ld2r(v10.V4S(), v11.V4S(), MemOperand(x17, 8, PostIndex));
__ Ld2r(v12.V2D(), v13.V2D(), MemOperand(x17, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0x0303030303030303, 0x0303030303030303, q2);
ASSERT_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
ASSERT_EQUAL_128(0x0000000000000000, 0x0504050405040504, q4);
ASSERT_EQUAL_128(0x0000000000000000, 0x0706070607060706, q5);
ASSERT_EQUAL_128(0x0605060506050605, 0x0605060506050605, q6);
ASSERT_EQUAL_128(0x0807080708070807, 0x0807080708070807, q7);
ASSERT_EQUAL_128(0x0000000000000000, 0x0c0b0a090c0b0a09, q8);
ASSERT_EQUAL_128(0x0000000000000000, 0x100f0e0d100f0e0d, q9);
ASSERT_EQUAL_128(0x0d0c0b0a0d0c0b0a, 0x0d0c0b0a0d0c0b0a, q10);
ASSERT_EQUAL_128(0x11100f0e11100f0e, 0x11100f0e11100f0e, q11);
ASSERT_EQUAL_128(0x1918171615141312, 0x1918171615141312, q12);
ASSERT_EQUAL_128(0x21201f1e1d1c1b1a, 0x21201f1e1d1c1b1a, q13);
ASSERT_EQUAL_64(src_base + 34, x17);
TEARDOWN();
}
TEST(neon_ld3_d) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld3(v2.V8B(), v3.V8B(), v4.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v5.V8B(), v6.V8B(), v7.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v8.V4H(), v9.V4H(), v10.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0, 0x15120f0c09060300, q2);
ASSERT_EQUAL_128(0, 0x1613100d0a070401, q3);
ASSERT_EQUAL_128(0, 0x1714110e0b080502, q4);
ASSERT_EQUAL_128(0, 0x1613100d0a070401, q5);
ASSERT_EQUAL_128(0, 0x1714110e0b080502, q6);
ASSERT_EQUAL_128(0, 0x1815120f0c090603, q7);
ASSERT_EQUAL_128(0, 0x15140f0e09080302, q8);
ASSERT_EQUAL_128(0, 0x171611100b0a0504, q9);
ASSERT_EQUAL_128(0, 0x191813120d0c0706, q10);
ASSERT_EQUAL_128(0, 0x1211100f06050403, q31);
ASSERT_EQUAL_128(0, 0x161514130a090807, q0);
ASSERT_EQUAL_128(0, 0x1a1918170e0d0c0b, q1);
TEARDOWN();
}
TEST(neon_ld3_d_postindex) {
SETUP();
uint8_t src[32 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld3(v2.V8B(), v3.V8B(), v4.V8B(), MemOperand(x17, x22, PostIndex));
__ Ld3(v5.V8B(), v6.V8B(), v7.V8B(), MemOperand(x18, 24, PostIndex));
__ Ld3(v8.V4H(), v9.V4H(), v10.V4H(), MemOperand(x19, 24, PostIndex));
__ Ld3(v11.V2S(), v12.V2S(), v13.V2S(), MemOperand(x20, 24, PostIndex));
__ Ld3(v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x21, 24, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0, 0x15120f0c09060300, q2);
ASSERT_EQUAL_128(0, 0x1613100d0a070401, q3);
ASSERT_EQUAL_128(0, 0x1714110e0b080502, q4);
ASSERT_EQUAL_128(0, 0x1613100d0a070401, q5);
ASSERT_EQUAL_128(0, 0x1714110e0b080502, q6);
ASSERT_EQUAL_128(0, 0x1815120f0c090603, q7);
ASSERT_EQUAL_128(0, 0x15140f0e09080302, q8);
ASSERT_EQUAL_128(0, 0x171611100b0a0504, q9);
ASSERT_EQUAL_128(0, 0x191813120d0c0706, q10);
ASSERT_EQUAL_128(0, 0x1211100f06050403, q11);
ASSERT_EQUAL_128(0, 0x161514130a090807, q12);
ASSERT_EQUAL_128(0, 0x1a1918170e0d0c0b, q13);
ASSERT_EQUAL_128(0, 0x1312111007060504, q31);
ASSERT_EQUAL_128(0, 0x171615140b0a0908, q0);
ASSERT_EQUAL_128(0, 0x1b1a19180f0e0d0c, q1);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 24, x18);
ASSERT_EQUAL_64(src_base + 2 + 24, x19);
ASSERT_EQUAL_64(src_base + 3 + 24, x20);
ASSERT_EQUAL_64(src_base + 4 + 24, x21);
TEARDOWN();
}
TEST(neon_ld3_q) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld3(v2.V16B(), v3.V16B(), v4.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v8.V8H(), v9.V8H(), v10.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v11.V4S(), v12.V4S(), v13.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3(v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x2d2a2724211e1b18, 0x15120f0c09060300, q2);
ASSERT_EQUAL_128(0x2e2b2825221f1c19, 0x1613100d0a070401, q3);
ASSERT_EQUAL_128(0x2f2c292623201d1a, 0x1714110e0b080502, q4);
ASSERT_EQUAL_128(0x2e2b2825221f1c19, 0x1613100d0a070401, q5);
ASSERT_EQUAL_128(0x2f2c292623201d1a, 0x1714110e0b080502, q6);
ASSERT_EQUAL_128(0x302d2a2724211e1b, 0x1815120f0c090603, q7);
ASSERT_EQUAL_128(0x2d2c272621201b1a, 0x15140f0e09080302, q8);
ASSERT_EQUAL_128(0x2f2e292823221d1c, 0x171611100b0a0504, q9);
ASSERT_EQUAL_128(0x31302b2a25241f1e, 0x191813120d0c0706, q10);
ASSERT_EQUAL_128(0x2a2928271e1d1c1b, 0x1211100f06050403, q11);
ASSERT_EQUAL_128(0x2e2d2c2b2221201f, 0x161514130a090807, q12);
ASSERT_EQUAL_128(0x3231302f26252423, 0x1a1918170e0d0c0b, q13);
ASSERT_EQUAL_128(0x232221201f1e1d1c, 0x0b0a090807060504, q31);
ASSERT_EQUAL_128(0x2b2a292827262524, 0x131211100f0e0d0c, q0);
ASSERT_EQUAL_128(0x333231302f2e2d2c, 0x1b1a191817161514, q1);
TEARDOWN();
}
TEST(neon_ld3_q_postindex) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld3(v2.V16B(), v3.V16B(), v4.V16B(), MemOperand(x17, x22, PostIndex));
__ Ld3(v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x18, 48, PostIndex));
__ Ld3(v8.V8H(), v9.V8H(), v10.V8H(), MemOperand(x19, 48, PostIndex));
__ Ld3(v11.V4S(), v12.V4S(), v13.V4S(), MemOperand(x20, 48, PostIndex));
__ Ld3(v31.V2D(), v0.V2D(), v1.V2D(), MemOperand(x21, 48, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x2d2a2724211e1b18, 0x15120f0c09060300, q2);
ASSERT_EQUAL_128(0x2e2b2825221f1c19, 0x1613100d0a070401, q3);
ASSERT_EQUAL_128(0x2f2c292623201d1a, 0x1714110e0b080502, q4);
ASSERT_EQUAL_128(0x2e2b2825221f1c19, 0x1613100d0a070401, q5);
ASSERT_EQUAL_128(0x2f2c292623201d1a, 0x1714110e0b080502, q6);
ASSERT_EQUAL_128(0x302d2a2724211e1b, 0x1815120f0c090603, q7);
ASSERT_EQUAL_128(0x2d2c272621201b1a, 0x15140f0e09080302, q8);
ASSERT_EQUAL_128(0x2f2e292823221d1c, 0x171611100b0a0504, q9);
ASSERT_EQUAL_128(0x31302b2a25241f1e, 0x191813120d0c0706, q10);
ASSERT_EQUAL_128(0x2a2928271e1d1c1b, 0x1211100f06050403, q11);
ASSERT_EQUAL_128(0x2e2d2c2b2221201f, 0x161514130a090807, q12);
ASSERT_EQUAL_128(0x3231302f26252423, 0x1a1918170e0d0c0b, q13);
ASSERT_EQUAL_128(0x232221201f1e1d1c, 0x0b0a090807060504, q31);
ASSERT_EQUAL_128(0x2b2a292827262524, 0x131211100f0e0d0c, q0);
ASSERT_EQUAL_128(0x333231302f2e2d2c, 0x1b1a191817161514, q1);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 48, x18);
ASSERT_EQUAL_64(src_base + 2 + 48, x19);
ASSERT_EQUAL_64(src_base + 3 + 48, x20);
ASSERT_EQUAL_64(src_base + 4 + 48, x21);
TEARDOWN();
}
TEST(neon_ld3_lane) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld3(v0.B(), v1.B(), v2.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld3(v3.H(), v4.H(), v5.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld3(v6.S(), v7.S(), v8.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld3(v9.D(), v10.D(), v11.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Mov(x4, x17);
__ Ldr(q12, MemOperand(x4, 16, PostIndex));
__ Ldr(q13, MemOperand(x4, 16, PostIndex));
__ Ldr(q14, MemOperand(x4));
__ Ld3(v12.B(), v13.B(), v14.B(), 4, MemOperand(x17));
__ Mov(x5, x17);
__ Ldr(q15, MemOperand(x5, 16, PostIndex));
__ Ldr(q16, MemOperand(x5, 16, PostIndex));
__ Ldr(q17, MemOperand(x5));
__ Ld3(v15.H(), v16.H(), v17.H(), 3, MemOperand(x17));
__ Mov(x6, x17);
__ Ldr(q18, MemOperand(x6, 16, PostIndex));
__ Ldr(q19, MemOperand(x6, 16, PostIndex));
__ Ldr(q20, MemOperand(x6));
__ Ld3(v18.S(), v19.S(), v20.S(), 2, MemOperand(x17));
__ Mov(x7, x17);
__ Ldr(q21, MemOperand(x7, 16, PostIndex));
__ Ldr(q22, MemOperand(x7, 16, PostIndex));
__ Ldr(q23, MemOperand(x7));
__ Ld3(v21.D(), v22.D(), v23.D(), 1, MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q0);
ASSERT_EQUAL_128(0x0102030405060708, 0x090a0b0c0d0e0f10, q1);
ASSERT_EQUAL_128(0x0203040506070809, 0x0a0b0c0d0e0f1011, q2);
ASSERT_EQUAL_128(0x0100020103020403, 0x0504060507060807, q3);
ASSERT_EQUAL_128(0x0302040305040605, 0x0706080709080a09, q4);
ASSERT_EQUAL_128(0x0504060507060807, 0x09080a090b0a0c0b, q5);
ASSERT_EQUAL_128(0x0302010004030201, 0x0504030206050403, q6);
ASSERT_EQUAL_128(0x0706050408070605, 0x090807060a090807, q7);
ASSERT_EQUAL_128(0x0b0a09080c0b0a09, 0x0d0c0b0a0e0d0c0b, q8);
ASSERT_EQUAL_128(0x0706050403020100, 0x0807060504030201, q9);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x100f0e0d0c0b0a09, q10);
ASSERT_EQUAL_128(0x1716151413121110, 0x1817161514131211, q11);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q12);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716150113121110, q13);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726250223222120, q14);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q15);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0302151413121110, q16);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x0504252423222120, q17);
TEARDOWN();
}
TEST(neon_ld3_lane_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Mov(x19, src_base);
__ Mov(x20, src_base);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld3(v0.B(), v1.B(), v2.B(), i, MemOperand(x17, 3, PostIndex));
}
for (int i = 7; i >= 0; i--) {
__ Ld3(v3.H(), v4.H(), v5.H(), i, MemOperand(x18, 6, PostIndex));
}
for (int i = 3; i >= 0; i--) {
__ Ld3(v6.S(), v7.S(), v8.S(), i, MemOperand(x19, 12, PostIndex));
}
for (int i = 1; i >= 0; i--) {
__ Ld3(v9.D(), v10.D(), v11.D(), i, MemOperand(x20, 24, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Mov(x4, x21);
__ Ldr(q12, MemOperand(x4, 16, PostIndex));
__ Ldr(q13, MemOperand(x4, 16, PostIndex));
__ Ldr(q14, MemOperand(x4));
__ Ld3(v12.B(), v13.B(), v14.B(), 4, MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x5, x22);
__ Ldr(q15, MemOperand(x5, 16, PostIndex));
__ Ldr(q16, MemOperand(x5, 16, PostIndex));
__ Ldr(q17, MemOperand(x5));
__ Ld3(v15.H(), v16.H(), v17.H(), 3, MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x6, x23);
__ Ldr(q18, MemOperand(x6, 16, PostIndex));
__ Ldr(q19, MemOperand(x6, 16, PostIndex));
__ Ldr(q20, MemOperand(x6));
__ Ld3(v18.S(), v19.S(), v20.S(), 2, MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x7, x24);
__ Ldr(q21, MemOperand(x7, 16, PostIndex));
__ Ldr(q22, MemOperand(x7, 16, PostIndex));
__ Ldr(q23, MemOperand(x7));
__ Ld3(v21.D(), v22.D(), v23.D(), 1, MemOperand(x24, x25, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x000306090c0f1215, 0x181b1e2124272a2d, q0);
ASSERT_EQUAL_128(0x0104070a0d101316, 0x191c1f2225282b2e, q1);
ASSERT_EQUAL_128(0x0205080b0e111417, 0x1a1d202326292c2f, q2);
ASSERT_EQUAL_128(0x010007060d0c1312, 0x19181f1e25242b2a, q3);
ASSERT_EQUAL_128(0x030209080f0e1514, 0x1b1a212027262d2c, q4);
ASSERT_EQUAL_128(0x05040b0a11101716, 0x1d1c232229282f2e, q5);
ASSERT_EQUAL_128(0x030201000f0e0d0c, 0x1b1a191827262524, q6);
ASSERT_EQUAL_128(0x0706050413121110, 0x1f1e1d1c2b2a2928, q7);
ASSERT_EQUAL_128(0x0b0a090817161514, 0x232221202f2e2d2c, q8);
ASSERT_EQUAL_128(0x0706050403020100, 0x1f1e1d1c1b1a1918, q9);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x2726252423222120, q10);
ASSERT_EQUAL_128(0x1716151413121110, 0x2f2e2d2c2b2a2928, q11);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q12);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716150113121110, q13);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726250223222120, q14);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q15);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0302151413121110, q16);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x0504252423222120, q17);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q18);
ASSERT_EQUAL_128(0x1f1e1d1c07060504, 0x1716151413121110, q19);
ASSERT_EQUAL_128(0x2f2e2d2c0b0a0908, 0x2726252423222120, q20);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q21);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x1716151413121110, q22);
ASSERT_EQUAL_128(0x1716151413121110, 0x2726252423222120, q23);
ASSERT_EQUAL_64(src_base + 48, x17);
ASSERT_EQUAL_64(src_base + 48, x18);
ASSERT_EQUAL_64(src_base + 48, x19);
ASSERT_EQUAL_64(src_base + 48, x20);
ASSERT_EQUAL_64(src_base + 1, x21);
ASSERT_EQUAL_64(src_base + 2, x22);
ASSERT_EQUAL_64(src_base + 3, x23);
ASSERT_EQUAL_64(src_base + 4, x24);
TEARDOWN();
}
TEST(neon_ld3_alllanes) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld3r(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x17));
__ Add(x17, x17, 3);
__ Ld3r(v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3r(v6.V4H(), v7.V4H(), v8.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3r(v9.V8H(), v10.V8H(), v11.V8H(), MemOperand(x17));
__ Add(x17, x17, 6);
__ Ld3r(v12.V2S(), v13.V2S(), v14.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld3r(v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17));
__ Add(x17, x17, 12);
__ Ld3r(v18.V2D(), v19.V2D(), v20.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
ASSERT_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
ASSERT_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
ASSERT_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
ASSERT_EQUAL_128(0x0000000000000000, 0x0605060506050605, q6);
ASSERT_EQUAL_128(0x0000000000000000, 0x0807080708070807, q7);
ASSERT_EQUAL_128(0x0000000000000000, 0x0a090a090a090a09, q8);
ASSERT_EQUAL_128(0x0706070607060706, 0x0706070607060706, q9);
ASSERT_EQUAL_128(0x0908090809080908, 0x0908090809080908, q10);
ASSERT_EQUAL_128(0x0b0a0b0a0b0a0b0a, 0x0b0a0b0a0b0a0b0a, q11);
ASSERT_EQUAL_128(0x0000000000000000, 0x0f0e0d0c0f0e0d0c, q12);
ASSERT_EQUAL_128(0x0000000000000000, 0x1312111013121110, q13);
ASSERT_EQUAL_128(0x0000000000000000, 0x1716151417161514, q14);
ASSERT_EQUAL_128(0x100f0e0d100f0e0d, 0x100f0e0d100f0e0d, q15);
ASSERT_EQUAL_128(0x1413121114131211, 0x1413121114131211, q16);
ASSERT_EQUAL_128(0x1817161518171615, 0x1817161518171615, q17);
ASSERT_EQUAL_128(0x201f1e1d1c1b1a19, 0x201f1e1d1c1b1a19, q18);
ASSERT_EQUAL_128(0x2827262524232221, 0x2827262524232221, q19);
ASSERT_EQUAL_128(0x302f2e2d2c2b2a29, 0x302f2e2d2c2b2a29, q20);
TEARDOWN();
}
TEST(neon_ld3_alllanes_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld3r(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x17, 3, PostIndex));
__ Ld3r(v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17, x18, PostIndex));
__ Ld3r(v6.V4H(), v7.V4H(), v8.V4H(), MemOperand(x17, x18, PostIndex));
__ Ld3r(v9.V8H(), v10.V8H(), v11.V8H(), MemOperand(x17, 6, PostIndex));
__ Ld3r(v12.V2S(), v13.V2S(), v14.V2S(), MemOperand(x17, x18, PostIndex));
__ Ld3r(v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17, 12, PostIndex));
__ Ld3r(v18.V2D(), v19.V2D(), v20.V2D(), MemOperand(x17, 24, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
ASSERT_EQUAL_128(0x0404040404040404, 0x0404040404040404, q3);
ASSERT_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
ASSERT_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
ASSERT_EQUAL_128(0x0000000000000000, 0x0605060506050605, q6);
ASSERT_EQUAL_128(0x0000000000000000, 0x0807080708070807, q7);
ASSERT_EQUAL_128(0x0000000000000000, 0x0a090a090a090a09, q8);
ASSERT_EQUAL_128(0x0706070607060706, 0x0706070607060706, q9);
ASSERT_EQUAL_128(0x0908090809080908, 0x0908090809080908, q10);
ASSERT_EQUAL_128(0x0b0a0b0a0b0a0b0a, 0x0b0a0b0a0b0a0b0a, q11);
ASSERT_EQUAL_128(0x0000000000000000, 0x0f0e0d0c0f0e0d0c, q12);
ASSERT_EQUAL_128(0x0000000000000000, 0x1312111013121110, q13);
ASSERT_EQUAL_128(0x0000000000000000, 0x1716151417161514, q14);
ASSERT_EQUAL_128(0x100f0e0d100f0e0d, 0x100f0e0d100f0e0d, q15);
ASSERT_EQUAL_128(0x1413121114131211, 0x1413121114131211, q16);
ASSERT_EQUAL_128(0x1817161518171615, 0x1817161518171615, q17);
ASSERT_EQUAL_128(0x201f1e1d1c1b1a19, 0x201f1e1d1c1b1a19, q18);
ASSERT_EQUAL_128(0x2827262524232221, 0x2827262524232221, q19);
ASSERT_EQUAL_128(0x302f2e2d2c2b2a29, 0x302f2e2d2c2b2a29, q20);
TEARDOWN();
}
TEST(neon_ld4_d) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld4(v2.V8B(), v3.V8B(), v4.V8B(), v5.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v6.V8B(), v7.V8B(), v8.V8B(), v9.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v10.V4H(), v11.V4H(), v12.V4H(), v13.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0, 0x1c1814100c080400, q2);
ASSERT_EQUAL_128(0, 0x1d1915110d090501, q3);
ASSERT_EQUAL_128(0, 0x1e1a16120e0a0602, q4);
ASSERT_EQUAL_128(0, 0x1f1b17130f0b0703, q5);
ASSERT_EQUAL_128(0, 0x1d1915110d090501, q6);
ASSERT_EQUAL_128(0, 0x1e1a16120e0a0602, q7);
ASSERT_EQUAL_128(0, 0x1f1b17130f0b0703, q8);
ASSERT_EQUAL_128(0, 0x201c1814100c0804, q9);
ASSERT_EQUAL_128(0, 0x1b1a13120b0a0302, q10);
ASSERT_EQUAL_128(0, 0x1d1c15140d0c0504, q11);
ASSERT_EQUAL_128(0, 0x1f1e17160f0e0706, q12);
ASSERT_EQUAL_128(0, 0x2120191811100908, q13);
ASSERT_EQUAL_128(0, 0x1615141306050403, q30);
ASSERT_EQUAL_128(0, 0x1a1918170a090807, q31);
ASSERT_EQUAL_128(0, 0x1e1d1c1b0e0d0c0b, q0);
ASSERT_EQUAL_128(0, 0x2221201f1211100f, q1);
TEARDOWN();
}
TEST(neon_ld4_d_postindex) {
SETUP();
uint8_t src[32 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld4(v2.V8B(), v3.V8B(), v4.V8B(), v5.V8B(),
MemOperand(x17, x22, PostIndex));
__ Ld4(v6.V8B(), v7.V8B(), v8.V8B(), v9.V8B(),
MemOperand(x18, 32, PostIndex));
__ Ld4(v10.V4H(), v11.V4H(), v12.V4H(), v13.V4H(),
MemOperand(x19, 32, PostIndex));
__ Ld4(v14.V2S(), v15.V2S(), v16.V2S(), v17.V2S(),
MemOperand(x20, 32, PostIndex));
__ Ld4(v30.V2S(), v31.V2S(), v0.V2S(), v1.V2S(),
MemOperand(x21, 32, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0, 0x1c1814100c080400, q2);
ASSERT_EQUAL_128(0, 0x1d1915110d090501, q3);
ASSERT_EQUAL_128(0, 0x1e1a16120e0a0602, q4);
ASSERT_EQUAL_128(0, 0x1f1b17130f0b0703, q5);
ASSERT_EQUAL_128(0, 0x1d1915110d090501, q6);
ASSERT_EQUAL_128(0, 0x1e1a16120e0a0602, q7);
ASSERT_EQUAL_128(0, 0x1f1b17130f0b0703, q8);
ASSERT_EQUAL_128(0, 0x201c1814100c0804, q9);
ASSERT_EQUAL_128(0, 0x1b1a13120b0a0302, q10);
ASSERT_EQUAL_128(0, 0x1d1c15140d0c0504, q11);
ASSERT_EQUAL_128(0, 0x1f1e17160f0e0706, q12);
ASSERT_EQUAL_128(0, 0x2120191811100908, q13);
ASSERT_EQUAL_128(0, 0x1615141306050403, q14);
ASSERT_EQUAL_128(0, 0x1a1918170a090807, q15);
ASSERT_EQUAL_128(0, 0x1e1d1c1b0e0d0c0b, q16);
ASSERT_EQUAL_128(0, 0x2221201f1211100f, q17);
ASSERT_EQUAL_128(0, 0x1716151407060504, q30);
ASSERT_EQUAL_128(0, 0x1b1a19180b0a0908, q31);
ASSERT_EQUAL_128(0, 0x1f1e1d1c0f0e0d0c, q0);
ASSERT_EQUAL_128(0, 0x2322212013121110, q1);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 32, x18);
ASSERT_EQUAL_64(src_base + 2 + 32, x19);
ASSERT_EQUAL_64(src_base + 3 + 32, x20);
ASSERT_EQUAL_64(src_base + 4 + 32, x21);
TEARDOWN();
}
TEST(neon_ld4_q) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ld4(v2.V16B(), v3.V16B(), v4.V16B(), v5.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v6.V16B(), v7.V16B(), v8.V16B(), v9.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v10.V8H(), v11.V8H(), v12.V8H(), v13.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v14.V4S(), v15.V4S(), v16.V4S(), v17.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4(v18.V2D(), v19.V2D(), v20.V2D(), v21.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x3c3834302c282420, 0x1c1814100c080400, q2);
ASSERT_EQUAL_128(0x3d3935312d292521, 0x1d1915110d090501, q3);
ASSERT_EQUAL_128(0x3e3a36322e2a2622, 0x1e1a16120e0a0602, q4);
ASSERT_EQUAL_128(0x3f3b37332f2b2723, 0x1f1b17130f0b0703, q5);
ASSERT_EQUAL_128(0x3d3935312d292521, 0x1d1915110d090501, q6);
ASSERT_EQUAL_128(0x3e3a36322e2a2622, 0x1e1a16120e0a0602, q7);
ASSERT_EQUAL_128(0x3f3b37332f2b2723, 0x1f1b17130f0b0703, q8);
ASSERT_EQUAL_128(0x403c3834302c2824, 0x201c1814100c0804, q9);
ASSERT_EQUAL_128(0x3b3a33322b2a2322, 0x1b1a13120b0a0302, q10);
ASSERT_EQUAL_128(0x3d3c35342d2c2524, 0x1d1c15140d0c0504, q11);
ASSERT_EQUAL_128(0x3f3e37362f2e2726, 0x1f1e17160f0e0706, q12);
ASSERT_EQUAL_128(0x4140393831302928, 0x2120191811100908, q13);
ASSERT_EQUAL_128(0x3635343326252423, 0x1615141306050403, q14);
ASSERT_EQUAL_128(0x3a3938372a292827, 0x1a1918170a090807, q15);
ASSERT_EQUAL_128(0x3e3d3c3b2e2d2c2b, 0x1e1d1c1b0e0d0c0b, q16);
ASSERT_EQUAL_128(0x4241403f3231302f, 0x2221201f1211100f, q17);
ASSERT_EQUAL_128(0x2b2a292827262524, 0x0b0a090807060504, q18);
ASSERT_EQUAL_128(0x333231302f2e2d2c, 0x131211100f0e0d0c, q19);
ASSERT_EQUAL_128(0x3b3a393837363534, 0x1b1a191817161514, q20);
ASSERT_EQUAL_128(0x434241403f3e3d3c, 0x232221201f1e1d1c, q21);
TEARDOWN();
}
TEST(neon_ld4_q_postindex) {
SETUP();
uint8_t src[64 + 4];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base + 1);
__ Mov(x19, src_base + 2);
__ Mov(x20, src_base + 3);
__ Mov(x21, src_base + 4);
__ Mov(x22, 1);
__ Ld4(v2.V16B(), v3.V16B(), v4.V16B(), v5.V16B(),
MemOperand(x17, x22, PostIndex));
__ Ld4(v6.V16B(), v7.V16B(), v8.V16B(), v9.V16B(),
MemOperand(x18, 64, PostIndex));
__ Ld4(v10.V8H(), v11.V8H(), v12.V8H(), v13.V8H(),
MemOperand(x19, 64, PostIndex));
__ Ld4(v14.V4S(), v15.V4S(), v16.V4S(), v17.V4S(),
MemOperand(x20, 64, PostIndex));
__ Ld4(v30.V2D(), v31.V2D(), v0.V2D(), v1.V2D(),
MemOperand(x21, 64, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x3c3834302c282420, 0x1c1814100c080400, q2);
ASSERT_EQUAL_128(0x3d3935312d292521, 0x1d1915110d090501, q3);
ASSERT_EQUAL_128(0x3e3a36322e2a2622, 0x1e1a16120e0a0602, q4);
ASSERT_EQUAL_128(0x3f3b37332f2b2723, 0x1f1b17130f0b0703, q5);
ASSERT_EQUAL_128(0x3d3935312d292521, 0x1d1915110d090501, q6);
ASSERT_EQUAL_128(0x3e3a36322e2a2622, 0x1e1a16120e0a0602, q7);
ASSERT_EQUAL_128(0x3f3b37332f2b2723, 0x1f1b17130f0b0703, q8);
ASSERT_EQUAL_128(0x403c3834302c2824, 0x201c1814100c0804, q9);
ASSERT_EQUAL_128(0x3b3a33322b2a2322, 0x1b1a13120b0a0302, q10);
ASSERT_EQUAL_128(0x3d3c35342d2c2524, 0x1d1c15140d0c0504, q11);
ASSERT_EQUAL_128(0x3f3e37362f2e2726, 0x1f1e17160f0e0706, q12);
ASSERT_EQUAL_128(0x4140393831302928, 0x2120191811100908, q13);
ASSERT_EQUAL_128(0x3635343326252423, 0x1615141306050403, q14);
ASSERT_EQUAL_128(0x3a3938372a292827, 0x1a1918170a090807, q15);
ASSERT_EQUAL_128(0x3e3d3c3b2e2d2c2b, 0x1e1d1c1b0e0d0c0b, q16);
ASSERT_EQUAL_128(0x4241403f3231302f, 0x2221201f1211100f, q17);
ASSERT_EQUAL_128(0x2b2a292827262524, 0x0b0a090807060504, q30);
ASSERT_EQUAL_128(0x333231302f2e2d2c, 0x131211100f0e0d0c, q31);
ASSERT_EQUAL_128(0x3b3a393837363534, 0x1b1a191817161514, q0);
ASSERT_EQUAL_128(0x434241403f3e3d3c, 0x232221201f1e1d1c, q1);
ASSERT_EQUAL_64(src_base + 1, x17);
ASSERT_EQUAL_64(src_base + 1 + 64, x18);
ASSERT_EQUAL_64(src_base + 2 + 64, x19);
ASSERT_EQUAL_64(src_base + 3 + 64, x20);
ASSERT_EQUAL_64(src_base + 4 + 64, x21);
TEARDOWN();
}
TEST(neon_ld4_lane) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld4(v4.H(), v5.H(), v6.H(), v7.H(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld4(v8.S(), v9.S(), v10.S(), v11.S(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Mov(x17, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld4(v12.D(), v13.D(), v14.D(), v15.D(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
// Test loading a single element into an initialised register.
__ Mov(x17, src_base);
__ Mov(x4, x17);
__ Ldr(q16, MemOperand(x4, 16, PostIndex));
__ Ldr(q17, MemOperand(x4, 16, PostIndex));
__ Ldr(q18, MemOperand(x4, 16, PostIndex));
__ Ldr(q19, MemOperand(x4));
__ Ld4(v16.B(), v17.B(), v18.B(), v19.B(), 4, MemOperand(x17));
__ Mov(x5, x17);
__ Ldr(q20, MemOperand(x5, 16, PostIndex));
__ Ldr(q21, MemOperand(x5, 16, PostIndex));
__ Ldr(q22, MemOperand(x5, 16, PostIndex));
__ Ldr(q23, MemOperand(x5));
__ Ld4(v20.H(), v21.H(), v22.H(), v23.H(), 3, MemOperand(x17));
__ Mov(x6, x17);
__ Ldr(q24, MemOperand(x6, 16, PostIndex));
__ Ldr(q25, MemOperand(x6, 16, PostIndex));
__ Ldr(q26, MemOperand(x6, 16, PostIndex));
__ Ldr(q27, MemOperand(x6));
__ Ld4(v24.S(), v25.S(), v26.S(), v27.S(), 2, MemOperand(x17));
__ Mov(x7, x17);
__ Ldr(q28, MemOperand(x7, 16, PostIndex));
__ Ldr(q29, MemOperand(x7, 16, PostIndex));
__ Ldr(q30, MemOperand(x7, 16, PostIndex));
__ Ldr(q31, MemOperand(x7));
__ Ld4(v28.D(), v29.D(), v30.D(), v31.D(), 1, MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q0);
ASSERT_EQUAL_128(0x0102030405060708, 0x090a0b0c0d0e0f10, q1);
ASSERT_EQUAL_128(0x0203040506070809, 0x0a0b0c0d0e0f1011, q2);
ASSERT_EQUAL_128(0x030405060708090a, 0x0b0c0d0e0f101112, q3);
ASSERT_EQUAL_128(0x0100020103020403, 0x0504060507060807, q4);
ASSERT_EQUAL_128(0x0302040305040605, 0x0706080709080a09, q5);
ASSERT_EQUAL_128(0x0504060507060807, 0x09080a090b0a0c0b, q6);
ASSERT_EQUAL_128(0x0706080709080a09, 0x0b0a0c0b0d0c0e0d, q7);
ASSERT_EQUAL_128(0x0302010004030201, 0x0504030206050403, q8);
ASSERT_EQUAL_128(0x0706050408070605, 0x090807060a090807, q9);
ASSERT_EQUAL_128(0x0b0a09080c0b0a09, 0x0d0c0b0a0e0d0c0b, q10);
ASSERT_EQUAL_128(0x0f0e0d0c100f0e0d, 0x11100f0e1211100f, q11);
ASSERT_EQUAL_128(0x0706050403020100, 0x0807060504030201, q12);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x100f0e0d0c0b0a09, q13);
ASSERT_EQUAL_128(0x1716151413121110, 0x1817161514131211, q14);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x201f1e1d1c1b1a19, q15);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q16);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716150113121110, q17);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726250223222120, q18);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736350333323130, q19);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q20);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0302151413121110, q21);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x0504252423222120, q22);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x0706353433323130, q23);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q24);
ASSERT_EQUAL_128(0x1f1e1d1c07060504, 0x1716151413121110, q25);
ASSERT_EQUAL_128(0x2f2e2d2c0b0a0908, 0x2726252423222120, q26);
ASSERT_EQUAL_128(0x3f3e3d3c0f0e0d0c, 0x3736353433323130, q27);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q28);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x1716151413121110, q29);
ASSERT_EQUAL_128(0x1716151413121110, 0x2726252423222120, q30);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x3736353433323130, q31);
TEARDOWN();
}
TEST(neon_ld4_lane_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
// Test loading whole register by element.
__ Mov(x17, src_base);
for (int i = 15; i >= 0; i--) {
__ Ld4(v0.B(), v1.B(), v2.B(), v3.B(), i,
MemOperand(x17, 4, PostIndex));
}
__ Mov(x18, src_base);
for (int i = 7; i >= 0; i--) {
__ Ld4(v4.H(), v5.H(), v6.H(), v7.H(), i,
MemOperand(x18, 8, PostIndex));
}
__ Mov(x19, src_base);
for (int i = 3; i >= 0; i--) {
__ Ld4(v8.S(), v9.S(), v10.S(), v11.S(), i,
MemOperand(x19, 16, PostIndex));
}
__ Mov(x20, src_base);
for (int i = 1; i >= 0; i--) {
__ Ld4(v12.D(), v13.D(), v14.D(), v15.D(), i,
MemOperand(x20, 32, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
__ Mov(x4, x21);
__ Ldr(q16, MemOperand(x4, 16, PostIndex));
__ Ldr(q17, MemOperand(x4, 16, PostIndex));
__ Ldr(q18, MemOperand(x4, 16, PostIndex));
__ Ldr(q19, MemOperand(x4));
__ Ld4(v16.B(), v17.B(), v18.B(), v19.B(), 4,
MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x5, x22);
__ Ldr(q20, MemOperand(x5, 16, PostIndex));
__ Ldr(q21, MemOperand(x5, 16, PostIndex));
__ Ldr(q22, MemOperand(x5, 16, PostIndex));
__ Ldr(q23, MemOperand(x5));
__ Ld4(v20.H(), v21.H(), v22.H(), v23.H(), 3,
MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x6, x23);
__ Ldr(q24, MemOperand(x6, 16, PostIndex));
__ Ldr(q25, MemOperand(x6, 16, PostIndex));
__ Ldr(q26, MemOperand(x6, 16, PostIndex));
__ Ldr(q27, MemOperand(x6));
__ Ld4(v24.S(), v25.S(), v26.S(), v27.S(), 2,
MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Mov(x7, x24);
__ Ldr(q28, MemOperand(x7, 16, PostIndex));
__ Ldr(q29, MemOperand(x7, 16, PostIndex));
__ Ldr(q30, MemOperand(x7, 16, PostIndex));
__ Ldr(q31, MemOperand(x7));
__ Ld4(v28.D(), v29.D(), v30.D(), v31.D(), 1,
MemOperand(x24, x25, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x0004080c1014181c, 0x2024282c3034383c, q0);
ASSERT_EQUAL_128(0x0105090d1115191d, 0x2125292d3135393d, q1);
ASSERT_EQUAL_128(0x02060a0e12161a1e, 0x22262a2e32363a3e, q2);
ASSERT_EQUAL_128(0x03070b0f13171b1f, 0x23272b2f33373b3f, q3);
ASSERT_EQUAL_128(0x0100090811101918, 0x2120292831303938, q4);
ASSERT_EQUAL_128(0x03020b0a13121b1a, 0x23222b2a33323b3a, q5);
ASSERT_EQUAL_128(0x05040d0c15141d1c, 0x25242d2c35343d3c, q6);
ASSERT_EQUAL_128(0x07060f0e17161f1e, 0x27262f2e37363f3e, q7);
ASSERT_EQUAL_128(0x0302010013121110, 0x2322212033323130, q8);
ASSERT_EQUAL_128(0x0706050417161514, 0x2726252437363534, q9);
ASSERT_EQUAL_128(0x0b0a09081b1a1918, 0x2b2a29283b3a3938, q10);
ASSERT_EQUAL_128(0x0f0e0d0c1f1e1d1c, 0x2f2e2d2c3f3e3d3c, q11);
ASSERT_EQUAL_128(0x0706050403020100, 0x2726252423222120, q12);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x2f2e2d2c2b2a2928, q13);
ASSERT_EQUAL_128(0x1716151413121110, 0x3736353433323130, q14);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x3f3e3d3c3b3a3938, q15);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q16);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716150113121110, q17);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726250223222120, q18);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736350333323130, q19);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q20);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0302151413121110, q21);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x0504252423222120, q22);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x0706353433323130, q23);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q24);
ASSERT_EQUAL_128(0x1f1e1d1c07060504, 0x1716151413121110, q25);
ASSERT_EQUAL_128(0x2f2e2d2c0b0a0908, 0x2726252423222120, q26);
ASSERT_EQUAL_128(0x3f3e3d3c0f0e0d0c, 0x3736353433323130, q27);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q28);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x1716151413121110, q29);
ASSERT_EQUAL_128(0x1716151413121110, 0x2726252423222120, q30);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x3736353433323130, q31);
ASSERT_EQUAL_64(src_base + 64, x17);
ASSERT_EQUAL_64(src_base + 64, x18);
ASSERT_EQUAL_64(src_base + 64, x19);
ASSERT_EQUAL_64(src_base + 64, x20);
ASSERT_EQUAL_64(src_base + 1, x21);
ASSERT_EQUAL_64(src_base + 2, x22);
ASSERT_EQUAL_64(src_base + 3, x23);
ASSERT_EQUAL_64(src_base + 4, x24);
TEARDOWN();
}
TEST(neon_ld4_alllanes) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld4r(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x17));
__ Add(x17, x17, 4);
__ Ld4r(v4.V16B(), v5.V16B(), v6.V16B(), v7.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4r(v8.V4H(), v9.V4H(), v10.V4H(), v11.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4r(v12.V8H(), v13.V8H(), v14.V8H(), v15.V8H(), MemOperand(x17));
__ Add(x17, x17, 8);
__ Ld4r(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld4r(v20.V4S(), v21.V4S(), v22.V4S(), v23.V4S(), MemOperand(x17));
__ Add(x17, x17, 16);
__ Ld4r(v24.V2D(), v25.V2D(), v26.V2D(), v27.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
ASSERT_EQUAL_128(0x0000000000000000, 0x0404040404040404, q3);
ASSERT_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
ASSERT_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
ASSERT_EQUAL_128(0x0707070707070707, 0x0707070707070707, q6);
ASSERT_EQUAL_128(0x0808080808080808, 0x0808080808080808, q7);
ASSERT_EQUAL_128(0x0000000000000000, 0x0706070607060706, q8);
ASSERT_EQUAL_128(0x0000000000000000, 0x0908090809080908, q9);
ASSERT_EQUAL_128(0x0000000000000000, 0x0b0a0b0a0b0a0b0a, q10);
ASSERT_EQUAL_128(0x0000000000000000, 0x0d0c0d0c0d0c0d0c, q11);
ASSERT_EQUAL_128(0x0807080708070807, 0x0807080708070807, q12);
ASSERT_EQUAL_128(0x0a090a090a090a09, 0x0a090a090a090a09, q13);
ASSERT_EQUAL_128(0x0c0b0c0b0c0b0c0b, 0x0c0b0c0b0c0b0c0b, q14);
ASSERT_EQUAL_128(0x0e0d0e0d0e0d0e0d, 0x0e0d0e0d0e0d0e0d, q15);
ASSERT_EQUAL_128(0x0000000000000000, 0x1211100f1211100f, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0x1615141316151413, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x1a1918171a191817, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x1e1d1c1b1e1d1c1b, q19);
ASSERT_EQUAL_128(0x1312111013121110, 0x1312111013121110, q20);
ASSERT_EQUAL_128(0x1716151417161514, 0x1716151417161514, q21);
ASSERT_EQUAL_128(0x1b1a19181b1a1918, 0x1b1a19181b1a1918, q22);
ASSERT_EQUAL_128(0x1f1e1d1c1f1e1d1c, 0x1f1e1d1c1f1e1d1c, q23);
ASSERT_EQUAL_128(0x2726252423222120, 0x2726252423222120, q24);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2f2e2d2c2b2a2928, q25);
ASSERT_EQUAL_128(0x3736353433323130, 0x3736353433323130, q26);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3f3e3d3c3b3a3938, q27);
TEARDOWN();
}
TEST(neon_ld4_alllanes_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld4r(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(),
MemOperand(x17, 4, PostIndex));
__ Ld4r(v4.V16B(), v5.V16B(), v6.V16B(), v7.V16B(),
MemOperand(x17, x18, PostIndex));
__ Ld4r(v8.V4H(), v9.V4H(), v10.V4H(), v11.V4H(),
MemOperand(x17, x18, PostIndex));
__ Ld4r(v12.V8H(), v13.V8H(), v14.V8H(), v15.V8H(),
MemOperand(x17, 8, PostIndex));
__ Ld4r(v16.V2S(), v17.V2S(), v18.V2S(), v19.V2S(),
MemOperand(x17, x18, PostIndex));
__ Ld4r(v20.V4S(), v21.V4S(), v22.V4S(), v23.V4S(),
MemOperand(x17, 16, PostIndex));
__ Ld4r(v24.V2D(), v25.V2D(), v26.V2D(), v27.V2D(),
MemOperand(x17, 32, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0000000000000000, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0x0000000000000000, 0x0303030303030303, q2);
ASSERT_EQUAL_128(0x0000000000000000, 0x0404040404040404, q3);
ASSERT_EQUAL_128(0x0505050505050505, 0x0505050505050505, q4);
ASSERT_EQUAL_128(0x0606060606060606, 0x0606060606060606, q5);
ASSERT_EQUAL_128(0x0707070707070707, 0x0707070707070707, q6);
ASSERT_EQUAL_128(0x0808080808080808, 0x0808080808080808, q7);
ASSERT_EQUAL_128(0x0000000000000000, 0x0706070607060706, q8);
ASSERT_EQUAL_128(0x0000000000000000, 0x0908090809080908, q9);
ASSERT_EQUAL_128(0x0000000000000000, 0x0b0a0b0a0b0a0b0a, q10);
ASSERT_EQUAL_128(0x0000000000000000, 0x0d0c0d0c0d0c0d0c, q11);
ASSERT_EQUAL_128(0x0807080708070807, 0x0807080708070807, q12);
ASSERT_EQUAL_128(0x0a090a090a090a09, 0x0a090a090a090a09, q13);
ASSERT_EQUAL_128(0x0c0b0c0b0c0b0c0b, 0x0c0b0c0b0c0b0c0b, q14);
ASSERT_EQUAL_128(0x0e0d0e0d0e0d0e0d, 0x0e0d0e0d0e0d0e0d, q15);
ASSERT_EQUAL_128(0x0000000000000000, 0x1211100f1211100f, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0x1615141316151413, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x1a1918171a191817, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x1e1d1c1b1e1d1c1b, q19);
ASSERT_EQUAL_128(0x1312111013121110, 0x1312111013121110, q20);
ASSERT_EQUAL_128(0x1716151417161514, 0x1716151417161514, q21);
ASSERT_EQUAL_128(0x1b1a19181b1a1918, 0x1b1a19181b1a1918, q22);
ASSERT_EQUAL_128(0x1f1e1d1c1f1e1d1c, 0x1f1e1d1c1f1e1d1c, q23);
ASSERT_EQUAL_128(0x2726252423222120, 0x2726252423222120, q24);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2f2e2d2c2b2a2928, q25);
ASSERT_EQUAL_128(0x3736353433323130, 0x3736353433323130, q26);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3f3e3d3c3b3a3938, q27);
ASSERT_EQUAL_64(src_base + 64, x17);
TEARDOWN();
}
TEST(neon_st1_lane) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, -16);
__ Ldr(q0, MemOperand(x17));
for (int i = 15; i >= 0; i--) {
__ St1(v0.B(), i, MemOperand(x17));
__ Add(x17, x17, 1);
}
__ Ldr(q1, MemOperand(x17, x18));
for (int i = 7; i >= 0; i--) {
__ St1(v0.H(), i, MemOperand(x17));
__ Add(x17, x17, 2);
}
__ Ldr(q2, MemOperand(x17, x18));
for (int i = 3; i >= 0; i--) {
__ St1(v0.S(), i, MemOperand(x17));
__ Add(x17, x17, 4);
}
__ Ldr(q3, MemOperand(x17, x18));
for (int i = 1; i >= 0; i--) {
__ St1(v0.D(), i, MemOperand(x17));
__ Add(x17, x17, 8);
}
__ Ldr(q4, MemOperand(x17, x18));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q1);
ASSERT_EQUAL_128(0x0100030205040706, 0x09080b0a0d0c0f0e, q2);
ASSERT_EQUAL_128(0x0302010007060504, 0x0b0a09080f0e0d0c, q3);
ASSERT_EQUAL_128(0x0706050403020100, 0x0f0e0d0c0b0a0908, q4);
TEARDOWN();
}
TEST(neon_st2_lane) {
SETUP();
// Struct size * addressing modes * element sizes * vector size.
uint8_t dst[2 * 2 * 4 * 16];
memset(dst, 0, sizeof(dst));
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, dst_base);
__ Mov(x18, dst_base);
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191a1b1c1d1e1f);
// Test B stores with and without post index.
for (int i = 15; i >= 0; i--) {
__ St2(v0.B(), v1.B(), i, MemOperand(x18));
__ Add(x18, x18, 2);
}
for (int i = 15; i >= 0; i--) {
__ St2(v0.B(), v1.B(), i, MemOperand(x18, 2, PostIndex));
}
__ Ldr(q2, MemOperand(x17, 0 * 16));
__ Ldr(q3, MemOperand(x17, 1 * 16));
__ Ldr(q4, MemOperand(x17, 2 * 16));
__ Ldr(q5, MemOperand(x17, 3 * 16));
// Test H stores with and without post index.
__ Mov(x0, 4);
for (int i = 7; i >= 0; i--) {
__ St2(v0.H(), v1.H(), i, MemOperand(x18));
__ Add(x18, x18, 4);
}
for (int i = 7; i >= 0; i--) {
__ St2(v0.H(), v1.H(), i, MemOperand(x18, x0, PostIndex));
}
__ Ldr(q6, MemOperand(x17, 4 * 16));
__ Ldr(q7, MemOperand(x17, 5 * 16));
__ Ldr(q16, MemOperand(x17, 6 * 16));
__ Ldr(q17, MemOperand(x17, 7 * 16));
// Test S stores with and without post index.
for (int i = 3; i >= 0; i--) {
__ St2(v0.S(), v1.S(), i, MemOperand(x18));
__ Add(x18, x18, 8);
}
for (int i = 3; i >= 0; i--) {
__ St2(v0.S(), v1.S(), i, MemOperand(x18, 8, PostIndex));
}
__ Ldr(q18, MemOperand(x17, 8 * 16));
__ Ldr(q19, MemOperand(x17, 9 * 16));
__ Ldr(q20, MemOperand(x17, 10 * 16));
__ Ldr(q21, MemOperand(x17, 11 * 16));
// Test D stores with and without post index.
__ Mov(x0, 16);
__ St2(v0.D(), v1.D(), 1, MemOperand(x18));
__ Add(x18, x18, 16);
__ St2(v0.D(), v1.D(), 0, MemOperand(x18, 16, PostIndex));
__ St2(v0.D(), v1.D(), 1, MemOperand(x18, x0, PostIndex));
__ St2(v0.D(), v1.D(), 0, MemOperand(x18, x0, PostIndex));
__ Ldr(q22, MemOperand(x17, 12 * 16));
__ Ldr(q23, MemOperand(x17, 13 * 16));
__ Ldr(q24, MemOperand(x17, 14 * 16));
__ Ldr(q25, MemOperand(x17, 15 * 16));
END();
RUN();
ASSERT_EQUAL_128(0x1707160615051404, 0x1303120211011000, q2);
ASSERT_EQUAL_128(0x1f0f1e0e1d0d1c0c, 0x1b0b1a0a19091808, q3);
ASSERT_EQUAL_128(0x1707160615051404, 0x1303120211011000, q4);
ASSERT_EQUAL_128(0x1f0f1e0e1d0d1c0c, 0x1b0b1a0a19091808, q5);
ASSERT_EQUAL_128(0x1617060714150405, 0x1213020310110001, q6);
ASSERT_EQUAL_128(0x1e1f0e0f1c1d0c0d, 0x1a1b0a0b18190809, q7);
ASSERT_EQUAL_128(0x1617060714150405, 0x1213020310110001, q16);
ASSERT_EQUAL_128(0x1e1f0e0f1c1d0c0d, 0x1a1b0a0b18190809, q17);
ASSERT_EQUAL_128(0x1415161704050607, 0x1011121300010203, q18);
ASSERT_EQUAL_128(0x1c1d1e1f0c0d0e0f, 0x18191a1b08090a0b, q19);
ASSERT_EQUAL_128(0x1415161704050607, 0x1011121300010203, q20);
ASSERT_EQUAL_128(0x1c1d1e1f0c0d0e0f, 0x18191a1b08090a0b, q21);
ASSERT_EQUAL_128(0x1011121314151617, 0x0001020304050607, q22);
ASSERT_EQUAL_128(0x18191a1b1c1d1e1f, 0x08090a0b0c0d0e0f, q23);
ASSERT_EQUAL_128(0x1011121314151617, 0x0001020304050607, q22);
ASSERT_EQUAL_128(0x18191a1b1c1d1e1f, 0x08090a0b0c0d0e0f, q23);
TEARDOWN();
}
TEST(neon_st3_lane) {
SETUP();
// Struct size * addressing modes * element sizes * vector size.
uint8_t dst[3 * 2 * 4 * 16];
memset(dst, 0, sizeof(dst));
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, dst_base);
__ Mov(x18, dst_base);
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191a1b1c1d1e1f);
__ Movi(v2.V2D(), 0x2021222324252627, 0x28292a2b2c2d2e2f);
// Test B stores with and without post index.
for (int i = 15; i >= 0; i--) {
__ St3(v0.B(), v1.B(), v2.B(), i, MemOperand(x18));
__ Add(x18, x18, 3);
}
for (int i = 15; i >= 0; i--) {
__ St3(v0.B(), v1.B(), v2.B(), i, MemOperand(x18, 3, PostIndex));
}
__ Ldr(q3, MemOperand(x17, 0 * 16));
__ Ldr(q4, MemOperand(x17, 1 * 16));
__ Ldr(q5, MemOperand(x17, 2 * 16));
__ Ldr(q6, MemOperand(x17, 3 * 16));
__ Ldr(q7, MemOperand(x17, 4 * 16));
__ Ldr(q16, MemOperand(x17, 5 * 16));
// Test H stores with and without post index.
__ Mov(x0, 6);
for (int i = 7; i >= 0; i--) {
__ St3(v0.H(), v1.H(), v2.H(), i, MemOperand(x18));
__ Add(x18, x18, 6);
}
for (int i = 7; i >= 0; i--) {
__ St3(v0.H(), v1.H(), v2.H(), i, MemOperand(x18, x0, PostIndex));
}
__ Ldr(q17, MemOperand(x17, 6 * 16));
__ Ldr(q18, MemOperand(x17, 7 * 16));
__ Ldr(q19, MemOperand(x17, 8 * 16));
__ Ldr(q20, MemOperand(x17, 9 * 16));
__ Ldr(q21, MemOperand(x17, 10 * 16));
__ Ldr(q22, MemOperand(x17, 11 * 16));
// Test S stores with and without post index.
for (int i = 3; i >= 0; i--) {
__ St3(v0.S(), v1.S(), v2.S(), i, MemOperand(x18));
__ Add(x18, x18, 12);
}
for (int i = 3; i >= 0; i--) {
__ St3(v0.S(), v1.S(), v2.S(), i, MemOperand(x18, 12, PostIndex));
}
__ Ldr(q23, MemOperand(x17, 12 * 16));
__ Ldr(q24, MemOperand(x17, 13 * 16));
__ Ldr(q25, MemOperand(x17, 14 * 16));
__ Ldr(q26, MemOperand(x17, 15 * 16));
__ Ldr(q27, MemOperand(x17, 16 * 16));
__ Ldr(q28, MemOperand(x17, 17 * 16));
// Test D stores with and without post index.
__ Mov(x0, 24);
__ St3(v0.D(), v1.D(), v2.D(), 1, MemOperand(x18));
__ Add(x18, x18, 24);
__ St3(v0.D(), v1.D(), v2.D(), 0, MemOperand(x18, 24, PostIndex));
__ St3(v0.D(), v1.D(), v2.D(), 1, MemOperand(x18, x0, PostIndex));
__ Ldr(q29, MemOperand(x17, 18 * 16));
__ Ldr(q30, MemOperand(x17, 19 * 16));
__ Ldr(q31, MemOperand(x17, 20 * 16));
END();
RUN();
ASSERT_EQUAL_128(0x0524140423130322, 0x1202211101201000, q3);
ASSERT_EQUAL_128(0x1a0a291909281808, 0x2717072616062515, q4);
ASSERT_EQUAL_128(0x2f1f0f2e1e0e2d1d, 0x0d2c1c0c2b1b0b2a, q5);
ASSERT_EQUAL_128(0x0524140423130322, 0x1202211101201000, q6);
ASSERT_EQUAL_128(0x1a0a291909281808, 0x2717072616062515, q7);
ASSERT_EQUAL_128(0x2f1f0f2e1e0e2d1d, 0x0d2c1c0c2b1b0b2a, q16);
ASSERT_EQUAL_128(0x1415040522231213, 0x0203202110110001, q17);
ASSERT_EQUAL_128(0x0a0b282918190809, 0x2627161706072425, q18);
ASSERT_EQUAL_128(0x2e2f1e1f0e0f2c2d, 0x1c1d0c0d2a2b1a1b, q19);
ASSERT_EQUAL_128(0x1415040522231213, 0x0203202110110001, q20);
ASSERT_EQUAL_128(0x0a0b282918190809, 0x2627161706072425, q21);
ASSERT_EQUAL_128(0x2e2f1e1f0e0f2c2d, 0x1c1d0c0d2a2b1a1b, q22);
ASSERT_EQUAL_128(0x0405060720212223, 0x1011121300010203, q23);
ASSERT_EQUAL_128(0x18191a1b08090a0b, 0x2425262714151617, q24);
ASSERT_EQUAL_128(0x2c2d2e2f1c1d1e1f, 0x0c0d0e0f28292a2b, q25);
ASSERT_EQUAL_128(0x0405060720212223, 0x1011121300010203, q26);
ASSERT_EQUAL_128(0x18191a1b08090a0b, 0x2425262714151617, q27);
ASSERT_EQUAL_128(0x2c2d2e2f1c1d1e1f, 0x0c0d0e0f28292a2b, q28);
TEARDOWN();
}
TEST(neon_st4_lane) {
SETUP();
// Struct size * element sizes * vector size.
uint8_t dst[4 * 4 * 16];
memset(dst, 0, sizeof(dst));
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, dst_base);
__ Mov(x18, dst_base);
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191a1b1c1d1e1f);
__ Movi(v2.V2D(), 0x2021222324252627, 0x28292a2b2c2d2e2f);
__ Movi(v3.V2D(), 0x2021222324252627, 0x28292a2b2c2d2e2f);
// Test B stores without post index.
for (int i = 15; i >= 0; i--) {
__ St4(v0.B(), v1.B(), v2.B(), v3.B(), i, MemOperand(x18));
__ Add(x18, x18, 4);
}
__ Ldr(q4, MemOperand(x17, 0 * 16));
__ Ldr(q5, MemOperand(x17, 1 * 16));
__ Ldr(q6, MemOperand(x17, 2 * 16));
__ Ldr(q7, MemOperand(x17, 3 * 16));
// Test H stores with post index.
__ Mov(x0, 8);
for (int i = 7; i >= 0; i--) {
__ St4(v0.H(), v1.H(), v2.H(), v3.H(), i, MemOperand(x18, x0, PostIndex));
}
__ Ldr(q16, MemOperand(x17, 4 * 16));
__ Ldr(q17, MemOperand(x17, 5 * 16));
__ Ldr(q18, MemOperand(x17, 6 * 16));
__ Ldr(q19, MemOperand(x17, 7 * 16));
// Test S stores without post index.
for (int i = 3; i >= 0; i--) {
__ St4(v0.S(), v1.S(), v2.S(), v3.S(), i, MemOperand(x18));
__ Add(x18, x18, 16);
}
__ Ldr(q20, MemOperand(x17, 8 * 16));
__ Ldr(q21, MemOperand(x17, 9 * 16));
__ Ldr(q22, MemOperand(x17, 10 * 16));
__ Ldr(q23, MemOperand(x17, 11 * 16));
// Test D stores with post index.
__ Mov(x0, 32);
__ St4(v0.D(), v1.D(), v2.D(), v3.D(), 0, MemOperand(x18, 32, PostIndex));
__ St4(v0.D(), v1.D(), v2.D(), v3.D(), 1, MemOperand(x18, x0, PostIndex));
__ Ldr(q24, MemOperand(x17, 12 * 16));
__ Ldr(q25, MemOperand(x17, 13 * 16));
__ Ldr(q26, MemOperand(x17, 14 * 16));
__ Ldr(q27, MemOperand(x17, 15 * 16));
END();
RUN();
ASSERT_EQUAL_128(0x2323130322221202, 0x2121110120201000, q4);
ASSERT_EQUAL_128(0x2727170726261606, 0x2525150524241404, q5);
ASSERT_EQUAL_128(0x2b2b1b0b2a2a1a0a, 0x2929190928281808, q6);
ASSERT_EQUAL_128(0x2f2f1f0f2e2e1e0e, 0x2d2d1d0d2c2c1c0c, q7);
ASSERT_EQUAL_128(0x2223222312130203, 0x2021202110110001, q16);
ASSERT_EQUAL_128(0x2627262716170607, 0x2425242514150405, q17);
ASSERT_EQUAL_128(0x2a2b2a2b1a1b0a0b, 0x2829282918190809, q18);
ASSERT_EQUAL_128(0x2e2f2e2f1e1f0e0f, 0x2c2d2c2d1c1d0c0d, q19);
ASSERT_EQUAL_128(0x2021222320212223, 0x1011121300010203, q20);
ASSERT_EQUAL_128(0x2425262724252627, 0x1415161704050607, q21);
ASSERT_EQUAL_128(0x28292a2b28292a2b, 0x18191a1b08090a0b, q22);
ASSERT_EQUAL_128(0x2c2d2e2f2c2d2e2f, 0x1c1d1e1f0c0d0e0f, q23);
ASSERT_EQUAL_128(0x18191a1b1c1d1e1f, 0x08090a0b0c0d0e0f, q24);
ASSERT_EQUAL_128(0x28292a2b2c2d2e2f, 0x28292a2b2c2d2e2f, q25);
ASSERT_EQUAL_128(0x1011121314151617, 0x0001020304050607, q26);
ASSERT_EQUAL_128(0x2021222324252627, 0x2021222324252627, q27);
TEARDOWN();
}
TEST(neon_ld1_lane_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Mov(x19, src_base);
__ Mov(x20, src_base);
__ Mov(x21, src_base);
__ Mov(x22, src_base);
__ Mov(x23, src_base);
__ Mov(x24, src_base);
// Test loading whole register by element.
for (int i = 15; i >= 0; i--) {
__ Ld1(v0.B(), i, MemOperand(x17, 1, PostIndex));
}
for (int i = 7; i >= 0; i--) {
__ Ld1(v1.H(), i, MemOperand(x18, 2, PostIndex));
}
for (int i = 3; i >= 0; i--) {
__ Ld1(v2.S(), i, MemOperand(x19, 4, PostIndex));
}
for (int i = 1; i >= 0; i--) {
__ Ld1(v3.D(), i, MemOperand(x20, 8, PostIndex));
}
// Test loading a single element into an initialised register.
__ Mov(x25, 1);
__ Ldr(q4, MemOperand(x21));
__ Ld1(v4.B(), 4, MemOperand(x21, x25, PostIndex));
__ Add(x25, x25, 1);
__ Ldr(q5, MemOperand(x22));
__ Ld1(v5.H(), 3, MemOperand(x22, x25, PostIndex));
__ Add(x25, x25, 1);
__ Ldr(q6, MemOperand(x23));
__ Ld1(v6.S(), 2, MemOperand(x23, x25, PostIndex));
__ Add(x25, x25, 1);
__ Ldr(q7, MemOperand(x24));
__ Ld1(v7.D(), 1, MemOperand(x24, x25, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q0);
ASSERT_EQUAL_128(0x0100030205040706, 0x09080b0a0d0c0f0e, q1);
ASSERT_EQUAL_128(0x0302010007060504, 0x0b0a09080f0e0d0c, q2);
ASSERT_EQUAL_128(0x0706050403020100, 0x0f0e0d0c0b0a0908, q3);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050003020100, q4);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0100050403020100, q5);
ASSERT_EQUAL_128(0x0f0e0d0c03020100, 0x0706050403020100, q6);
ASSERT_EQUAL_128(0x0706050403020100, 0x0706050403020100, q7);
ASSERT_EQUAL_64(src_base + 16, x17);
ASSERT_EQUAL_64(src_base + 16, x18);
ASSERT_EQUAL_64(src_base + 16, x19);
ASSERT_EQUAL_64(src_base + 16, x20);
ASSERT_EQUAL_64(src_base + 1, x21);
ASSERT_EQUAL_64(src_base + 2, x22);
ASSERT_EQUAL_64(src_base + 3, x23);
ASSERT_EQUAL_64(src_base + 4, x24);
TEARDOWN();
}
TEST(neon_st1_lane_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, -16);
__ Ldr(q0, MemOperand(x17));
for (int i = 15; i >= 0; i--) {
__ St1(v0.B(), i, MemOperand(x17, 1, PostIndex));
}
__ Ldr(q1, MemOperand(x17, x18));
for (int i = 7; i >= 0; i--) {
__ St1(v0.H(), i, MemOperand(x17, 2, PostIndex));
}
__ Ldr(q2, MemOperand(x17, x18));
for (int i = 3; i >= 0; i--) {
__ St1(v0.S(), i, MemOperand(x17, 4, PostIndex));
}
__ Ldr(q3, MemOperand(x17, x18));
for (int i = 1; i >= 0; i--) {
__ St1(v0.D(), i, MemOperand(x17, 8, PostIndex));
}
__ Ldr(q4, MemOperand(x17, x18));
END();
RUN();
ASSERT_EQUAL_128(0x0001020304050607, 0x08090a0b0c0d0e0f, q1);
ASSERT_EQUAL_128(0x0100030205040706, 0x09080b0a0d0c0f0e, q2);
ASSERT_EQUAL_128(0x0302010007060504, 0x0b0a09080f0e0d0c, q3);
ASSERT_EQUAL_128(0x0706050403020100, 0x0f0e0d0c0b0a0908, q4);
TEARDOWN();
}
TEST(neon_ld1_alllanes) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Ld1r(v0.V8B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v1.V16B(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v2.V4H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v3.V8H(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v4.V2S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v5.V4S(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v6.V1D(), MemOperand(x17));
__ Add(x17, x17, 1);
__ Ld1r(v7.V2D(), MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0202020202020202, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0, 0x0403040304030403, q2);
ASSERT_EQUAL_128(0x0504050405040504, 0x0504050405040504, q3);
ASSERT_EQUAL_128(0, 0x0807060508070605, q4);
ASSERT_EQUAL_128(0x0908070609080706, 0x0908070609080706, q5);
ASSERT_EQUAL_128(0, 0x0e0d0c0b0a090807, q6);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0f0e0d0c0b0a0908, q7);
TEARDOWN();
}
TEST(neon_ld1_alllanes_postindex) {
SETUP();
uint8_t src[64];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base + 1);
__ Mov(x18, 1);
__ Ld1r(v0.V8B(), MemOperand(x17, 1, PostIndex));
__ Ld1r(v1.V16B(), MemOperand(x17, x18, PostIndex));
__ Ld1r(v2.V4H(), MemOperand(x17, x18, PostIndex));
__ Ld1r(v3.V8H(), MemOperand(x17, 2, PostIndex));
__ Ld1r(v4.V2S(), MemOperand(x17, x18, PostIndex));
__ Ld1r(v5.V4S(), MemOperand(x17, 4, PostIndex));
__ Ld1r(v6.V2D(), MemOperand(x17, 8, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0101010101010101, q0);
ASSERT_EQUAL_128(0x0202020202020202, 0x0202020202020202, q1);
ASSERT_EQUAL_128(0, 0x0403040304030403, q2);
ASSERT_EQUAL_128(0x0504050405040504, 0x0504050405040504, q3);
ASSERT_EQUAL_128(0, 0x0908070609080706, q4);
ASSERT_EQUAL_128(0x0a0908070a090807, 0x0a0908070a090807, q5);
ASSERT_EQUAL_128(0x1211100f0e0d0c0b, 0x1211100f0e0d0c0b, q6);
ASSERT_EQUAL_64(src_base + 19, x17);
TEARDOWN();
}
TEST(neon_st1_d) {
SETUP();
uint8_t src[14 * kDRegSizeInBytes];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ Mov(x17, src_base);
__ St1(v0.V8B(), MemOperand(x17));
__ Ldr(d16, MemOperand(x17, 8, PostIndex));
__ St1(v0.V8B(), v1.V8B(), MemOperand(x17));
__ Ldr(q17, MemOperand(x17, 16, PostIndex));
__ St1(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x17));
__ Ldr(d18, MemOperand(x17, 8, PostIndex));
__ Ldr(d19, MemOperand(x17, 8, PostIndex));
__ Ldr(d20, MemOperand(x17, 8, PostIndex));
__ St1(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x17));
__ Ldr(q21, MemOperand(x17, 16, PostIndex));
__ Ldr(q22, MemOperand(x17, 16, PostIndex));
__ St1(v0.V1D(), v1.V1D(), v2.V1D(), v3.V1D(), MemOperand(x17));
__ Ldr(q23, MemOperand(x17, 16, PostIndex));
__ Ldr(q24, MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q0);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q1);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q2);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736353433323130, q3);
ASSERT_EQUAL_128(0, 0x0706050403020100, q16);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q17);
ASSERT_EQUAL_128(0, 0x0706050403020100, q18);
ASSERT_EQUAL_128(0, 0x1716151413121110, q19);
ASSERT_EQUAL_128(0, 0x2726252423222120, q20);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q21);
ASSERT_EQUAL_128(0x3736353433323130, 0x2726252423222120, q22);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q23);
ASSERT_EQUAL_128(0x3736353433323130, 0x2726252423222120, q24);
TEARDOWN();
}
TEST(neon_st1_d_postindex) {
SETUP();
uint8_t src[64 + 14 * kDRegSizeInBytes];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, -8);
__ Mov(x19, -16);
__ Mov(x20, -24);
__ Mov(x21, -32);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ Mov(x17, src_base);
__ St1(v0.V8B(), MemOperand(x17, 8, PostIndex));
__ Ldr(d16, MemOperand(x17, x18));
__ St1(v0.V8B(), v1.V8B(), MemOperand(x17, 16, PostIndex));
__ Ldr(q17, MemOperand(x17, x19));
__ St1(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x17, 24, PostIndex));
__ Ldr(d18, MemOperand(x17, x20));
__ Ldr(d19, MemOperand(x17, x19));
__ Ldr(d20, MemOperand(x17, x18));
__ St1(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(),
MemOperand(x17, 32, PostIndex));
__ Ldr(q21, MemOperand(x17, x21));
__ Ldr(q22, MemOperand(x17, x19));
__ St1(v0.V1D(), v1.V1D(), v2.V1D(), v3.V1D(),
MemOperand(x17, 32, PostIndex));
__ Ldr(q23, MemOperand(x17, x21));
__ Ldr(q24, MemOperand(x17, x19));
END();
RUN();
ASSERT_EQUAL_128(0, 0x0706050403020100, q16);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q17);
ASSERT_EQUAL_128(0, 0x0706050403020100, q18);
ASSERT_EQUAL_128(0, 0x1716151413121110, q19);
ASSERT_EQUAL_128(0, 0x2726252423222120, q20);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q21);
ASSERT_EQUAL_128(0x3736353433323130, 0x2726252423222120, q22);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q23);
ASSERT_EQUAL_128(0x3736353433323130, 0x2726252423222120, q24);
TEARDOWN();
}
TEST(neon_st1_q) {
SETUP();
uint8_t src[64 + 160];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St1(v0.V16B(), MemOperand(x17));
__ Ldr(q16, MemOperand(x17, 16, PostIndex));
__ St1(v0.V8H(), v1.V8H(), MemOperand(x17));
__ Ldr(q17, MemOperand(x17, 16, PostIndex));
__ Ldr(q18, MemOperand(x17, 16, PostIndex));
__ St1(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x17));
__ Ldr(q19, MemOperand(x17, 16, PostIndex));
__ Ldr(q20, MemOperand(x17, 16, PostIndex));
__ Ldr(q21, MemOperand(x17, 16, PostIndex));
__ St1(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x17));
__ Ldr(q22, MemOperand(x17, 16, PostIndex));
__ Ldr(q23, MemOperand(x17, 16, PostIndex));
__ Ldr(q24, MemOperand(x17, 16, PostIndex));
__ Ldr(q25, MemOperand(x17));
END();
RUN();
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q16);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q17);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q18);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q19);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q20);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q21);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q22);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q23);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q24);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736353433323130, q25);
TEARDOWN();
}
TEST(neon_st1_q_postindex) {
SETUP();
uint8_t src[64 + 160];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, -16);
__ Mov(x19, -32);
__ Mov(x20, -48);
__ Mov(x21, -64);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St1(v0.V16B(), MemOperand(x17, 16, PostIndex));
__ Ldr(q16, MemOperand(x17, x18));
__ St1(v0.V8H(), v1.V8H(), MemOperand(x17, 32, PostIndex));
__ Ldr(q17, MemOperand(x17, x19));
__ Ldr(q18, MemOperand(x17, x18));
__ St1(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x17, 48, PostIndex));
__ Ldr(q19, MemOperand(x17, x20));
__ Ldr(q20, MemOperand(x17, x19));
__ Ldr(q21, MemOperand(x17, x18));
__ St1(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(),
MemOperand(x17, 64, PostIndex));
__ Ldr(q22, MemOperand(x17, x21));
__ Ldr(q23, MemOperand(x17, x20));
__ Ldr(q24, MemOperand(x17, x19));
__ Ldr(q25, MemOperand(x17, x18));
END();
RUN();
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q16);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q17);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q18);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q19);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q20);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q21);
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q22);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x1716151413121110, q23);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726252423222120, q24);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736353433323130, q25);
TEARDOWN();
}
TEST(neon_st2_d) {
SETUP();
uint8_t src[4*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V8B(), v1.V8B(), MemOperand(x18));
__ Add(x18, x18, 22);
__ St2(v0.V4H(), v1.V4H(), MemOperand(x18));
__ Add(x18, x18, 11);
__ St2(v0.V2S(), v1.V2S(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1707160615051404, 0x1303120211011000, q0);
ASSERT_EQUAL_128(0x0504131203021110, 0x0100151413121110, q1);
ASSERT_EQUAL_128(0x1615140706050413, 0x1211100302010014, q2);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736353433323117, q3);
TEARDOWN();
}
TEST(neon_st2_d_postindex) {
SETUP();
uint8_t src[4*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V8B(), v1.V8B(), MemOperand(x18, x22, PostIndex));
__ St2(v0.V4H(), v1.V4H(), MemOperand(x18, 16, PostIndex));
__ St2(v0.V2S(), v1.V2S(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1405041312030211, 0x1001000211011000, q0);
ASSERT_EQUAL_128(0x0605041312111003, 0x0201001716070615, q1);
ASSERT_EQUAL_128(0x2f2e2d2c2b2a2928, 0x2726251716151407, q2);
TEARDOWN();
}
TEST(neon_st2_q) {
SETUP();
uint8_t src[5*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V16B(), v1.V16B(), MemOperand(x18));
__ Add(x18, x18, 8);
__ St2(v0.V8H(), v1.V8H(), MemOperand(x18));
__ Add(x18, x18, 22);
__ St2(v0.V4S(), v1.V4S(), MemOperand(x18));
__ Add(x18, x18, 2);
__ St2(v0.V2D(), v1.V2D(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1312030211100100, 0x1303120211011000, q0);
ASSERT_EQUAL_128(0x01000b0a19180908, 0x1716070615140504, q1);
ASSERT_EQUAL_128(0x1716151413121110, 0x0706050403020100, q2);
ASSERT_EQUAL_128(0x1f1e1d1c1b1a1918, 0x0f0e0d0c0b0a0908, q3);
TEARDOWN();
}
TEST(neon_st2_q_postindex) {
SETUP();
uint8_t src[5*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ St2(v0.V16B(), v1.V16B(), MemOperand(x18, x22, PostIndex));
__ St2(v0.V8H(), v1.V8H(), MemOperand(x18, 32, PostIndex));
__ St2(v0.V4S(), v1.V4S(), MemOperand(x18, x22, PostIndex));
__ St2(v0.V2D(), v1.V2D(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1405041312030211, 0x1001000211011000, q0);
ASSERT_EQUAL_128(0x1c0d0c1b1a0b0a19, 0x1809081716070615, q1);
ASSERT_EQUAL_128(0x0504030201001003, 0x0201001f1e0f0e1d, q2);
ASSERT_EQUAL_128(0x0d0c0b0a09081716, 0x1514131211100706, q3);
ASSERT_EQUAL_128(0x4f4e4d4c4b4a1f1e, 0x1d1c1b1a19180f0e, q4);
TEARDOWN();
}
TEST(neon_st3_d) {
SETUP();
uint8_t src[3*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x18));
__ Add(x18, x18, 3);
__ St3(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x18));
__ Add(x18, x18, 2);
__ St3(v0.V2S(), v1.V2S(), v2.V2S(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x2221201312111003, 0x0201000100201000, q0);
ASSERT_EQUAL_128(0x1f1e1d2726252417, 0x1615140706050423, q1);
TEARDOWN();
}
TEST(neon_st3_d_postindex) {
SETUP();
uint8_t src[4*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V8B(), v1.V8B(), v2.V8B(), MemOperand(x18, x22, PostIndex));
__ St3(v0.V4H(), v1.V4H(), v2.V4H(), MemOperand(x18, 24, PostIndex));
__ St3(v0.V2S(), v1.V2S(), v2.V2S(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0);
ASSERT_EQUAL_128(0x0201002726171607, 0x0625241514050423, q1);
ASSERT_EQUAL_128(0x1615140706050423, 0x2221201312111003, q2);
ASSERT_EQUAL_128(0x3f3e3d3c3b3a3938, 0x3736352726252417, q3);
TEARDOWN();
}
TEST(neon_st3_q) {
SETUP();
uint8_t src[6*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V16B(), v1.V16B(), v2.V16B(), MemOperand(x18));
__ Add(x18, x18, 5);
__ St3(v0.V8H(), v1.V8H(), v2.V8H(), MemOperand(x18));
__ Add(x18, x18, 12);
__ St3(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x18));
__ Add(x18, x18, 22);
__ St3(v0.V2D(), v1.V2D(), v2.V2D(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0);
ASSERT_EQUAL_128(0x0605042322212013, 0x1211100302010023, q1);
ASSERT_EQUAL_128(0x1007060504030201, 0x0025241716151407, q2);
ASSERT_EQUAL_128(0x0827262524232221, 0x2017161514131211, q3);
ASSERT_EQUAL_128(0x281f1e1d1c1b1a19, 0x180f0e0d0c0b0a09, q4);
ASSERT_EQUAL_128(0x5f5e5d5c5b5a5958, 0x572f2e2d2c2b2a29, q5);
TEARDOWN();
}
TEST(neon_st3_q_postindex) {
SETUP();
uint8_t src[7*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ St3(v0.V16B(), v1.V16B(), v2.V16B(), MemOperand(x18, x22, PostIndex));
__ St3(v0.V8H(), v1.V8H(), v2.V8H(), MemOperand(x18, 48, PostIndex));
__ St3(v0.V4S(), v1.V4S(), v2.V4S(), MemOperand(x18, x22, PostIndex));
__ St3(v0.V2D(), v1.V2D(), v2.V2D(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
__ Ldr(q6, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x2213120302212011, 0x1001001101201000, q0);
ASSERT_EQUAL_128(0x1809082726171607, 0x0625241514050423, q1);
ASSERT_EQUAL_128(0x0e2d2c1d1c0d0c2b, 0x2a1b1a0b0a292819, q2);
ASSERT_EQUAL_128(0x0504030201001003, 0x0201002f2e1f1e0f, q3);
ASSERT_EQUAL_128(0x2524232221201716, 0x1514131211100706, q4);
ASSERT_EQUAL_128(0x1d1c1b1a19180f0e, 0x0d0c0b0a09082726, q5);
ASSERT_EQUAL_128(0x6f6e6d6c6b6a2f2e, 0x2d2c2b2a29281f1e, q6);
TEARDOWN();
}
TEST(neon_st4_d) {
SETUP();
uint8_t src[4*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(), MemOperand(x18));
__ Add(x18, x18, 12);
__ St4(v0.V4H(), v1.V4H(), v2.V4H(), v3.V4H(), MemOperand(x18));
__ Add(x18, x18, 15);
__ St4(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(), MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1110010032221202, 0X3121110130201000, q0);
ASSERT_EQUAL_128(0x1003020100322322, 0X1312030231302120, q1);
ASSERT_EQUAL_128(0x1407060504333231, 0X3023222120131211, q2);
ASSERT_EQUAL_128(0x3f3e3d3c3b373635, 0x3427262524171615, q3);
TEARDOWN();
}
TEST(neon_st4_d_postindex) {
SETUP();
uint8_t src[5*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V8B(), v1.V8B(), v2.V8B(), v3.V8B(),
MemOperand(x18, x22, PostIndex));
__ St4(v0.V4H(), v1.V4H(), v2.V4H(), v3.V4H(),
MemOperand(x18, 32, PostIndex));
__ St4(v0.V2S(), v1.V2S(), v2.V2S(), v3.V2S(),
MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0);
ASSERT_EQUAL_128(0x1607063534252415, 0x1405043332232213, q1);
ASSERT_EQUAL_128(0x2221201312111003, 0x0201003736272617, q2);
ASSERT_EQUAL_128(0x2625241716151407, 0x0605043332313023, q3);
ASSERT_EQUAL_128(0x4f4e4d4c4b4a4948, 0x4746453736353427, q4);
TEARDOWN();
}
TEST(neon_st4_q) {
SETUP();
uint8_t src[7*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V16B(), v1.V16B(), v2.V16B(), v3.V16B(), MemOperand(x18));
__ Add(x18, x18, 5);
__ St4(v0.V8H(), v1.V8H(), v2.V8H(), v3.V8H(), MemOperand(x18));
__ Add(x18, x18, 12);
__ St4(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(), MemOperand(x18));
__ Add(x18, x18, 22);
__ St4(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(), MemOperand(x18));
__ Add(x18, x18, 10);
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
__ Ldr(q6, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0);
ASSERT_EQUAL_128(0x3231302322212013, 0x1211100302010013, q1);
ASSERT_EQUAL_128(0x1007060504030201, 0x0015140706050433, q2);
ASSERT_EQUAL_128(0x3027262524232221, 0x2017161514131211, q3);
ASSERT_EQUAL_128(0x180f0e0d0c0b0a09, 0x0837363534333231, q4);
ASSERT_EQUAL_128(0x382f2e2d2c2b2a29, 0x281f1e1d1c1b1a19, q5);
ASSERT_EQUAL_128(0x6f6e6d6c6b6a6968, 0x673f3e3d3c3b3a39, q6);
TEARDOWN();
}
TEST(neon_st4_q_postindex) {
SETUP();
uint8_t src[9*16];
for (unsigned i = 0; i < sizeof(src); i++) {
src[i] = i;
}
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x22, 5);
__ Mov(x17, src_base);
__ Mov(x18, src_base);
__ Ldr(q0, MemOperand(x17, 16, PostIndex));
__ Ldr(q1, MemOperand(x17, 16, PostIndex));
__ Ldr(q2, MemOperand(x17, 16, PostIndex));
__ Ldr(q3, MemOperand(x17, 16, PostIndex));
__ St4(v0.V16B(), v1.V16B(), v2.V16B(), v3.V16B(),
MemOperand(x18, x22, PostIndex));
__ St4(v0.V8H(), v1.V8H(), v2.V8H(), v3.V8H(),
MemOperand(x18, 64, PostIndex));
__ St4(v0.V4S(), v1.V4S(), v2.V4S(), v3.V4S(),
MemOperand(x18, x22, PostIndex));
__ St4(v0.V2D(), v1.V2D(), v2.V2D(), v3.V2D(),
MemOperand(x18));
__ Mov(x19, src_base);
__ Ldr(q0, MemOperand(x19, 16, PostIndex));
__ Ldr(q1, MemOperand(x19, 16, PostIndex));
__ Ldr(q2, MemOperand(x19, 16, PostIndex));
__ Ldr(q3, MemOperand(x19, 16, PostIndex));
__ Ldr(q4, MemOperand(x19, 16, PostIndex));
__ Ldr(q5, MemOperand(x19, 16, PostIndex));
__ Ldr(q6, MemOperand(x19, 16, PostIndex));
__ Ldr(q7, MemOperand(x19, 16, PostIndex));
__ Ldr(q8, MemOperand(x19, 16, PostIndex));
END();
RUN();
ASSERT_EQUAL_128(0x1203023130212011, 0x1001000130201000, q0);
ASSERT_EQUAL_128(0x1607063534252415, 0x1405043332232213, q1);
ASSERT_EQUAL_128(0x1a0b0a3938292819, 0x1809083736272617, q2);
ASSERT_EQUAL_128(0x1e0f0e3d3c2d2c1d, 0x1c0d0c3b3a2b2a1b, q3);
ASSERT_EQUAL_128(0x0504030201001003, 0x0201003f3e2f2e1f, q4);
ASSERT_EQUAL_128(0x2524232221201716, 0x1514131211100706, q5);
ASSERT_EQUAL_128(0x0d0c0b0a09083736, 0x3534333231302726, q6);
ASSERT_EQUAL_128(0x2d2c2b2a29281f1e, 0x1d1c1b1a19180f0e, q7);
ASSERT_EQUAL_128(0x8f8e8d8c8b8a3f3e, 0x3d3c3b3a39382f2e, q8);
TEARDOWN();
}
TEST(ldp_stp_float) {
SETUP();
float src[2] = {1.0, 2.0};
float dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex));
__ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex));
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s31);
ASSERT_EQUAL_FP32(2.0, s0);
ASSERT_EQUAL_FP32(0.0, dst[0]);
ASSERT_EQUAL_FP32(2.0, dst[1]);
ASSERT_EQUAL_FP32(1.0, dst[2]);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16);
ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17);
TEARDOWN();
}
TEST(ldp_stp_double) {
SETUP();
double src[2] = {1.0, 2.0};
double dst[3] = {0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex));
__ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex));
END();
RUN();
ASSERT_EQUAL_FP64(1.0, d31);
ASSERT_EQUAL_FP64(2.0, d0);
ASSERT_EQUAL_FP64(0.0, dst[0]);
ASSERT_EQUAL_FP64(2.0, dst[1]);
ASSERT_EQUAL_FP64(1.0, dst[2]);
ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16);
ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17);
TEARDOWN();
}
TEST(ldp_stp_quad) {
SETUP();
uint64_t src[4] = {0x0123456789abcdef, 0xaaaaaaaa55555555,
0xfedcba9876543210, 0x55555555aaaaaaaa};
uint64_t dst[6] = {0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Ldp(q31, q0, MemOperand(x16, 4 * sizeof(src[0]), PostIndex));
__ Stp(q0, q31, MemOperand(x17, 2 * sizeof(dst[1]), PreIndex));
END();
RUN();
ASSERT_EQUAL_128(0xaaaaaaaa55555555, 0x0123456789abcdef, q31);
ASSERT_EQUAL_128(0x55555555aaaaaaaa, 0xfedcba9876543210, q0);
ASSERT_EQUAL_64(0, dst[0]);
ASSERT_EQUAL_64(0, dst[1]);
ASSERT_EQUAL_64(0xfedcba9876543210, dst[2]);
ASSERT_EQUAL_64(0x55555555aaaaaaaa, dst[3]);
ASSERT_EQUAL_64(0x0123456789abcdef, dst[4]);
ASSERT_EQUAL_64(0xaaaaaaaa55555555, dst[5]);
ASSERT_EQUAL_64(src_base + 4 * sizeof(src[0]), x16);
ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[1]), x17);
TEARDOWN();
}
TEST(ldp_stp_offset) {
SETUP();
uint64_t src[3] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988};
uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 24);
__ Mov(x19, dst_base + 56);
__ Ldp(w0, w1, MemOperand(x16));
__ Ldp(w2, w3, MemOperand(x16, 4));
__ Ldp(x4, x5, MemOperand(x16, 8));
__ Ldp(w6, w7, MemOperand(x18, -12));
__ Ldp(x8, x9, MemOperand(x18, -16));
__ Stp(w0, w1, MemOperand(x17));
__ Stp(w2, w3, MemOperand(x17, 8));
__ Stp(x4, x5, MemOperand(x17, 16));
__ Stp(w6, w7, MemOperand(x19, -24));
__ Stp(x8, x9, MemOperand(x19, -16));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x0011223344556677, dst[0]);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0xccddeeff00112233, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[2]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x5);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[3]);
ASSERT_EQUAL_64(0x8899aabb, x6);
ASSERT_EQUAL_64(0xbbaa9988, x7);
ASSERT_EQUAL_64(0xbbaa99888899aabb, dst[4]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x8);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[5]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x9);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[6]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(src_base + 24, x18);
ASSERT_EQUAL_64(dst_base + 56, x19);
TEARDOWN();
}
TEST(ldp_stp_offset_wide) {
SETUP();
uint64_t src[3] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988};
uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
// Move base too far from the array to force multiple instructions
// to be emitted.
const int64_t base_offset = 1024;
START();
__ Mov(x20, src_base - base_offset);
__ Mov(x21, dst_base - base_offset);
__ Mov(x18, src_base + base_offset + 24);
__ Mov(x19, dst_base + base_offset + 56);
__ Ldp(w0, w1, MemOperand(x20, base_offset));
__ Ldp(w2, w3, MemOperand(x20, base_offset + 4));
__ Ldp(x4, x5, MemOperand(x20, base_offset + 8));
__ Ldp(w6, w7, MemOperand(x18, -12 - base_offset));
__ Ldp(x8, x9, MemOperand(x18, -16 - base_offset));
__ Stp(w0, w1, MemOperand(x21, base_offset));
__ Stp(w2, w3, MemOperand(x21, base_offset + 8));
__ Stp(x4, x5, MemOperand(x21, base_offset + 16));
__ Stp(w6, w7, MemOperand(x19, -24 - base_offset));
__ Stp(x8, x9, MemOperand(x19, -16 - base_offset));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x0011223344556677, dst[0]);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0xccddeeff00112233, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[2]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x5);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[3]);
ASSERT_EQUAL_64(0x8899aabb, x6);
ASSERT_EQUAL_64(0xbbaa9988, x7);
ASSERT_EQUAL_64(0xbbaa99888899aabb, dst[4]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x8);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[5]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x9);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[6]);
ASSERT_EQUAL_64(src_base - base_offset, x20);
ASSERT_EQUAL_64(dst_base - base_offset, x21);
ASSERT_EQUAL_64(src_base + base_offset + 24, x18);
ASSERT_EQUAL_64(dst_base + base_offset + 56, x19);
TEARDOWN();
}
TEST(ldnp_stnp_offset) {
SETUP();
uint64_t src[4] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988, 0x7766554433221100};
uint64_t dst[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 24);
__ Mov(x19, dst_base + 64);
__ Mov(x20, src_base + 32);
// Ensure address set up has happened before executing non-temporal ops.
__ Dmb(InnerShareable, BarrierAll);
__ Ldnp(w0, w1, MemOperand(x16));
__ Ldnp(w2, w3, MemOperand(x16, 4));
__ Ldnp(x4, x5, MemOperand(x16, 8));
__ Ldnp(w6, w7, MemOperand(x18, -12));
__ Ldnp(x8, x9, MemOperand(x18, -16));
__ Ldnp(q16, q17, MemOperand(x16));
__ Ldnp(q19, q18, MemOperand(x20, -32));
__ Stnp(w0, w1, MemOperand(x17));
__ Stnp(w2, w3, MemOperand(x17, 8));
__ Stnp(x4, x5, MemOperand(x17, 16));
__ Stnp(w6, w7, MemOperand(x19, -32));
__ Stnp(x8, x9, MemOperand(x19, -24));
__ Stnp(q17, q16, MemOperand(x19));
__ Stnp(q18, q19, MemOperand(x19, 32));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x0011223344556677, dst[0]);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0xccddeeff00112233, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[2]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x5);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[3]);
ASSERT_EQUAL_64(0x8899aabb, x6);
ASSERT_EQUAL_64(0xbbaa9988, x7);
ASSERT_EQUAL_64(0xbbaa99888899aabb, dst[4]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x8);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[5]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x9);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[6]);
ASSERT_EQUAL_128(0x8899aabbccddeeff, 0x0011223344556677, q16);
ASSERT_EQUAL_128(0x7766554433221100, 0xffeeddccbbaa9988, q17);
ASSERT_EQUAL_128(0x7766554433221100, 0xffeeddccbbaa9988, q18);
ASSERT_EQUAL_128(0x8899aabbccddeeff, 0x0011223344556677, q19);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[8]);
ASSERT_EQUAL_64(0x7766554433221100, dst[9]);
ASSERT_EQUAL_64(0x0011223344556677, dst[10]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[11]);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[12]);
ASSERT_EQUAL_64(0x7766554433221100, dst[13]);
ASSERT_EQUAL_64(0x0011223344556677, dst[14]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[15]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(src_base + 24, x18);
ASSERT_EQUAL_64(dst_base + 64, x19);
ASSERT_EQUAL_64(src_base + 32, x20);
TEARDOWN();
}
TEST(ldnp_stnp_offset_float) {
SETUP();
float src[3] = {1.2, 2.3, 3.4};
float dst[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 12);
__ Mov(x19, dst_base + 24);
// Ensure address set up has happened before executing non-temporal ops.
__ Dmb(InnerShareable, BarrierAll);
__ Ldnp(s0, s1, MemOperand(x16));
__ Ldnp(s2, s3, MemOperand(x16, 4));
__ Ldnp(s5, s4, MemOperand(x18, -8));
__ Stnp(s1, s0, MemOperand(x17));
__ Stnp(s3, s2, MemOperand(x17, 8));
__ Stnp(s4, s5, MemOperand(x19, -8));
END();
RUN();
ASSERT_EQUAL_FP32(1.2, s0);
ASSERT_EQUAL_FP32(2.3, s1);
ASSERT_EQUAL_FP32(2.3, dst[0]);
ASSERT_EQUAL_FP32(1.2, dst[1]);
ASSERT_EQUAL_FP32(2.3, s2);
ASSERT_EQUAL_FP32(3.4, s3);
ASSERT_EQUAL_FP32(3.4, dst[2]);
ASSERT_EQUAL_FP32(2.3, dst[3]);
ASSERT_EQUAL_FP32(3.4, s4);
ASSERT_EQUAL_FP32(2.3, s5);
ASSERT_EQUAL_FP32(3.4, dst[4]);
ASSERT_EQUAL_FP32(2.3, dst[5]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(src_base + 12, x18);
ASSERT_EQUAL_64(dst_base + 24, x19);
TEARDOWN();
}
TEST(ldnp_stnp_offset_double) {
SETUP();
double src[3] = {1.2, 2.3, 3.4};
double dst[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, src_base + 24);
__ Mov(x19, dst_base + 48);
// Ensure address set up has happened before executing non-temporal ops.
__ Dmb(InnerShareable, BarrierAll);
__ Ldnp(d0, d1, MemOperand(x16));
__ Ldnp(d2, d3, MemOperand(x16, 8));
__ Ldnp(d5, d4, MemOperand(x18, -16));
__ Stnp(d1, d0, MemOperand(x17));
__ Stnp(d3, d2, MemOperand(x17, 16));
__ Stnp(d4, d5, MemOperand(x19, -16));
END();
RUN();
ASSERT_EQUAL_FP64(1.2, d0);
ASSERT_EQUAL_FP64(2.3, d1);
ASSERT_EQUAL_FP64(2.3, dst[0]);
ASSERT_EQUAL_FP64(1.2, dst[1]);
ASSERT_EQUAL_FP64(2.3, d2);
ASSERT_EQUAL_FP64(3.4, d3);
ASSERT_EQUAL_FP64(3.4, dst[2]);
ASSERT_EQUAL_FP64(2.3, dst[3]);
ASSERT_EQUAL_FP64(3.4, d4);
ASSERT_EQUAL_FP64(2.3, d5);
ASSERT_EQUAL_FP64(3.4, dst[4]);
ASSERT_EQUAL_FP64(2.3, dst[5]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(src_base + 24, x18);
ASSERT_EQUAL_64(dst_base + 48, x19);
TEARDOWN();
}
TEST(ldp_stp_preindex) {
SETUP();
uint64_t src[3] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x16, 4, PreIndex));
__ Mov(x19, x16);
__ Ldp(w2, w3, MemOperand(x16, -4, PreIndex));
__ Stp(w2, w3, MemOperand(x17, 4, PreIndex));
__ Mov(x20, x17);
__ Stp(w0, w1, MemOperand(x17, -4, PreIndex));
__ Ldp(x4, x5, MemOperand(x16, 8, PreIndex));
__ Mov(x21, x16);
__ Ldp(x6, x7, MemOperand(x16, -8, PreIndex));
__ Stp(x7, x6, MemOperand(x18, 8, PreIndex));
__ Mov(x22, x18);
__ Stp(x5, x4, MemOperand(x18, -8, PreIndex));
END();
RUN();
ASSERT_EQUAL_64(0x00112233, x0);
ASSERT_EQUAL_64(0xccddeeff, x1);
ASSERT_EQUAL_64(0x44556677, x2);
ASSERT_EQUAL_64(0x00112233, x3);
ASSERT_EQUAL_64(0xccddeeff00112233, dst[0]);
ASSERT_EQUAL_64(0x0000000000112233, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x4);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x5);
ASSERT_EQUAL_64(0x0011223344556677, x6);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x7);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[2]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[3]);
ASSERT_EQUAL_64(0x0011223344556677, dst[4]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(dst_base + 16, x18);
ASSERT_EQUAL_64(src_base + 4, x19);
ASSERT_EQUAL_64(dst_base + 4, x20);
ASSERT_EQUAL_64(src_base + 8, x21);
ASSERT_EQUAL_64(dst_base + 24, x22);
TEARDOWN();
}
TEST(ldp_stp_preindex_wide) {
SETUP();
uint64_t src[3] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
// Move base too far from the array to force multiple instructions
// to be emitted.
const int64_t base_offset = 1024;
START();
__ Mov(x24, src_base - base_offset);
__ Mov(x25, dst_base + base_offset);
__ Mov(x18, dst_base + base_offset + 16);
__ Ldp(w0, w1, MemOperand(x24, base_offset + 4, PreIndex));
__ Mov(x19, x24);
__ Mov(x24, src_base - base_offset + 4);
__ Ldp(w2, w3, MemOperand(x24, base_offset - 4, PreIndex));
__ Stp(w2, w3, MemOperand(x25, 4 - base_offset , PreIndex));
__ Mov(x20, x25);
__ Mov(x25, dst_base + base_offset + 4);
__ Mov(x24, src_base - base_offset);
__ Stp(w0, w1, MemOperand(x25, -4 - base_offset, PreIndex));
__ Ldp(x4, x5, MemOperand(x24, base_offset + 8, PreIndex));
__ Mov(x21, x24);
__ Mov(x24, src_base - base_offset + 8);
__ Ldp(x6, x7, MemOperand(x24, base_offset - 8, PreIndex));
__ Stp(x7, x6, MemOperand(x18, 8 - base_offset, PreIndex));
__ Mov(x22, x18);
__ Mov(x18, dst_base + base_offset + 16 + 8);
__ Stp(x5, x4, MemOperand(x18, -8 - base_offset, PreIndex));
END();
RUN();
ASSERT_EQUAL_64(0x00112233, x0);
ASSERT_EQUAL_64(0xccddeeff, x1);
ASSERT_EQUAL_64(0x44556677, x2);
ASSERT_EQUAL_64(0x00112233, x3);
ASSERT_EQUAL_64(0xccddeeff00112233, dst[0]);
ASSERT_EQUAL_64(0x0000000000112233, dst[1]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x4);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x5);
ASSERT_EQUAL_64(0x0011223344556677, x6);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x7);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[2]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[3]);
ASSERT_EQUAL_64(0x0011223344556677, dst[4]);
ASSERT_EQUAL_64(src_base, x24);
ASSERT_EQUAL_64(dst_base, x25);
ASSERT_EQUAL_64(dst_base + 16, x18);
ASSERT_EQUAL_64(src_base + 4, x19);
ASSERT_EQUAL_64(dst_base + 4, x20);
ASSERT_EQUAL_64(src_base + 8, x21);
ASSERT_EQUAL_64(dst_base + 24, x22);
TEARDOWN();
}
TEST(ldp_stp_postindex) {
SETUP();
uint64_t src[4] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988, 0x7766554433221100};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x16, src_base);
__ Mov(x17, dst_base);
__ Mov(x18, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x16, 4, PostIndex));
__ Mov(x19, x16);
__ Ldp(w2, w3, MemOperand(x16, -4, PostIndex));
__ Stp(w2, w3, MemOperand(x17, 4, PostIndex));
__ Mov(x20, x17);
__ Stp(w0, w1, MemOperand(x17, -4, PostIndex));
__ Ldp(x4, x5, MemOperand(x16, 8, PostIndex));
__ Mov(x21, x16);
__ Ldp(x6, x7, MemOperand(x16, -8, PostIndex));
__ Stp(x7, x6, MemOperand(x18, 8, PostIndex));
__ Mov(x22, x18);
__ Stp(x5, x4, MemOperand(x18, -8, PostIndex));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0x4455667700112233, dst[0]);
ASSERT_EQUAL_64(0x0000000000112233, dst[1]);
ASSERT_EQUAL_64(0x0011223344556677, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x5);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x6);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x7);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[2]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[3]);
ASSERT_EQUAL_64(0x0011223344556677, dst[4]);
ASSERT_EQUAL_64(src_base, x16);
ASSERT_EQUAL_64(dst_base, x17);
ASSERT_EQUAL_64(dst_base + 16, x18);
ASSERT_EQUAL_64(src_base + 4, x19);
ASSERT_EQUAL_64(dst_base + 4, x20);
ASSERT_EQUAL_64(src_base + 8, x21);
ASSERT_EQUAL_64(dst_base + 24, x22);
TEARDOWN();
}
TEST(ldp_stp_postindex_wide) {
SETUP();
uint64_t src[4] = {0x0011223344556677, 0x8899aabbccddeeff,
0xffeeddccbbaa9988, 0x7766554433221100};
uint64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
// Move base too far from the array to force multiple instructions
// to be emitted.
const int64_t base_offset = 1024;
START();
__ Mov(x24, src_base);
__ Mov(x25, dst_base);
__ Mov(x18, dst_base + 16);
__ Ldp(w0, w1, MemOperand(x24, base_offset + 4, PostIndex));
__ Mov(x19, x24);
__ Sub(x24, x24, base_offset);
__ Ldp(w2, w3, MemOperand(x24, base_offset - 4, PostIndex));
__ Stp(w2, w3, MemOperand(x25, 4 - base_offset, PostIndex));
__ Mov(x20, x25);
__ Sub(x24, x24, base_offset);
__ Add(x25, x25, base_offset);
__ Stp(w0, w1, MemOperand(x25, -4 - base_offset, PostIndex));
__ Ldp(x4, x5, MemOperand(x24, base_offset + 8, PostIndex));
__ Mov(x21, x24);
__ Sub(x24, x24, base_offset);
__ Ldp(x6, x7, MemOperand(x24, base_offset - 8, PostIndex));
__ Stp(x7, x6, MemOperand(x18, 8 - base_offset, PostIndex));
__ Mov(x22, x18);
__ Add(x18, x18, base_offset);
__ Stp(x5, x4, MemOperand(x18, -8 - base_offset, PostIndex));
END();
RUN();
ASSERT_EQUAL_64(0x44556677, x0);
ASSERT_EQUAL_64(0x00112233, x1);
ASSERT_EQUAL_64(0x00112233, x2);
ASSERT_EQUAL_64(0xccddeeff, x3);
ASSERT_EQUAL_64(0x4455667700112233, dst[0]);
ASSERT_EQUAL_64(0x0000000000112233, dst[1]);
ASSERT_EQUAL_64(0x0011223344556677, x4);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x5);
ASSERT_EQUAL_64(0x8899aabbccddeeff, x6);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, x7);
ASSERT_EQUAL_64(0xffeeddccbbaa9988, dst[2]);
ASSERT_EQUAL_64(0x8899aabbccddeeff, dst[3]);
ASSERT_EQUAL_64(0x0011223344556677, dst[4]);
ASSERT_EQUAL_64(src_base + base_offset, x24);
ASSERT_EQUAL_64(dst_base - base_offset, x25);
ASSERT_EQUAL_64(dst_base - base_offset + 16, x18);
ASSERT_EQUAL_64(src_base + base_offset + 4, x19);
ASSERT_EQUAL_64(dst_base - base_offset + 4, x20);
ASSERT_EQUAL_64(src_base + base_offset + 8, x21);
ASSERT_EQUAL_64(dst_base - base_offset + 24, x22);
TEARDOWN();
}
TEST(ldp_sign_extend) {
SETUP();
uint32_t src[2] = {0x80000000, 0x7fffffff};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
START();
__ Mov(x24, src_base);
__ Ldpsw(x0, x1, MemOperand(x24));
END();
RUN();
ASSERT_EQUAL_64(0xffffffff80000000, x0);
ASSERT_EQUAL_64(0x000000007fffffff, x1);
TEARDOWN();
}
TEST(ldur_stur) {
SETUP();
int64_t src[2] = {0x0123456789abcdef, 0x0123456789abcdef};
int64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Mov(x19, src_base + 16);
__ Mov(x20, dst_base + 32);
__ Mov(x21, dst_base + 40);
__ Ldr(w0, MemOperand(x17, 1));
__ Str(w0, MemOperand(x18, 2));
__ Ldr(x1, MemOperand(x17, 3));
__ Str(x1, MemOperand(x18, 9));
__ Ldr(w2, MemOperand(x19, -9));
__ Str(w2, MemOperand(x20, -5));
__ Ldrb(w3, MemOperand(x19, -1));
__ Strb(w3, MemOperand(x21, -1));
END();
RUN();
ASSERT_EQUAL_64(0x6789abcd, x0);
ASSERT_EQUAL_64(0x00006789abcd0000, dst[0]);
ASSERT_EQUAL_64(0xabcdef0123456789, x1);
ASSERT_EQUAL_64(0xcdef012345678900, dst[1]);
ASSERT_EQUAL_64(0x000000ab, dst[2]);
ASSERT_EQUAL_64(0xabcdef01, x2);
ASSERT_EQUAL_64(0x00abcdef01000000, dst[3]);
ASSERT_EQUAL_64(0x00000001, x3);
ASSERT_EQUAL_64(0x0100000000000000, dst[4]);
ASSERT_EQUAL_64(src_base, x17);
ASSERT_EQUAL_64(dst_base, x18);
ASSERT_EQUAL_64(src_base + 16, x19);
ASSERT_EQUAL_64(dst_base + 32, x20);
TEARDOWN();
}
TEST(ldur_stur_fp) {
SETUP();
int64_t src[3] = {0x0123456789abcdef, 0x0123456789abcdef,
0x0123456789abcdef};
int64_t dst[5] = {0, 0, 0, 0, 0};
uintptr_t src_base = reinterpret_cast<uintptr_t>(src);
uintptr_t dst_base = reinterpret_cast<uintptr_t>(dst);
START();
__ Mov(x17, src_base);
__ Mov(x18, dst_base);
__ Ldr(b0, MemOperand(x17));
__ Str(b0, MemOperand(x18));
__ Ldr(h1, MemOperand(x17, 1));
__ Str(h1, MemOperand(x18, 1));
__ Ldr(s2, MemOperand(x17, 2));
__ Str(s2, MemOperand(x18, 3));
__ Ldr(d3, MemOperand(x17, 3));
__ Str(d3, MemOperand(x18, 7));
__ Ldr(q4, MemOperand(x17, 4));
__ Str(q4, MemOperand(x18, 15));
END();
RUN();
ASSERT_EQUAL_128(0, 0xef, q0);
ASSERT_EQUAL_128(0, 0xabcd, q1);
ASSERT_EQUAL_128(0, 0x456789ab, q2);
ASSERT_EQUAL_128(0, 0xabcdef0123456789, q3);
ASSERT_EQUAL_128(0x89abcdef01234567, 0x89abcdef01234567, q4);
ASSERT_EQUAL_64(0x89456789ababcdef, dst[0]);
ASSERT_EQUAL_64(0x67abcdef01234567, dst[1]);
ASSERT_EQUAL_64(0x6789abcdef012345, dst[2]);
ASSERT_EQUAL_64(0x0089abcdef012345, dst[3]);
TEARDOWN();
}
TEST(ldr_literal) {
SETUP();
START();
__ Ldr(x2, 0x1234567890abcdef);
__ Ldr(w3, 0xfedcba09);
__ Ldrsw(x4, 0x7fffffff);
__ Ldrsw(x5, 0x80000000);
__ Ldr(q11, 0x1234000056780000, 0xabcd0000ef000000);
__ Ldr(d13, 1.234);
__ Ldr(s25, 2.5);
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdef, x2);
ASSERT_EQUAL_64(0xfedcba09, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0xffffffff80000000, x5);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q11);
ASSERT_EQUAL_FP64(1.234, d13);
ASSERT_EQUAL_FP32(2.5, s25);
TEARDOWN();
}
TEST(ldr_literal_range) {
SETUP();
START();
// Make sure the pool is empty;
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
ASSERT_LITERAL_POOL_SIZE(0);
// Create some literal pool entries.
__ Ldr(x0, 0x1234567890abcdef);
__ Ldr(w1, 0xfedcba09);
__ Ldrsw(x2, 0x7fffffff);
__ Ldrsw(x3, 0x80000000);
__ Ldr(q2, 0x1234000056780000, 0xabcd0000ef000000);
__ Ldr(d0, 1.234);
__ Ldr(s1, 2.5);
ASSERT_LITERAL_POOL_SIZE(48);
// Emit more code than the maximum literal load range to ensure the pool
// should be emitted.
const ptrdiff_t end = masm.CursorOffset() + 2 * kMaxLoadLiteralRange;
while (masm.CursorOffset() < end) {
__ Nop();
}
// The pool should have been emitted.
ASSERT_LITERAL_POOL_SIZE(0);
// These loads should be after the pool (and will require a new one).
__ Ldr(x4, 0x34567890abcdef12);
__ Ldr(w5, 0xdcba09fe);
__ Ldrsw(x6, 0x7fffffff);
__ Ldrsw(x7, 0x80000000);
__ Ldr(q6, 0x1234000056780000, 0xabcd0000ef000000);
__ Ldr(d4, 123.4);
__ Ldr(s5, 250.0);
ASSERT_LITERAL_POOL_SIZE(48);
END();
RUN();
// Check that the literals loaded correctly.
ASSERT_EQUAL_64(0x1234567890abcdef, x0);
ASSERT_EQUAL_64(0xfedcba09, x1);
ASSERT_EQUAL_64(0x7fffffff, x2);
ASSERT_EQUAL_64(0xffffffff80000000, x3);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q2);
ASSERT_EQUAL_FP64(1.234, d0);
ASSERT_EQUAL_FP32(2.5, s1);
ASSERT_EQUAL_64(0x34567890abcdef12, x4);
ASSERT_EQUAL_64(0xdcba09fe, x5);
ASSERT_EQUAL_64(0x7fffffff, x6);
ASSERT_EQUAL_64(0xffffffff80000000, x7);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q6);
ASSERT_EQUAL_FP64(123.4, d4);
ASSERT_EQUAL_FP32(250.0, s5);
TEARDOWN();
}
TEST(ldr_literal_values_q) {
SETUP();
static const uint64_t kHalfValues[] = {
0x8000000000000000, 0x7fffffffffffffff, 0x0000000000000000,
0xffffffffffffffff, 0x00ff00ff00ff00ff, 0x1234567890abcdef
};
const int card = sizeof(kHalfValues) / sizeof(kHalfValues[0]);
const Register& ref_low64 = x1;
const Register& ref_high64 = x2;
const Register& loaded_low64 = x3;
const Register& loaded_high64 = x4;
const VRegister& tgt = q0;
START();
__ Mov(x0, 0);
for (int i = 0; i < card; i++) {
__ Mov(ref_low64, kHalfValues[i]);
for (int j = 0; j < card; j++) {
__ Mov(ref_high64, kHalfValues[j]);
__ Ldr(tgt, kHalfValues[j], kHalfValues[i]);
__ Mov(loaded_low64, tgt.V2D(), 0);
__ Mov(loaded_high64, tgt.V2D(), 1);
__ Cmp(loaded_low64, ref_low64);
__ Ccmp(loaded_high64, ref_high64, NoFlag, eq);
__ Cset(x0, ne);
}
}
END();
RUN();
// If one of the values differs, the trace can be used to identify which one.
ASSERT_EQUAL_64(0, x0);
TEARDOWN();
}
template <typename T>
void LoadIntValueHelper(T values[], int card) {
SETUP();
const bool is_32bits = (sizeof(T) == 4);
const Register& tgt1 = is_32bits ? w1 : x1;
const Register& tgt2 = is_32bits ? w2 : x2;
START();
__ Mov(x0, 0);
// If one of the values differ then x0 will be one.
for (int i = 0; i < card; ++i) {
__ Mov(tgt1, values[i]);
__ Ldr(tgt2, values[i]);
__ Cmp(tgt1, tgt2);
__ Cset(x0, ne);
}
END();
RUN();
// If one of the values differs, the trace can be used to identify which one.
ASSERT_EQUAL_64(0, x0);
TEARDOWN();
}
TEST(ldr_literal_values_x) {
static const uint64_t kValues[] = {
0x8000000000000000, 0x7fffffffffffffff, 0x0000000000000000,
0xffffffffffffffff, 0x00ff00ff00ff00ff, 0x1234567890abcdef
};
LoadIntValueHelper(kValues, sizeof(kValues) / sizeof(kValues[0]));
}
TEST(ldr_literal_values_w) {
static const uint32_t kValues[] = {
0x80000000, 0x7fffffff, 0x00000000, 0xffffffff, 0x00ff00ff, 0x12345678,
0x90abcdef
};
LoadIntValueHelper(kValues, sizeof(kValues) / sizeof(kValues[0]));
}
template <typename T>
void LoadFPValueHelper(T values[], int card) {
SETUP();
const bool is_32bits = (sizeof(T) == 4);
const FPRegister& fp_tgt = is_32bits ? s2 : d2;
const Register& tgt1 = is_32bits ? w1 : x1;
const Register& tgt2 = is_32bits ? w2 : x2;
START();
__ Mov(x0, 0);
// If one of the values differ then x0 will be one.
for (int i = 0; i < card; ++i) {
__ Mov(tgt1, is_32bits ? float_to_rawbits(values[i])
: double_to_rawbits(values[i]));
__ Ldr(fp_tgt, values[i]);
__ Fmov(tgt2, fp_tgt);
__ Cmp(tgt1, tgt2);
__ Cset(x0, ne);
}
END();
RUN();
// If one of the values differs, the trace can be used to identify which one.
ASSERT_EQUAL_64(0, x0);
TEARDOWN();
}
TEST(ldr_literal_values_d) {
static const double kValues[] = {
-0.0, 0.0, -1.0, 1.0, -1e10, 1e10
};
LoadFPValueHelper(kValues, sizeof(kValues) / sizeof(kValues[0]));
}
TEST(ldr_literal_values_s) {
static const float kValues[] = {
-0.0, 0.0, -1.0, 1.0, -1e10, 1e10
};
LoadFPValueHelper(kValues, sizeof(kValues) / sizeof(kValues[0]));
}
TEST(ldr_literal_custom) {
SETUP();
ALLOW_ASM();
Label end_of_pool_before;
Label end_of_pool_after;
Literal<uint64_t> before_x(0x1234567890abcdef);
Literal<uint32_t> before_w(0xfedcba09);
Literal<uint32_t> before_sx(0x80000000);
Literal<uint64_t> before_q(0x1234000056780000, 0xabcd0000ef000000);
Literal<double> before_d(1.234);
Literal<float> before_s(2.5);
Literal<uint64_t> after_x(0x1234567890abcdef);
Literal<uint32_t> after_w(0xfedcba09);
Literal<uint32_t> after_sx(0x80000000);
Literal<uint64_t> after_q(0x1234000056780000, 0xabcd0000ef000000);
Literal<double> after_d(1.234);
Literal<float> after_s(2.5);
START();
// Manually generate a pool.
__ B(&end_of_pool_before);
__ place(&before_x);
__ place(&before_w);
__ place(&before_sx);
__ place(&before_q);
__ place(&before_d);
__ place(&before_s);
__ Bind(&end_of_pool_before);
__ ldr(x2, &before_x);
__ ldr(w3, &before_w);
__ ldrsw(x5, &before_sx);
__ ldr(q11, &before_q);
__ ldr(d13, &before_d);
__ ldr(s25, &before_s);
__ ldr(x6, &after_x);
__ ldr(w7, &after_w);
__ ldrsw(x8, &after_sx);
__ ldr(q18, &after_q);
__ ldr(d14, &after_d);
__ ldr(s26, &after_s);
// Manually generate a pool.
__ B(&end_of_pool_after);
__ place(&after_x);
__ place(&after_w);
__ place(&after_sx);
__ place(&after_q);
__ place(&after_d);
__ place(&after_s);
__ Bind(&end_of_pool_after);
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdef, x2);
ASSERT_EQUAL_64(0xfedcba09, x3);
ASSERT_EQUAL_64(0xffffffff80000000, x5);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q11);
ASSERT_EQUAL_FP64(1.234, d13);
ASSERT_EQUAL_FP32(2.5, s25);
ASSERT_EQUAL_64(0x1234567890abcdef, x6);
ASSERT_EQUAL_64(0xfedcba09, x7);
ASSERT_EQUAL_64(0xffffffff80000000, x8);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q18);
ASSERT_EQUAL_FP64(1.234, d14);
ASSERT_EQUAL_FP32(2.5, s26);
TEARDOWN();
}
TEST(ldr_literal_custom_shared) {
SETUP();
ALLOW_ASM();
Label end_of_pool_before;
Label end_of_pool_after;
Literal<uint64_t> before_x(0x1234567890abcdef);
Literal<uint32_t> before_w(0xfedcba09);
Literal<uint64_t> before_q(0x1234000056780000, 0xabcd0000ef000000);
Literal<double> before_d(1.234);
Literal<float> before_s(2.5);
Literal<uint64_t> after_x(0x1234567890abcdef);
Literal<uint32_t> after_w(0xfedcba09);
Literal<uint64_t> after_q(0x1234000056780000, 0xabcd0000ef000000);
Literal<double> after_d(1.234);
Literal<float> after_s(2.5);
START();
// Manually generate a pool.
__ B(&end_of_pool_before);
__ place(&before_x);
__ place(&before_w);
__ place(&before_q);
__ place(&before_d);
__ place(&before_s);
__ Bind(&end_of_pool_before);
// Load the entries several times to test that literals can be shared.
for (int i = 0; i < 50; i++) {
__ ldr(x2, &before_x);
__ ldr(w3, &before_w);
__ ldrsw(x5, &before_w); // Re-use before_w.
__ ldr(q11, &before_q);
__ ldr(d13, &before_d);
__ ldr(s25, &before_s);
__ ldr(x6, &after_x);
__ ldr(w7, &after_w);
__ ldrsw(x8, &after_w); // Re-use after_w.
__ ldr(q18, &after_q);
__ ldr(d14, &after_d);
__ ldr(s26, &after_s);
}
// Manually generate a pool.
__ B(&end_of_pool_after);
__ place(&after_x);
__ place(&after_w);
__ place(&after_q);
__ place(&after_d);
__ place(&after_s);
__ Bind(&end_of_pool_after);
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdef, x2);
ASSERT_EQUAL_64(0xfedcba09, x3);
ASSERT_EQUAL_64(0xfffffffffedcba09, x5);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q11);
ASSERT_EQUAL_FP64(1.234, d13);
ASSERT_EQUAL_FP32(2.5, s25);
ASSERT_EQUAL_64(0x1234567890abcdef, x6);
ASSERT_EQUAL_64(0xfedcba09, x7);
ASSERT_EQUAL_64(0xfffffffffedcba09, x8);
ASSERT_EQUAL_128(0x1234000056780000, 0xabcd0000ef000000, q18);
ASSERT_EQUAL_FP64(1.234, d14);
ASSERT_EQUAL_FP32(2.5, s26);
TEARDOWN();
}
TEST(prfm_offset) {
SETUP();
START();
// The address used in prfm doesn't have to be valid.
__ Mov(x0, 0x0123456789abcdef);
for (int i = 0; i < (1 << ImmPrefetchOperation_width); i++) {
// Unallocated prefetch operations are ignored, so test all of them.
PrefetchOperation op = static_cast<PrefetchOperation>(i);
__ Prfm(op, MemOperand(x0));
__ Prfm(op, MemOperand(x0, 8));
__ Prfm(op, MemOperand(x0, 32760));
__ Prfm(op, MemOperand(x0, 32768));
__ Prfm(op, MemOperand(x0, 1));
__ Prfm(op, MemOperand(x0, 9));
__ Prfm(op, MemOperand(x0, 255));
__ Prfm(op, MemOperand(x0, 257));
__ Prfm(op, MemOperand(x0, -1));
__ Prfm(op, MemOperand(x0, -9));
__ Prfm(op, MemOperand(x0, -255));
__ Prfm(op, MemOperand(x0, -257));
__ Prfm(op, MemOperand(x0, 0xfedcba9876543210));
}
END();
RUN();
TEARDOWN();
}
TEST(prfm_regoffset) {
SETUP();
START();
// The address used in prfm doesn't have to be valid.
__ Mov(x0, 0x0123456789abcdef);
CPURegList inputs(CPURegister::kRegister, kXRegSize, 10, 18);
__ Mov(x10, 0);
__ Mov(x11, 1);
__ Mov(x12, 8);
__ Mov(x13, 255);
__ Mov(x14, -0);
__ Mov(x15, -1);
__ Mov(x16, -8);
__ Mov(x17, -255);
__ Mov(x18, 0xfedcba9876543210);
for (int i = 0; i < (1 << ImmPrefetchOperation_width); i++) {
// Unallocated prefetch operations are ignored, so test all of them.
PrefetchOperation op = static_cast<PrefetchOperation>(i);
CPURegList loop = inputs;
while (!loop.IsEmpty()) {
Register input(loop.PopLowestIndex());
__ Prfm(op, MemOperand(x0, input));
__ Prfm(op, MemOperand(x0, input, UXTW));
__ Prfm(op, MemOperand(x0, input, UXTW, 3));
__ Prfm(op, MemOperand(x0, input, LSL));
__ Prfm(op, MemOperand(x0, input, LSL, 3));
__ Prfm(op, MemOperand(x0, input, SXTW));
__ Prfm(op, MemOperand(x0, input, SXTW, 3));
__ Prfm(op, MemOperand(x0, input, SXTX));
__ Prfm(op, MemOperand(x0, input, SXTX, 3));
}
}
END();
RUN();
TEARDOWN();
}
TEST(prfm_literal_imm19) {
SETUP();
ALLOW_ASM();
START();
for (int i = 0; i < (1 << ImmPrefetchOperation_width); i++) {
// Unallocated prefetch operations are ignored, so test all of them.
PrefetchOperation op = static_cast<PrefetchOperation>(i);
// The address used in prfm doesn't have to be valid.
__ prfm(op, 0);
__ prfm(op, 1);
__ prfm(op, -1);
__ prfm(op, 1000);
__ prfm(op, -1000);
__ prfm(op, 0x3ffff);
__ prfm(op, -0x40000);
}
END();
RUN();
TEARDOWN();
}
TEST(prfm_literal) {
SETUP();
ALLOW_ASM();
Label end_of_pool_before;
Label end_of_pool_after;
Literal<uint64_t> before(0);
Literal<uint64_t> after(0);
START();
// Manually generate a pool.
__ B(&end_of_pool_before);
__ place(&before);
__ Bind(&end_of_pool_before);
for (int i = 0; i < (1 << ImmPrefetchOperation_width); i++) {
// Unallocated prefetch operations are ignored, so test all of them.
PrefetchOperation op = static_cast<PrefetchOperation>(i);
CodeBufferCheckScope guard(&masm, 2 * kInstructionSize);
__ prfm(op, &before);
__ prfm(op, &after);
}
// Manually generate a pool.
__ B(&end_of_pool_after);
__ place(&after);
__ Bind(&end_of_pool_after);
END();
RUN();
TEARDOWN();
}
TEST(prfm_wide) {
SETUP();
START();
// The address used in prfm doesn't have to be valid.
__ Mov(x0, 0x0123456789abcdef);
for (int i = 0; i < (1 << ImmPrefetchOperation_width); i++) {
// Unallocated prefetch operations are ignored, so test all of them.
PrefetchOperation op = static_cast<PrefetchOperation>(i);
__ Prfm(op, MemOperand(x0, 0x40000));
__ Prfm(op, MemOperand(x0, -0x40001));
__ Prfm(op, MemOperand(x0, UINT64_C(0x5555555555555555)));
__ Prfm(op, MemOperand(x0, UINT64_C(0xfedcba9876543210)));
}
END();
RUN();
TEARDOWN();
}
TEST(load_prfm_literal) {
// Test literals shared between both prfm and ldr.
SETUP();
ALLOW_ASM();
Label end_of_pool_before;
Label end_of_pool_after;
Literal<uint64_t> before_x(0x1234567890abcdef);
Literal<uint32_t> before_w(0xfedcba09);
Literal<uint32_t> before_sx(0x80000000);
Literal<double> before_d(1.234);
Literal<float> before_s(2.5);
Literal<uint64_t> after_x(0x1234567890abcdef);
Literal<uint32_t> after_w(0xfedcba09);
Literal<uint32_t> after_sx(0x80000000);
Literal<double> after_d(1.234);
Literal<float> after_s(2.5);
START();
// Manually generate a pool.
__ B(&end_of_pool_before);
__ place(&before_x);
__ place(&before_w);
__ place(&before_sx);
__ place(&before_d);
__ place(&before_s);
__ Bind(&end_of_pool_before);
for (int i = 0; i < (1 << ImmPrefetchOperation_width); i++) {
// Unallocated prefetch operations are ignored, so test all of them.
PrefetchOperation op = static_cast<PrefetchOperation>(i);
__ prfm(op, &before_x);
__ prfm(op, &before_w);
__ prfm(op, &before_sx);
__ prfm(op, &before_d);
__ prfm(op, &before_s);
__ prfm(op, &after_x);
__ prfm(op, &after_w);
__ prfm(op, &after_sx);
__ prfm(op, &after_d);
__ prfm(op, &after_s);
}
__ ldr(x2, &before_x);
__ ldr(w3, &before_w);
__ ldrsw(x5, &before_sx);
__ ldr(d13, &before_d);
__ ldr(s25, &before_s);
__ ldr(x6, &after_x);
__ ldr(w7, &after_w);
__ ldrsw(x8, &after_sx);
__ ldr(d14, &after_d);
__ ldr(s26, &after_s);
// Manually generate a pool.
__ B(&end_of_pool_after);
__ place(&after_x);
__ place(&after_w);
__ place(&after_sx);
__ place(&after_d);
__ place(&after_s);
__ Bind(&end_of_pool_after);
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdef, x2);
ASSERT_EQUAL_64(0xfedcba09, x3);
ASSERT_EQUAL_64(0xffffffff80000000, x5);
ASSERT_EQUAL_FP64(1.234, d13);
ASSERT_EQUAL_FP32(2.5, s25);
ASSERT_EQUAL_64(0x1234567890abcdef, x6);
ASSERT_EQUAL_64(0xfedcba09, x7);
ASSERT_EQUAL_64(0xffffffff80000000, x8);
ASSERT_EQUAL_FP64(1.234, d14);
ASSERT_EQUAL_FP32(2.5, s26);
TEARDOWN();
}
TEST(add_sub_imm) {
SETUP();
START();
__ Mov(x0, 0x0);
__ Mov(x1, 0x1111);
__ Mov(x2, 0xffffffffffffffff);
__ Mov(x3, 0x8000000000000000);
__ Add(x10, x0, Operand(0x123));
__ Add(x11, x1, Operand(0x122000));
__ Add(x12, x0, Operand(0xabc << 12));
__ Add(x13, x2, Operand(1));
__ Add(w14, w0, Operand(0x123));
__ Add(w15, w1, Operand(0x122000));
__ Add(w16, w0, Operand(0xabc << 12));
__ Add(w17, w2, Operand(1));
__ Sub(x20, x0, Operand(0x1));
__ Sub(x21, x1, Operand(0x111));
__ Sub(x22, x1, Operand(0x1 << 12));
__ Sub(x23, x3, Operand(1));
__ Sub(w24, w0, Operand(0x1));
__ Sub(w25, w1, Operand(0x111));
__ Sub(w26, w1, Operand(0x1 << 12));
__ Sub(w27, w3, Operand(1));
END();
RUN();
ASSERT_EQUAL_64(0x123, x10);
ASSERT_EQUAL_64(0x123111, x11);
ASSERT_EQUAL_64(0xabc000, x12);
ASSERT_EQUAL_64(0x0, x13);
ASSERT_EQUAL_32(0x123, w14);
ASSERT_EQUAL_32(0x123111, w15);
ASSERT_EQUAL_32(0xabc000, w16);
ASSERT_EQUAL_32(0x0, w17);
ASSERT_EQUAL_64(0xffffffffffffffff, x20);
ASSERT_EQUAL_64(0x1000, x21);
ASSERT_EQUAL_64(0x111, x22);
ASSERT_EQUAL_64(0x7fffffffffffffff, x23);
ASSERT_EQUAL_32(0xffffffff, w24);
ASSERT_EQUAL_32(0x1000, w25);
ASSERT_EQUAL_32(0x111, w26);
ASSERT_EQUAL_32(0xffffffff, w27);
TEARDOWN();
}
TEST(add_sub_wide_imm) {
SETUP();
START();
__ Mov(x0, 0x0);
__ Mov(x1, 0x1);
__ Add(x10, x0, Operand(0x1234567890abcdef));
__ Add(x11, x1, Operand(0xffffffff));
__ Add(w12, w0, Operand(0x12345678));
__ Add(w13, w1, Operand(0xffffffff));
__ Add(w18, w0, Operand(kWMinInt));
__ Sub(w19, w0, Operand(kWMinInt));
__ Sub(x20, x0, Operand(0x1234567890abcdef));
__ Sub(w21, w0, Operand(0x12345678));
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdef, x10);
ASSERT_EQUAL_64(0x100000000, x11);
ASSERT_EQUAL_32(0x12345678, w12);
ASSERT_EQUAL_64(0x0, x13);
ASSERT_EQUAL_32(kWMinInt, w18);
ASSERT_EQUAL_32(kWMinInt, w19);
ASSERT_EQUAL_64(-0x1234567890abcdef, x20);
ASSERT_EQUAL_32(-0x12345678, w21);
TEARDOWN();
}
TEST(add_sub_shifted) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x0123456789abcdef);
__ Mov(x2, 0xfedcba9876543210);
__ Mov(x3, 0xffffffffffffffff);
__ Add(x10, x1, Operand(x2));
__ Add(x11, x0, Operand(x1, LSL, 8));
__ Add(x12, x0, Operand(x1, LSR, 8));
__ Add(x13, x0, Operand(x1, ASR, 8));
__ Add(x14, x0, Operand(x2, ASR, 8));
__ Add(w15, w0, Operand(w1, ASR, 8));
__ Add(w18, w3, Operand(w1, ROR, 8));
__ Add(x19, x3, Operand(x1, ROR, 8));
__ Sub(x20, x3, Operand(x2));
__ Sub(x21, x3, Operand(x1, LSL, 8));
__ Sub(x22, x3, Operand(x1, LSR, 8));
__ Sub(x23, x3, Operand(x1, ASR, 8));
__ Sub(x24, x3, Operand(x2, ASR, 8));
__ Sub(w25, w3, Operand(w1, ASR, 8));
__ Sub(w26, w3, Operand(w1, ROR, 8));
__ Sub(x27, x3, Operand(x1, ROR, 8));
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffffffff, x10);
ASSERT_EQUAL_64(0x23456789abcdef00, x11);
ASSERT_EQUAL_64(0x000123456789abcd, x12);
ASSERT_EQUAL_64(0x000123456789abcd, x13);
ASSERT_EQUAL_64(0xfffedcba98765432, x14);
ASSERT_EQUAL_64(0xff89abcd, x15);
ASSERT_EQUAL_64(0xef89abcc, x18);
ASSERT_EQUAL_64(0xef0123456789abcc, x19);
ASSERT_EQUAL_64(0x0123456789abcdef, x20);
ASSERT_EQUAL_64(0xdcba9876543210ff, x21);
ASSERT_EQUAL_64(0xfffedcba98765432, x22);
ASSERT_EQUAL_64(0xfffedcba98765432, x23);
ASSERT_EQUAL_64(0x000123456789abcd, x24);
ASSERT_EQUAL_64(0x00765432, x25);
ASSERT_EQUAL_64(0x10765432, x26);
ASSERT_EQUAL_64(0x10fedcba98765432, x27);
TEARDOWN();
}
TEST(add_sub_extended) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x0123456789abcdef);
__ Mov(x2, 0xfedcba9876543210);
__ Mov(w3, 0x80);
__ Add(x10, x0, Operand(x1, UXTB, 0));
__ Add(x11, x0, Operand(x1, UXTB, 1));
__ Add(x12, x0, Operand(x1, UXTH, 2));
__ Add(x13, x0, Operand(x1, UXTW, 4));
__ Add(x14, x0, Operand(x1, SXTB, 0));
__ Add(x15, x0, Operand(x1, SXTB, 1));
__ Add(x16, x0, Operand(x1, SXTH, 2));
__ Add(x17, x0, Operand(x1, SXTW, 3));
__ Add(x18, x0, Operand(x2, SXTB, 0));
__ Add(x19, x0, Operand(x2, SXTB, 1));
__ Add(x20, x0, Operand(x2, SXTH, 2));
__ Add(x21, x0, Operand(x2, SXTW, 3));
__ Add(x22, x1, Operand(x2, SXTB, 1));
__ Sub(x23, x1, Operand(x2, SXTB, 1));
__ Add(w24, w1, Operand(w2, UXTB, 2));
__ Add(w25, w0, Operand(w1, SXTB, 0));
__ Add(w26, w0, Operand(w1, SXTB, 1));
__ Add(w27, w2, Operand(w1, SXTW, 3));
__ Add(w28, w0, Operand(w1, SXTW, 3));
__ Add(x29, x0, Operand(w1, SXTW, 3));
__ Sub(x30, x0, Operand(w3, SXTB, 1));
END();
RUN();
ASSERT_EQUAL_64(0xef, x10);
ASSERT_EQUAL_64(0x1de, x11);
ASSERT_EQUAL_64(0x337bc, x12);
ASSERT_EQUAL_64(0x89abcdef0, x13);
ASSERT_EQUAL_64(0xffffffffffffffef, x14);
ASSERT_EQUAL_64(0xffffffffffffffde, x15);
ASSERT_EQUAL_64(0xffffffffffff37bc, x16);
ASSERT_EQUAL_64(0xfffffffc4d5e6f78, x17);
ASSERT_EQUAL_64(0x10, x18);
ASSERT_EQUAL_64(0x20, x19);
ASSERT_EQUAL_64(0xc840, x20);
ASSERT_EQUAL_64(0x3b2a19080, x21);
ASSERT_EQUAL_64(0x0123456789abce0f, x22);
ASSERT_EQUAL_64(0x0123456789abcdcf, x23);
ASSERT_EQUAL_32(0x89abce2f, w24);
ASSERT_EQUAL_32(0xffffffef, w25);
ASSERT_EQUAL_32(0xffffffde, w26);
ASSERT_EQUAL_32(0xc3b2a188, w27);
ASSERT_EQUAL_32(0x4d5e6f78, w28);
ASSERT_EQUAL_64(0xfffffffc4d5e6f78, x29);
ASSERT_EQUAL_64(256, x30);
TEARDOWN();
}
TEST(add_sub_negative) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 4687);
__ Mov(x2, 0x1122334455667788);
__ Mov(w3, 0x11223344);
__ Mov(w4, 400000);
__ Add(x10, x0, -42);
__ Add(x11, x1, -687);
__ Add(x12, x2, -0x88);
__ Sub(x13, x0, -600);
__ Sub(x14, x1, -313);
__ Sub(x15, x2, -0x555);
__ Add(w19, w3, -0x344);
__ Add(w20, w4, -2000);
__ Sub(w21, w3, -0xbc);
__ Sub(w22, w4, -2000);
END();
RUN();
ASSERT_EQUAL_64(-42, x10);
ASSERT_EQUAL_64(4000, x11);
ASSERT_EQUAL_64(0x1122334455667700, x12);
ASSERT_EQUAL_64(600, x13);
ASSERT_EQUAL_64(5000, x14);
ASSERT_EQUAL_64(0x1122334455667cdd, x15);
ASSERT_EQUAL_32(0x11223000, w19);
ASSERT_EQUAL_32(398000, w20);
ASSERT_EQUAL_32(0x11223400, w21);
ASSERT_EQUAL_32(402000, w22);
TEARDOWN();
}
TEST(add_sub_zero) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0);
__ Mov(x2, 0);
Label blob1;
__ Bind(&blob1);
__ Add(x0, x0, 0);
__ Sub(x1, x1, 0);
__ Sub(x2, x2, xzr);
VIXL_CHECK(__ SizeOfCodeGeneratedSince(&blob1) == 0);
Label blob2;
__ Bind(&blob2);
__ Add(w3, w3, 0);
VIXL_CHECK(__ SizeOfCodeGeneratedSince(&blob2) != 0);
Label blob3;
__ Bind(&blob3);
__ Sub(w3, w3, wzr);
VIXL_CHECK(__ SizeOfCodeGeneratedSince(&blob3) != 0);
END();
RUN();
ASSERT_EQUAL_64(0, x0);
ASSERT_EQUAL_64(0, x1);
ASSERT_EQUAL_64(0, x2);
TEARDOWN();
}
TEST(claim_drop_zero) {
SETUP();
START();
Label start;
__ Bind(&start);
__ Claim(Operand(0));
__ Drop(Operand(0));
__ Claim(Operand(xzr));
__ Drop(Operand(xzr));
VIXL_CHECK(__ SizeOfCodeGeneratedSince(&start) == 0);
END();
RUN();
TEARDOWN();
}
TEST(neg) {
SETUP();
START();
__ Mov(x0, 0xf123456789abcdef);
// Immediate.
__ Neg(x1, 0x123);
__ Neg(w2, 0x123);
// Shifted.
__ Neg(x3, Operand(x0, LSL, 1));
__ Neg(w4, Operand(w0, LSL, 2));
__ Neg(x5, Operand(x0, LSR, 3));
__ Neg(w6, Operand(w0, LSR, 4));
__ Neg(x7, Operand(x0, ASR, 5));
__ Neg(w8, Operand(w0, ASR, 6));
// Extended.
__ Neg(w9, Operand(w0, UXTB));
__ Neg(x10, Operand(x0, SXTB, 1));
__ Neg(w11, Operand(w0, UXTH, 2));
__ Neg(x12, Operand(x0, SXTH, 3));
__ Neg(w13, Operand(w0, UXTW, 4));
__ Neg(x14, Operand(x0, SXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0xfffffffffffffedd, x1);
ASSERT_EQUAL_64(0xfffffedd, x2);
ASSERT_EQUAL_64(0x1db97530eca86422, x3);
ASSERT_EQUAL_64(0xd950c844, x4);
ASSERT_EQUAL_64(0xe1db97530eca8643, x5);
ASSERT_EQUAL_64(0xf7654322, x6);
ASSERT_EQUAL_64(0x0076e5d4c3b2a191, x7);
ASSERT_EQUAL_64(0x01d950c9, x8);
ASSERT_EQUAL_64(0xffffff11, x9);
ASSERT_EQUAL_64(0x0000000000000022, x10);
ASSERT_EQUAL_64(0xfffcc844, x11);
ASSERT_EQUAL_64(0x0000000000019088, x12);
ASSERT_EQUAL_64(0x65432110, x13);
ASSERT_EQUAL_64(0x0000000765432110, x14);
TEARDOWN();
}
template<typename T, typename Op>
static void AdcsSbcsHelper(Op op, T left, T right, int carry,
T expected, StatusFlags expected_flags) {
int reg_size = sizeof(T) * 8;
Register left_reg(0, reg_size);
Register right_reg(1, reg_size);
Register result_reg(2, reg_size);
SETUP();
START();
__ Mov(left_reg, left);
__ Mov(right_reg, right);
__ Mov(x10, (carry ? CFlag : NoFlag));
__ Msr(NZCV, x10);
(masm.*op)(result_reg, left_reg, right_reg);
END();
RUN();
ASSERT_EQUAL_64(left, left_reg.X());
ASSERT_EQUAL_64(right, right_reg.X());
ASSERT_EQUAL_64(expected, result_reg.X());
ASSERT_EQUAL_NZCV(expected_flags);
TEARDOWN();
}
TEST(adcs_sbcs_x) {
uint64_t inputs[] = {
0x0000000000000000, 0x0000000000000001,
0x7ffffffffffffffe, 0x7fffffffffffffff,
0x8000000000000000, 0x8000000000000001,
0xfffffffffffffffe, 0xffffffffffffffff,
};
static const size_t input_count = sizeof(inputs) / sizeof(inputs[0]);
struct Expected {
uint64_t carry0_result;
StatusFlags carry0_flags;
uint64_t carry1_result;
StatusFlags carry1_flags;
};
static const Expected expected_adcs_x[input_count][input_count] = {
{{0x0000000000000000, ZFlag, 0x0000000000000001, NoFlag},
{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag},
{0x7ffffffffffffffe, NoFlag, 0x7fffffffffffffff, NoFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0x8000000000000000, NFlag, 0x8000000000000001, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag}},
{{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag},
{0x0000000000000002, NoFlag, 0x0000000000000003, NoFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag}},
{{0x7ffffffffffffffe, NoFlag, 0x7fffffffffffffff, NoFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0xfffffffffffffffc, NVFlag, 0xfffffffffffffffd, NVFlag},
{0xfffffffffffffffd, NVFlag, 0xfffffffffffffffe, NVFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x7ffffffffffffffc, CFlag, 0x7ffffffffffffffd, CFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag}},
{{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0xfffffffffffffffd, NVFlag, 0xfffffffffffffffe, NVFlag},
{0xfffffffffffffffe, NVFlag, 0xffffffffffffffff, NVFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x7ffffffffffffffe, CFlag, 0x7fffffffffffffff, CFlag}},
{{0x8000000000000000, NFlag, 0x8000000000000001, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCVFlag, 0x0000000000000001, CVFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x7ffffffffffffffe, CVFlag, 0x7fffffffffffffff, CVFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag}},
{{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x0000000000000002, CVFlag, 0x0000000000000003, CVFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag}},
{{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x7ffffffffffffffc, CFlag, 0x7ffffffffffffffd, CFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x7ffffffffffffffe, CVFlag, 0x7fffffffffffffff, CVFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0xfffffffffffffffc, NCFlag, 0xfffffffffffffffd, NCFlag},
{0xfffffffffffffffd, NCFlag, 0xfffffffffffffffe, NCFlag}},
{{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x7ffffffffffffffe, CFlag, 0x7fffffffffffffff, CFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag},
{0xfffffffffffffffd, NCFlag, 0xfffffffffffffffe, NCFlag},
{0xfffffffffffffffe, NCFlag, 0xffffffffffffffff, NCFlag}}
};
static const Expected expected_sbcs_x[input_count][input_count] = {
{{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000000, NFlag, 0x8000000000000001, NFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0x7ffffffffffffffe, NoFlag, 0x7fffffffffffffff, NoFlag},
{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag},
{0x0000000000000000, ZFlag, 0x0000000000000001, NoFlag}},
{{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0x0000000000000002, NoFlag, 0x0000000000000003, NoFlag},
{0x0000000000000001, NoFlag, 0x0000000000000002, NoFlag}},
{{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x7ffffffffffffffc, CFlag, 0x7ffffffffffffffd, CFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0xfffffffffffffffd, NVFlag, 0xfffffffffffffffe, NVFlag},
{0xfffffffffffffffc, NVFlag, 0xfffffffffffffffd, NVFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag},
{0x7ffffffffffffffe, NoFlag, 0x7fffffffffffffff, NoFlag}},
{{0x7ffffffffffffffe, CFlag, 0x7fffffffffffffff, CFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0xfffffffffffffffe, NVFlag, 0xffffffffffffffff, NVFlag},
{0xfffffffffffffffd, NVFlag, 0xfffffffffffffffe, NVFlag},
{0x8000000000000000, NVFlag, 0x8000000000000001, NVFlag},
{0x7fffffffffffffff, NoFlag, 0x8000000000000000, NVFlag}},
{{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0x7ffffffffffffffe, CVFlag, 0x7fffffffffffffff, CVFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x0000000000000000, ZCVFlag, 0x0000000000000001, CVFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag},
{0x8000000000000000, NFlag, 0x8000000000000001, NFlag}},
{{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0x0000000000000002, CVFlag, 0x0000000000000003, CVFlag},
{0x0000000000000001, CVFlag, 0x0000000000000002, CVFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0x8000000000000002, NFlag, 0x8000000000000003, NFlag},
{0x8000000000000001, NFlag, 0x8000000000000002, NFlag}},
{{0xfffffffffffffffd, NCFlag, 0xfffffffffffffffe, NCFlag},
{0xfffffffffffffffc, NCFlag, 0xfffffffffffffffd, NCFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0x7ffffffffffffffe, CVFlag, 0x7fffffffffffffff, CVFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x7ffffffffffffffc, CFlag, 0x7ffffffffffffffd, CFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag},
{0xfffffffffffffffe, NFlag, 0xffffffffffffffff, NFlag}},
{{0xfffffffffffffffe, NCFlag, 0xffffffffffffffff, NCFlag},
{0xfffffffffffffffd, NCFlag, 0xfffffffffffffffe, NCFlag},
{0x8000000000000000, NCFlag, 0x8000000000000001, NCFlag},
{0x7fffffffffffffff, CVFlag, 0x8000000000000000, NCFlag},
{0x7ffffffffffffffe, CFlag, 0x7fffffffffffffff, CFlag},
{0x7ffffffffffffffd, CFlag, 0x7ffffffffffffffe, CFlag},
{0x0000000000000000, ZCFlag, 0x0000000000000001, CFlag},
{0xffffffffffffffff, NFlag, 0x0000000000000000, ZCFlag}}
};
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected & expected = expected_adcs_x[left][right];
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected & expected = expected_sbcs_x[left][right];
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
}
TEST(adcs_sbcs_w) {
uint32_t inputs[] = {
0x00000000, 0x00000001, 0x7ffffffe, 0x7fffffff,
0x80000000, 0x80000001, 0xfffffffe, 0xffffffff,
};
static const size_t input_count = sizeof(inputs) / sizeof(inputs[0]);
struct Expected {
uint32_t carry0_result;
StatusFlags carry0_flags;
uint32_t carry1_result;
StatusFlags carry1_flags;
};
static const Expected expected_adcs_w[input_count][input_count] = {
{{0x00000000, ZFlag, 0x00000001, NoFlag},
{0x00000001, NoFlag, 0x00000002, NoFlag},
{0x7ffffffe, NoFlag, 0x7fffffff, NoFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0x80000000, NFlag, 0x80000001, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag}},
{{0x00000001, NoFlag, 0x00000002, NoFlag},
{0x00000002, NoFlag, 0x00000003, NoFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag}},
{{0x7ffffffe, NoFlag, 0x7fffffff, NoFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0xfffffffc, NVFlag, 0xfffffffd, NVFlag},
{0xfffffffd, NVFlag, 0xfffffffe, NVFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x7ffffffc, CFlag, 0x7ffffffd, CFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag}},
{{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0xfffffffd, NVFlag, 0xfffffffe, NVFlag},
{0xfffffffe, NVFlag, 0xffffffff, NVFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x7ffffffe, CFlag, 0x7fffffff, CFlag}},
{{0x80000000, NFlag, 0x80000001, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCVFlag, 0x00000001, CVFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x7ffffffe, CVFlag, 0x7fffffff, CVFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag}},
{{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x00000002, CVFlag, 0x00000003, CVFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0x80000000, NCFlag, 0x80000001, NCFlag}},
{{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x7ffffffc, CFlag, 0x7ffffffd, CFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x7ffffffe, CVFlag, 0x7fffffff, CVFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0xfffffffc, NCFlag, 0xfffffffd, NCFlag},
{0xfffffffd, NCFlag, 0xfffffffe, NCFlag}},
{{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x7ffffffe, CFlag, 0x7fffffff, CFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0x80000000, NCFlag, 0x80000001, NCFlag},
{0xfffffffd, NCFlag, 0xfffffffe, NCFlag},
{0xfffffffe, NCFlag, 0xffffffff, NCFlag}}
};
static const Expected expected_sbcs_w[input_count][input_count] = {
{{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000000, NFlag, 0x80000001, NFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0x7ffffffe, NoFlag, 0x7fffffff, NoFlag},
{0x00000001, NoFlag, 0x00000002, NoFlag},
{0x00000000, ZFlag, 0x00000001, NoFlag}},
{{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0x00000002, NoFlag, 0x00000003, NoFlag},
{0x00000001, NoFlag, 0x00000002, NoFlag}},
{{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x7ffffffc, CFlag, 0x7ffffffd, CFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0xfffffffd, NVFlag, 0xfffffffe, NVFlag},
{0xfffffffc, NVFlag, 0xfffffffd, NVFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag},
{0x7ffffffe, NoFlag, 0x7fffffff, NoFlag}},
{{0x7ffffffe, CFlag, 0x7fffffff, CFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0xfffffffe, NVFlag, 0xffffffff, NVFlag},
{0xfffffffd, NVFlag, 0xfffffffe, NVFlag},
{0x80000000, NVFlag, 0x80000001, NVFlag},
{0x7fffffff, NoFlag, 0x80000000, NVFlag}},
{{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0x7ffffffe, CVFlag, 0x7fffffff, CVFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x00000000, ZCVFlag, 0x00000001, CVFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag},
{0x80000000, NFlag, 0x80000001, NFlag}},
{{0x80000000, NCFlag, 0x80000001, NCFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0x00000002, CVFlag, 0x00000003, CVFlag},
{0x00000001, CVFlag, 0x00000002, CVFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0x80000002, NFlag, 0x80000003, NFlag},
{0x80000001, NFlag, 0x80000002, NFlag}},
{{0xfffffffd, NCFlag, 0xfffffffe, NCFlag},
{0xfffffffc, NCFlag, 0xfffffffd, NCFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0x7ffffffe, CVFlag, 0x7fffffff, CVFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x7ffffffc, CFlag, 0x7ffffffd, CFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag},
{0xfffffffe, NFlag, 0xffffffff, NFlag}},
{{0xfffffffe, NCFlag, 0xffffffff, NCFlag},
{0xfffffffd, NCFlag, 0xfffffffe, NCFlag},
{0x80000000, NCFlag, 0x80000001, NCFlag},
{0x7fffffff, CVFlag, 0x80000000, NCFlag},
{0x7ffffffe, CFlag, 0x7fffffff, CFlag},
{0x7ffffffd, CFlag, 0x7ffffffe, CFlag},
{0x00000000, ZCFlag, 0x00000001, CFlag},
{0xffffffff, NFlag, 0x00000000, ZCFlag}}
};
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected & expected = expected_adcs_w[left][right];
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Adcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
for (size_t left = 0; left < input_count; left++) {
for (size_t right = 0; right < input_count; right++) {
const Expected & expected = expected_sbcs_w[left][right];
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 0,
expected.carry0_result, expected.carry0_flags);
AdcsSbcsHelper(&MacroAssembler::Sbcs, inputs[left], inputs[right], 1,
expected.carry1_result, expected.carry1_flags);
}
}
}
TEST(adc_sbc_shift) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x2, 0x0123456789abcdef);
__ Mov(x3, 0xfedcba9876543210);
__ Mov(x4, 0xffffffffffffffff);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adc(x5, x2, Operand(x3));
__ Adc(x6, x0, Operand(x1, LSL, 60));
__ Sbc(x7, x4, Operand(x3, LSR, 4));
__ Adc(x8, x2, Operand(x3, ASR, 4));
__ Adc(x9, x2, Operand(x3, ROR, 8));
__ Adc(w10, w2, Operand(w3));
__ Adc(w11, w0, Operand(w1, LSL, 30));
__ Sbc(w12, w4, Operand(w3, LSR, 4));
__ Adc(w13, w2, Operand(w3, ASR, 4));
__ Adc(w14, w2, Operand(w3, ROR, 8));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x18, x2, Operand(x3));
__ Adc(x19, x0, Operand(x1, LSL, 60));
__ Sbc(x20, x4, Operand(x3, LSR, 4));
__ Adc(x21, x2, Operand(x3, ASR, 4));
__ Adc(x22, x2, Operand(x3, ROR, 8));
__ Adc(w23, w2, Operand(w3));
__ Adc(w24, w0, Operand(w1, LSL, 30));
__ Sbc(w25, w4, Operand(w3, LSR, 4));
__ Adc(w26, w2, Operand(w3, ASR, 4));
__ Adc(w27, w2, Operand(w3, ROR, 8));
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffffffff, x5);
ASSERT_EQUAL_64(INT64_C(1) << 60, x6);
ASSERT_EQUAL_64(0xf0123456789abcdd, x7);
ASSERT_EQUAL_64(0x0111111111111110, x8);
ASSERT_EQUAL_64(0x1222222222222221, x9);
ASSERT_EQUAL_32(0xffffffff, w10);
ASSERT_EQUAL_32(INT32_C(1) << 30, w11);
ASSERT_EQUAL_32(0xf89abcdd, w12);
ASSERT_EQUAL_32(0x91111110, w13);
ASSERT_EQUAL_32(0x9a222221, w14);
ASSERT_EQUAL_64(0xffffffffffffffff + 1, x18);
ASSERT_EQUAL_64((INT64_C(1) << 60) + 1, x19);
ASSERT_EQUAL_64(0xf0123456789abcdd + 1, x20);
ASSERT_EQUAL_64(0x0111111111111110 + 1, x21);
ASSERT_EQUAL_64(0x1222222222222221 + 1, x22);
ASSERT_EQUAL_32(0xffffffff + 1, w23);
ASSERT_EQUAL_32((INT32_C(1) << 30) + 1, w24);
ASSERT_EQUAL_32(0xf89abcdd + 1, w25);
ASSERT_EQUAL_32(0x91111110 + 1, w26);
ASSERT_EQUAL_32(0x9a222221 + 1, w27);
TEARDOWN();
}
TEST(adc_sbc_extend) {
SETUP();
START();
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x2, 0x0123456789abcdef);
__ Adc(x10, x1, Operand(w2, UXTB, 1));
__ Adc(x11, x1, Operand(x2, SXTH, 2));
__ Sbc(x12, x1, Operand(w2, UXTW, 4));
__ Adc(x13, x1, Operand(x2, UXTX, 4));
__ Adc(w14, w1, Operand(w2, UXTB, 1));
__ Adc(w15, w1, Operand(w2, SXTH, 2));
__ Adc(w9, w1, Operand(w2, UXTW, 4));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x20, x1, Operand(w2, UXTB, 1));
__ Adc(x21, x1, Operand(x2, SXTH, 2));
__ Sbc(x22, x1, Operand(w2, UXTW, 4));
__ Adc(x23, x1, Operand(x2, UXTX, 4));
__ Adc(w24, w1, Operand(w2, UXTB, 1));
__ Adc(w25, w1, Operand(w2, SXTH, 2));
__ Adc(w26, w1, Operand(w2, UXTW, 4));
END();
RUN();
ASSERT_EQUAL_64(0x1df, x10);
ASSERT_EQUAL_64(0xffffffffffff37bd, x11);
ASSERT_EQUAL_64(0xfffffff765432110, x12);
ASSERT_EQUAL_64(0x123456789abcdef1, x13);
ASSERT_EQUAL_32(0x1df, w14);
ASSERT_EQUAL_32(0xffff37bd, w15);
ASSERT_EQUAL_32(0x9abcdef1, w9);
ASSERT_EQUAL_64(0x1df + 1, x20);
ASSERT_EQUAL_64(0xffffffffffff37bd + 1, x21);
ASSERT_EQUAL_64(0xfffffff765432110 + 1, x22);
ASSERT_EQUAL_64(0x123456789abcdef1 + 1, x23);
ASSERT_EQUAL_32(0x1df + 1, w24);
ASSERT_EQUAL_32(0xffff37bd + 1, w25);
ASSERT_EQUAL_32(0x9abcdef1 + 1, w26);
// Check that adc correctly sets the condition flags.
START();
__ Mov(x0, 0xff);
__ Mov(x1, 0xffffffffffffffff);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, SXTX, 1));
END();
RUN();
ASSERT_EQUAL_NZCV(CFlag);
START();
__ Mov(x0, 0x7fffffffffffffff);
__ Mov(x1, 1);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(x1, UXTB, 2));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
START();
__ Mov(x0, 0x7fffffffffffffff);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adcs(x10, x0, Operand(1));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
TEARDOWN();
}
TEST(adc_sbc_wide_imm) {
SETUP();
START();
__ Mov(x0, 0);
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Adc(x7, x0, Operand(0x1234567890abcdef));
__ Adc(w8, w0, Operand(0xffffffff));
__ Sbc(x9, x0, Operand(0x1234567890abcdef));
__ Sbc(w10, w0, Operand(0xffffffff));
__ Ngc(x11, Operand(0xffffffff00000000));
__ Ngc(w12, Operand(0xffff0000));
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Adc(x18, x0, Operand(0x1234567890abcdef));
__ Adc(w19, w0, Operand(0xffffffff));
__ Sbc(x20, x0, Operand(0x1234567890abcdef));
__ Sbc(w21, w0, Operand(0xffffffff));
__ Ngc(x22, Operand(0xffffffff00000000));
__ Ngc(w23, Operand(0xffff0000));
END();
RUN();
ASSERT_EQUAL_64(0x1234567890abcdef, x7);
ASSERT_EQUAL_64(0xffffffff, x8);
ASSERT_EQUAL_64(0xedcba9876f543210, x9);
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(0xffffffff, x11);
ASSERT_EQUAL_64(0xffff, x12);
ASSERT_EQUAL_64(0x1234567890abcdef + 1, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xedcba9876f543211, x20);
ASSERT_EQUAL_64(1, x21);
ASSERT_EQUAL_64(0x0000000100000000, x22);
ASSERT_EQUAL_64(0x0000000000010000, x23);
TEARDOWN();
}
TEST(flags) {
SETUP();
START();
__ Mov(x0, 0);
__ Mov(x1, 0x1111111111111111);
__ Neg(x10, Operand(x0));
__ Neg(x11, Operand(x1));
__ Neg(w12, Operand(w1));
// Clear the C flag.
__ Adds(x0, x0, Operand(0));
__ Ngc(x13, Operand(x0));
// Set the C flag.
__ Cmp(x0, Operand(x0));
__ Ngc(w14, Operand(w0));
END();
RUN();
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(-0x1111111111111111, x11);
ASSERT_EQUAL_32(-0x11111111, w12);
ASSERT_EQUAL_64(-1, x13);
ASSERT_EQUAL_32(0, w14);
START();
__ Mov(x0, 0);
__ Cmp(x0, Operand(x0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 0);
__ Cmp(w0, Operand(w0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(x0, 0);
__ Mov(x1, 0x1111111111111111);
__ Cmp(x0, Operand(x1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 0x11111111);
__ Cmp(w0, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
START();
__ Mov(x1, 0x1111111111111111);
__ Cmp(x1, Operand(0));
END();
RUN();
ASSERT_EQUAL_NZCV(CFlag);
START();
__ Mov(w1, 0x11111111);
__ Cmp(w1, Operand(0));
END();
RUN();
ASSERT_EQUAL_NZCV(CFlag);
START();
__ Mov(x0, 1);
__ Mov(x1, 0x7fffffffffffffff);
__ Cmn(x1, Operand(x0));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
START();
__ Mov(w0, 1);
__ Mov(w1, 0x7fffffff);
__ Cmn(w1, Operand(w0));
END();
RUN();
ASSERT_EQUAL_NZCV(NVFlag);
START();
__ Mov(x0, 1);
__ Mov(x1, 0xffffffffffffffff);
__ Cmn(x1, Operand(x0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 1);
__ Mov(w1, 0xffffffff);
__ Cmn(w1, Operand(w0));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 1);
// Clear the C flag.
__ Adds(w0, w0, Operand(0));
__ Ngcs(w0, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(NFlag);
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
// Set the C flag.
__ Cmp(w0, Operand(w0));
__ Ngcs(w0, Operand(w1));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
TEARDOWN();
}
TEST(cmp_shift) {
SETUP();
START();
__ Mov(x18, 0xf0000000);
__ Mov(x19, 0xf000000010000000);
__ Mov(x20, 0xf0000000f0000000);
__ Mov(x21, 0x7800000078000000);
__ Mov(x22, 0x3c0000003c000000);
__ Mov(x23, 0x8000000780000000);
__ Mov(x24, 0x0000000f00000000);
__ Mov(x25, 0x00000003c0000000);
__ Mov(x26, 0x8000000780000000);
__ Mov(x27, 0xc0000003);
__ Cmp(w20, Operand(w21, LSL, 1));
__ Mrs(x0, NZCV);
__ Cmp(x20, Operand(x22, LSL, 2));
__ Mrs(x1, NZCV);
__ Cmp(w19, Operand(w23, LSR, 3));
__ Mrs(x2, NZCV);
__ Cmp(x18, Operand(x24, LSR, 4));
__ Mrs(x3, NZCV);
__ Cmp(w20, Operand(w25, ASR, 2));
__ Mrs(x4, NZCV);
__ Cmp(x20, Operand(x26, ASR, 3));
__ Mrs(x5, NZCV);
__ Cmp(w27, Operand(w22, ROR, 28));
__ Mrs(x6, NZCV);
__ Cmp(x20, Operand(x21, ROR, 31));
__ Mrs(x7, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(ZCFlag, w1);
ASSERT_EQUAL_32(ZCFlag, w2);
ASSERT_EQUAL_32(ZCFlag, w3);
ASSERT_EQUAL_32(ZCFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
ASSERT_EQUAL_32(ZCFlag, w6);
ASSERT_EQUAL_32(ZCFlag, w7);
TEARDOWN();
}
TEST(cmp_extend) {
SETUP();
START();
__ Mov(w20, 0x2);
__ Mov(w21, 0x1);
__ Mov(x22, 0xffffffffffffffff);
__ Mov(x23, 0xff);
__ Mov(x24, 0xfffffffffffffffe);
__ Mov(x25, 0xffff);
__ Mov(x26, 0xffffffff);
__ Cmp(w20, Operand(w21, LSL, 1));
__ Mrs(x0, NZCV);
__ Cmp(x22, Operand(x23, SXTB, 0));
__ Mrs(x1, NZCV);
__ Cmp(x24, Operand(x23, SXTB, 1));
__ Mrs(x2, NZCV);
__ Cmp(x24, Operand(x23, UXTB, 1));
__ Mrs(x3, NZCV);
__ Cmp(w22, Operand(w25, UXTH));
__ Mrs(x4, NZCV);
__ Cmp(x22, Operand(x25, SXTH));
__ Mrs(x5, NZCV);
__ Cmp(x22, Operand(x26, UXTW));
__ Mrs(x6, NZCV);
__ Cmp(x24, Operand(x26, SXTW, 1));
__ Mrs(x7, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(ZCFlag, w1);
ASSERT_EQUAL_32(ZCFlag, w2);
ASSERT_EQUAL_32(NCFlag, w3);
ASSERT_EQUAL_32(NCFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
ASSERT_EQUAL_32(NCFlag, w6);
ASSERT_EQUAL_32(ZCFlag, w7);
TEARDOWN();
}
TEST(ccmp) {
SETUP();
ALLOW_ASM();
START();
__ Mov(w16, 0);
__ Mov(w17, 1);
__ Cmp(w16, w16);
__ Ccmp(w16, w17, NCFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w16, w16);
__ Ccmp(w16, w17, NCFlag, ne);
__ Mrs(x1, NZCV);
__ Cmp(x16, x16);
__ Ccmn(x16, 2, NZCVFlag, eq);
__ Mrs(x2, NZCV);
__ Cmp(x16, x16);
__ Ccmn(x16, 2, NZCVFlag, ne);
__ Mrs(x3, NZCV);
// The MacroAssembler does not allow al as a condition.
__ ccmp(x16, x16, NZCVFlag, al);
__ Mrs(x4, NZCV);
// The MacroAssembler does not allow nv as a condition.
__ ccmp(x16, x16, NZCVFlag, nv);
__ Mrs(x5, NZCV);
END();
RUN();
ASSERT_EQUAL_32(NFlag, w0);
ASSERT_EQUAL_32(NCFlag, w1);
ASSERT_EQUAL_32(NoFlag, w2);
ASSERT_EQUAL_32(NZCVFlag, w3);
ASSERT_EQUAL_32(ZCFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
TEARDOWN();
}
TEST(ccmp_wide_imm) {
SETUP();
START();
__ Mov(w20, 0);
__ Cmp(w20, Operand(w20));
__ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x20, Operand(0xffffffffffffffff), NZCVFlag, eq);
__ Mrs(x1, NZCV);
END();
RUN();
ASSERT_EQUAL_32(NFlag, w0);
ASSERT_EQUAL_32(NoFlag, w1);
TEARDOWN();
}
TEST(ccmp_shift_extend) {
SETUP();
START();
__ Mov(w20, 0x2);
__ Mov(w21, 0x1);
__ Mov(x22, 0xffffffffffffffff);
__ Mov(x23, 0xff);
__ Mov(x24, 0xfffffffffffffffe);
__ Cmp(w20, Operand(w20));
__ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq);
__ Mrs(x1, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq);
__ Mrs(x2, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq);
__ Mrs(x3, NZCV);
__ Cmp(w20, Operand(w20));
__ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne);
__ Mrs(x4, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(ZCFlag, w1);
ASSERT_EQUAL_32(ZCFlag, w2);
ASSERT_EQUAL_32(NCFlag, w3);
ASSERT_EQUAL_32(NZCVFlag, w4);
TEARDOWN();
}
TEST(csel) {
SETUP();
ALLOW_ASM();
START();
__ Mov(x16, 0);
__ Mov(x24, 0x0000000f0000000f);
__ Mov(x25, 0x0000001f0000001f);
__ Cmp(w16, Operand(0));
__ Csel(w0, w24, w25, eq);
__ Csel(w1, w24, w25, ne);
__ Csinc(w2, w24, w25, mi);
__ Csinc(w3, w24, w25, pl);
// The MacroAssembler does not allow al or nv as a condition.
__ csel(w13, w24, w25, al);
__ csel(x14, x24, x25, nv);
__ Cmp(x16, Operand(1));
__ Csinv(x4, x24, x25, gt);
__ Csinv(x5, x24, x25, le);
__ Csneg(x6, x24, x25, hs);
__ Csneg(x7, x24, x25, lo);
__ Cset(w8, ne);
__ Csetm(w9, ne);
__ Cinc(x10, x25, ne);
__ Cinv(x11, x24, ne);
__ Cneg(x12, x24, ne);
// The MacroAssembler does not allow al or nv as a condition.
__ csel(w15, w24, w25, al);
__ csel(x17, x24, x25, nv);
END();
RUN();
ASSERT_EQUAL_64(0x0000000f, x0);
ASSERT_EQUAL_64(0x0000001f, x1);
ASSERT_EQUAL_64(0x00000020, x2);
ASSERT_EQUAL_64(0x0000000f, x3);
ASSERT_EQUAL_64(0xffffffe0ffffffe0, x4);
ASSERT_EQUAL_64(0x0000000f0000000f, x5);
ASSERT_EQUAL_64(0xffffffe0ffffffe1, x6);
ASSERT_EQUAL_64(0x0000000f0000000f, x7);
ASSERT_EQUAL_64(0x00000001, x8);
ASSERT_EQUAL_64(0xffffffff, x9);
ASSERT_EQUAL_64(0x0000001f00000020, x10);
ASSERT_EQUAL_64(0xfffffff0fffffff0, x11);
ASSERT_EQUAL_64(0xfffffff0fffffff1, x12);
ASSERT_EQUAL_64(0x0000000f, x13);
ASSERT_EQUAL_64(0x0000000f0000000f, x14);
ASSERT_EQUAL_64(0x0000000f, x15);
ASSERT_EQUAL_64(0x0000000f0000000f, x17);
TEARDOWN();
}
TEST(csel_imm) {
SETUP();
START();
__ Mov(x18, 0);
__ Mov(x19, 0x80000000);
__ Mov(x20, 0x8000000000000000);
__ Cmp(x18, Operand(0));
__ Csel(w0, w19, -2, ne);
__ Csel(w1, w19, -1, ne);
__ Csel(w2, w19, 0, ne);
__ Csel(w3, w19, 1, ne);
__ Csel(w4, w19, 2, ne);
__ Csel(w5, w19, Operand(w19, ASR, 31), ne);
__ Csel(w6, w19, Operand(w19, ROR, 1), ne);
__ Csel(w7, w19, 3, eq);
__ Csel(x8, x20, -2, ne);
__ Csel(x9, x20, -1, ne);
__ Csel(x10, x20, 0, ne);
__ Csel(x11, x20, 1, ne);
__ Csel(x12, x20, 2, ne);
__ Csel(x13, x20, Operand(x20, ASR, 63), ne);
__ Csel(x14, x20, Operand(x20, ROR, 1), ne);
__ Csel(x15, x20, 3, eq);
END();
RUN();
ASSERT_EQUAL_32(-2, w0);
ASSERT_EQUAL_32(-1, w1);
ASSERT_EQUAL_32(0, w2);
ASSERT_EQUAL_32(1, w3);
ASSERT_EQUAL_32(2, w4);
ASSERT_EQUAL_32(-1, w5);
ASSERT_EQUAL_32(0x40000000, w6);
ASSERT_EQUAL_32(0x80000000, w7);
ASSERT_EQUAL_64(-2, x8);
ASSERT_EQUAL_64(-1, x9);
ASSERT_EQUAL_64(0, x10);
ASSERT_EQUAL_64(1, x11);
ASSERT_EQUAL_64(2, x12);
ASSERT_EQUAL_64(-1, x13);
ASSERT_EQUAL_64(0x4000000000000000, x14);
ASSERT_EQUAL_64(0x8000000000000000, x15);
TEARDOWN();
}
TEST(lslv) {
SETUP();
ALLOW_ASM();
uint64_t value = 0x0123456789abcdef;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
// The MacroAssembler does not allow zr as an argument.
__ lslv(x0, x0, xzr);
__ Lsl(x16, x0, x1);
__ Lsl(x17, x0, x2);
__ Lsl(x18, x0, x3);
__ Lsl(x19, x0, x4);
__ Lsl(x20, x0, x5);
__ Lsl(x21, x0, x6);
__ Lsl(w22, w0, w1);
__ Lsl(w23, w0, w2);
__ Lsl(w24, w0, w3);
__ Lsl(w25, w0, w4);
__ Lsl(w26, w0, w5);
__ Lsl(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(value << (shift[0] & 63), x16);
ASSERT_EQUAL_64(value << (shift[1] & 63), x17);
ASSERT_EQUAL_64(value << (shift[2] & 63), x18);
ASSERT_EQUAL_64(value << (shift[3] & 63), x19);
ASSERT_EQUAL_64(value << (shift[4] & 63), x20);
ASSERT_EQUAL_64(value << (shift[5] & 63), x21);
ASSERT_EQUAL_32(value << (shift[0] & 31), w22);
ASSERT_EQUAL_32(value << (shift[1] & 31), w23);
ASSERT_EQUAL_32(value << (shift[2] & 31), w24);
ASSERT_EQUAL_32(value << (shift[3] & 31), w25);
ASSERT_EQUAL_32(value << (shift[4] & 31), w26);
ASSERT_EQUAL_32(value << (shift[5] & 31), w27);
TEARDOWN();
}
TEST(lsrv) {
SETUP();
ALLOW_ASM();
uint64_t value = 0x0123456789abcdef;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
// The MacroAssembler does not allow zr as an argument.
__ lsrv(x0, x0, xzr);
__ Lsr(x16, x0, x1);
__ Lsr(x17, x0, x2);
__ Lsr(x18, x0, x3);
__ Lsr(x19, x0, x4);
__ Lsr(x20, x0, x5);
__ Lsr(x21, x0, x6);
__ Lsr(w22, w0, w1);
__ Lsr(w23, w0, w2);
__ Lsr(w24, w0, w3);
__ Lsr(w25, w0, w4);
__ Lsr(w26, w0, w5);
__ Lsr(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(value >> (shift[0] & 63), x16);
ASSERT_EQUAL_64(value >> (shift[1] & 63), x17);
ASSERT_EQUAL_64(value >> (shift[2] & 63), x18);
ASSERT_EQUAL_64(value >> (shift[3] & 63), x19);
ASSERT_EQUAL_64(value >> (shift[4] & 63), x20);
ASSERT_EQUAL_64(value >> (shift[5] & 63), x21);
value &= 0xffffffff;
ASSERT_EQUAL_32(value >> (shift[0] & 31), w22);
ASSERT_EQUAL_32(value >> (shift[1] & 31), w23);
ASSERT_EQUAL_32(value >> (shift[2] & 31), w24);
ASSERT_EQUAL_32(value >> (shift[3] & 31), w25);
ASSERT_EQUAL_32(value >> (shift[4] & 31), w26);
ASSERT_EQUAL_32(value >> (shift[5] & 31), w27);
TEARDOWN();
}
TEST(asrv) {
SETUP();
ALLOW_ASM();
int64_t value = 0xfedcba98fedcba98;
int shift[] = {1, 3, 5, 9, 17, 33};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
// The MacroAssembler does not allow zr as an argument.
__ asrv(x0, x0, xzr);
__ Asr(x16, x0, x1);
__ Asr(x17, x0, x2);
__ Asr(x18, x0, x3);
__ Asr(x19, x0, x4);
__ Asr(x20, x0, x5);
__ Asr(x21, x0, x6);
__ Asr(w22, w0, w1);
__ Asr(w23, w0, w2);
__ Asr(w24, w0, w3);
__ Asr(w25, w0, w4);
__ Asr(w26, w0, w5);
__ Asr(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(value >> (shift[0] & 63), x16);
ASSERT_EQUAL_64(value >> (shift[1] & 63), x17);
ASSERT_EQUAL_64(value >> (shift[2] & 63), x18);
ASSERT_EQUAL_64(value >> (shift[3] & 63), x19);
ASSERT_EQUAL_64(value >> (shift[4] & 63), x20);
ASSERT_EQUAL_64(value >> (shift[5] & 63), x21);
int32_t value32 = static_cast<int32_t>(value & 0xffffffff);
ASSERT_EQUAL_32(value32 >> (shift[0] & 31), w22);
ASSERT_EQUAL_32(value32 >> (shift[1] & 31), w23);
ASSERT_EQUAL_32(value32 >> (shift[2] & 31), w24);
ASSERT_EQUAL_32(value32 >> (shift[3] & 31), w25);
ASSERT_EQUAL_32(value32 >> (shift[4] & 31), w26);
ASSERT_EQUAL_32(value32 >> (shift[5] & 31), w27);
TEARDOWN();
}
TEST(rorv) {
SETUP();
ALLOW_ASM();
uint64_t value = 0x0123456789abcdef;
int shift[] = {4, 8, 12, 16, 24, 36};
START();
__ Mov(x0, value);
__ Mov(w1, shift[0]);
__ Mov(w2, shift[1]);
__ Mov(w3, shift[2]);
__ Mov(w4, shift[3]);
__ Mov(w5, shift[4]);
__ Mov(w6, shift[5]);
// The MacroAssembler does not allow zr as an argument.
__ rorv(x0, x0, xzr);
__ Ror(x16, x0, x1);
__ Ror(x17, x0, x2);
__ Ror(x18, x0, x3);
__ Ror(x19, x0, x4);
__ Ror(x20, x0, x5);
__ Ror(x21, x0, x6);
__ Ror(w22, w0, w1);
__ Ror(w23, w0, w2);
__ Ror(w24, w0, w3);
__ Ror(w25, w0, w4);
__ Ror(w26, w0, w5);
__ Ror(w27, w0, w6);
END();
RUN();
ASSERT_EQUAL_64(value, x0);
ASSERT_EQUAL_64(0xf0123456789abcde, x16);
ASSERT_EQUAL_64(0xef0123456789abcd, x17);
ASSERT_EQUAL_64(0xdef0123456789abc, x18);
ASSERT_EQUAL_64(0xcdef0123456789ab, x19);
ASSERT_EQUAL_64(0xabcdef0123456789, x20);
ASSERT_EQUAL_64(0x789abcdef0123456, x21);
ASSERT_EQUAL_32(0xf89abcde, w22);
ASSERT_EQUAL_32(0xef89abcd, w23);
ASSERT_EQUAL_32(0xdef89abc, w24);
ASSERT_EQUAL_32(0xcdef89ab, w25);
ASSERT_EQUAL_32(0xabcdef89, w26);
ASSERT_EQUAL_32(0xf89abcde, w27);
TEARDOWN();
}
TEST(bfm) {
SETUP();
ALLOW_ASM();
START();
__ Mov(x1, 0x0123456789abcdef);
__ Mov(x10, 0x8888888888888888);
__ Mov(x11, 0x8888888888888888);
__ Mov(x12, 0x8888888888888888);
__ Mov(x13, 0x8888888888888888);
__ Mov(w20, 0x88888888);
__ Mov(w21, 0x88888888);
// There are no macro instruction for bfm.
__ Bfm(x10, x1, 16, 31);
__ Bfm(x11, x1, 32, 15);
__ Bfm(w20, w1, 16, 23);
__ Bfm(w21, w1, 24, 15);
// Aliases.
__ Bfi(x12, x1, 16, 8);
__ Bfxil(x13, x1, 16, 8);
END();
RUN();
ASSERT_EQUAL_64(0x88888888888889ab, x10);
ASSERT_EQUAL_64(0x8888cdef88888888, x11);
ASSERT_EQUAL_32(0x888888ab, w20);
ASSERT_EQUAL_32(0x88cdef88, w21);
ASSERT_EQUAL_64(0x8888888888ef8888, x12);
ASSERT_EQUAL_64(0x88888888888888ab, x13);
TEARDOWN();
}
TEST(sbfm) {
SETUP();
ALLOW_ASM();
START();
__ Mov(x1, 0x0123456789abcdef);
__ Mov(x2, 0xfedcba9876543210);
// There are no macro instruction for sbfm.
__ Sbfm(x10, x1, 16, 31);
__ Sbfm(x11, x1, 32, 15);
__ Sbfm(x12, x1, 32, 47);
__ Sbfm(x13, x1, 48, 35);
__ Sbfm(w14, w1, 16, 23);
__ Sbfm(w15, w1, 24, 15);
__ Sbfm(w16, w2, 16, 23);
__ Sbfm(w17, w2, 24, 15);
// Aliases.
__ Asr(x18, x1, 32);
__ Asr(x19, x2, 32);
__ Sbfiz(x20, x1, 8, 16);
__ Sbfiz(x21, x2, 8, 16);
__ Sbfx(x22, x1, 8, 16);
__ Sbfx(x23, x2, 8, 16);
__ Sxtb(x24, w1);
__ Sxtb(x25, x2);
__ Sxth(x26, w1);
__ Sxth(x27, x2);
__ Sxtw(x28, w1);
__ Sxtw(x29, x2);
END();
RUN();
ASSERT_EQUAL_64(0xffffffffffff89ab, x10);
ASSERT_EQUAL_64(0xffffcdef00000000, x11);
ASSERT_EQUAL_64(0x0000000000004567, x12);
ASSERT_EQUAL_64(0x000789abcdef0000, x13);
ASSERT_EQUAL_32(0xffffffab, w14);
ASSERT_EQUAL_32(0xffcdef00, w15);
ASSERT_EQUAL_32(0x00000054, w16);
ASSERT_EQUAL_32(0x00321000, w17);
ASSERT_EQUAL_64(0x0000000001234567, x18);
ASSERT_EQUAL_64(0xfffffffffedcba98, x19);
ASSERT_EQUAL_64(0xffffffffffcdef00, x20);
ASSERT_EQUAL_64(0x0000000000321000, x21);
ASSERT_EQUAL_64(0xffffffffffffabcd, x22);
ASSERT_EQUAL_64(0x0000000000005432, x23);
ASSERT_EQUAL_64(0xffffffffffffffef, x24);
ASSERT_EQUAL_64(0x0000000000000010, x25);
ASSERT_EQUAL_64(0xffffffffffffcdef, x26);
ASSERT_EQUAL_64(0x0000000000003210, x27);
ASSERT_EQUAL_64(0xffffffff89abcdef, x28);
ASSERT_EQUAL_64(0x0000000076543210, x29);
TEARDOWN();
}
TEST(ubfm) {
SETUP();
ALLOW_ASM();
START();
__ Mov(x1, 0x0123456789abcdef);
__ Mov(x2, 0xfedcba9876543210);
__ Mov(x10, 0x8888888888888888);
__ Mov(x11, 0x8888888888888888);
// There are no macro instruction for ubfm.
__ Ubfm(x10, x1, 16, 31);
__ Ubfm(x11, x1, 32, 15);
__ Ubfm(x12, x1, 32, 47);
__ Ubfm(x13, x1, 48, 35);
__ Ubfm(w25, w1, 16, 23);
__ Ubfm(w26, w1, 24, 15);
__ Ubfm(w27, w2, 16, 23);
__ Ubfm(w28, w2, 24, 15);
// Aliases
__ Lsl(x15, x1, 63);
__ Lsl(x16, x1, 0);
__ Lsr(x17, x1, 32);
__ Ubfiz(x18, x1, 8, 16);
__ Ubfx(x19, x1, 8, 16);
__ Uxtb(x20, x1);
__ Uxth(x21, x1);
__ Uxtw(x22, x1);
END();
RUN();
ASSERT_EQUAL_64(0x00000000000089ab, x10);
ASSERT_EQUAL_64(0x0000cdef00000000, x11);
ASSERT_EQUAL_64(0x0000000000004567, x12);
ASSERT_EQUAL_64(0x000789abcdef0000, x13);
ASSERT_EQUAL_32(0x000000ab, w25);
ASSERT_EQUAL_32(0x00cdef00, w26);
ASSERT_EQUAL_32(0x00000054, w27);
ASSERT_EQUAL_32(0x00321000, w28);
ASSERT_EQUAL_64(0x8000000000000000, x15);
ASSERT_EQUAL_64(0x0123456789abcdef, x16);
ASSERT_EQUAL_64(0x0000000001234567, x17);
ASSERT_EQUAL_64(0x0000000000cdef00, x18);
ASSERT_EQUAL_64(0x000000000000abcd, x19);
ASSERT_EQUAL_64(0x00000000000000ef, x20);
ASSERT_EQUAL_64(0x000000000000cdef, x21);
ASSERT_EQUAL_64(0x0000000089abcdef, x22);
TEARDOWN();
}
TEST(extr) {
SETUP();
START();
__ Mov(x1, 0x0123456789abcdef);
__ Mov(x2, 0xfedcba9876543210);
__ Extr(w10, w1, w2, 0);
__ Extr(w11, w1, w2, 1);
__ Extr(x12, x2, x1, 2);
__ Ror(w13, w1, 0);
__ Ror(w14, w2, 17);
__ Ror(w15, w1, 31);
__ Ror(x18, x2, 0);
__ Ror(x19, x2, 1);
__ Ror(x20, x1, 63);
END();
RUN();
ASSERT_EQUAL_64(0x76543210, x10);
ASSERT_EQUAL_64(0xbb2a1908, x11);
ASSERT_EQUAL_64(0x0048d159e26af37b, x12);
ASSERT_EQUAL_64(0x89abcdef, x13);
ASSERT_EQUAL_64(0x19083b2a, x14);
ASSERT_EQUAL_64(0x13579bdf, x15);
ASSERT_EQUAL_64(0xfedcba9876543210, x18);
ASSERT_EQUAL_64(0x7f6e5d4c3b2a1908, x19);
ASSERT_EQUAL_64(0x02468acf13579bde, x20);
TEARDOWN();
}
TEST(fmov_imm) {
SETUP();
START();
__ Fmov(s11, 1.0);
__ Fmov(d22, -13.0);
__ Fmov(s1, 255.0);
__ Fmov(d2, 12.34567);
__ Fmov(s3, 0.0);
__ Fmov(d4, 0.0);
__ Fmov(s5, kFP32PositiveInfinity);
__ Fmov(d6, kFP64NegativeInfinity);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s11);
ASSERT_EQUAL_FP64(-13.0, d22);
ASSERT_EQUAL_FP32(255.0, s1);
ASSERT_EQUAL_FP64(12.34567, d2);
ASSERT_EQUAL_FP32(0.0, s3);
ASSERT_EQUAL_FP64(0.0, d4);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d6);
TEARDOWN();
}
TEST(fmov_reg) {
SETUP();
START();
__ Fmov(s20, 1.0);
__ Fmov(w10, s20);
__ Fmov(s30, w10);
__ Fmov(s5, s20);
__ Fmov(d1, -13.0);
__ Fmov(x1, d1);
__ Fmov(d2, x1);
__ Fmov(d4, d1);
__ Fmov(d6, rawbits_to_double(0x0123456789abcdef));
__ Fmov(s6, s6);
__ Fmov(d0, 0.0);
__ Fmov(v0.D(), 1, x1);
__ Fmov(x2, v0.D(), 1);
END();
RUN();
ASSERT_EQUAL_32(float_to_rawbits(1.0), w10);
ASSERT_EQUAL_FP32(1.0, s30);
ASSERT_EQUAL_FP32(1.0, s5);
ASSERT_EQUAL_64(double_to_rawbits(-13.0), x1);
ASSERT_EQUAL_FP64(-13.0, d2);
ASSERT_EQUAL_FP64(-13.0, d4);
ASSERT_EQUAL_FP32(rawbits_to_float(0x89abcdef), s6);
ASSERT_EQUAL_128(double_to_rawbits(-13.0), 0x0000000000000000, q0);
ASSERT_EQUAL_64(double_to_rawbits(-13.0), x2);
TEARDOWN();
}
TEST(fadd) {
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 1.0f);
__ Fmov(s19, 0.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fadd(s0, s17, s18);
__ Fadd(s1, s18, s19);
__ Fadd(s2, s14, s18);
__ Fadd(s3, s15, s18);
__ Fadd(s4, s16, s18);
__ Fadd(s5, s15, s16);
__ Fadd(s6, s16, s15);
__ Fadd(d7, d30, d31);
__ Fadd(d8, d29, d31);
__ Fadd(d9, d26, d31);
__ Fadd(d10, d27, d31);
__ Fadd(d11, d28, d31);
__ Fadd(d12, d27, d28);
__ Fadd(d13, d28, d27);
END();
RUN();
ASSERT_EQUAL_FP32(4.25, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, s2);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(0.25, d7);
ASSERT_EQUAL_FP64(2.25, d8);
ASSERT_EQUAL_FP64(2.25, d9);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d10);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
TEST(fsub) {
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 1.0f);
__ Fmov(s19, 0.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fsub(s0, s17, s18);
__ Fsub(s1, s18, s19);
__ Fsub(s2, s14, s18);
__ Fsub(s3, s18, s15);
__ Fsub(s4, s18, s16);
__ Fsub(s5, s15, s15);
__ Fsub(s6, s16, s16);
__ Fsub(d7, d30, d31);
__ Fsub(d8, d29, d31);
__ Fsub(d9, d26, d31);
__ Fsub(d10, d31, d27);
__ Fsub(d11, d31, d28);
__ Fsub(d12, d27, d27);
__ Fsub(d13, d28, d28);
END();
RUN();
ASSERT_EQUAL_FP32(2.25, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(-1.0, s2);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(-4.25, d7);
ASSERT_EQUAL_FP64(-2.25, d8);
ASSERT_EQUAL_FP64(-2.25, d9);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
TEST(fmul) {
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 2.0f);
__ Fmov(s19, 0.0f);
__ Fmov(s20, -2.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fmul(s0, s17, s18);
__ Fmul(s1, s18, s19);
__ Fmul(s2, s14, s14);
__ Fmul(s3, s15, s20);
__ Fmul(s4, s16, s20);
__ Fmul(s5, s15, s19);
__ Fmul(s6, s19, s16);
__ Fmul(d7, d30, d31);
__ Fmul(d8, d29, d31);
__ Fmul(d9, d26, d26);
__ Fmul(d10, d27, d30);
__ Fmul(d11, d28, d30);
__ Fmul(d12, d27, d29);
__ Fmul(d13, d29, d28);
END();
RUN();
ASSERT_EQUAL_FP32(6.5, s0);
ASSERT_EQUAL_FP32(0.0, s1);
ASSERT_EQUAL_FP32(0.0, s2);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(-4.5, d7);
ASSERT_EQUAL_FP64(0.0, d8);
ASSERT_EQUAL_FP64(0.0, d9);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
static void FmaddFmsubHelper(double n, double m, double a,
double fmadd, double fmsub,
double fnmadd, double fnmsub) {
SETUP();
START();
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmov(d2, a);
__ Fmadd(d28, d0, d1, d2);
__ Fmsub(d29, d0, d1, d2);
__ Fnmadd(d30, d0, d1, d2);
__ Fnmsub(d31, d0, d1, d2);
END();
RUN();
ASSERT_EQUAL_FP64(fmadd, d28);
ASSERT_EQUAL_FP64(fmsub, d29);
ASSERT_EQUAL_FP64(fnmadd, d30);
ASSERT_EQUAL_FP64(fnmsub, d31);
TEARDOWN();
}
TEST(fmadd_fmsub_double) {
// It's hard to check the result of fused operations because the only way to
// calculate the result is using fma, which is what the simulator uses anyway.
// Basic operation.
FmaddFmsubHelper(1.0, 2.0, 3.0, 5.0, 1.0, -5.0, -1.0);
FmaddFmsubHelper(-1.0, 2.0, 3.0, 1.0, 5.0, -1.0, -5.0);
// Check the sign of exact zeroes.
// n m a fmadd fmsub fnmadd fnmsub
FmaddFmsubHelper(-0.0, +0.0, -0.0, -0.0, +0.0, +0.0, +0.0);
FmaddFmsubHelper(+0.0, +0.0, -0.0, +0.0, -0.0, +0.0, +0.0);
FmaddFmsubHelper(+0.0, +0.0, +0.0, +0.0, +0.0, -0.0, +0.0);
FmaddFmsubHelper(-0.0, +0.0, +0.0, +0.0, +0.0, +0.0, -0.0);
FmaddFmsubHelper(+0.0, -0.0, -0.0, -0.0, +0.0, +0.0, +0.0);
FmaddFmsubHelper(-0.0, -0.0, -0.0, +0.0, -0.0, +0.0, +0.0);
FmaddFmsubHelper(-0.0, -0.0, +0.0, +0.0, +0.0, -0.0, +0.0);
FmaddFmsubHelper(+0.0, -0.0, +0.0, +0.0, +0.0, +0.0, -0.0);
// Check NaN generation.
FmaddFmsubHelper(kFP64PositiveInfinity, 0.0, 42.0,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(0.0, kFP64PositiveInfinity, 42.0,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64PositiveInfinity, 1.0, kFP64PositiveInfinity,
kFP64PositiveInfinity, // inf + ( inf * 1) = inf
kFP64DefaultNaN, // inf + (-inf * 1) = NaN
kFP64NegativeInfinity, // -inf + (-inf * 1) = -inf
kFP64DefaultNaN); // -inf + ( inf * 1) = NaN
FmaddFmsubHelper(kFP64NegativeInfinity, 1.0, kFP64PositiveInfinity,
kFP64DefaultNaN, // inf + (-inf * 1) = NaN
kFP64PositiveInfinity, // inf + ( inf * 1) = inf
kFP64DefaultNaN, // -inf + ( inf * 1) = NaN
kFP64NegativeInfinity); // -inf + (-inf * 1) = -inf
}
static void FmaddFmsubHelper(float n, float m, float a,
float fmadd, float fmsub,
float fnmadd, float fnmsub) {
SETUP();
START();
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmov(s2, a);
__ Fmadd(s28, s0, s1, s2);
__ Fmsub(s29, s0, s1, s2);
__ Fnmadd(s30, s0, s1, s2);
__ Fnmsub(s31, s0, s1, s2);
END();
RUN();
ASSERT_EQUAL_FP32(fmadd, s28);
ASSERT_EQUAL_FP32(fmsub, s29);
ASSERT_EQUAL_FP32(fnmadd, s30);
ASSERT_EQUAL_FP32(fnmsub, s31);
TEARDOWN();
}
TEST(fmadd_fmsub_float) {
// It's hard to check the result of fused operations because the only way to
// calculate the result is using fma, which is what the simulator uses anyway.
// Basic operation.
FmaddFmsubHelper(1.0f, 2.0f, 3.0f, 5.0f, 1.0f, -5.0f, -1.0f);
FmaddFmsubHelper(-1.0f, 2.0f, 3.0f, 1.0f, 5.0f, -1.0f, -5.0f);
// Check the sign of exact zeroes.
// n m a fmadd fmsub fnmadd fnmsub
FmaddFmsubHelper(-0.0f, +0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, +0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, +0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f);
FmaddFmsubHelper(+0.0f, -0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, -0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f);
FmaddFmsubHelper(-0.0f, -0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f);
FmaddFmsubHelper(+0.0f, -0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f);
// Check NaN generation.
FmaddFmsubHelper(kFP32PositiveInfinity, 0.0f, 42.0f,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(0.0f, kFP32PositiveInfinity, 42.0f,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32PositiveInfinity, 1.0f, kFP32PositiveInfinity,
kFP32PositiveInfinity, // inf + ( inf * 1) = inf
kFP32DefaultNaN, // inf + (-inf * 1) = NaN
kFP32NegativeInfinity, // -inf + (-inf * 1) = -inf
kFP32DefaultNaN); // -inf + ( inf * 1) = NaN
FmaddFmsubHelper(kFP32NegativeInfinity, 1.0f, kFP32PositiveInfinity,
kFP32DefaultNaN, // inf + (-inf * 1) = NaN
kFP32PositiveInfinity, // inf + ( inf * 1) = inf
kFP32DefaultNaN, // -inf + ( inf * 1) = NaN
kFP32NegativeInfinity); // -inf + (-inf * 1) = -inf
}
TEST(fmadd_fmsub_double_nans) {
// Make sure that NaN propagation works correctly.
double s1 = rawbits_to_double(0x7ff5555511111111);
double s2 = rawbits_to_double(0x7ff5555522222222);
double sa = rawbits_to_double(0x7ff55555aaaaaaaa);
double q1 = rawbits_to_double(0x7ffaaaaa11111111);
double q2 = rawbits_to_double(0x7ffaaaaa22222222);
double qa = rawbits_to_double(0x7ffaaaaaaaaaaaaa);
VIXL_ASSERT(IsSignallingNaN(s1));
VIXL_ASSERT(IsSignallingNaN(s2));
VIXL_ASSERT(IsSignallingNaN(sa));
VIXL_ASSERT(IsQuietNaN(q1));
VIXL_ASSERT(IsQuietNaN(q2));
VIXL_ASSERT(IsQuietNaN(qa));
// The input NaNs after passing through ProcessNaN.
double s1_proc = rawbits_to_double(0x7ffd555511111111);
double s2_proc = rawbits_to_double(0x7ffd555522222222);
double sa_proc = rawbits_to_double(0x7ffd5555aaaaaaaa);
double q1_proc = q1;
double q2_proc = q2;
double qa_proc = qa;
VIXL_ASSERT(IsQuietNaN(s1_proc));
VIXL_ASSERT(IsQuietNaN(s2_proc));
VIXL_ASSERT(IsQuietNaN(sa_proc));
VIXL_ASSERT(IsQuietNaN(q1_proc));
VIXL_ASSERT(IsQuietNaN(q2_proc));
VIXL_ASSERT(IsQuietNaN(qa_proc));
// Negated NaNs as it would be done on ARMv8 hardware.
double s1_proc_neg = rawbits_to_double(0xfffd555511111111);
double sa_proc_neg = rawbits_to_double(0xfffd5555aaaaaaaa);
double q1_proc_neg = rawbits_to_double(0xfffaaaaa11111111);
double qa_proc_neg = rawbits_to_double(0xfffaaaaaaaaaaaaa);
VIXL_ASSERT(IsQuietNaN(s1_proc_neg));
VIXL_ASSERT(IsQuietNaN(sa_proc_neg));
VIXL_ASSERT(IsQuietNaN(q1_proc_neg));
VIXL_ASSERT(IsQuietNaN(qa_proc_neg));
// Quiet NaNs are propagated.
FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc);
FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
// Signalling NaNs are propagated, and made quiet.
FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// Signalling NaNs take precedence over quiet NaNs.
FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a.
FmaddFmsubHelper(0, kFP64PositiveInfinity, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64PositiveInfinity, 0, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(0, kFP64NegativeInfinity, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
FmaddFmsubHelper(kFP64NegativeInfinity, 0, qa,
kFP64DefaultNaN, kFP64DefaultNaN,
kFP64DefaultNaN, kFP64DefaultNaN);
}
TEST(fmadd_fmsub_float_nans) {
// Make sure that NaN propagation works correctly.
float s1 = rawbits_to_float(0x7f951111);
float s2 = rawbits_to_float(0x7f952222);
float sa = rawbits_to_float(0x7f95aaaa);
float q1 = rawbits_to_float(0x7fea1111);
float q2 = rawbits_to_float(0x7fea2222);
float qa = rawbits_to_float(0x7feaaaaa);
VIXL_ASSERT(IsSignallingNaN(s1));
VIXL_ASSERT(IsSignallingNaN(s2));
VIXL_ASSERT(IsSignallingNaN(sa));
VIXL_ASSERT(IsQuietNaN(q1));
VIXL_ASSERT(IsQuietNaN(q2));
VIXL_ASSERT(IsQuietNaN(qa));
// The input NaNs after passing through ProcessNaN.
float s1_proc = rawbits_to_float(0x7fd51111);
float s2_proc = rawbits_to_float(0x7fd52222);
float sa_proc = rawbits_to_float(0x7fd5aaaa);
float q1_proc = q1;
float q2_proc = q2;
float qa_proc = qa;
VIXL_ASSERT(IsQuietNaN(s1_proc));
VIXL_ASSERT(IsQuietNaN(s2_proc));
VIXL_ASSERT(IsQuietNaN(sa_proc));
VIXL_ASSERT(IsQuietNaN(q1_proc));
VIXL_ASSERT(IsQuietNaN(q2_proc));
VIXL_ASSERT(IsQuietNaN(qa_proc));
// Negated NaNs as it would be done on ARMv8 hardware.
float s1_proc_neg = rawbits_to_float(0xffd51111);
float sa_proc_neg = rawbits_to_float(0xffd5aaaa);
float q1_proc_neg = rawbits_to_float(0xffea1111);
float qa_proc_neg = rawbits_to_float(0xffeaaaaa);
VIXL_ASSERT(IsQuietNaN(s1_proc_neg));
VIXL_ASSERT(IsQuietNaN(sa_proc_neg));
VIXL_ASSERT(IsQuietNaN(q1_proc_neg));
VIXL_ASSERT(IsQuietNaN(qa_proc_neg));
// Quiet NaNs are propagated.
FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc);
FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc);
FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg);
// Signalling NaNs are propagated, and made quiet.
FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// Signalling NaNs take precedence over quiet NaNs.
FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc);
FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc);
FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg);
// A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a.
FmaddFmsubHelper(0, kFP32PositiveInfinity, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32PositiveInfinity, 0, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(0, kFP32NegativeInfinity, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
FmaddFmsubHelper(kFP32NegativeInfinity, 0, qa,
kFP32DefaultNaN, kFP32DefaultNaN,
kFP32DefaultNaN, kFP32DefaultNaN);
}
TEST(fdiv) {
SETUP();
START();
__ Fmov(s14, -0.0f);
__ Fmov(s15, kFP32PositiveInfinity);
__ Fmov(s16, kFP32NegativeInfinity);
__ Fmov(s17, 3.25f);
__ Fmov(s18, 2.0f);
__ Fmov(s19, 2.0f);
__ Fmov(s20, -2.0f);
__ Fmov(d26, -0.0);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0.0);
__ Fmov(d30, -2.0);
__ Fmov(d31, 2.25);
__ Fdiv(s0, s17, s18);
__ Fdiv(s1, s18, s19);
__ Fdiv(s2, s14, s18);
__ Fdiv(s3, s18, s15);
__ Fdiv(s4, s18, s16);
__ Fdiv(s5, s15, s16);
__ Fdiv(s6, s14, s14);
__ Fdiv(d7, d31, d30);
__ Fdiv(d8, d29, d31);
__ Fdiv(d9, d26, d31);
__ Fdiv(d10, d31, d27);
__ Fdiv(d11, d31, d28);
__ Fdiv(d12, d28, d27);
__ Fdiv(d13, d29, d29);
END();
RUN();
ASSERT_EQUAL_FP32(1.625f, s0);
ASSERT_EQUAL_FP32(1.0f, s1);
ASSERT_EQUAL_FP32(-0.0f, s2);
ASSERT_EQUAL_FP32(0.0f, s3);
ASSERT_EQUAL_FP32(-0.0f, s4);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(-1.125, d7);
ASSERT_EQUAL_FP64(0.0, d8);
ASSERT_EQUAL_FP64(-0.0, d9);
ASSERT_EQUAL_FP64(0.0, d10);
ASSERT_EQUAL_FP64(-0.0, d11);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
static float MinMaxHelper(float n,
float m,
bool min,
float quiet_nan_substitute = 0.0) {
const uint64_t kFP32QuietNaNMask = 0x00400000;
uint32_t raw_n = float_to_rawbits(n);
uint32_t raw_m = float_to_rawbits(m);
if (std::isnan(n) && ((raw_n & kFP32QuietNaNMask) == 0)) {
// n is signalling NaN.
return rawbits_to_float(raw_n | kFP32QuietNaNMask);
} else if (std::isnan(m) && ((raw_m & kFP32QuietNaNMask) == 0)) {
// m is signalling NaN.
return rawbits_to_float(raw_m | kFP32QuietNaNMask);
} else if (quiet_nan_substitute == 0.0) {
if (std::isnan(n)) {
// n is quiet NaN.
return n;
} else if (std::isnan(m)) {
// m is quiet NaN.
return m;
}
} else {
// Substitute n or m if one is quiet, but not both.
if (std::isnan(n) && !std::isnan(m)) {
// n is quiet NaN: replace with substitute.
n = quiet_nan_substitute;
} else if (!std::isnan(n) && std::isnan(m)) {
// m is quiet NaN: replace with substitute.
m = quiet_nan_substitute;
}
}
if ((n == 0.0) && (m == 0.0) &&
(copysign(1.0, n) != copysign(1.0, m))) {
return min ? -0.0 : 0.0;
}
return min ? fminf(n, m) : fmaxf(n, m);
}
static double MinMaxHelper(double n,
double m,
bool min,
double quiet_nan_substitute = 0.0) {
const uint64_t kFP64QuietNaNMask = 0x0008000000000000;
uint64_t raw_n = double_to_rawbits(n);
uint64_t raw_m = double_to_rawbits(m);
if (std::isnan(n) && ((raw_n & kFP64QuietNaNMask) == 0)) {
// n is signalling NaN.
return rawbits_to_double(raw_n | kFP64QuietNaNMask);
} else if (std::isnan(m) && ((raw_m & kFP64QuietNaNMask) == 0)) {
// m is signalling NaN.
return rawbits_to_double(raw_m | kFP64QuietNaNMask);
} else if (quiet_nan_substitute == 0.0) {
if (std::isnan(n)) {
// n is quiet NaN.
return n;
} else if (std::isnan(m)) {
// m is quiet NaN.
return m;
}
} else {
// Substitute n or m if one is quiet, but not both.
if (std::isnan(n) && !std::isnan(m)) {
// n is quiet NaN: replace with substitute.
n = quiet_nan_substitute;
} else if (!std::isnan(n) && std::isnan(m)) {
// m is quiet NaN: replace with substitute.
m = quiet_nan_substitute;
}
}
if ((n == 0.0) && (m == 0.0) &&
(copysign(1.0, n) != copysign(1.0, m))) {
return min ? -0.0 : 0.0;
}
return min ? fmin(n, m) : fmax(n, m);
}
static void FminFmaxDoubleHelper(double n, double m, double min, double max,
double minnm, double maxnm) {
SETUP();
START();
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmin(d28, d0, d1);
__ Fmax(d29, d0, d1);
__ Fminnm(d30, d0, d1);
__ Fmaxnm(d31, d0, d1);
END();
RUN();
ASSERT_EQUAL_FP64(min, d28);
ASSERT_EQUAL_FP64(max, d29);
ASSERT_EQUAL_FP64(minnm, d30);
ASSERT_EQUAL_FP64(maxnm, d31);
TEARDOWN();
}
TEST(fmax_fmin_d) {
// Use non-standard NaNs to check that the payload bits are preserved.
double snan = rawbits_to_double(0x7ff5555512345678);
double qnan = rawbits_to_double(0x7ffaaaaa87654321);
double snan_processed = rawbits_to_double(0x7ffd555512345678);
double qnan_processed = qnan;
VIXL_ASSERT(IsSignallingNaN(snan));
VIXL_ASSERT(IsQuietNaN(qnan));
VIXL_ASSERT(IsQuietNaN(snan_processed));
VIXL_ASSERT(IsQuietNaN(qnan_processed));
// Bootstrap tests.
FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0);
FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1);
FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity,
kFP64NegativeInfinity, kFP64PositiveInfinity,
kFP64NegativeInfinity, kFP64PositiveInfinity);
FminFmaxDoubleHelper(snan, 0,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(0, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(qnan, 0,
qnan_processed, qnan_processed,
0, 0);
FminFmaxDoubleHelper(0, qnan,
qnan_processed, qnan_processed,
0, 0);
FminFmaxDoubleHelper(qnan, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxDoubleHelper(snan, qnan,
snan_processed, snan_processed,
snan_processed, snan_processed);
// Iterate over all combinations of inputs.
double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0,
-DBL_MAX, -DBL_MIN, -1.0, -0.0,
kFP64PositiveInfinity, kFP64NegativeInfinity,
kFP64QuietNaN, kFP64SignallingNaN };
const int count = sizeof(inputs) / sizeof(inputs[0]);
for (int in = 0; in < count; in++) {
double n = inputs[in];
for (int im = 0; im < count; im++) {
double m = inputs[im];
FminFmaxDoubleHelper(n, m,
MinMaxHelper(n, m, true),
MinMaxHelper(n, m, false),
MinMaxHelper(n, m, true, kFP64PositiveInfinity),
MinMaxHelper(n, m, false, kFP64NegativeInfinity));
}
}
}
static void FminFmaxFloatHelper(float n, float m, float min, float max,
float minnm, float maxnm) {
SETUP();
START();
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmin(s28, s0, s1);
__ Fmax(s29, s0, s1);
__ Fminnm(s30, s0, s1);
__ Fmaxnm(s31, s0, s1);
END();
RUN();
ASSERT_EQUAL_FP32(min, s28);
ASSERT_EQUAL_FP32(max, s29);
ASSERT_EQUAL_FP32(minnm, s30);
ASSERT_EQUAL_FP32(maxnm, s31);
TEARDOWN();
}
TEST(fmax_fmin_s) {
// Use non-standard NaNs to check that the payload bits are preserved.
float snan = rawbits_to_float(0x7f951234);
float qnan = rawbits_to_float(0x7fea8765);
float snan_processed = rawbits_to_float(0x7fd51234);
float qnan_processed = qnan;
VIXL_ASSERT(IsSignallingNaN(snan));
VIXL_ASSERT(IsQuietNaN(qnan));
VIXL_ASSERT(IsQuietNaN(snan_processed));
VIXL_ASSERT(IsQuietNaN(qnan_processed));
// Bootstrap tests.
FminFmaxFloatHelper(0, 0, 0, 0, 0, 0);
FminFmaxFloatHelper(0, 1, 0, 1, 0, 1);
FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity,
kFP32NegativeInfinity, kFP32PositiveInfinity,
kFP32NegativeInfinity, kFP32PositiveInfinity);
FminFmaxFloatHelper(snan, 0,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(0, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(qnan, 0,
qnan_processed, qnan_processed,
0, 0);
FminFmaxFloatHelper(0, qnan,
qnan_processed, qnan_processed,
0, 0);
FminFmaxFloatHelper(qnan, snan,
snan_processed, snan_processed,
snan_processed, snan_processed);
FminFmaxFloatHelper(snan, qnan,
snan_processed, snan_processed,
snan_processed, snan_processed);
// Iterate over all combinations of inputs.
float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0,
-FLT_MAX, -FLT_MIN, -1.0, -0.0,
kFP32PositiveInfinity, kFP32NegativeInfinity,
kFP32QuietNaN, kFP32SignallingNaN };
const int count = sizeof(inputs) / sizeof(inputs[0]);
for (int in = 0; in < count; in++) {
float n = inputs[in];
for (int im = 0; im < count; im++) {
float m = inputs[im];
FminFmaxFloatHelper(n, m,
MinMaxHelper(n, m, true),
MinMaxHelper(n, m, false),
MinMaxHelper(n, m, true, kFP32PositiveInfinity),
MinMaxHelper(n, m, false, kFP32NegativeInfinity));
}
}
}
TEST(fccmp) {
SETUP();
ALLOW_ASM();
START();
__ Fmov(s16, 0.0);
__ Fmov(s17, 0.5);
__ Fmov(d18, -0.5);
__ Fmov(d19, -1.0);
__ Mov(x20, 0);
__ Mov(x21, 0x7ff0000000000001); // Double precision NaN.
__ Fmov(d21, x21);
__ Mov(w22, 0x7f800001); // Single precision NaN.
__ Fmov(s22, w22);
__ Cmp(x20, 0);
__ Fccmp(s16, s16, NoFlag, eq);
__ Mrs(x0, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s16, VFlag, ne);
__ Mrs(x1, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s17, CFlag, ge);
__ Mrs(x2, NZCV);
__ Cmp(x20, 0);
__ Fccmp(s16, s17, CVFlag, lt);
__ Mrs(x3, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d18, ZFlag, le);
__ Mrs(x4, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d18, ZVFlag, gt);
__ Mrs(x5, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d19, ZCVFlag, ls);
__ Mrs(x6, NZCV);
__ Cmp(x20, 0);
__ Fccmp(d18, d19, NFlag, hi);
__ Mrs(x7, NZCV);
// The Macro Assembler does not allow al or nv as condition.
__ fccmp(s16, s16, NFlag, al);
__ Mrs(x8, NZCV);
__ fccmp(d18, d18, NFlag, nv);
__ Mrs(x9, NZCV);
__ Cmp(x20, 0);
__ Fccmpe(s16, s16, NoFlag, eq);
__ Mrs(x10, NZCV);
__ Cmp(x20, 0);
__ Fccmpe(d18, d19, ZCVFlag, ls);
__ Mrs(x11, NZCV);
__ Cmp(x20, 0);
__ Fccmpe(d21, d21, NoFlag, eq);
__ Mrs(x12, NZCV);
__ Cmp(x20, 0);
__ Fccmpe(s22, s22, NoFlag, eq);
__ Mrs(x13, NZCV);
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(VFlag, w1);
ASSERT_EQUAL_32(NFlag, w2);
ASSERT_EQUAL_32(CVFlag, w3);
ASSERT_EQUAL_32(ZCFlag, w4);
ASSERT_EQUAL_32(ZVFlag, w5);
ASSERT_EQUAL_32(CFlag, w6);
ASSERT_EQUAL_32(NFlag, w7);
ASSERT_EQUAL_32(ZCFlag, w8);
ASSERT_EQUAL_32(ZCFlag, w9);
ASSERT_EQUAL_32(ZCFlag, w10);
ASSERT_EQUAL_32(CFlag, w11);
ASSERT_EQUAL_32(CVFlag, w12);
ASSERT_EQUAL_32(CVFlag, w13);
TEARDOWN();
}
TEST(fcmp) {
SETUP();
START();
// Some of these tests require a floating-point scratch register assigned to
// the macro assembler, but most do not.
{
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
temps.Include(ip0, ip1);
__ Fmov(s8, 0.0);
__ Fmov(s9, 0.5);
__ Mov(w18, 0x7f800001); // Single precision NaN.
__ Fmov(s18, w18);
__ Fcmp(s8, s8);
__ Mrs(x0, NZCV);
__ Fcmp(s8, s9);
__ Mrs(x1, NZCV);
__ Fcmp(s9, s8);
__ Mrs(x2, NZCV);
__ Fcmp(s8, s18);
__ Mrs(x3, NZCV);
__ Fcmp(s18, s18);
__ Mrs(x4, NZCV);
__ Fcmp(s8, 0.0);
__ Mrs(x5, NZCV);
temps.Include(d0);
__ Fcmp(s8, 255.0);
temps.Exclude(d0);
__ Mrs(x6, NZCV);
__ Fmov(d19, 0.0);
__ Fmov(d20, 0.5);
__ Mov(x21, 0x7ff0000000000001); // Double precision NaN.
__ Fmov(d21, x21);
__ Fcmp(d19, d19);
__ Mrs(x10, NZCV);
__ Fcmp(d19, d20);
__ Mrs(x11, NZCV);
__ Fcmp(d20, d19);
__ Mrs(x12, NZCV);
__ Fcmp(d19, d21);
__ Mrs(x13, NZCV);
__ Fcmp(d21, d21);
__ Mrs(x14, NZCV);
__ Fcmp(d19, 0.0);
__ Mrs(x15, NZCV);
temps.Include(d0);
__ Fcmp(d19, 12.3456);
temps.Exclude(d0);
__ Mrs(x16, NZCV);
__ Fcmpe(s8, s8);
__ Mrs(x22, NZCV);
__ Fcmpe(s8, 0.0);
__ Mrs(x23, NZCV);
__ Fcmpe(d19, d19);
__ Mrs(x24, NZCV);
__ Fcmpe(d19, 0.0);
__ Mrs(x25, NZCV);
__ Fcmpe(s18, s18);
__ Mrs(x26, NZCV);
__ Fcmpe(d21, d21);
__ Mrs(x27, NZCV);
}
END();
RUN();
ASSERT_EQUAL_32(ZCFlag, w0);
ASSERT_EQUAL_32(NFlag, w1);
ASSERT_EQUAL_32(CFlag, w2);
ASSERT_EQUAL_32(CVFlag, w3);
ASSERT_EQUAL_32(CVFlag, w4);
ASSERT_EQUAL_32(ZCFlag, w5);
ASSERT_EQUAL_32(NFlag, w6);
ASSERT_EQUAL_32(ZCFlag, w10);
ASSERT_EQUAL_32(NFlag, w11);
ASSERT_EQUAL_32(CFlag, w12);
ASSERT_EQUAL_32(CVFlag, w13);
ASSERT_EQUAL_32(CVFlag, w14);
ASSERT_EQUAL_32(ZCFlag, w15);
ASSERT_EQUAL_32(NFlag, w16);
ASSERT_EQUAL_32(ZCFlag, w22);
ASSERT_EQUAL_32(ZCFlag, w23);
ASSERT_EQUAL_32(ZCFlag, w24);
ASSERT_EQUAL_32(ZCFlag, w25);
ASSERT_EQUAL_32(CVFlag, w26);
ASSERT_EQUAL_32(CVFlag, w27);
TEARDOWN();
}
TEST(fcsel) {
SETUP();
ALLOW_ASM();
START();
__ Mov(x16, 0);
__ Fmov(s16, 1.0);
__ Fmov(s17, 2.0);
__ Fmov(d18, 3.0);
__ Fmov(d19, 4.0);
__ Cmp(x16, 0);
__ Fcsel(s0, s16, s17, eq);
__ Fcsel(s1, s16, s17, ne);
__ Fcsel(d2, d18, d19, eq);
__ Fcsel(d3, d18, d19, ne);
// The Macro Assembler does not allow al or nv as condition.
__ fcsel(s4, s16, s17, al);
__ fcsel(d5, d18, d19, nv);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(2.0, s1);
ASSERT_EQUAL_FP64(3.0, d2);
ASSERT_EQUAL_FP64(4.0, d3);
ASSERT_EQUAL_FP32(1.0, s4);
ASSERT_EQUAL_FP64(3.0, d5);
TEARDOWN();
}
TEST(fneg) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 0.0);
__ Fmov(s18, kFP32PositiveInfinity);
__ Fmov(d19, 1.0);
__ Fmov(d20, 0.0);
__ Fmov(d21, kFP64PositiveInfinity);
__ Fneg(s0, s16);
__ Fneg(s1, s0);
__ Fneg(s2, s17);
__ Fneg(s3, s2);
__ Fneg(s4, s18);
__ Fneg(s5, s4);
__ Fneg(d6, d19);
__ Fneg(d7, d6);
__ Fneg(d8, d20);
__ Fneg(d9, d8);
__ Fneg(d10, d21);
__ Fneg(d11, d10);
END();
RUN();
ASSERT_EQUAL_FP32(-1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(-0.0, s2);
ASSERT_EQUAL_FP32(0.0, s3);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5);
ASSERT_EQUAL_FP64(-1.0, d6);
ASSERT_EQUAL_FP64(1.0, d7);
ASSERT_EQUAL_FP64(-0.0, d8);
ASSERT_EQUAL_FP64(0.0, d9);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11);
TEARDOWN();
}
TEST(fabs) {
SETUP();
START();
__ Fmov(s16, -1.0);
__ Fmov(s17, -0.0);
__ Fmov(s18, kFP32NegativeInfinity);
__ Fmov(d19, -1.0);
__ Fmov(d20, -0.0);
__ Fmov(d21, kFP64NegativeInfinity);
__ Fabs(s0, s16);
__ Fabs(s1, s0);
__ Fabs(s2, s17);
__ Fabs(s3, s18);
__ Fabs(d4, d19);
__ Fabs(d5, d4);
__ Fabs(d6, d20);
__ Fabs(d7, d21);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(0.0, s2);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3);
ASSERT_EQUAL_FP64(1.0, d4);
ASSERT_EQUAL_FP64(1.0, d5);
ASSERT_EQUAL_FP64(0.0, d6);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7);
TEARDOWN();
}
TEST(fsqrt) {
SETUP();
START();
__ Fmov(s16, 0.0);
__ Fmov(s17, 1.0);
__ Fmov(s18, 0.25);
__ Fmov(s19, 65536.0);
__ Fmov(s20, -0.0);
__ Fmov(s21, kFP32PositiveInfinity);
__ Fmov(s22, -1.0);
__ Fmov(d23, 0.0);
__ Fmov(d24, 1.0);
__ Fmov(d25, 0.25);
__ Fmov(d26, 4294967296.0);
__ Fmov(d27, -0.0);
__ Fmov(d28, kFP64PositiveInfinity);
__ Fmov(d29, -1.0);
__ Fsqrt(s0, s16);
__ Fsqrt(s1, s17);
__ Fsqrt(s2, s18);
__ Fsqrt(s3, s19);
__ Fsqrt(s4, s20);
__ Fsqrt(s5, s21);
__ Fsqrt(s6, s22);
__ Fsqrt(d7, d23);
__ Fsqrt(d8, d24);
__ Fsqrt(d9, d25);
__ Fsqrt(d10, d26);
__ Fsqrt(d11, d27);
__ Fsqrt(d12, d28);
__ Fsqrt(d13, d29);
END();
RUN();
ASSERT_EQUAL_FP32(0.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(0.5, s2);
ASSERT_EQUAL_FP32(256.0, s3);
ASSERT_EQUAL_FP32(-0.0, s4);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6);
ASSERT_EQUAL_FP64(0.0, d7);
ASSERT_EQUAL_FP64(1.0, d8);
ASSERT_EQUAL_FP64(0.5, d9);
ASSERT_EQUAL_FP64(65536.0, d10);
ASSERT_EQUAL_FP64(-0.0, d11);
ASSERT_EQUAL_FP64(kFP32PositiveInfinity, d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
TEARDOWN();
}
TEST(frinta) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frinta(s0, s16);
__ Frinta(s1, s17);
__ Frinta(s2, s18);
__ Frinta(s3, s19);
__ Frinta(s4, s20);
__ Frinta(s5, s21);
__ Frinta(s6, s22);
__ Frinta(s7, s23);
__ Frinta(s8, s24);
__ Frinta(s9, s25);
__ Frinta(s10, s26);
__ Frinta(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frinta(d12, d16);
__ Frinta(d13, d17);
__ Frinta(d14, d18);
__ Frinta(d15, d19);
__ Frinta(d16, d20);
__ Frinta(d17, d21);
__ Frinta(d18, d22);
__ Frinta(d19, d23);
__ Frinta(d20, d24);
__ Frinta(d21, d25);
__ Frinta(d22, d26);
__ Frinta(d23, d27);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(3.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-3.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP32(-0.0, s11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(3.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(-3.0, d18);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d19);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d20);
ASSERT_EQUAL_FP64(0.0, d21);
ASSERT_EQUAL_FP64(-0.0, d22);
ASSERT_EQUAL_FP64(-0.0, d23);
TEARDOWN();
}
TEST(frinti) {
// VIXL only supports the round-to-nearest FPCR mode, so this test has the
// same results as frintn.
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frinti(s0, s16);
__ Frinti(s1, s17);
__ Frinti(s2, s18);
__ Frinti(s3, s19);
__ Frinti(s4, s20);
__ Frinti(s5, s21);
__ Frinti(s6, s22);
__ Frinti(s7, s23);
__ Frinti(s8, s24);
__ Frinti(s9, s25);
__ Frinti(s10, s26);
__ Frinti(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frinti(d12, d16);
__ Frinti(d13, d17);
__ Frinti(d14, d18);
__ Frinti(d15, d19);
__ Frinti(d16, d20);
__ Frinti(d17, d21);
__ Frinti(d18, d22);
__ Frinti(d19, d23);
__ Frinti(d20, d24);
__ Frinti(d21, d25);
__ Frinti(d22, d26);
__ Frinti(d23, d27);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP32(-0.0, s11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(2.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(-2.0, d18);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d19);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d20);
ASSERT_EQUAL_FP64(0.0, d21);
ASSERT_EQUAL_FP64(-0.0, d22);
ASSERT_EQUAL_FP64(-0.0, d23);
TEARDOWN();
}
TEST(frintm) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintm(s0, s16);
__ Frintm(s1, s17);
__ Frintm(s2, s18);
__ Frintm(s3, s19);
__ Frintm(s4, s20);
__ Frintm(s5, s21);
__ Frintm(s6, s22);
__ Frintm(s7, s23);
__ Frintm(s8, s24);
__ Frintm(s9, s25);
__ Frintm(s10, s26);
__ Frintm(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintm(d12, d16);
__ Frintm(d13, d17);
__ Frintm(d14, d18);
__ Frintm(d15, d19);
__ Frintm(d16, d20);
__ Frintm(d17, d21);
__ Frintm(d18, d22);
__ Frintm(d19, d23);
__ Frintm(d20, d24);
__ Frintm(d21, d25);
__ Frintm(d22, d26);
__ Frintm(d23, d27);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, s2);
ASSERT_EQUAL_FP32(1.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-3.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP32(-1.0, s11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(1.0, d14);
ASSERT_EQUAL_FP64(1.0, d15);
ASSERT_EQUAL_FP64(2.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(-3.0, d18);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d19);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d20);
ASSERT_EQUAL_FP64(0.0, d21);
ASSERT_EQUAL_FP64(-0.0, d22);
ASSERT_EQUAL_FP64(-1.0, d23);
TEARDOWN();
}
TEST(frintn) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintn(s0, s16);
__ Frintn(s1, s17);
__ Frintn(s2, s18);
__ Frintn(s3, s19);
__ Frintn(s4, s20);
__ Frintn(s5, s21);
__ Frintn(s6, s22);
__ Frintn(s7, s23);
__ Frintn(s8, s24);
__ Frintn(s9, s25);
__ Frintn(s10, s26);
__ Frintn(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintn(d12, d16);
__ Frintn(d13, d17);
__ Frintn(d14, d18);
__ Frintn(d15, d19);
__ Frintn(d16, d20);
__ Frintn(d17, d21);
__ Frintn(d18, d22);
__ Frintn(d19, d23);
__ Frintn(d20, d24);
__ Frintn(d21, d25);
__ Frintn(d22, d26);
__ Frintn(d23, d27);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP32(-0.0, s11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(2.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(-2.0, d18);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d19);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d20);
ASSERT_EQUAL_FP64(0.0, d21);
ASSERT_EQUAL_FP64(-0.0, d22);
ASSERT_EQUAL_FP64(-0.0, d23);
TEARDOWN();
}
TEST(frintp) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintp(s0, s16);
__ Frintp(s1, s17);
__ Frintp(s2, s18);
__ Frintp(s3, s19);
__ Frintp(s4, s20);
__ Frintp(s5, s21);
__ Frintp(s6, s22);
__ Frintp(s7, s23);
__ Frintp(s8, s24);
__ Frintp(s9, s25);
__ Frintp(s10, s26);
__ Frintp(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintp(d12, d16);
__ Frintp(d13, d17);
__ Frintp(d14, d18);
__ Frintp(d15, d19);
__ Frintp(d16, d20);
__ Frintp(d17, d21);
__ Frintp(d18, d22);
__ Frintp(d19, d23);
__ Frintp(d20, d24);
__ Frintp(d21, d25);
__ Frintp(d22, d26);
__ Frintp(d23, d27);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(2.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(3.0, s4);
ASSERT_EQUAL_FP32(-1.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP32(-0.0, s11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(2.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(3.0, d16);
ASSERT_EQUAL_FP64(-1.0, d17);
ASSERT_EQUAL_FP64(-2.0, d18);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d19);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d20);
ASSERT_EQUAL_FP64(0.0, d21);
ASSERT_EQUAL_FP64(-0.0, d22);
ASSERT_EQUAL_FP64(-0.0, d23);
TEARDOWN();
}
TEST(frintx) {
// VIXL only supports the round-to-nearest FPCR mode, and it doesn't support
// FP exceptions, so this test has the same results as frintn (and frinti).
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, -0.2);
__ Frintx(s0, s16);
__ Frintx(s1, s17);
__ Frintx(s2, s18);
__ Frintx(s3, s19);
__ Frintx(s4, s20);
__ Frintx(s5, s21);
__ Frintx(s6, s22);
__ Frintx(s7, s23);
__ Frintx(s8, s24);
__ Frintx(s9, s25);
__ Frintx(s10, s26);
__ Frintx(s11, s27);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, -0.2);
__ Frintx(d12, d16);
__ Frintx(d13, d17);
__ Frintx(d14, d18);
__ Frintx(d15, d19);
__ Frintx(d16, d20);
__ Frintx(d17, d21);
__ Frintx(d18, d22);
__ Frintx(d19, d23);
__ Frintx(d20, d24);
__ Frintx(d21, d25);
__ Frintx(d22, d26);
__ Frintx(d23, d27);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(2.0, s2);
ASSERT_EQUAL_FP32(2.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-2.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP32(-0.0, s11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(2.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(2.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(-2.0, d18);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d19);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d20);
ASSERT_EQUAL_FP64(0.0, d21);
ASSERT_EQUAL_FP64(-0.0, d22);
ASSERT_EQUAL_FP64(-0.0, d23);
TEARDOWN();
}
TEST(frintz) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Frintz(s0, s16);
__ Frintz(s1, s17);
__ Frintz(s2, s18);
__ Frintz(s3, s19);
__ Frintz(s4, s20);
__ Frintz(s5, s21);
__ Frintz(s6, s22);
__ Frintz(s7, s23);
__ Frintz(s8, s24);
__ Frintz(s9, s25);
__ Frintz(s10, s26);
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Frintz(d11, d16);
__ Frintz(d12, d17);
__ Frintz(d13, d18);
__ Frintz(d14, d19);
__ Frintz(d15, d20);
__ Frintz(d16, d21);
__ Frintz(d17, d22);
__ Frintz(d18, d23);
__ Frintz(d19, d24);
__ Frintz(d20, d25);
__ Frintz(d21, d26);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(1.0, s1);
ASSERT_EQUAL_FP32(1.0, s2);
ASSERT_EQUAL_FP32(1.0, s3);
ASSERT_EQUAL_FP32(2.0, s4);
ASSERT_EQUAL_FP32(-1.0, s5);
ASSERT_EQUAL_FP32(-2.0, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0, s9);
ASSERT_EQUAL_FP32(-0.0, s10);
ASSERT_EQUAL_FP64(1.0, d11);
ASSERT_EQUAL_FP64(1.0, d12);
ASSERT_EQUAL_FP64(1.0, d13);
ASSERT_EQUAL_FP64(1.0, d14);
ASSERT_EQUAL_FP64(2.0, d15);
ASSERT_EQUAL_FP64(-1.0, d16);
ASSERT_EQUAL_FP64(-2.0, d17);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19);
ASSERT_EQUAL_FP64(0.0, d20);
ASSERT_EQUAL_FP64(-0.0, d21);
TEARDOWN();
}
TEST(fcvt_ds) {
SETUP();
START();
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, 1.9);
__ Fmov(s20, 2.5);
__ Fmov(s21, -1.5);
__ Fmov(s22, -2.5);
__ Fmov(s23, kFP32PositiveInfinity);
__ Fmov(s24, kFP32NegativeInfinity);
__ Fmov(s25, 0.0);
__ Fmov(s26, -0.0);
__ Fmov(s27, FLT_MAX);
__ Fmov(s28, FLT_MIN);
__ Fmov(s29, rawbits_to_float(0x7fc12345)); // Quiet NaN.
__ Fmov(s30, rawbits_to_float(0x7f812345)); // Signalling NaN.
__ Fcvt(d0, s16);
__ Fcvt(d1, s17);
__ Fcvt(d2, s18);
__ Fcvt(d3, s19);
__ Fcvt(d4, s20);
__ Fcvt(d5, s21);
__ Fcvt(d6, s22);
__ Fcvt(d7, s23);
__ Fcvt(d8, s24);
__ Fcvt(d9, s25);
__ Fcvt(d10, s26);
__ Fcvt(d11, s27);
__ Fcvt(d12, s28);
__ Fcvt(d13, s29);
__ Fcvt(d14, s30);
END();
RUN();
ASSERT_EQUAL_FP64(1.0f, d0);
ASSERT_EQUAL_FP64(1.1f, d1);
ASSERT_EQUAL_FP64(1.5f, d2);
ASSERT_EQUAL_FP64(1.9f, d3);
ASSERT_EQUAL_FP64(2.5f, d4);
ASSERT_EQUAL_FP64(-1.5f, d5);
ASSERT_EQUAL_FP64(-2.5f, d6);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8);
ASSERT_EQUAL_FP64(0.0f, d9);
ASSERT_EQUAL_FP64(-0.0f, d10);
ASSERT_EQUAL_FP64(FLT_MAX, d11);
ASSERT_EQUAL_FP64(FLT_MIN, d12);
// Check that the NaN payload is preserved according to A64 conversion rules:
// - The sign bit is preserved.
// - The top bit of the mantissa is forced to 1 (making it a quiet NaN).
// - The remaining mantissa bits are copied until they run out.
// - The low-order bits that haven't already been assigned are set to 0.
ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d13);
ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d14);
TEARDOWN();
}
TEST(fcvt_sd) {
// Test simple conversions here. Complex behaviour (such as rounding
// specifics) are tested in the simulator tests.
SETUP();
START();
__ Fmov(d16, 1.0);
__ Fmov(d17, 1.1);
__ Fmov(d18, 1.5);
__ Fmov(d19, 1.9);
__ Fmov(d20, 2.5);
__ Fmov(d21, -1.5);
__ Fmov(d22, -2.5);
__ Fmov(d23, kFP32PositiveInfinity);
__ Fmov(d24, kFP32NegativeInfinity);
__ Fmov(d25, 0.0);
__ Fmov(d26, -0.0);
__ Fmov(d27, FLT_MAX);
__ Fmov(d28, FLT_MIN);
__ Fmov(d29, rawbits_to_double(0x7ff82468a0000000)); // Quiet NaN.
__ Fmov(d30, rawbits_to_double(0x7ff02468a0000000)); // Signalling NaN.
__ Fcvt(s0, d16);
__ Fcvt(s1, d17);
__ Fcvt(s2, d18);
__ Fcvt(s3, d19);
__ Fcvt(s4, d20);
__ Fcvt(s5, d21);
__ Fcvt(s6, d22);
__ Fcvt(s7, d23);
__ Fcvt(s8, d24);
__ Fcvt(s9, d25);
__ Fcvt(s10, d26);
__ Fcvt(s11, d27);
__ Fcvt(s12, d28);
__ Fcvt(s13, d29);
__ Fcvt(s14, d30);
END();
RUN();
ASSERT_EQUAL_FP32(1.0f, s0);
ASSERT_EQUAL_FP32(1.1f, s1);
ASSERT_EQUAL_FP32(1.5f, s2);
ASSERT_EQUAL_FP32(1.9f, s3);
ASSERT_EQUAL_FP32(2.5f, s4);
ASSERT_EQUAL_FP32(-1.5f, s5);
ASSERT_EQUAL_FP32(-2.5f, s6);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8);
ASSERT_EQUAL_FP32(0.0f, s9);
ASSERT_EQUAL_FP32(-0.0f, s10);
ASSERT_EQUAL_FP32(FLT_MAX, s11);
ASSERT_EQUAL_FP32(FLT_MIN, s12);
// Check that the NaN payload is preserved according to A64 conversion rules:
// - The sign bit is preserved.
// - The top bit of the mantissa is forced to 1 (making it a quiet NaN).
// - The remaining mantissa bits are copied until they run out.
// - The low-order bits that haven't already been assigned are set to 0.
ASSERT_EQUAL_FP32(rawbits_to_float(0x7fc12345), s13);
ASSERT_EQUAL_FP32(rawbits_to_float(0x7fc12345), s14);
TEARDOWN();
}
TEST(fcvt_half) {
SETUP();
START();
Label done;
{
// Check all exact conversions from half to float and back.
Label ok, fail;
__ Mov(w0, 0);
for (int i = 0; i < 0xffff; i += 3) {
if ((i & 0x7c00) == 0x7c00) continue;
__ Mov(w1, i);
__ Fmov(s1, w1);
__ Fcvt(s2, h1);
__ Fcvt(h2, s2);
__ Fmov(w2, s2);
__ Cmp(w1, w2);
__ B(&fail, ne);
}
__ B(&ok);
__ Bind(&fail);
__ Mov(w0, 1);
__ B(&done);
__ Bind(&ok);
}
{
// Check all exact conversions from half to double and back.
Label ok, fail;
for (int i = 0; i < 0xffff; i += 3) {
if ((i & 0x7c00) == 0x7c00) continue;
__ Mov(w1, i);
__ Fmov(s1, w1);
__ Fcvt(d2, h1);
__ Fcvt(h2, d2);
__ Mov(w2, v2.S(), 0);
__ Cmp(w1, w2);
__ B(&fail, ne);
}
__ B(&ok);
__ Bind(&fail);
__ Mov(w0, 2);
__ Bind(&ok);
}
__ Bind(&done);
// Check some other interesting values.
__ Fmov(s0, kFP32PositiveInfinity);
__ Fmov(s1, kFP32NegativeInfinity);
__ Fmov(s2, 65504); // Max half precision.
__ Fmov(s3, 6.10352e-5); // Min positive normal.
__ Fmov(s4, 6.09756e-5); // Max subnormal.
__ Fmov(s5, 5.96046e-8); // Min positive subnormal.
__ Fmov(s6, 5e-9); // Not representable -> zero.
__ Fmov(s7, -0.0);
__ Fcvt(h0, s0);
__ Fcvt(h1, s1);
__ Fcvt(h2, s2);
__ Fcvt(h3, s3);
__ Fcvt(h4, s4);
__ Fcvt(h5, s5);
__ Fcvt(h6, s6);
__ Fcvt(h7, s7);
__ Fmov(d20, kFP64PositiveInfinity);
__ Fmov(d21, kFP64NegativeInfinity);
__ Fmov(d22, 65504); // Max half precision.
__ Fmov(d23, 6.10352e-5); // Min positive normal.
__ Fmov(d24, 6.09756e-5); // Max subnormal.
__ Fmov(d25, 5.96046e-8); // Min positive subnormal.
__ Fmov(d26, 5e-9); // Not representable -> zero.
__ Fmov(d27, -0.0);
__ Fcvt(h20, d20);
__ Fcvt(h21, d21);
__ Fcvt(h22, d22);
__ Fcvt(h23, d23);
__ Fcvt(h24, d24);
__ Fcvt(h25, d25);
__ Fcvt(h26, d26);
__ Fcvt(h27, d27);
END();
RUN();
ASSERT_EQUAL_32(0, w0); // 1 => float failed, 2 => double failed.
ASSERT_EQUAL_128(0, kFP16PositiveInfinity, q0);
ASSERT_EQUAL_128(0, kFP16NegativeInfinity, q1);
ASSERT_EQUAL_128(0, 0x7bff, q2);
ASSERT_EQUAL_128(0, 0x0400, q3);
ASSERT_EQUAL_128(0, 0x03ff, q4);
ASSERT_EQUAL_128(0, 0x0001, q5);
ASSERT_EQUAL_128(0, 0, q6);
ASSERT_EQUAL_128(0, 0x8000, q7);
ASSERT_EQUAL_128(0, kFP16PositiveInfinity, q20);
ASSERT_EQUAL_128(0, kFP16NegativeInfinity, q21);
ASSERT_EQUAL_128(0, 0x7bff, q22);
ASSERT_EQUAL_128(0, 0x0400, q23);
ASSERT_EQUAL_128(0, 0x03ff, q24);
ASSERT_EQUAL_128(0, 0x0001, q25);
ASSERT_EQUAL_128(0, 0, q26);
ASSERT_EQUAL_128(0, 0x8000, q27);
TEARDOWN();
}
TEST(fcvtas) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 2.5);
__ Fmov(s3, -2.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 2.5);
__ Fmov(d11, -2.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 2.5);
__ Fmov(s19, -2.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 2.5);
__ Fmov(d26, -2.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtas(w0, s0);
__ Fcvtas(w1, s1);
__ Fcvtas(w2, s2);
__ Fcvtas(w3, s3);
__ Fcvtas(w4, s4);
__ Fcvtas(w5, s5);
__ Fcvtas(w6, s6);
__ Fcvtas(w7, s7);
__ Fcvtas(w8, d8);
__ Fcvtas(w9, d9);
__ Fcvtas(w10, d10);
__ Fcvtas(w11, d11);
__ Fcvtas(w12, d12);
__ Fcvtas(w13, d13);
__ Fcvtas(w14, d14);
__ Fcvtas(w15, d15);
__ Fcvtas(x17, s17);
__ Fcvtas(x18, s18);
__ Fcvtas(x19, s19);
__ Fcvtas(x20, s20);
__ Fcvtas(x21, s21);
__ Fcvtas(x22, s22);
__ Fcvtas(x23, s23);
__ Fcvtas(x24, d24);
__ Fcvtas(x25, d25);
__ Fcvtas(x26, d26);
__ Fcvtas(x27, d27);
__ Fcvtas(x28, d28);
__ Fcvtas(x29, d29);
__ Fcvtas(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(3, x2);
ASSERT_EQUAL_64(0xfffffffd, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(3, x10);
ASSERT_EQUAL_64(0xfffffffd, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(3, x18);
ASSERT_EQUAL_64(0xfffffffffffffffd, x19);
ASSERT_EQUAL_64(0x7fffffffffffffff, x20);
ASSERT_EQUAL_64(0x8000000000000000, x21);
ASSERT_EQUAL_64(0x7fffff8000000000, x22);
ASSERT_EQUAL_64(0x8000008000000000, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(3, x25);
ASSERT_EQUAL_64(0xfffffffffffffffd, x26);
ASSERT_EQUAL_64(0x7fffffffffffffff, x27);
ASSERT_EQUAL_64(0x8000000000000000, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00, x29);
ASSERT_EQUAL_64(0x8000000000000400, x30);
TEARDOWN();
}
TEST(fcvtau) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 2.5);
__ Fmov(s3, -2.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 2.5);
__ Fmov(d11, -2.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, 0xfffffffe);
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 2.5);
__ Fmov(s19, -2.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0xffffff0000000000); // Largest float < UINT64_MAX.
__ Fmov(d24, 1.1);
__ Fmov(d25, 2.5);
__ Fmov(d26, -2.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0xfffffffffffff800); // Largest double < UINT64_MAX.
__ Fmov(s30, 0x100000000);
__ Fcvtau(w0, s0);
__ Fcvtau(w1, s1);
__ Fcvtau(w2, s2);
__ Fcvtau(w3, s3);
__ Fcvtau(w4, s4);
__ Fcvtau(w5, s5);
__ Fcvtau(w6, s6);
__ Fcvtau(w8, d8);
__ Fcvtau(w9, d9);
__ Fcvtau(w10, d10);
__ Fcvtau(w11, d11);
__ Fcvtau(w12, d12);
__ Fcvtau(w13, d13);
__ Fcvtau(w14, d14);
__ Fcvtau(w15, d15);
__ Fcvtau(x16, s16);
__ Fcvtau(x17, s17);
__ Fcvtau(x18, s18);
__ Fcvtau(x19, s19);
__ Fcvtau(x20, s20);
__ Fcvtau(x21, s21);
__ Fcvtau(x22, s22);
__ Fcvtau(x24, d24);
__ Fcvtau(x25, d25);
__ Fcvtau(x26, d26);
__ Fcvtau(x27, d27);
__ Fcvtau(x28, d28);
__ Fcvtau(x29, d29);
__ Fcvtau(w30, s30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(3, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0xffffff00, x6);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(3, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0xfffffffe, x14);
ASSERT_EQUAL_64(1, x16);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(3, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xffffffffffffffff, x20);
ASSERT_EQUAL_64(0, x21);
ASSERT_EQUAL_64(0xffffff0000000000, x22);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(3, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0xffffffffffffffff, x27);
ASSERT_EQUAL_64(0, x28);
ASSERT_EQUAL_64(0xfffffffffffff800, x29);
ASSERT_EQUAL_64(0xffffffff, x30);
TEARDOWN();
}
TEST(fcvtms) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtms(w0, s0);
__ Fcvtms(w1, s1);
__ Fcvtms(w2, s2);
__ Fcvtms(w3, s3);
__ Fcvtms(w4, s4);
__ Fcvtms(w5, s5);
__ Fcvtms(w6, s6);
__ Fcvtms(w7, s7);
__ Fcvtms(w8, d8);
__ Fcvtms(w9, d9);
__ Fcvtms(w10, d10);
__ Fcvtms(w11, d11);
__ Fcvtms(w12, d12);
__ Fcvtms(w13, d13);
__ Fcvtms(w14, d14);
__ Fcvtms(w15, d15);
__ Fcvtms(x17, s17);
__ Fcvtms(x18, s18);
__ Fcvtms(x19, s19);
__ Fcvtms(x20, s20);
__ Fcvtms(x21, s21);
__ Fcvtms(x22, s22);
__ Fcvtms(x23, s23);
__ Fcvtms(x24, d24);
__ Fcvtms(x25, d25);
__ Fcvtms(x26, d26);
__ Fcvtms(x27, d27);
__ Fcvtms(x28, d28);
__ Fcvtms(x29, d29);
__ Fcvtms(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0xfffffffe, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0xfffffffe, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0xfffffffffffffffe, x19);
ASSERT_EQUAL_64(0x7fffffffffffffff, x20);
ASSERT_EQUAL_64(0x8000000000000000, x21);
ASSERT_EQUAL_64(0x7fffff8000000000, x22);
ASSERT_EQUAL_64(0x8000008000000000, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0xfffffffffffffffe, x26);
ASSERT_EQUAL_64(0x7fffffffffffffff, x27);
ASSERT_EQUAL_64(0x8000000000000000, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00, x29);
ASSERT_EQUAL_64(0x8000000000000400, x30);
TEARDOWN();
}
TEST(fcvtmu) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtmu(w0, s0);
__ Fcvtmu(w1, s1);
__ Fcvtmu(w2, s2);
__ Fcvtmu(w3, s3);
__ Fcvtmu(w4, s4);
__ Fcvtmu(w5, s5);
__ Fcvtmu(w6, s6);
__ Fcvtmu(w7, s7);
__ Fcvtmu(w8, d8);
__ Fcvtmu(w9, d9);
__ Fcvtmu(w10, d10);
__ Fcvtmu(w11, d11);
__ Fcvtmu(w12, d12);
__ Fcvtmu(w13, d13);
__ Fcvtmu(w14, d14);
__ Fcvtmu(x17, s17);
__ Fcvtmu(x18, s18);
__ Fcvtmu(x19, s19);
__ Fcvtmu(x20, s20);
__ Fcvtmu(x21, s21);
__ Fcvtmu(x22, s22);
__ Fcvtmu(x23, s23);
__ Fcvtmu(x24, d24);
__ Fcvtmu(x25, d25);
__ Fcvtmu(x26, d26);
__ Fcvtmu(x27, d27);
__ Fcvtmu(x28, d28);
__ Fcvtmu(x29, d29);
__ Fcvtmu(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xffffffffffffffff, x20);
ASSERT_EQUAL_64(0, x21);
ASSERT_EQUAL_64(0x7fffff8000000000, x22);
ASSERT_EQUAL_64(0, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0xffffffffffffffff, x27);
ASSERT_EQUAL_64(0, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00, x29);
ASSERT_EQUAL_64(0, x30);
TEARDOWN();
}
TEST(fcvtns) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtns(w0, s0);
__ Fcvtns(w1, s1);
__ Fcvtns(w2, s2);
__ Fcvtns(w3, s3);
__ Fcvtns(w4, s4);
__ Fcvtns(w5, s5);
__ Fcvtns(w6, s6);
__ Fcvtns(w7, s7);
__ Fcvtns(w8, d8);
__ Fcvtns(w9, d9);
__ Fcvtns(w10, d10);
__ Fcvtns(w11, d11);
__ Fcvtns(w12, d12);
__ Fcvtns(w13, d13);
__ Fcvtns(w14, d14);
__ Fcvtns(w15, d15);
__ Fcvtns(x17, s17);
__ Fcvtns(x18, s18);
__ Fcvtns(x19, s19);
__ Fcvtns(x20, s20);
__ Fcvtns(x21, s21);
__ Fcvtns(x22, s22);
__ Fcvtns(x23, s23);
__ Fcvtns(x24, d24);
__ Fcvtns(x25, d25);
__ Fcvtns(x26, d26);
__ Fcvtns(x27, d27);
__ Fcvtns(x28, d28);
__ Fcvtns(x29, d29);
__ Fcvtns(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(2, x2);
ASSERT_EQUAL_64(0xfffffffe, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(2, x10);
ASSERT_EQUAL_64(0xfffffffe, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(2, x18);
ASSERT_EQUAL_64(0xfffffffffffffffe, x19);
ASSERT_EQUAL_64(0x7fffffffffffffff, x20);
ASSERT_EQUAL_64(0x8000000000000000, x21);
ASSERT_EQUAL_64(0x7fffff8000000000, x22);
ASSERT_EQUAL_64(0x8000008000000000, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(2, x25);
ASSERT_EQUAL_64(0xfffffffffffffffe, x26);
ASSERT_EQUAL_64(0x7fffffffffffffff, x27);
ASSERT_EQUAL_64(0x8000000000000000, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00, x29);
ASSERT_EQUAL_64(0x8000000000000400, x30);
TEARDOWN();
}
TEST(fcvtnu) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, 0xfffffffe);
__ Fmov(s16, 1.0);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0xffffff0000000000); // Largest float < UINT64_MAX.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0xfffffffffffff800); // Largest double < UINT64_MAX.
__ Fmov(s30, 0x100000000);
__ Fcvtnu(w0, s0);
__ Fcvtnu(w1, s1);
__ Fcvtnu(w2, s2);
__ Fcvtnu(w3, s3);
__ Fcvtnu(w4, s4);
__ Fcvtnu(w5, s5);
__ Fcvtnu(w6, s6);
__ Fcvtnu(w8, d8);
__ Fcvtnu(w9, d9);
__ Fcvtnu(w10, d10);
__ Fcvtnu(w11, d11);
__ Fcvtnu(w12, d12);
__ Fcvtnu(w13, d13);
__ Fcvtnu(w14, d14);
__ Fcvtnu(w15, d15);
__ Fcvtnu(x16, s16);
__ Fcvtnu(x17, s17);
__ Fcvtnu(x18, s18);
__ Fcvtnu(x19, s19);
__ Fcvtnu(x20, s20);
__ Fcvtnu(x21, s21);
__ Fcvtnu(x22, s22);
__ Fcvtnu(x24, d24);
__ Fcvtnu(x25, d25);
__ Fcvtnu(x26, d26);
__ Fcvtnu(x27, d27);
__ Fcvtnu(x28, d28);
__ Fcvtnu(x29, d29);
__ Fcvtnu(w30, s30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(2, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0xffffff00, x6);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(2, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0xfffffffe, x14);
ASSERT_EQUAL_64(1, x16);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(2, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xffffffffffffffff, x20);
ASSERT_EQUAL_64(0, x21);
ASSERT_EQUAL_64(0xffffff0000000000, x22);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(2, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0xffffffffffffffff, x27);
ASSERT_EQUAL_64(0, x28);
ASSERT_EQUAL_64(0xfffffffffffff800, x29);
ASSERT_EQUAL_64(0xffffffff, x30);
TEARDOWN();
}
TEST(fcvtzs) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtzs(w0, s0);
__ Fcvtzs(w1, s1);
__ Fcvtzs(w2, s2);
__ Fcvtzs(w3, s3);
__ Fcvtzs(w4, s4);
__ Fcvtzs(w5, s5);
__ Fcvtzs(w6, s6);
__ Fcvtzs(w7, s7);
__ Fcvtzs(w8, d8);
__ Fcvtzs(w9, d9);
__ Fcvtzs(w10, d10);
__ Fcvtzs(w11, d11);
__ Fcvtzs(w12, d12);
__ Fcvtzs(w13, d13);
__ Fcvtzs(w14, d14);
__ Fcvtzs(w15, d15);
__ Fcvtzs(x17, s17);
__ Fcvtzs(x18, s18);
__ Fcvtzs(x19, s19);
__ Fcvtzs(x20, s20);
__ Fcvtzs(x21, s21);
__ Fcvtzs(x22, s22);
__ Fcvtzs(x23, s23);
__ Fcvtzs(x24, d24);
__ Fcvtzs(x25, d25);
__ Fcvtzs(x26, d26);
__ Fcvtzs(x27, d27);
__ Fcvtzs(x28, d28);
__ Fcvtzs(x29, d29);
__ Fcvtzs(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0xffffffff, x3);
ASSERT_EQUAL_64(0x7fffffff, x4);
ASSERT_EQUAL_64(0x80000000, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0x80000080, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0xffffffff, x11);
ASSERT_EQUAL_64(0x7fffffff, x12);
ASSERT_EQUAL_64(0x80000000, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(0x80000001, x15);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0xffffffffffffffff, x19);
ASSERT_EQUAL_64(0x7fffffffffffffff, x20);
ASSERT_EQUAL_64(0x8000000000000000, x21);
ASSERT_EQUAL_64(0x7fffff8000000000, x22);
ASSERT_EQUAL_64(0x8000008000000000, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0xffffffffffffffff, x26);
ASSERT_EQUAL_64(0x7fffffffffffffff, x27);
ASSERT_EQUAL_64(0x8000000000000000, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00, x29);
ASSERT_EQUAL_64(0x8000000000000400, x30);
TEARDOWN();
}
TEST(fcvtzu) {
SETUP();
START();
__ Fmov(s0, 1.0);
__ Fmov(s1, 1.1);
__ Fmov(s2, 1.5);
__ Fmov(s3, -1.5);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX.
__ Fneg(s7, s6); // Smallest float > INT32_MIN.
__ Fmov(d8, 1.0);
__ Fmov(d9, 1.1);
__ Fmov(d10, 1.5);
__ Fmov(d11, -1.5);
__ Fmov(d12, kFP64PositiveInfinity);
__ Fmov(d13, kFP64NegativeInfinity);
__ Fmov(d14, kWMaxInt - 1);
__ Fmov(d15, kWMinInt + 1);
__ Fmov(s17, 1.1);
__ Fmov(s18, 1.5);
__ Fmov(s19, -1.5);
__ Fmov(s20, kFP32PositiveInfinity);
__ Fmov(s21, kFP32NegativeInfinity);
__ Fmov(s22, 0x7fffff8000000000); // Largest float < INT64_MAX.
__ Fneg(s23, s22); // Smallest float > INT64_MIN.
__ Fmov(d24, 1.1);
__ Fmov(d25, 1.5);
__ Fmov(d26, -1.5);
__ Fmov(d27, kFP64PositiveInfinity);
__ Fmov(d28, kFP64NegativeInfinity);
__ Fmov(d29, 0x7ffffffffffffc00); // Largest double < INT64_MAX.
__ Fneg(d30, d29); // Smallest double > INT64_MIN.
__ Fcvtzu(w0, s0);
__ Fcvtzu(w1, s1);
__ Fcvtzu(w2, s2);
__ Fcvtzu(w3, s3);
__ Fcvtzu(w4, s4);
__ Fcvtzu(w5, s5);
__ Fcvtzu(w6, s6);
__ Fcvtzu(w7, s7);
__ Fcvtzu(w8, d8);
__ Fcvtzu(w9, d9);
__ Fcvtzu(w10, d10);
__ Fcvtzu(w11, d11);
__ Fcvtzu(w12, d12);
__ Fcvtzu(w13, d13);
__ Fcvtzu(w14, d14);
__ Fcvtzu(x17, s17);
__ Fcvtzu(x18, s18);
__ Fcvtzu(x19, s19);
__ Fcvtzu(x20, s20);
__ Fcvtzu(x21, s21);
__ Fcvtzu(x22, s22);
__ Fcvtzu(x23, s23);
__ Fcvtzu(x24, d24);
__ Fcvtzu(x25, d25);
__ Fcvtzu(x26, d26);
__ Fcvtzu(x27, d27);
__ Fcvtzu(x28, d28);
__ Fcvtzu(x29, d29);
__ Fcvtzu(x30, d30);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
ASSERT_EQUAL_64(1, x2);
ASSERT_EQUAL_64(0, x3);
ASSERT_EQUAL_64(0xffffffff, x4);
ASSERT_EQUAL_64(0, x5);
ASSERT_EQUAL_64(0x7fffff80, x6);
ASSERT_EQUAL_64(0, x7);
ASSERT_EQUAL_64(1, x8);
ASSERT_EQUAL_64(1, x9);
ASSERT_EQUAL_64(1, x10);
ASSERT_EQUAL_64(0, x11);
ASSERT_EQUAL_64(0xffffffff, x12);
ASSERT_EQUAL_64(0, x13);
ASSERT_EQUAL_64(0x7ffffffe, x14);
ASSERT_EQUAL_64(1, x17);
ASSERT_EQUAL_64(1, x18);
ASSERT_EQUAL_64(0, x19);
ASSERT_EQUAL_64(0xffffffffffffffff, x20);
ASSERT_EQUAL_64(0, x21);
ASSERT_EQUAL_64(0x7fffff8000000000, x22);
ASSERT_EQUAL_64(0, x23);
ASSERT_EQUAL_64(1, x24);
ASSERT_EQUAL_64(1, x25);
ASSERT_EQUAL_64(0, x26);
ASSERT_EQUAL_64(0xffffffffffffffff, x27);
ASSERT_EQUAL_64(0, x28);
ASSERT_EQUAL_64(0x7ffffffffffffc00, x29);
ASSERT_EQUAL_64(0, x30);
TEARDOWN();
}
TEST(neon_fcvtl) {
SETUP();
START();
__ Movi(v0.V2D(), 0x000080007efffeff, 0x3100b1007c00fc00);
__ Movi(v1.V2D(), 0x03ff83ff00038003, 0x000180017c01fc01);
__ Movi(v2.V2D(), 0x3e200000be200000, 0x7f800000ff800000);
__ Movi(v3.V2D(), 0x0000000080000000, 0x7f8fffffff8fffff);
__ Movi(v4.V2D(), 0x7fcfffffffcfffff, 0x0000000180000001);
__ Fcvtl(v16.V4S(), v0.V4H());
__ Fcvtl2(v17.V4S(), v0.V8H());
__ Fcvtl(v18.V4S(), v1.V4H());
__ Fcvtl2(v19.V4S(), v1.V8H());
__ Fcvtl(v20.V2D(), v2.V2S());
__ Fcvtl2(v21.V2D(), v2.V4S());
__ Fcvtl(v22.V2D(), v3.V2S());
__ Fcvtl2(v23.V2D(), v3.V4S());
__ Fcvtl(v24.V2D(), v4.V2S());
__ Fcvtl2(v25.V2D(), v4.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x3e200000be200000, 0x7f800000ff800000, q16);
ASSERT_EQUAL_128(0x0000000080000000, 0x7fdfe000ffdfe000, q17);
ASSERT_EQUAL_128(0x33800000b3800000, 0x7fc02000ffc02000, q18);
ASSERT_EQUAL_128(0x387fc000b87fc000, 0x34400000b4400000, q19);
ASSERT_EQUAL_128(0x7ff0000000000000, 0xfff0000000000000, q20);
ASSERT_EQUAL_128(0x3fc4000000000000, 0xbfc4000000000000, q21);
ASSERT_EQUAL_128(0x7ff9ffffe0000000, 0xfff9ffffe0000000, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x8000000000000000, q23);
ASSERT_EQUAL_128(0x36a0000000000000, 0xb6a0000000000000, q24);
ASSERT_EQUAL_128(0x7ff9ffffe0000000, 0xfff9ffffe0000000, q25);
TEARDOWN();
}
TEST(neon_fcvtn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x3e200000be200000, 0x7f800000ff800000);
__ Movi(v1.V2D(), 0x0000000080000000, 0x7f8fffffff8fffff);
__ Movi(v2.V2D(), 0x7fcfffffffcfffff, 0x0000000180000001);
__ Movi(v3.V2D(), 0x3fc4000000000000, 0xbfc4000000000000);
__ Movi(v4.V2D(), 0x7ff0000000000000, 0xfff0000000000000);
__ Movi(v5.V2D(), 0x0000000000000000, 0x8000000000000000);
__ Movi(v6.V2D(), 0x7ff0ffffffffffff, 0xfff0ffffffffffff);
__ Movi(v7.V2D(), 0x7ff8ffffffffffff, 0xfff8ffffffffffff);
__ Movi(v8.V2D(), 0x0000000000000001, 0x8000000000000001);
__ Fcvtn(v16.V4H(), v0.V4S());
__ Fcvtn2(v16.V8H(), v1.V4S());
__ Fcvtn(v17.V4H(), v2.V4S());
__ Fcvtn(v18.V2S(), v3.V2D());
__ Fcvtn2(v18.V4S(), v4.V2D());
__ Fcvtn(v19.V2S(), v5.V2D());
__ Fcvtn2(v19.V4S(), v6.V2D());
__ Fcvtn(v20.V2S(), v7.V2D());
__ Fcvtn2(v20.V4S(), v8.V2D());
END();
RUN();
ASSERT_EQUAL_128(0x000080007e7ffe7f, 0x3100b1007c00fc00, q16);
ASSERT_EQUAL_128(0, 0x7e7ffe7f00008000, q17);
ASSERT_EQUAL_128(0x7f800000ff800000, 0x3e200000be200000, q18);
ASSERT_EQUAL_128(0x7fc7ffffffc7ffff, 0x0000000080000000, q19);
ASSERT_EQUAL_128(0x0000000080000000, 0x7fc7ffffffc7ffff, q20);
TEARDOWN();
}
TEST(neon_fcvtxn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x3e200000be200000, 0x7f800000ff800000);
__ Movi(v1.V2D(), 0x0000000080000000, 0x7f8fffffff8fffff);
__ Movi(v2.V2D(), 0x7fcfffffffcfffff, 0x0000000180000001);
__ Movi(v3.V2D(), 0x3fc4000000000000, 0xbfc4000000000000);
__ Movi(v4.V2D(), 0x7ff0000000000000, 0xfff0000000000000);
__ Movi(v5.V2D(), 0x0000000000000000, 0x8000000000000000);
__ Movi(v6.V2D(), 0x7ff0ffffffffffff, 0xfff0ffffffffffff);
__ Movi(v7.V2D(), 0x7ff8ffffffffffff, 0xfff8ffffffffffff);
__ Movi(v8.V2D(), 0x0000000000000001, 0x8000000000000001);
__ Movi(v9.V2D(), 0x41ed000000000000, 0x41efffffffefffff);
__ Fcvtxn(v16.V2S(), v0.V2D());
__ Fcvtxn2(v16.V4S(), v1.V2D());
__ Fcvtxn(v17.V2S(), v2.V2D());
__ Fcvtxn2(v17.V4S(), v3.V2D());
__ Fcvtxn(v18.V2S(), v4.V2D());
__ Fcvtxn2(v18.V4S(), v5.V2D());
__ Fcvtxn(v19.V2S(), v6.V2D());
__ Fcvtxn2(v19.V4S(), v7.V2D());
__ Fcvtxn(v20.V2S(), v8.V2D());
__ Fcvtxn2(v20.V4S(), v9.V2D());
__ Fcvtxn(s21, d0);
END();
RUN();
ASSERT_EQUAL_128(0x000000017f7fffff, 0x310000057f7fffff, q16);
ASSERT_EQUAL_128(0x3e200000be200000, 0x7f7fffff00000001, q17);
ASSERT_EQUAL_128(0x0000000080000000, 0x7f800000ff800000, q18);
ASSERT_EQUAL_128(0x7fc7ffffffc7ffff, 0x7fc7ffffffc7ffff, q19);
ASSERT_EQUAL_128(0x4f6800004f7fffff, 0x0000000180000001, q20);
ASSERT_EQUAL_128(0, 0x7f7fffff, q21);
TEARDOWN();
}
// Test that scvtf and ucvtf can convert the 64-bit input into the expected
// value. All possible values of 'fbits' are tested. The expected value is
// modified accordingly in each case.
//
// The expected value is specified as the bit encoding of the expected double
// produced by scvtf (expected_scvtf_bits) as well as ucvtf
// (expected_ucvtf_bits).
//
// Where the input value is representable by int32_t or uint32_t, conversions
// from W registers will also be tested.
static void TestUScvtfHelper(uint64_t in,
uint64_t expected_scvtf_bits,
uint64_t expected_ucvtf_bits) {
uint64_t u64 = in;
uint32_t u32 = u64 & 0xffffffff;
int64_t s64 = static_cast<int64_t>(in);
int32_t s32 = s64 & 0x7fffffff;
bool cvtf_s32 = (s64 == s32);
bool cvtf_u32 = (u64 == u32);
double results_scvtf_x[65];
double results_ucvtf_x[65];
double results_scvtf_w[33];
double results_ucvtf_w[33];
SETUP();
START();
__ Mov(x0, reinterpret_cast<uintptr_t>(results_scvtf_x));
__ Mov(x1, reinterpret_cast<uintptr_t>(results_ucvtf_x));
__ Mov(x2, reinterpret_cast<uintptr_t>(results_scvtf_w));
__ Mov(x3, reinterpret_cast<uintptr_t>(results_ucvtf_w));
__ Mov(x10, s64);
// Corrupt the top word, in case it is accidentally used during W-register
// conversions.
__ Mov(x11, 0x5555555555555555);
__ Bfi(x11, x10, 0, kWRegSize);
// Test integer conversions.
__ Scvtf(d0, x10);
__ Ucvtf(d1, x10);
__ Scvtf(d2, w11);
__ Ucvtf(d3, w11);
__ Str(d0, MemOperand(x0));
__ Str(d1, MemOperand(x1));
__ Str(d2, MemOperand(x2));
__ Str(d3, MemOperand(x3));
// Test all possible values of fbits.
for (int fbits = 1; fbits <= 32; fbits++) {
__ Scvtf(d0, x10, fbits);
__ Ucvtf(d1, x10, fbits);
__ Scvtf(d2, w11, fbits);
__ Ucvtf(d3, w11, fbits);
__ Str(d0, MemOperand(x0, fbits * kDRegSizeInBytes));
__ Str(d1, MemOperand(x1, fbits * kDRegSizeInBytes));
__ Str(d2, MemOperand(x2, fbits * kDRegSizeInBytes));
__ Str(d3, MemOperand(x3, fbits * kDRegSizeInBytes));
}
// Conversions from W registers can only handle fbits values <= 32, so just
// test conversions from X registers for 32 < fbits <= 64.
for (int fbits = 33; fbits <= 64; fbits++) {
__ Scvtf(d0, x10, fbits);
__ Ucvtf(d1, x10, fbits);
__ Str(d0, MemOperand(x0, fbits * kDRegSizeInBytes));
__ Str(d1, MemOperand(x1, fbits * kDRegSizeInBytes));
}
END();
RUN();
// Check the results.
double expected_scvtf_base = rawbits_to_double(expected_scvtf_bits);
double expected_ucvtf_base = rawbits_to_double(expected_ucvtf_bits);
for (int fbits = 0; fbits <= 32; fbits++) {
double expected_scvtf = expected_scvtf_base / std::pow(2, fbits);
double expected_ucvtf = expected_ucvtf_base / std::pow(2, fbits);
ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]);
if (cvtf_s32) ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]);
if (cvtf_u32) ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]);
}
for (int fbits = 33; fbits <= 64; fbits++) {
double expected_scvtf = expected_scvtf_base / std::pow(2, fbits);
double expected_ucvtf = expected_ucvtf_base / std::pow(2, fbits);
ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]);
}
TEARDOWN();
}
TEST(scvtf_ucvtf_double) {
// Simple conversions of positive numbers which require no rounding; the
// results should not depened on the rounding mode, and ucvtf and scvtf should
// produce the same result.
TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000);
TestUScvtfHelper(0x0000000000000001, 0x3ff0000000000000, 0x3ff0000000000000);
TestUScvtfHelper(0x0000000040000000, 0x41d0000000000000, 0x41d0000000000000);
TestUScvtfHelper(0x0000000100000000, 0x41f0000000000000, 0x41f0000000000000);
TestUScvtfHelper(0x4000000000000000, 0x43d0000000000000, 0x43d0000000000000);
// Test mantissa extremities.
TestUScvtfHelper(0x4000000000000400, 0x43d0000000000001, 0x43d0000000000001);
// The largest int32_t that fits in a double.
TestUScvtfHelper(0x000000007fffffff, 0x41dfffffffc00000, 0x41dfffffffc00000);
// Values that would be negative if treated as an int32_t.
TestUScvtfHelper(0x00000000ffffffff, 0x41efffffffe00000, 0x41efffffffe00000);
TestUScvtfHelper(0x0000000080000000, 0x41e0000000000000, 0x41e0000000000000);
TestUScvtfHelper(0x0000000080000001, 0x41e0000000200000, 0x41e0000000200000);
// The largest int64_t that fits in a double.
TestUScvtfHelper(0x7ffffffffffffc00, 0x43dfffffffffffff, 0x43dfffffffffffff);
// Check for bit pattern reproduction.
TestUScvtfHelper(0x0123456789abcde0, 0x43723456789abcde, 0x43723456789abcde);
TestUScvtfHelper(0x0000000012345678, 0x41b2345678000000, 0x41b2345678000000);
// Simple conversions of negative int64_t values. These require no rounding,
// and the results should not depend on the rounding mode.
TestUScvtfHelper(0xffffffffc0000000, 0xc1d0000000000000, 0x43effffffff80000);
TestUScvtfHelper(0xffffffff00000000, 0xc1f0000000000000, 0x43efffffffe00000);
TestUScvtfHelper(0xc000000000000000, 0xc3d0000000000000, 0x43e8000000000000);
// Conversions which require rounding.
TestUScvtfHelper(0x1000000000000000, 0x43b0000000000000, 0x43b0000000000000);
TestUScvtfHelper(0x1000000000000001, 0x43b0000000000000, 0x43b0000000000000);
TestUScvtfHelper(0x1000000000000080, 0x43b0000000000000, 0x43b0000000000000);
TestUScvtfHelper(0x1000000000000081, 0x43b0000000000001, 0x43b0000000000001);
TestUScvtfHelper(0x1000000000000100, 0x43b0000000000001, 0x43b0000000000001);
TestUScvtfHelper(0x1000000000000101, 0x43b0000000000001, 0x43b0000000000001);
TestUScvtfHelper(0x1000000000000180, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000181, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000200, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000201, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000280, 0x43b0000000000002, 0x43b0000000000002);
TestUScvtfHelper(0x1000000000000281, 0x43b0000000000003, 0x43b0000000000003);
TestUScvtfHelper(0x1000000000000300, 0x43b0000000000003, 0x43b0000000000003);
// Check rounding of negative int64_t values (and large uint64_t values).
TestUScvtfHelper(0x8000000000000000, 0xc3e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000001, 0xc3e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000200, 0xc3e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000201, 0xc3dfffffffffffff, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000400, 0xc3dfffffffffffff, 0x43e0000000000000);
TestUScvtfHelper(0x8000000000000401, 0xc3dfffffffffffff, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000600, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000601, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000800, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000801, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000a00, 0xc3dffffffffffffe, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000a01, 0xc3dffffffffffffd, 0x43e0000000000001);
TestUScvtfHelper(0x8000000000000c00, 0xc3dffffffffffffd, 0x43e0000000000002);
// Round up to produce a result that's too big for the input to represent.
TestUScvtfHelper(0x7ffffffffffffe00, 0x43e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0x7fffffffffffffff, 0x43e0000000000000, 0x43e0000000000000);
TestUScvtfHelper(0xfffffffffffffc00, 0xc090000000000000, 0x43f0000000000000);
TestUScvtfHelper(0xffffffffffffffff, 0xbff0000000000000, 0x43f0000000000000);
}
// The same as TestUScvtfHelper, but convert to floats.
static void TestUScvtf32Helper(uint64_t in,
uint32_t expected_scvtf_bits,
uint32_t expected_ucvtf_bits) {
uint64_t u64 = in;
uint32_t u32 = u64 & 0xffffffff;
int64_t s64 = static_cast<int64_t>(in);
int32_t s32 = s64 & 0x7fffffff;
bool cvtf_s32 = (s64 == s32);
bool cvtf_u32 = (u64 == u32);
float results_scvtf_x[65];
float results_ucvtf_x[65];
float results_scvtf_w[33];
float results_ucvtf_w[33];
SETUP();
START();
__ Mov(x0, reinterpret_cast<uintptr_t>(results_scvtf_x));
__ Mov(x1, reinterpret_cast<uintptr_t>(results_ucvtf_x));
__ Mov(x2, reinterpret_cast<uintptr_t>(results_scvtf_w));
__ Mov(x3, reinterpret_cast<uintptr_t>(results_ucvtf_w));
__ Mov(x10, s64);
// Corrupt the top word, in case it is accidentally used during W-register
// conversions.
__ Mov(x11, 0x5555555555555555);
__ Bfi(x11, x10, 0, kWRegSize);
// Test integer conversions.
__ Scvtf(s0, x10);
__ Ucvtf(s1, x10);
__ Scvtf(s2, w11);
__ Ucvtf(s3, w11);
__ Str(s0, MemOperand(x0));
__ Str(s1, MemOperand(x1));
__ Str(s2, MemOperand(x2));
__ Str(s3, MemOperand(x3));
// Test all possible values of fbits.
for (int fbits = 1; fbits <= 32; fbits++) {
__ Scvtf(s0, x10, fbits);
__ Ucvtf(s1, x10, fbits);
__ Scvtf(s2, w11, fbits);
__ Ucvtf(s3, w11, fbits);
__ Str(s0, MemOperand(x0, fbits * kSRegSizeInBytes));
__ Str(s1, MemOperand(x1, fbits * kSRegSizeInBytes));
__ Str(s2, MemOperand(x2, fbits * kSRegSizeInBytes));
__ Str(s3, MemOperand(x3, fbits * kSRegSizeInBytes));
}
// Conversions from W registers can only handle fbits values <= 32, so just
// test conversions from X registers for 32 < fbits <= 64.
for (int fbits = 33; fbits <= 64; fbits++) {
__ Scvtf(s0, x10, fbits);
__ Ucvtf(s1, x10, fbits);
__ Str(s0, MemOperand(x0, fbits * kSRegSizeInBytes));
__ Str(s1, MemOperand(x1, fbits * kSRegSizeInBytes));
}
END();
RUN();
// Check the results.
float expected_scvtf_base = rawbits_to_float(expected_scvtf_bits);
float expected_ucvtf_base = rawbits_to_float(expected_ucvtf_bits);
for (int fbits = 0; fbits <= 32; fbits++) {
float expected_scvtf = expected_scvtf_base / std::pow(2.0f, fbits);
float expected_ucvtf = expected_ucvtf_base / std::pow(2.0f, fbits);
ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]);
if (cvtf_s32) ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]);
if (cvtf_u32) ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]);
}
for (int fbits = 33; fbits <= 64; fbits++) {
float expected_scvtf = expected_scvtf_base / std::pow(2.0f, fbits);
float expected_ucvtf = expected_ucvtf_base / std::pow(2.0f, fbits);
ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]);
ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]);
}
TEARDOWN();
}
TEST(scvtf_ucvtf_float) {
// Simple conversions of positive numbers which require no rounding; the
// results should not depened on the rounding mode, and ucvtf and scvtf should
// produce the same result.
TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000);
TestUScvtf32Helper(0x0000000000000001, 0x3f800000, 0x3f800000);
TestUScvtf32Helper(0x0000000040000000, 0x4e800000, 0x4e800000);
TestUScvtf32Helper(0x0000000100000000, 0x4f800000, 0x4f800000);
TestUScvtf32Helper(0x4000000000000000, 0x5e800000, 0x5e800000);
// Test mantissa extremities.
TestUScvtf32Helper(0x0000000000800001, 0x4b000001, 0x4b000001);
TestUScvtf32Helper(0x4000008000000000, 0x5e800001, 0x5e800001);
// The largest int32_t that fits in a float.
TestUScvtf32Helper(0x000000007fffff80, 0x4effffff, 0x4effffff);
// Values that would be negative if treated as an int32_t.
TestUScvtf32Helper(0x00000000ffffff00, 0x4f7fffff, 0x4f7fffff);
TestUScvtf32Helper(0x0000000080000000, 0x4f000000, 0x4f000000);
TestUScvtf32Helper(0x0000000080000100, 0x4f000001, 0x4f000001);
// The largest int64_t that fits in a float.
TestUScvtf32Helper(0x7fffff8000000000, 0x5effffff, 0x5effffff);
// Check for bit pattern reproduction.
TestUScvtf32Helper(0x0000000000876543, 0x4b076543, 0x4b076543);
// Simple conversions of negative int64_t values. These require no rounding,
// and the results should not depend on the rounding mode.
TestUScvtf32Helper(0xfffffc0000000000, 0xd4800000, 0x5f7ffffc);
TestUScvtf32Helper(0xc000000000000000, 0xde800000, 0x5f400000);
// Conversions which require rounding.
TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000);
TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001);
TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002);
TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003);
TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003);
// Check rounding of negative int64_t values (and large uint64_t values).
TestUScvtf32Helper(0x8000000000000000, 0xdf000000, 0x5f000000);
TestUScvtf32Helper(0x8000000000000001, 0xdf000000, 0x5f000000);
TestUScvtf32Helper(0x8000004000000000, 0xdf000000, 0x5f000000);
TestUScvtf32Helper(0x8000004000000001, 0xdeffffff, 0x5f000000);
TestUScvtf32Helper(0x8000008000000000, 0xdeffffff, 0x5f000000);
TestUScvtf32Helper(0x8000008000000001, 0xdeffffff, 0x5f000001);
TestUScvtf32Helper(0x800000c000000000, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x800000c000000001, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000010000000000, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000010000000001, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000014000000000, 0xdefffffe, 0x5f000001);
TestUScvtf32Helper(0x8000014000000001, 0xdefffffd, 0x5f000001);
TestUScvtf32Helper(0x8000018000000000, 0xdefffffd, 0x5f000002);
// Round up to produce a result that's too big for the input to represent.
TestUScvtf32Helper(0x000000007fffffc0, 0x4f000000, 0x4f000000);
TestUScvtf32Helper(0x000000007fffffff, 0x4f000000, 0x4f000000);
TestUScvtf32Helper(0x00000000ffffff80, 0x4f800000, 0x4f800000);
TestUScvtf32Helper(0x00000000ffffffff, 0x4f800000, 0x4f800000);
TestUScvtf32Helper(0x7fffffc000000000, 0x5f000000, 0x5f000000);
TestUScvtf32Helper(0x7fffffffffffffff, 0x5f000000, 0x5f000000);
TestUScvtf32Helper(0xffffff8000000000, 0xd3000000, 0x5f800000);
TestUScvtf32Helper(0xffffffffffffffff, 0xbf800000, 0x5f800000);
}
TEST(system_mrs) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 1);
__ Mov(w2, 0x80000000);
// Set the Z and C flags.
__ Cmp(w0, w0);
__ Mrs(x3, NZCV);
// Set the N flag.
__ Cmp(w0, w1);
__ Mrs(x4, NZCV);
// Set the Z, C and V flags.
__ Adds(w0, w2, w2);
__ Mrs(x5, NZCV);
// Read the default FPCR.
__ Mrs(x6, FPCR);
END();
RUN();
// NZCV
ASSERT_EQUAL_32(ZCFlag, w3);
ASSERT_EQUAL_32(NFlag, w4);
ASSERT_EQUAL_32(ZCVFlag, w5);
// FPCR
// The default FPCR on Linux-based platforms is 0.
ASSERT_EQUAL_32(0, w6);
TEARDOWN();
}
TEST(system_msr) {
// All FPCR fields that must be implemented: AHP, DN, FZ, RMode
const uint64_t fpcr_core = 0x07c00000;
// All FPCR fields (including fields which may be read-as-zero):
// Stride, Len
// IDE, IXE, UFE, OFE, DZE, IOE
const uint64_t fpcr_all = fpcr_core | 0x00379f00;
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0x7fffffff);
__ Mov(x7, 0);
__ Mov(x10, NVFlag);
__ Cmp(w0, w0); // Set Z and C.
__ Msr(NZCV, x10); // Set N and V.
// The Msr should have overwritten every flag set by the Cmp.
__ Cinc(x7, x7, mi); // N
__ Cinc(x7, x7, ne); // !Z
__ Cinc(x7, x7, lo); // !C
__ Cinc(x7, x7, vs); // V
__ Mov(x10, ZCFlag);
__ Cmn(w1, w1); // Set N and V.
__ Msr(NZCV, x10); // Set Z and C.
// The Msr should have overwritten every flag set by the Cmn.
__ Cinc(x7, x7, pl); // !N
__ Cinc(x7, x7, eq); // Z
__ Cinc(x7, x7, hs); // C
__ Cinc(x7, x7, vc); // !V
// All core FPCR fields must be writable.
__ Mov(x8, fpcr_core);
__ Msr(FPCR, x8);
__ Mrs(x8, FPCR);
// All FPCR fields, including optional ones. This part of the test doesn't
// achieve much other than ensuring that supported fields can be cleared by
// the next test.
__ Mov(x9, fpcr_all);
__ Msr(FPCR, x9);
__ Mrs(x9, FPCR);
__ And(x9, x9, fpcr_core);
// The undefined bits must ignore writes.
// It's conceivable that a future version of the architecture could use these
// fields (making this test fail), but in the meantime this is a useful test
// for the simulator.
__ Mov(x10, ~fpcr_all);
__ Msr(FPCR, x10);
__ Mrs(x10, FPCR);
END();
RUN();
// We should have incremented x7 (from 0) exactly 8 times.
ASSERT_EQUAL_64(8, x7);
ASSERT_EQUAL_64(fpcr_core, x8);
ASSERT_EQUAL_64(fpcr_core, x9);
ASSERT_EQUAL_64(0, x10);
TEARDOWN();
}
TEST(system_nop) {
SETUP();
RegisterDump before;
START();
before.Dump(&masm);
__ Nop();
END();
RUN();
ASSERT_EQUAL_REGISTERS(before);
ASSERT_EQUAL_NZCV(before.flags_nzcv());
TEARDOWN();
}
TEST(zero_dest) {
SETUP();
ALLOW_ASM();
RegisterDump before;
START();
// Preserve the stack pointer, in case we clobber it.
__ Mov(x30, sp);
// Initialize the other registers used in this test.
uint64_t literal_base = 0x0100001000100101;
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (unsigned i = 2; i < x30.code(); i++) {
__ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1);
}
before.Dump(&masm);
// All of these instructions should be NOPs in these forms, but have
// alternate forms which can write into the stack pointer.
__ add(xzr, x0, x1);
__ add(xzr, x1, xzr);
__ add(xzr, xzr, x1);
__ and_(xzr, x0, x2);
__ and_(xzr, x2, xzr);
__ and_(xzr, xzr, x2);
__ bic(xzr, x0, x3);
__ bic(xzr, x3, xzr);
__ bic(xzr, xzr, x3);
__ eon(xzr, x0, x4);
__ eon(xzr, x4, xzr);
__ eon(xzr, xzr, x4);
__ eor(xzr, x0, x5);
__ eor(xzr, x5, xzr);
__ eor(xzr, xzr, x5);
__ orr(xzr, x0, x6);
__ orr(xzr, x6, xzr);
__ orr(xzr, xzr, x6);
__ sub(xzr, x0, x7);
__ sub(xzr, x7, xzr);
__ sub(xzr, xzr, x7);
// Swap the saved stack pointer with the real one. If sp was written
// during the test, it will show up in x30. This is done because the test
// framework assumes that sp will be valid at the end of the test.
__ Mov(x29, x30);
__ Mov(x30, sp);
__ Mov(sp, x29);
// We used x29 as a scratch register, so reset it to make sure it doesn't
// trigger a test failure.
__ Add(x29, x28, x1);
END();
RUN();
ASSERT_EQUAL_REGISTERS(before);
ASSERT_EQUAL_NZCV(before.flags_nzcv());
TEARDOWN();
}
TEST(zero_dest_setflags) {
SETUP();
ALLOW_ASM();
RegisterDump before;
START();
// Preserve the stack pointer, in case we clobber it.
__ Mov(x30, sp);
// Initialize the other registers used in this test.
uint64_t literal_base = 0x0100001000100101;
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (int i = 2; i < 30; i++) {
__ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1);
}
before.Dump(&masm);
// All of these instructions should only write to the flags in these forms,
// but have alternate forms which can write into the stack pointer.
__ adds(xzr, x0, Operand(x1, UXTX));
__ adds(xzr, x1, Operand(xzr, UXTX));
__ adds(xzr, x1, 1234);
__ adds(xzr, x0, x1);
__ adds(xzr, x1, xzr);
__ adds(xzr, xzr, x1);
__ ands(xzr, x2, ~0xf);
__ ands(xzr, xzr, ~0xf);
__ ands(xzr, x0, x2);
__ ands(xzr, x2, xzr);
__ ands(xzr, xzr, x2);
__ bics(xzr, x3, ~0xf);
__ bics(xzr, xzr, ~0xf);
__ bics(xzr, x0, x3);
__ bics(xzr, x3, xzr);
__ bics(xzr, xzr, x3);
__ subs(xzr, x0, Operand(x3, UXTX));
__ subs(xzr, x3, Operand(xzr, UXTX));
__ subs(xzr, x3, 1234);
__ subs(xzr, x0, x3);
__ subs(xzr, x3, xzr);
__ subs(xzr, xzr, x3);
// Swap the saved stack pointer with the real one. If sp was written
// during the test, it will show up in x30. This is done because the test
// framework assumes that sp will be valid at the end of the test.
__ Mov(x29, x30);
__ Mov(x30, sp);
__ Mov(sp, x29);
// We used x29 as a scratch register, so reset it to make sure it doesn't
// trigger a test failure.
__ Add(x29, x28, x1);
END();
RUN();
ASSERT_EQUAL_REGISTERS(before);
TEARDOWN();
}
TEST(register_bit) {
// No code generation takes place in this test, so no need to setup and
// teardown.
// Simple tests.
assert(x0.Bit() == (UINT64_C(1) << 0));
assert(x1.Bit() == (UINT64_C(1) << 1));
assert(x10.Bit() == (UINT64_C(1) << 10));
// AAPCS64 definitions.
assert(lr.Bit() == (UINT64_C(1) << kLinkRegCode));
// Fixed (hardware) definitions.
assert(xzr.Bit() == (UINT64_C(1) << kZeroRegCode));
// Internal ABI definitions.
assert(sp.Bit() == (UINT64_C(1) << kSPRegInternalCode));
assert(sp.Bit() != xzr.Bit());
// xn.Bit() == wn.Bit() at all times, for the same n.
assert(x0.Bit() == w0.Bit());
assert(x1.Bit() == w1.Bit());
assert(x10.Bit() == w10.Bit());
assert(xzr.Bit() == wzr.Bit());
assert(sp.Bit() == wsp.Bit());
}
TEST(stack_pointer_override) {
// This test generates some stack maintenance code, but the test only checks
// the reported state.
SETUP();
START();
// The default stack pointer in VIXL is sp.
assert(sp.Is(__ StackPointer()));
__ SetStackPointer(x0);
assert(x0.Is(__ StackPointer()));
__ SetStackPointer(x28);
assert(x28.Is(__ StackPointer()));
__ SetStackPointer(sp);
assert(sp.Is(__ StackPointer()));
END();
RUN();
TEARDOWN();
}
TEST(peek_poke_simple) {
SETUP();
START();
static const RegList x0_to_x3 = x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit();
static const RegList x10_to_x13 = x10.Bit() | x11.Bit() |
x12.Bit() | x13.Bit();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Claim(32);
// Simple exchange.
// After this test:
// x0-x3 should be unchanged.
// w10-w13 should contain the lower words of x0-x3.
__ Poke(x0, 0);
__ Poke(x1, 8);
__ Poke(x2, 16);
__ Poke(x3, 24);
Clobber(&masm, x0_to_x3);
__ Peek(x0, 0);
__ Peek(x1, 8);
__ Peek(x2, 16);
__ Peek(x3, 24);
__ Poke(w0, 0);
__ Poke(w1, 4);
__ Poke(w2, 8);
__ Poke(w3, 12);
Clobber(&masm, x10_to_x13);
__ Peek(w10, 0);
__ Peek(w11, 4);
__ Peek(w12, 8);
__ Peek(w13, 12);
__ Drop(32);
END();
RUN();
ASSERT_EQUAL_64(literal_base * 1, x0);
ASSERT_EQUAL_64(literal_base * 2, x1);
ASSERT_EQUAL_64(literal_base * 3, x2);
ASSERT_EQUAL_64(literal_base * 4, x3);
ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10);
ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11);
ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12);
ASSERT_EQUAL_64((literal_base * 4) & 0xffffffff, x13);
TEARDOWN();
}
TEST(peek_poke_unaligned) {
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Add(x4, x3, x0);
__ Add(x5, x4, x0);
__ Add(x6, x5, x0);
__ Claim(32);
// Unaligned exchanges.
// After this test:
// x0-x6 should be unchanged.
// w10-w12 should contain the lower words of x0-x2.
__ Poke(x0, 1);
Clobber(&masm, x0.Bit());
__ Peek(x0, 1);
__ Poke(x1, 2);
Clobber(&masm, x1.Bit());
__ Peek(x1, 2);
__ Poke(x2, 3);
Clobber(&masm, x2.Bit());
__ Peek(x2, 3);
__ Poke(x3, 4);
Clobber(&masm, x3.Bit());
__ Peek(x3, 4);
__ Poke(x4, 5);
Clobber(&masm, x4.Bit());
__ Peek(x4, 5);
__ Poke(x5, 6);
Clobber(&masm, x5.Bit());
__ Peek(x5, 6);
__ Poke(x6, 7);
Clobber(&masm, x6.Bit());
__ Peek(x6, 7);
__ Poke(w0, 1);
Clobber(&masm, w10.Bit());
__ Peek(w10, 1);
__ Poke(w1, 2);
Clobber(&masm, w11.Bit());
__ Peek(w11, 2);
__ Poke(w2, 3);
Clobber(&masm, w12.Bit());
__ Peek(w12, 3);
__ Drop(32);
END();
RUN();
ASSERT_EQUAL_64(literal_base * 1, x0);
ASSERT_EQUAL_64(literal_base * 2, x1);
ASSERT_EQUAL_64(literal_base * 3, x2);
ASSERT_EQUAL_64(literal_base * 4, x3);
ASSERT_EQUAL_64(literal_base * 5, x4);
ASSERT_EQUAL_64(literal_base * 6, x5);
ASSERT_EQUAL_64(literal_base * 7, x6);
ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10);
ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11);
ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12);
TEARDOWN();
}
TEST(peek_poke_endianness) {
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Claim(32);
// Endianness tests.
// After this section:
// x4 should match x0[31:0]:x0[63:32]
// w5 should match w1[15:0]:w1[31:16]
__ Poke(x0, 0);
__ Poke(x0, 8);
__ Peek(x4, 4);
__ Poke(w1, 0);
__ Poke(w1, 4);
__ Peek(w5, 2);
__ Drop(32);
END();
RUN();
uint64_t x0_expected = literal_base * 1;
uint64_t x1_expected = literal_base * 2;
uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32);
uint64_t x5_expected = ((x1_expected << 16) & 0xffff0000) |
((x1_expected >> 16) & 0x0000ffff);
ASSERT_EQUAL_64(x0_expected, x0);
ASSERT_EQUAL_64(x1_expected, x1);
ASSERT_EQUAL_64(x4_expected, x4);
ASSERT_EQUAL_64(x5_expected, x5);
TEARDOWN();
}
TEST(peek_poke_mixed) {
SETUP();
START();
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101;
// Initialize the registers.
__ Mov(x0, literal_base);
__ Add(x1, x0, x0);
__ Add(x2, x1, x0);
__ Add(x3, x2, x0);
__ Claim(32);
// Mix with other stack operations.
// After this section:
// x0-x3 should be unchanged.
// x6 should match x1[31:0]:x0[63:32]
// w7 should match x1[15:0]:x0[63:48]
__ Poke(x1, 8);
__ Poke(x0, 0);
{
VIXL_ASSERT(__ StackPointer().Is(sp));
__ Mov(x4, __ StackPointer());
__ SetStackPointer(x4);
__ Poke(wzr, 0); // Clobber the space we're about to drop.
__ Drop(4);
__ Peek(x6, 0);
__ Claim(8);
__ Peek(w7, 10);
__ Poke(x3, 28);
__ Poke(xzr, 0); // Clobber the space we're about to drop.
__ Drop(8);
__ Poke(x2, 12);
__ Push(w0);
__ Mov(sp, __ StackPointer());
__ SetStackPointer(sp);
}
__ Pop(x0, x1, x2, x3);
END();
RUN();
uint64_t x0_expected = literal_base * 1;
uint64_t x1_expected = literal_base * 2;
uint64_t x2_expected = literal_base * 3;
uint64_t x3_expected = literal_base * 4;
uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32);
uint64_t x7_expected = ((x1_expected << 16) & 0xffff0000) |
((x0_expected >> 48) & 0x0000ffff);
ASSERT_EQUAL_64(x0_expected, x0);
ASSERT_EQUAL_64(x1_expected, x1);
ASSERT_EQUAL_64(x2_expected, x2);
ASSERT_EQUAL_64(x3_expected, x3);
ASSERT_EQUAL_64(x6_expected, x6);
ASSERT_EQUAL_64(x7_expected, x7);
TEARDOWN();
}
TEST(peek_poke_reglist) {
SETUP();
START();
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t base = 0x0100001000100101;
// Initialize the registers.
__ Mov(x1, base);
__ Add(x2, x1, x1);
__ Add(x3, x2, x1);
__ Add(x4, x3, x1);
CPURegList list_1(x1, x2, x3, x4);
CPURegList list_2(x11, x12, x13, x14);
int list_1_size = list_1.TotalSizeInBytes();
__ Claim(2 * list_1_size);
__ PokeCPURegList(list_1, 0);
__ PokeXRegList(list_1.list(), list_1_size);
__ PeekCPURegList(list_2, 2 * kXRegSizeInBytes);
__ PeekXRegList(x15.Bit(), kWRegSizeInBytes);
__ PeekWRegList(w16.Bit() | w17.Bit(), 3 * kXRegSizeInBytes);
__ Drop(2 * list_1_size);
uint64_t base_d = 0x1010010001000010;
// Initialize the registers.
__ Mov(x1, base_d);
__ Add(x2, x1, x1);
__ Add(x3, x2, x1);
__ Add(x4, x3, x1);
__ Fmov(d1, x1);
__ Fmov(d2, x2);
__ Fmov(d3, x3);
__ Fmov(d4, x4);
CPURegList list_d_1(d1, d2, d3, d4);
CPURegList list_d_2(d11, d12, d13, d14);
int list_d_1_size = list_d_1.TotalSizeInBytes();
__ Claim(2 * list_d_1_size);
__ PokeCPURegList(list_d_1, 0);
__ PokeDRegList(list_d_1.list(), list_d_1_size);
__ PeekCPURegList(list_d_2, 2 * kDRegSizeInBytes);
__ PeekDRegList(d15.Bit(), kSRegSizeInBytes);
__ PeekSRegList(s16.Bit() | s17.Bit(), 3 * kDRegSizeInBytes);
__ Drop(2 * list_d_1_size);
END();
RUN();
ASSERT_EQUAL_64(3 * base, x11);
ASSERT_EQUAL_64(4 * base, x12);
ASSERT_EQUAL_64(1 * base, x13);
ASSERT_EQUAL_64(2 * base, x14);
ASSERT_EQUAL_64(((1 * base) >> kWRegSize) | ((2 * base) << kWRegSize), x15);
ASSERT_EQUAL_64(2 * base, x14);
ASSERT_EQUAL_32((4 * base) & kWRegMask, w16);
ASSERT_EQUAL_32((4 * base) >> kWRegSize, w17);
ASSERT_EQUAL_FP64(rawbits_to_double(3 * base_d), d11);
ASSERT_EQUAL_FP64(rawbits_to_double(4 * base_d), d12);
ASSERT_EQUAL_FP64(rawbits_to_double(1 * base_d), d13);
ASSERT_EQUAL_FP64(rawbits_to_double(2 * base_d), d14);
ASSERT_EQUAL_FP64(
rawbits_to_double((base_d >> kSRegSize) | ((2 * base_d) << kSRegSize)),
d15);
ASSERT_EQUAL_FP64(rawbits_to_double(2 * base_d), d14);
ASSERT_EQUAL_FP32(rawbits_to_float((4 * base_d) & kSRegMask), s16);
ASSERT_EQUAL_FP32(rawbits_to_float((4 * base_d) >> kSRegSize), s17);
TEARDOWN();
}
TEST(load_store_reglist) {
SETUP();
START();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t high_base = UINT32_C(0x01000010);
uint64_t low_base = UINT32_C(0x00100101);
uint64_t base = (high_base << 32) | low_base;
uint64_t array[21];
memset(array, 0, sizeof(array));
// Initialize the registers.
__ Mov(x1, base);
__ Add(x2, x1, x1);
__ Add(x3, x2, x1);
__ Add(x4, x3, x1);
__ Fmov(d1, x1);
__ Fmov(d2, x2);
__ Fmov(d3, x3);
__ Fmov(d4, x4);
__ Fmov(d5, x1);
__ Fmov(d6, x2);
__ Fmov(d7, x3);
__ Fmov(d8, x4);
Register reg_base = x20;
Register reg_index = x21;
int size_stored = 0;
__ Mov(reg_base, reinterpret_cast<uintptr_t>(&array));
// Test aligned accesses.
CPURegList list_src(w1, w2, w3, w4);
CPURegList list_dst(w11, w12, w13, w14);
CPURegList list_fp_src_1(d1, d2, d3, d4);
CPURegList list_fp_dst_1(d11, d12, d13, d14);
__ StoreCPURegList(list_src, MemOperand(reg_base, 0 * sizeof(uint64_t)));
__ LoadCPURegList(list_dst, MemOperand(reg_base, 0 * sizeof(uint64_t)));
size_stored += 4 * kWRegSizeInBytes;
__ Mov(reg_index, size_stored);
__ StoreCPURegList(list_src, MemOperand(reg_base, reg_index));
__ LoadCPURegList(list_dst, MemOperand(reg_base, reg_index));
size_stored += 4 * kWRegSizeInBytes;
__ StoreCPURegList(list_fp_src_1, MemOperand(reg_base, size_stored));
__ LoadCPURegList(list_fp_dst_1, MemOperand(reg_base, size_stored));
size_stored += 4 * kDRegSizeInBytes;
__ Mov(reg_index, size_stored);
__ StoreCPURegList(list_fp_src_1, MemOperand(reg_base, reg_index));
__ LoadCPURegList(list_fp_dst_1, MemOperand(reg_base, reg_index));
size_stored += 4 * kDRegSizeInBytes;
// Test unaligned accesses.
CPURegList list_fp_src_2(d5, d6, d7, d8);
CPURegList list_fp_dst_2(d15, d16, d17, d18);
__ Str(wzr, MemOperand(reg_base, size_stored));
size_stored += 1 * kWRegSizeInBytes;
__ StoreCPURegList(list_fp_src_2, MemOperand(reg_base, size_stored));
__ LoadCPURegList(list_fp_dst_2, MemOperand(reg_base, size_stored));
size_stored += 4 * kDRegSizeInBytes;
__ Mov(reg_index, size_stored);
__ StoreCPURegList(list_fp_src_2, MemOperand(reg_base, reg_index));
__ LoadCPURegList(list_fp_dst_2, MemOperand(reg_base, reg_index));
END();
RUN();
VIXL_CHECK(array[0] == (1 * low_base) + (2 * low_base << kWRegSize));
VIXL_CHECK(array[1] == (3 * low_base) + (4 * low_base << kWRegSize));
VIXL_CHECK(array[2] == (1 * low_base) + (2 * low_base << kWRegSize));
VIXL_CHECK(array[3] == (3 * low_base) + (4 * low_base << kWRegSize));
VIXL_CHECK(array[4] == 1 * base);
VIXL_CHECK(array[5] == 2 * base);
VIXL_CHECK(array[6] == 3 * base);
VIXL_CHECK(array[7] == 4 * base);
VIXL_CHECK(array[8] == 1 * base);
VIXL_CHECK(array[9] == 2 * base);
VIXL_CHECK(array[10] == 3 * base);
VIXL_CHECK(array[11] == 4 * base);
VIXL_CHECK(array[12] == ((1 * low_base) << kSRegSize));
VIXL_CHECK(array[13] == (((2 * low_base) << kSRegSize) | (1 * high_base)));
VIXL_CHECK(array[14] == (((3 * low_base) << kSRegSize) | (2 * high_base)));
VIXL_CHECK(array[15] == (((4 * low_base) << kSRegSize) | (3 * high_base)));
VIXL_CHECK(array[16] == (((1 * low_base) << kSRegSize) | (4 * high_base)));
VIXL_CHECK(array[17] == (((2 * low_base) << kSRegSize) | (1 * high_base)));
VIXL_CHECK(array[18] == (((3 * low_base) << kSRegSize) | (2 * high_base)));
VIXL_CHECK(array[19] == (((4 * low_base) << kSRegSize) | (3 * high_base)));
VIXL_CHECK(array[20] == (4 * high_base));
ASSERT_EQUAL_64(1 * low_base, x11);
ASSERT_EQUAL_64(2 * low_base, x12);
ASSERT_EQUAL_64(3 * low_base, x13);
ASSERT_EQUAL_64(4 * low_base, x14);
ASSERT_EQUAL_FP64(rawbits_to_double(1 * base), d11);
ASSERT_EQUAL_FP64(rawbits_to_double(2 * base), d12);
ASSERT_EQUAL_FP64(rawbits_to_double(3 * base), d13);
ASSERT_EQUAL_FP64(rawbits_to_double(4 * base), d14);
ASSERT_EQUAL_FP64(rawbits_to_double(1 * base), d15);
ASSERT_EQUAL_FP64(rawbits_to_double(2 * base), d16);
ASSERT_EQUAL_FP64(rawbits_to_double(3 * base), d17);
ASSERT_EQUAL_FP64(rawbits_to_double(4 * base), d18);
TEARDOWN();
}
// This enum is used only as an argument to the push-pop test helpers.
enum PushPopMethod {
// Push or Pop using the Push and Pop methods, with blocks of up to four
// registers. (Smaller blocks will be used if necessary.)
PushPopByFour,
// Use Push<Size>RegList and Pop<Size>RegList to transfer the registers.
PushPopRegList
};
// The maximum number of registers that can be used by the PushPopXReg* tests,
// where a reg_count field is provided.
static int const kPushPopXRegMaxRegCount = -1;
// Test a simple push-pop pattern:
// * Claim <claim> bytes to set the stack alignment.
// * Push <reg_count> registers with size <reg_size>.
// * Clobber the register contents.
// * Pop <reg_count> registers to restore the original contents.
// * Drop <claim> bytes to restore the original stack pointer.
//
// Different push and pop methods can be specified independently to test for
// proper word-endian behaviour.
static void PushPopXRegSimpleHelper(int reg_count,
int claim,
int reg_size,
PushPopMethod push_method,
PushPopMethod pop_method) {
SETUP();
START();
// Arbitrarily pick a register to use as a stack pointer.
const Register& stack_pointer = x20;
const RegList allowed = ~stack_pointer.Bit();
if (reg_count == kPushPopXRegMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfRegisters);
}
// Work out which registers to use, based on reg_size.
Register r[kNumberOfRegisters];
Register x[kNumberOfRegisters];
RegList list = PopulateRegisterArray(NULL, x, r, reg_size, reg_count,
allowed);
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101;
{
VIXL_ASSERT(__ StackPointer().Is(sp));
__ Mov(stack_pointer, __ StackPointer());
__ SetStackPointer(stack_pointer);
int i;
// Initialize the registers.
for (i = 0; i < reg_count; i++) {
// Always write into the X register, to ensure that the upper word is
// properly ignored by Push when testing W registers.
__ Mov(x[i], literal_base * i);
}
// Claim memory first, as requested.
__ Claim(claim);
switch (push_method) {
case PushPopByFour:
// Push high-numbered registers first (to the highest addresses).
for (i = reg_count; i >= 4; i -= 4) {
__ Push(r[i-1], r[i-2], r[i-3], r[i-4]);
}
// Finish off the leftovers.
switch (i) {
case 3: __ Push(r[2], r[1], r[0]); break;
case 2: __ Push(r[1], r[0]); break;
case 1: __ Push(r[0]); break;
default: VIXL_ASSERT(i == 0); break;
}
break;
case PushPopRegList:
__ PushSizeRegList(list, reg_size);
break;
}
// Clobber all the registers, to ensure that they get repopulated by Pop.
Clobber(&masm, list);
switch (pop_method) {
case PushPopByFour:
// Pop low-numbered registers first (from the lowest addresses).
for (i = 0; i <= (reg_count-4); i += 4) {
__ Pop(r[i], r[i+1], r[i+2], r[i+3]);
}
// Finish off the leftovers.
switch (reg_count - i) {
case 3: __ Pop(r[i], r[i+1], r[i+2]); break;
case 2: __ Pop(r[i], r[i+1]); break;
case 1: __ Pop(r[i]); break;
default: VIXL_ASSERT(i == reg_count); break;
}
break;
case PushPopRegList:
__ PopSizeRegList(list, reg_size);
break;
}
// Drop memory to restore stack_pointer.
__ Drop(claim);
__ Mov(sp, __ StackPointer());
__ SetStackPointer(sp);
}
END();
RUN();
// Check that the register contents were preserved.
// Always use ASSERT_EQUAL_64, even when testing W registers, so we can test
// that the upper word was properly cleared by Pop.
literal_base &= (0xffffffffffffffff >> (64-reg_size));
for (int i = 0; i < reg_count; i++) {
if (x[i].Is(xzr)) {
ASSERT_EQUAL_64(0, x[i]);
} else {
ASSERT_EQUAL_64(literal_base * i, x[i]);
}
}
TEARDOWN();
}
TEST(push_pop_xreg_simple_32) {
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopXRegSimpleHelper(count, claim, kWRegSize,
PushPopByFour, PushPopByFour);
PushPopXRegSimpleHelper(count, claim, kWRegSize,
PushPopByFour, PushPopRegList);
PushPopXRegSimpleHelper(count, claim, kWRegSize,
PushPopRegList, PushPopByFour);
PushPopXRegSimpleHelper(count, claim, kWRegSize,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kWRegSize, PushPopByFour, PushPopByFour);
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kWRegSize, PushPopByFour, PushPopRegList);
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kWRegSize, PushPopRegList, PushPopByFour);
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kWRegSize, PushPopRegList, PushPopRegList);
}
}
TEST(push_pop_xreg_simple_64) {
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopXRegSimpleHelper(count, claim, kXRegSize,
PushPopByFour, PushPopByFour);
PushPopXRegSimpleHelper(count, claim, kXRegSize,
PushPopByFour, PushPopRegList);
PushPopXRegSimpleHelper(count, claim, kXRegSize,
PushPopRegList, PushPopByFour);
PushPopXRegSimpleHelper(count, claim, kXRegSize,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kXRegSize, PushPopByFour, PushPopByFour);
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kXRegSize, PushPopByFour, PushPopRegList);
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kXRegSize, PushPopRegList, PushPopByFour);
PushPopXRegSimpleHelper(kPushPopXRegMaxRegCount,
claim, kXRegSize, PushPopRegList, PushPopRegList);
}
}
// The maximum number of registers that can be used by the PushPopFPXReg* tests,
// where a reg_count field is provided.
static int const kPushPopFPXRegMaxRegCount = -1;
// Test a simple push-pop pattern:
// * Claim <claim> bytes to set the stack alignment.
// * Push <reg_count> FP registers with size <reg_size>.
// * Clobber the register contents.
// * Pop <reg_count> FP registers to restore the original contents.
// * Drop <claim> bytes to restore the original stack pointer.
//
// Different push and pop methods can be specified independently to test for
// proper word-endian behaviour.
static void PushPopFPXRegSimpleHelper(int reg_count,
int claim,
int reg_size,
PushPopMethod push_method,
PushPopMethod pop_method) {
SETUP();
START();
// We can use any floating-point register. None of them are reserved for
// debug code, for example.
static RegList const allowed = ~0;
if (reg_count == kPushPopFPXRegMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfFPRegisters);
}
// Work out which registers to use, based on reg_size.
FPRegister v[kNumberOfRegisters];
FPRegister d[kNumberOfRegisters];
RegList list = PopulateFPRegisterArray(NULL, d, v, reg_size, reg_count,
allowed);
// Arbitrarily pick a register to use as a stack pointer.
const Register& stack_pointer = x10;
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
// The literal base is chosen to have two useful properties:
// * When multiplied (using an integer) by small values (such as a register
// index), this value is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
// * It is never a floating-point NaN, and will therefore always compare
// equal to itself.
uint64_t literal_base = 0x0100001000100101;
{
VIXL_ASSERT(__ StackPointer().Is(sp));
__ Mov(stack_pointer, __ StackPointer());
__ SetStackPointer(stack_pointer);
int i;
// Initialize the registers, using X registers to load the literal.
__ Mov(x0, 0);
__ Mov(x1, literal_base);
for (i = 0; i < reg_count; i++) {
// Always write into the D register, to ensure that the upper word is
// properly ignored by Push when testing S registers.
__ Fmov(d[i], x0);
// Calculate the next literal.
__ Add(x0, x0, x1);
}
// Claim memory first, as requested.
__ Claim(claim);
switch (push_method) {
case PushPopByFour:
// Push high-numbered registers first (to the highest addresses).
for (i = reg_count; i >= 4; i -= 4) {
__ Push(v[i-1], v[i-2], v[i-3], v[i-4]);
}
// Finish off the leftovers.
switch (i) {
case 3: __ Push(v[2], v[1], v[0]); break;
case 2: __ Push(v[1], v[0]); break;
case 1: __ Push(v[0]); break;
default: VIXL_ASSERT(i == 0); break;
}
break;
case PushPopRegList:
__ PushSizeRegList(list, reg_size, CPURegister::kVRegister);
break;
}
// Clobber all the registers, to ensure that they get repopulated by Pop.
ClobberFP(&masm, list);
switch (pop_method) {
case PushPopByFour:
// Pop low-numbered registers first (from the lowest addresses).
for (i = 0; i <= (reg_count-4); i += 4) {
__ Pop(v[i], v[i+1], v[i+2], v[i+3]);
}
// Finish off the leftovers.
switch (reg_count - i) {
case 3: __ Pop(v[i], v[i+1], v[i+2]); break;
case 2: __ Pop(v[i], v[i+1]); break;
case 1: __ Pop(v[i]); break;
default: VIXL_ASSERT(i == reg_count); break;
}
break;
case PushPopRegList:
__ PopSizeRegList(list, reg_size, CPURegister::kVRegister);
break;
}
// Drop memory to restore the stack pointer.
__ Drop(claim);
__ Mov(sp, __ StackPointer());
__ SetStackPointer(sp);
}
END();
RUN();
// Check that the register contents were preserved.
// Always use ASSERT_EQUAL_FP64, even when testing S registers, so we can
// test that the upper word was properly cleared by Pop.
literal_base &= (0xffffffffffffffff >> (64-reg_size));
for (int i = 0; i < reg_count; i++) {
uint64_t literal = literal_base * i;
double expected;
memcpy(&expected, &literal, sizeof(expected));
ASSERT_EQUAL_FP64(expected, d[i]);
}
TEARDOWN();
}
TEST(push_pop_fp_xreg_simple_32) {
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopFPXRegSimpleHelper(count, claim, kSRegSize,
PushPopByFour, PushPopByFour);
PushPopFPXRegSimpleHelper(count, claim, kSRegSize,
PushPopByFour, PushPopRegList);
PushPopFPXRegSimpleHelper(count, claim, kSRegSize,
PushPopRegList, PushPopByFour);
PushPopFPXRegSimpleHelper(count, claim, kSRegSize,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kSRegSize,
PushPopByFour, PushPopByFour);
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kSRegSize,
PushPopByFour, PushPopRegList);
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kSRegSize,
PushPopRegList, PushPopByFour);
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kSRegSize,
PushPopRegList, PushPopRegList);
}
}
TEST(push_pop_fp_xreg_simple_64) {
for (int claim = 0; claim <= 8; claim++) {
for (int count = 0; count <= 8; count++) {
PushPopFPXRegSimpleHelper(count, claim, kDRegSize,
PushPopByFour, PushPopByFour);
PushPopFPXRegSimpleHelper(count, claim, kDRegSize,
PushPopByFour, PushPopRegList);
PushPopFPXRegSimpleHelper(count, claim, kDRegSize,
PushPopRegList, PushPopByFour);
PushPopFPXRegSimpleHelper(count, claim, kDRegSize,
PushPopRegList, PushPopRegList);
}
// Test with the maximum number of registers.
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kDRegSize,
PushPopByFour, PushPopByFour);
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kDRegSize,
PushPopByFour, PushPopRegList);
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kDRegSize,
PushPopRegList, PushPopByFour);
PushPopFPXRegSimpleHelper(kPushPopFPXRegMaxRegCount, claim, kDRegSize,
PushPopRegList, PushPopRegList);
}
}
// Push and pop data using an overlapping combination of Push/Pop and
// RegList-based methods.
static void PushPopXRegMixedMethodsHelper(int claim, int reg_size) {
SETUP();
// Arbitrarily pick a register to use as a stack pointer.
const Register& stack_pointer = x5;
const RegList allowed = ~stack_pointer.Bit();
// Work out which registers to use, based on reg_size.
Register r[10];
Register x[10];
PopulateRegisterArray(NULL, x, r, reg_size, 10, allowed);
// Calculate some handy register lists.
RegList r0_to_r3 = 0;
for (int i = 0; i <= 3; i++) {
r0_to_r3 |= x[i].Bit();
}
RegList r4_to_r5 = 0;
for (int i = 4; i <= 5; i++) {
r4_to_r5 |= x[i].Bit();
}
RegList r6_to_r9 = 0;
for (int i = 6; i <= 9; i++) {
r6_to_r9 |= x[i].Bit();
}
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
uint64_t literal_base = 0x0100001000100101;
START();
{
VIXL_ASSERT(__ StackPointer().Is(sp));
__ Mov(stack_pointer, __ StackPointer());
__ SetStackPointer(stack_pointer);
// Claim memory first, as requested.
__ Claim(claim);
__ Mov(x[3], literal_base * 3);
__ Mov(x[2], literal_base * 2);
__ Mov(x[1], literal_base * 1);
__ Mov(x[0], literal_base * 0);
__ PushSizeRegList(r0_to_r3, reg_size);
__ Push(r[3], r[2]);
Clobber(&masm, r0_to_r3);
__ PopSizeRegList(r0_to_r3, reg_size);
__ Push(r[2], r[1], r[3], r[0]);
Clobber(&masm, r4_to_r5);
__ Pop(r[4], r[5]);
Clobber(&masm, r6_to_r9);
__ Pop(r[6], r[7], r[8], r[9]);
// Drop memory to restore stack_pointer.
__ Drop(claim);
__ Mov(sp, __ StackPointer());
__ SetStackPointer(sp);
}
END();
RUN();
// Always use ASSERT_EQUAL_64, even when testing W registers, so we can test
// that the upper word was properly cleared by Pop.
literal_base &= (0xffffffffffffffff >> (64-reg_size));
ASSERT_EQUAL_64(literal_base * 3, x[9]);
ASSERT_EQUAL_64(literal_base * 2, x[8]);
ASSERT_EQUAL_64(literal_base * 0, x[7]);
ASSERT_EQUAL_64(literal_base * 3, x[6]);
ASSERT_EQUAL_64(literal_base * 1, x[5]);
ASSERT_EQUAL_64(literal_base * 2, x[4]);
TEARDOWN();
}
TEST(push_pop_xreg_mixed_methods_64) {
for (int claim = 0; claim <= 8; claim++) {
PushPopXRegMixedMethodsHelper(claim, kXRegSize);
}
}
TEST(push_pop_xreg_mixed_methods_32) {
for (int claim = 0; claim <= 8; claim++) {
PushPopXRegMixedMethodsHelper(claim, kWRegSize);
}
}
// Push and pop data using overlapping X- and W-sized quantities.
static void PushPopXRegWXOverlapHelper(int reg_count, int claim) {
SETUP();
// Arbitrarily pick a register to use as a stack pointer.
const Register& stack_pointer = x10;
const RegList allowed = ~stack_pointer.Bit();
if (reg_count == kPushPopXRegMaxRegCount) {
reg_count = CountSetBits(allowed, kNumberOfRegisters);
}
// Work out which registers to use, based on reg_size.
Register w[kNumberOfRegisters];
Register x[kNumberOfRegisters];
RegList list = PopulateRegisterArray(w, x, NULL, 0, reg_count, allowed);
// The number of W-sized slots we expect to pop. When we pop, we alternate
// between W and X registers, so we need reg_count*1.5 W-sized slots.
int const requested_w_slots = reg_count + reg_count / 2;
// Track what _should_ be on the stack, using W-sized slots.
static int const kMaxWSlots = kNumberOfRegisters + kNumberOfRegisters / 2;
uint32_t stack[kMaxWSlots];
for (int i = 0; i < kMaxWSlots; i++) {
stack[i] = 0xdeadbeef;
}
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
// The literal base is chosen to have two useful properties:
// * When multiplied by small values (such as a register index), this value
// is clearly readable in the result.
// * The value is not formed from repeating fixed-size smaller values, so it
// can be used to detect endianness-related errors.
static uint64_t const literal_base = 0x0100001000100101;
static uint64_t const literal_base_hi = literal_base >> 32;
static uint64_t const literal_base_lo = literal_base & 0xffffffff;
static uint64_t const literal_base_w = literal_base & 0xffffffff;
START();
{
VIXL_ASSERT(__ StackPointer().Is(sp));
__ Mov(stack_pointer, __ StackPointer());
__ SetStackPointer(stack_pointer);
// Initialize the registers.
for (int i = 0; i < reg_count; i++) {
// Always write into the X register, to ensure that the upper word is
// properly ignored by Push when testing W registers.
__ Mov(x[i], literal_base * i);
}
// Claim memory first, as requested.
__ Claim(claim);
// The push-pop pattern is as follows:
// Push: Pop:
// x[0](hi) -> w[0]
// x[0](lo) -> x[1](hi)
// w[1] -> x[1](lo)
// w[1] -> w[2]
// x[2](hi) -> x[2](hi)
// x[2](lo) -> x[2](lo)
// x[2](hi) -> w[3]
// x[2](lo) -> x[4](hi)
// x[2](hi) -> x[4](lo)
// x[2](lo) -> w[5]
// w[3] -> x[5](hi)
// w[3] -> x[6](lo)
// w[3] -> w[7]
// w[3] -> x[8](hi)
// x[4](hi) -> x[8](lo)
// x[4](lo) -> w[9]
// ... pattern continues ...
//
// That is, registers are pushed starting with the lower numbers,
// alternating between x and w registers, and pushing i%4+1 copies of each,
// where i is the register number.
// Registers are popped starting with the higher numbers one-by-one,
// alternating between x and w registers, but only popping one at a time.
//
// This pattern provides a wide variety of alignment effects and overlaps.
// ---- Push ----
int active_w_slots = 0;
for (int i = 0; active_w_slots < requested_w_slots; i++) {
VIXL_ASSERT(i < reg_count);
// In order to test various arguments to PushMultipleTimes, and to try to
// exercise different alignment and overlap effects, we push each
// register a different number of times.
int times = i % 4 + 1;
if (i & 1) {
// Push odd-numbered registers as W registers.
__ PushMultipleTimes(times, w[i]);
// Fill in the expected stack slots.
for (int j = 0; j < times; j++) {
if (w[i].Is(wzr)) {
// The zero register always writes zeroes.
stack[active_w_slots++] = 0;
} else {
stack[active_w_slots++] = literal_base_w * i;
}
}
} else {
// Push even-numbered registers as X registers.
__ PushMultipleTimes(times, x[i]);
// Fill in the expected stack slots.
for (int j = 0; j < times; j++) {
if (x[i].Is(xzr)) {
// The zero register always writes zeroes.
stack[active_w_slots++] = 0;
stack[active_w_slots++] = 0;
} else {
stack[active_w_slots++] = literal_base_hi * i;
stack[active_w_slots++] = literal_base_lo * i;
}
}
}
}
// Because we were pushing several registers at a time, we probably pushed
// more than we needed to.
if (active_w_slots > requested_w_slots) {
__ Drop((active_w_slots - requested_w_slots) * kWRegSizeInBytes);
// Bump the number of active W-sized slots back to where it should be,
// and fill the empty space with a dummy value.
do {
stack[active_w_slots--] = 0xdeadbeef;
} while (active_w_slots > requested_w_slots);
}
// ---- Pop ----
Clobber(&masm, list);
// If popping an even number of registers, the first one will be X-sized.
// Otherwise, the first one will be W-sized.
bool next_is_64 = !(reg_count & 1);
for (int i = reg_count-1; i >= 0; i--) {
if (next_is_64) {
__ Pop(x[i]);
active_w_slots -= 2;
} else {
__ Pop(w[i]);
active_w_slots -= 1;
}
next_is_64 = !next_is_64;
}
VIXL_ASSERT(active_w_slots == 0);
// Drop memory to restore stack_pointer.
__ Drop(claim);
__ Mov(sp, __ StackPointer());
__ SetStackPointer(sp);
}
END();
RUN();
int slot = 0;
for (int i = 0; i < reg_count; i++) {
// Even-numbered registers were written as W registers.
// Odd-numbered registers were written as X registers.
bool expect_64 = (i & 1);
uint64_t expected;
if (expect_64) {
uint64_t hi = stack[slot++];
uint64_t lo = stack[slot++];
expected = (hi << 32) | lo;
} else {
expected = stack[slot++];
}
// Always use ASSERT_EQUAL_64, even when testing W registers, so we can
// test that the upper word was properly cleared by Pop.
if (x[i].Is(xzr)) {
ASSERT_EQUAL_64(0, x[i]);
} else {
ASSERT_EQUAL_64(expected, x[i]);
}
}
VIXL_ASSERT(slot == requested_w_slots);
TEARDOWN();
}
TEST(push_pop_xreg_wx_overlap) {
for (int claim = 0; claim <= 8; claim++) {
for (int count = 1; count <= 8; count++) {
PushPopXRegWXOverlapHelper(count, claim);
}
// Test with the maximum number of registers.
PushPopXRegWXOverlapHelper(kPushPopXRegMaxRegCount, claim);
}
}
TEST(push_pop_sp) {
SETUP();
START();
VIXL_ASSERT(sp.Is(__ StackPointer()));
// Acquire all temps from the MacroAssembler. They are used arbitrarily below.
UseScratchRegisterScope temps(&masm);
temps.ExcludeAll();
__ Mov(x3, 0x3333333333333333);
__ Mov(x2, 0x2222222222222222);
__ Mov(x1, 0x1111111111111111);
__ Mov(x0, 0x0000000000000000);
__ Claim(2 * kXRegSizeInBytes);
__ PushXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit());
__ Push(x3, x2);
__ PopXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit());
__ Push(x2, x1, x3, x0);
__ Pop(x4, x5);
__ Pop(x6, x7, x8, x9);
__ Claim(2 * kXRegSizeInBytes);
__ PushWRegList(w0.Bit() | w1.Bit() | w2.Bit() | w3.Bit());
__ Push(w3, w1, w2, w0);
__ PopWRegList(w10.Bit() | w11.Bit() | w12.Bit() | w13.Bit());
__ Pop(w14, w15, w16, w17);
__ Claim(2 * kXRegSizeInBytes);
__ Push(w2, w2, w1, w1);
__ Push(x3, x3);
__ Pop(w18, w19, w20, w21);
__ Pop(x22, x23);
__ Claim(2 * kXRegSizeInBytes);
__ PushXRegList(x1.Bit() | x22.Bit());
__ PopXRegList(x24.Bit() | x26.Bit());
__ Claim(2 * kXRegSizeInBytes);
__ PushWRegList(w1.Bit() | w2.Bit() | w4.Bit() | w22.Bit());
__ PopWRegList(w25.Bit() | w27.Bit() | w28.Bit() | w29.Bit());
__ Claim(2 * kXRegSizeInBytes);
__ PushXRegList(0);
__ PopXRegList(0);
__ PushXRegList(0xffffffff);
__ PopXRegList(0xffffffff);
__ Drop(12 * kXRegSizeInBytes);
END();
RUN();
ASSERT_EQUAL_64(0x1111111111111111, x3);
ASSERT_EQUAL_64(0x0000000000000000, x2);
ASSERT_EQUAL_64(0x3333333333333333, x1);
ASSERT_EQUAL_64(0x2222222222222222, x0);
ASSERT_EQUAL_64(0x3333333333333333, x9);
ASSERT_EQUAL_64(0x2222222222222222, x8);
ASSERT_EQUAL_64(0x0000000000000000, x7);
ASSERT_EQUAL_64(0x3333333333333333, x6);
ASSERT_EQUAL_64(0x1111111111111111, x5);
ASSERT_EQUAL_64(0x2222222222222222, x4);
ASSERT_EQUAL_32(0x11111111U, w13);
ASSERT_EQUAL_32(0x33333333U, w12);
ASSERT_EQUAL_32(0x00000000U, w11);
ASSERT_EQUAL_32(0x22222222U, w10);
ASSERT_EQUAL_32(0x11111111U, w17);
ASSERT_EQUAL_32(0x00000000U, w16);
ASSERT_EQUAL_32(0x33333333U, w15);
ASSERT_EQUAL_32(0x22222222U, w14);
ASSERT_EQUAL_32(0x11111111U, w18);
ASSERT_EQUAL_32(0x11111111U, w19);
ASSERT_EQUAL_32(0x11111111U, w20);
ASSERT_EQUAL_32(0x11111111U, w21);
ASSERT_EQUAL_64(0x3333333333333333, x22);
ASSERT_EQUAL_64(0x0000000000000000, x23);
ASSERT_EQUAL_64(0x3333333333333333, x24);
ASSERT_EQUAL_64(0x3333333333333333, x26);
ASSERT_EQUAL_32(0x33333333U, w25);
ASSERT_EQUAL_32(0x00000000U, w27);
ASSERT_EQUAL_32(0x22222222U, w28);
ASSERT_EQUAL_32(0x33333333U, w29);
TEARDOWN();
}
TEST(noreg) {
// This test doesn't generate any code, but it verifies some invariants
// related to NoReg.
VIXL_CHECK(NoReg.Is(NoFPReg));
VIXL_CHECK(NoFPReg.Is(NoReg));
VIXL_CHECK(NoVReg.Is(NoReg));
VIXL_CHECK(NoReg.Is(NoVReg));
VIXL_CHECK(NoReg.Is(NoCPUReg));
VIXL_CHECK(NoCPUReg.Is(NoReg));
VIXL_CHECK(NoFPReg.Is(NoCPUReg));
VIXL_CHECK(NoCPUReg.Is(NoFPReg));
VIXL_CHECK(NoVReg.Is(NoCPUReg));
VIXL_CHECK(NoCPUReg.Is(NoVReg));
VIXL_CHECK(NoReg.IsNone());
VIXL_CHECK(NoFPReg.IsNone());
VIXL_CHECK(NoVReg.IsNone());
VIXL_CHECK(NoCPUReg.IsNone());
}
TEST(isvalid) {
// This test doesn't generate any code, but it verifies some invariants
// related to IsValid().
VIXL_CHECK(!NoReg.IsValid());
VIXL_CHECK(!NoFPReg.IsValid());
VIXL_CHECK(!NoVReg.IsValid());
VIXL_CHECK(!NoCPUReg.IsValid());
VIXL_CHECK(x0.IsValid());
VIXL_CHECK(w0.IsValid());
VIXL_CHECK(x30.IsValid());
VIXL_CHECK(w30.IsValid());
VIXL_CHECK(xzr.IsValid());
VIXL_CHECK(wzr.IsValid());
VIXL_CHECK(sp.IsValid());
VIXL_CHECK(wsp.IsValid());
VIXL_CHECK(d0.IsValid());
VIXL_CHECK(s0.IsValid());
VIXL_CHECK(d31.IsValid());
VIXL_CHECK(s31.IsValid());
VIXL_CHECK(x0.IsValidRegister());
VIXL_CHECK(w0.IsValidRegister());
VIXL_CHECK(xzr.IsValidRegister());
VIXL_CHECK(wzr.IsValidRegister());
VIXL_CHECK(sp.IsValidRegister());
VIXL_CHECK(wsp.IsValidRegister());
VIXL_CHECK(!x0.IsValidFPRegister());
VIXL_CHECK(!w0.IsValidFPRegister());
VIXL_CHECK(!xzr.IsValidFPRegister());
VIXL_CHECK(!wzr.IsValidFPRegister());
VIXL_CHECK(!sp.IsValidFPRegister());
VIXL_CHECK(!wsp.IsValidFPRegister());
VIXL_CHECK(d0.IsValidFPRegister());
VIXL_CHECK(s0.IsValidFPRegister());
VIXL_CHECK(!d0.IsValidRegister());
VIXL_CHECK(!s0.IsValidRegister());
// Test the same as before, but using CPURegister types. This shouldn't make
// any difference.
VIXL_CHECK(static_cast<CPURegister>(x0).IsValid());
VIXL_CHECK(static_cast<CPURegister>(w0).IsValid());
VIXL_CHECK(static_cast<CPURegister>(x30).IsValid());
VIXL_CHECK(static_cast<CPURegister>(w30).IsValid());
VIXL_CHECK(static_cast<CPURegister>(xzr).IsValid());
VIXL_CHECK(static_cast<CPURegister>(wzr).IsValid());
VIXL_CHECK(static_cast<CPURegister>(sp).IsValid());
VIXL_CHECK(static_cast<CPURegister>(wsp).IsValid());
VIXL_CHECK(static_cast<CPURegister>(d0).IsValid());
VIXL_CHECK(static_cast<CPURegister>(s0).IsValid());
VIXL_CHECK(static_cast<CPURegister>(d31).IsValid());
VIXL_CHECK(static_cast<CPURegister>(s31).IsValid());
VIXL_CHECK(static_cast<CPURegister>(x0).IsValidRegister());
VIXL_CHECK(static_cast<CPURegister>(w0).IsValidRegister());
VIXL_CHECK(static_cast<CPURegister>(xzr).IsValidRegister());
VIXL_CHECK(static_cast<CPURegister>(wzr).IsValidRegister());
VIXL_CHECK(static_cast<CPURegister>(sp).IsValidRegister());
VIXL_CHECK(static_cast<CPURegister>(wsp).IsValidRegister());
VIXL_CHECK(!static_cast<CPURegister>(x0).IsValidFPRegister());
VIXL_CHECK(!static_cast<CPURegister>(w0).IsValidFPRegister());
VIXL_CHECK(!static_cast<CPURegister>(xzr).IsValidFPRegister());
VIXL_CHECK(!static_cast<CPURegister>(wzr).IsValidFPRegister());
VIXL_CHECK(!static_cast<CPURegister>(sp).IsValidFPRegister());
VIXL_CHECK(!static_cast<CPURegister>(wsp).IsValidFPRegister());
VIXL_CHECK(static_cast<CPURegister>(d0).IsValidFPRegister());
VIXL_CHECK(static_cast<CPURegister>(s0).IsValidFPRegister());
VIXL_CHECK(!static_cast<CPURegister>(d0).IsValidRegister());
VIXL_CHECK(!static_cast<CPURegister>(s0).IsValidRegister());
}
TEST(printf) {
SETUP();
START();
char const * test_plain_string = "Printf with no arguments.\n";
char const * test_substring = "'This is a substring.'";
RegisterDump before;
// Initialize x29 to the value of the stack pointer. We will use x29 as a
// temporary stack pointer later, and initializing it in this way allows the
// RegisterDump check to pass.
__ Mov(x29, __ StackPointer());
// Test simple integer arguments.
__ Mov(x0, 1234);
__ Mov(x1, 0x1234);
// Test simple floating-point arguments.
__ Fmov(d0, 1.234);
// Test pointer (string) arguments.
__ Mov(x2, reinterpret_cast<uintptr_t>(test_substring));
// Test the maximum number of arguments, and sign extension.
__ Mov(w3, 0xffffffff);
__ Mov(w4, 0xffffffff);
__ Mov(x5, 0xffffffffffffffff);
__ Mov(x6, 0xffffffffffffffff);
__ Fmov(s1, 1.234);
__ Fmov(s2, 2.345);
__ Fmov(d3, 3.456);
__ Fmov(d4, 4.567);
// Test printing callee-saved registers.
__ Mov(x28, 0x123456789abcdef);
__ Fmov(d10, 42.0);
// Test with three arguments.
__ Mov(x10, 3);
__ Mov(x11, 40);
__ Mov(x12, 500);
// A single character.
__ Mov(w13, 'x');
// Check that we don't clobber any registers.
before.Dump(&masm);
__ Printf(test_plain_string); // NOLINT(runtime/printf)
__ Printf("x0: %" PRId64 ", x1: 0x%08" PRIx64 "\n", x0, x1);
__ Printf("w5: %" PRId32 ", x5: %" PRId64"\n", w5, x5);
__ Printf("d0: %f\n", d0);
__ Printf("Test %%s: %s\n", x2);
__ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n"
"x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n",
w3, w4, x5, x6);
__ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4);
__ Printf("0x%" PRIx32 ", 0x%" PRIx64 "\n", w28, x28);
__ Printf("%g\n", d10);
__ Printf("%%%%%s%%%c%%\n", x2, w13);
// Print the stack pointer (sp).
__ Printf("StackPointer(sp): 0x%016" PRIx64 ", 0x%08" PRIx32 "\n",
__ StackPointer(), __ StackPointer().W());
// Test with a different stack pointer.
const Register old_stack_pointer = __ StackPointer();
__ Mov(x29, old_stack_pointer);
__ SetStackPointer(x29);
// Print the stack pointer (not sp).
__ Printf("StackPointer(not sp): 0x%016" PRIx64 ", 0x%08" PRIx32 "\n",
__ StackPointer(), __ StackPointer().W());
__ Mov(old_stack_pointer, __ StackPointer());
__ SetStackPointer(old_stack_pointer);
// Test with three arguments.
__ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12);
// Mixed argument types.
__ Printf("w3: %" PRIu32 ", s1: %f, x5: %" PRIu64 ", d3: %f\n",
w3, s1, x5, d3);
__ Printf("s1: %f, d3: %f, w3: %" PRId32 ", x5: %" PRId64 "\n",
s1, d3, w3, x5);
END();
RUN();
// We cannot easily test the output of the Printf sequences, and because
// Printf preserves all registers by default, we can't look at the number of
// bytes that were printed. However, the printf_no_preserve test should check
// that, and here we just test that we didn't clobber any registers.
ASSERT_EQUAL_REGISTERS(before);
TEARDOWN();
}
TEST(printf_no_preserve) {
SETUP();
START();
char const * test_plain_string = "Printf with no arguments.\n";
char const * test_substring = "'This is a substring.'";
__ PrintfNoPreserve(test_plain_string);
__ Mov(x19, x0);
// Test simple integer arguments.
__ Mov(x0, 1234);
__ Mov(x1, 0x1234);
__ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1);
__ Mov(x20, x0);
// Test simple floating-point arguments.
__ Fmov(d0, 1.234);
__ PrintfNoPreserve("d0: %f\n", d0);
__ Mov(x21, x0);
// Test pointer (string) arguments.
__ Mov(x2, reinterpret_cast<uintptr_t>(test_substring));
__ PrintfNoPreserve("Test %%s: %s\n", x2);
__ Mov(x22, x0);
// Test the maximum number of arguments, and sign extension.
__ Mov(w3, 0xffffffff);
__ Mov(w4, 0xffffffff);
__ Mov(x5, 0xffffffffffffffff);
__ Mov(x6, 0xffffffffffffffff);
__ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n"
"x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n",
w3, w4, x5, x6);
__ Mov(x23, x0);
__ Fmov(s1, 1.234);
__ Fmov(s2, 2.345);
__ Fmov(d3, 3.456);
__ Fmov(d4, 4.567);
__ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4);
__ Mov(x24, x0);
// Test printing callee-saved registers.
__ Mov(x28, 0x123456789abcdef);
__ PrintfNoPreserve("0x%" PRIx32 ", 0x%" PRIx64 "\n", w28, x28);
__ Mov(x25, x0);
__ Fmov(d10, 42.0);
__ PrintfNoPreserve("%g\n", d10);
__ Mov(x26, x0);
// Test with a different stack pointer.
const Register old_stack_pointer = __ StackPointer();
__ Mov(x29, old_stack_pointer);
__ SetStackPointer(x29);
// Print the stack pointer (not sp).
__ PrintfNoPreserve(
"StackPointer(not sp): 0x%016" PRIx64 ", 0x%08" PRIx32 "\n",
__ StackPointer(), __ StackPointer().W());
__ Mov(x27, x0);
__ Mov(old_stack_pointer, __ StackPointer());
__ SetStackPointer(old_stack_pointer);
// Test with three arguments.
__ Mov(x3, 3);
__ Mov(x4, 40);
__ Mov(x5, 500);
__ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5);
__ Mov(x28, x0);
// Mixed argument types.
__ Mov(w3, 0xffffffff);
__ Fmov(s1, 1.234);
__ Mov(x5, 0xffffffffffffffff);
__ Fmov(d3, 3.456);
__ PrintfNoPreserve("w3: %" PRIu32 ", s1: %f, x5: %" PRIu64 ", d3: %f\n",
w3, s1, x5, d3);
__ Mov(x29, x0);
END();
RUN();
// We cannot easily test the exact output of the Printf sequences, but we can
// use the return code to check that the string length was correct.
// Printf with no arguments.
ASSERT_EQUAL_64(strlen(test_plain_string), x19);
// x0: 1234, x1: 0x00001234
ASSERT_EQUAL_64(25, x20);
// d0: 1.234000
ASSERT_EQUAL_64(13, x21);
// Test %s: 'This is a substring.'
ASSERT_EQUAL_64(32, x22);
// w3(uint32): 4294967295
// w4(int32): -1
// x5(uint64): 18446744073709551615
// x6(int64): -1
ASSERT_EQUAL_64(23 + 14 + 33 + 14, x23);
// %f: 1.234000
// %g: 2.345
// %e: 3.456000e+00
// %E: 4.567000E+00
ASSERT_EQUAL_64(13 + 10 + 17 + 17, x24);
// 0x89abcdef, 0x123456789abcdef
ASSERT_EQUAL_64(30, x25);
// 42
ASSERT_EQUAL_64(3, x26);
// StackPointer(not sp): 0x00007fb037ae2370, 0x37ae2370
// Note: This is an example value, but the field width is fixed here so the
// string length is still predictable.
ASSERT_EQUAL_64(53, x27);
// 3=3, 4=40, 5=500
ASSERT_EQUAL_64(17, x28);
// w3: 4294967295, s1: 1.234000, x5: 18446744073709551615, d3: 3.456000
ASSERT_EQUAL_64(69, x29);
TEARDOWN();
}
#ifndef VIXL_INCLUDE_SIMULATOR
TEST(trace) {
// The Trace helper should not generate any code unless the simulator (or
// debugger) is being used.
SETUP();
START();
Label start;
__ Bind(&start);
__ Trace(LOG_ALL, TRACE_ENABLE);
__ Trace(LOG_ALL, TRACE_DISABLE);
VIXL_CHECK(__ SizeOfCodeGeneratedSince(&start) == 0);
END();
TEARDOWN();
}
#endif
#ifndef VIXL_INCLUDE_SIMULATOR
TEST(log) {
// The Log helper should not generate any code unless the simulator (or
// debugger) is being used.
SETUP();
START();
Label start;
__ Bind(&start);
__ Log(LOG_ALL);
VIXL_CHECK(__ SizeOfCodeGeneratedSince(&start) == 0);
END();
TEARDOWN();
}
#endif
TEST(instruction_accurate_scope) {
SETUP();
START();
// By default macro instructions are allowed.
VIXL_ASSERT(masm.AllowMacroInstructions());
{
InstructionAccurateScope scope1(&masm, 2);
VIXL_ASSERT(!masm.AllowMacroInstructions());
__ nop();
{
InstructionAccurateScope scope2(&masm, 1);
VIXL_ASSERT(!masm.AllowMacroInstructions());
__ nop();
}
VIXL_ASSERT(!masm.AllowMacroInstructions());
}
VIXL_ASSERT(masm.AllowMacroInstructions());
{
InstructionAccurateScope scope(&masm, 2);
__ add(x0, x0, x0);
__ sub(x0, x0, x0);
}
END();
RUN();
TEARDOWN();
}
TEST(blr_lr) {
// A simple test to check that the simulator correcty handle "blr lr".
SETUP();
START();
Label target;
Label end;
__ Mov(x0, 0x0);
__ Adr(lr, &target);
__ Blr(lr);
__ Mov(x0, 0xdeadbeef);
__ B(&end);
__ Bind(&target);
__ Mov(x0, 0xc001c0de);
__ Bind(&end);
END();
RUN();
ASSERT_EQUAL_64(0xc001c0de, x0);
TEARDOWN();
}
TEST(barriers) {
// Generate all supported barriers, this is just a smoke test
SETUP();
START();
// DMB
__ Dmb(FullSystem, BarrierAll);
__ Dmb(FullSystem, BarrierReads);
__ Dmb(FullSystem, BarrierWrites);
__ Dmb(FullSystem, BarrierOther);
__ Dmb(InnerShareable, BarrierAll);
__ Dmb(InnerShareable, BarrierReads);
__ Dmb(InnerShareable, BarrierWrites);
__ Dmb(InnerShareable, BarrierOther);
__ Dmb(NonShareable, BarrierAll);
__ Dmb(NonShareable, BarrierReads);
__ Dmb(NonShareable, BarrierWrites);
__ Dmb(NonShareable, BarrierOther);
__ Dmb(OuterShareable, BarrierAll);
__ Dmb(OuterShareable, BarrierReads);
__ Dmb(OuterShareable, BarrierWrites);
__ Dmb(OuterShareable, BarrierOther);
// DSB
__ Dsb(FullSystem, BarrierAll);
__ Dsb(FullSystem, BarrierReads);
__ Dsb(FullSystem, BarrierWrites);
__ Dsb(FullSystem, BarrierOther);
__ Dsb(InnerShareable, BarrierAll);
__ Dsb(InnerShareable, BarrierReads);
__ Dsb(InnerShareable, BarrierWrites);
__ Dsb(InnerShareable, BarrierOther);
__ Dsb(NonShareable, BarrierAll);
__ Dsb(NonShareable, BarrierReads);
__ Dsb(NonShareable, BarrierWrites);
__ Dsb(NonShareable, BarrierOther);
__ Dsb(OuterShareable, BarrierAll);
__ Dsb(OuterShareable, BarrierReads);
__ Dsb(OuterShareable, BarrierWrites);
__ Dsb(OuterShareable, BarrierOther);
// ISB
__ Isb();
END();
RUN();
TEARDOWN();
}
TEST(process_nan_double) {
// Make sure that NaN propagation works correctly.
double sn = rawbits_to_double(0x7ff5555511111111);
double qn = rawbits_to_double(0x7ffaaaaa11111111);
VIXL_ASSERT(IsSignallingNaN(sn));
VIXL_ASSERT(IsQuietNaN(qn));
// The input NaNs after passing through ProcessNaN.
double sn_proc = rawbits_to_double(0x7ffd555511111111);
double qn_proc = qn;
VIXL_ASSERT(IsQuietNaN(sn_proc));
VIXL_ASSERT(IsQuietNaN(qn_proc));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaN, and check that
// they all handle the NaN correctly.
__ Fmov(d0, sn);
__ Fmov(d10, qn);
// Operations that always propagate NaNs unchanged, even signalling NaNs.
// - Signalling NaN
__ Fmov(d1, d0);
__ Fabs(d2, d0);
__ Fneg(d3, d0);
// - Quiet NaN
__ Fmov(d11, d10);
__ Fabs(d12, d10);
__ Fneg(d13, d10);
// Operations that use ProcessNaN.
// - Signalling NaN
__ Fsqrt(d4, d0);
__ Frinta(d5, d0);
__ Frintn(d6, d0);
__ Frintz(d7, d0);
// - Quiet NaN
__ Fsqrt(d14, d10);
__ Frinta(d15, d10);
__ Frintn(d16, d10);
__ Frintz(d17, d10);
// The behaviour of fcvt is checked in TEST(fcvt_sd).
END();
RUN();
uint64_t qn_raw = double_to_rawbits(qn);
uint64_t sn_raw = double_to_rawbits(sn);
// - Signalling NaN
ASSERT_EQUAL_FP64(sn, d1);
ASSERT_EQUAL_FP64(rawbits_to_double(sn_raw & ~kDSignMask), d2);
ASSERT_EQUAL_FP64(rawbits_to_double(sn_raw ^ kDSignMask), d3);
// - Quiet NaN
ASSERT_EQUAL_FP64(qn, d11);
ASSERT_EQUAL_FP64(rawbits_to_double(qn_raw & ~kDSignMask), d12);
ASSERT_EQUAL_FP64(rawbits_to_double(qn_raw ^ kDSignMask), d13);
// - Signalling NaN
ASSERT_EQUAL_FP64(sn_proc, d4);
ASSERT_EQUAL_FP64(sn_proc, d5);
ASSERT_EQUAL_FP64(sn_proc, d6);
ASSERT_EQUAL_FP64(sn_proc, d7);
// - Quiet NaN
ASSERT_EQUAL_FP64(qn_proc, d14);
ASSERT_EQUAL_FP64(qn_proc, d15);
ASSERT_EQUAL_FP64(qn_proc, d16);
ASSERT_EQUAL_FP64(qn_proc, d17);
TEARDOWN();
}
TEST(process_nan_float) {
// Make sure that NaN propagation works correctly.
float sn = rawbits_to_float(0x7f951111);
float qn = rawbits_to_float(0x7fea1111);
VIXL_ASSERT(IsSignallingNaN(sn));
VIXL_ASSERT(IsQuietNaN(qn));
// The input NaNs after passing through ProcessNaN.
float sn_proc = rawbits_to_float(0x7fd51111);
float qn_proc = qn;
VIXL_ASSERT(IsQuietNaN(sn_proc));
VIXL_ASSERT(IsQuietNaN(qn_proc));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaN, and check that
// they all handle the NaN correctly.
__ Fmov(s0, sn);
__ Fmov(s10, qn);
// Operations that always propagate NaNs unchanged, even signalling NaNs.
// - Signalling NaN
__ Fmov(s1, s0);
__ Fabs(s2, s0);
__ Fneg(s3, s0);
// - Quiet NaN
__ Fmov(s11, s10);
__ Fabs(s12, s10);
__ Fneg(s13, s10);
// Operations that use ProcessNaN.
// - Signalling NaN
__ Fsqrt(s4, s0);
__ Frinta(s5, s0);
__ Frintn(s6, s0);
__ Frintz(s7, s0);
// - Quiet NaN
__ Fsqrt(s14, s10);
__ Frinta(s15, s10);
__ Frintn(s16, s10);
__ Frintz(s17, s10);
// The behaviour of fcvt is checked in TEST(fcvt_sd).
END();
RUN();
uint32_t qn_raw = float_to_rawbits(qn);
uint32_t sn_raw = float_to_rawbits(sn);
// - Signalling NaN
ASSERT_EQUAL_FP32(sn, s1);
ASSERT_EQUAL_FP32(rawbits_to_float(sn_raw & ~kSSignMask), s2);
ASSERT_EQUAL_FP32(rawbits_to_float(sn_raw ^ kSSignMask), s3);
// - Quiet NaN
ASSERT_EQUAL_FP32(qn, s11);
ASSERT_EQUAL_FP32(rawbits_to_float(qn_raw & ~kSSignMask), s12);
ASSERT_EQUAL_FP32(rawbits_to_float(qn_raw ^ kSSignMask), s13);
// - Signalling NaN
ASSERT_EQUAL_FP32(sn_proc, s4);
ASSERT_EQUAL_FP32(sn_proc, s5);
ASSERT_EQUAL_FP32(sn_proc, s6);
ASSERT_EQUAL_FP32(sn_proc, s7);
// - Quiet NaN
ASSERT_EQUAL_FP32(qn_proc, s14);
ASSERT_EQUAL_FP32(qn_proc, s15);
ASSERT_EQUAL_FP32(qn_proc, s16);
ASSERT_EQUAL_FP32(qn_proc, s17);
TEARDOWN();
}
static void ProcessNaNsHelper(double n, double m, double expected) {
VIXL_ASSERT(std::isnan(n) || std::isnan(m));
VIXL_ASSERT(std::isnan(expected));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all propagate NaNs correctly.
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fadd(d2, d0, d1);
__ Fsub(d3, d0, d1);
__ Fmul(d4, d0, d1);
__ Fdiv(d5, d0, d1);
__ Fmax(d6, d0, d1);
__ Fmin(d7, d0, d1);
END();
RUN();
ASSERT_EQUAL_FP64(expected, d2);
ASSERT_EQUAL_FP64(expected, d3);
ASSERT_EQUAL_FP64(expected, d4);
ASSERT_EQUAL_FP64(expected, d5);
ASSERT_EQUAL_FP64(expected, d6);
ASSERT_EQUAL_FP64(expected, d7);
TEARDOWN();
}
TEST(process_nans_double) {
// Make sure that NaN propagation works correctly.
double sn = rawbits_to_double(0x7ff5555511111111);
double sm = rawbits_to_double(0x7ff5555522222222);
double qn = rawbits_to_double(0x7ffaaaaa11111111);
double qm = rawbits_to_double(0x7ffaaaaa22222222);
VIXL_ASSERT(IsSignallingNaN(sn));
VIXL_ASSERT(IsSignallingNaN(sm));
VIXL_ASSERT(IsQuietNaN(qn));
VIXL_ASSERT(IsQuietNaN(qm));
// The input NaNs after passing through ProcessNaN.
double sn_proc = rawbits_to_double(0x7ffd555511111111);
double sm_proc = rawbits_to_double(0x7ffd555522222222);
double qn_proc = qn;
double qm_proc = qm;
VIXL_ASSERT(IsQuietNaN(sn_proc));
VIXL_ASSERT(IsQuietNaN(sm_proc));
VIXL_ASSERT(IsQuietNaN(qn_proc));
VIXL_ASSERT(IsQuietNaN(qm_proc));
// Quiet NaNs are propagated.
ProcessNaNsHelper(qn, 0, qn_proc);
ProcessNaNsHelper(0, qm, qm_proc);
ProcessNaNsHelper(qn, qm, qn_proc);
// Signalling NaNs are propagated, and made quiet.
ProcessNaNsHelper(sn, 0, sn_proc);
ProcessNaNsHelper(0, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
// Signalling NaNs take precedence over quiet NaNs.
ProcessNaNsHelper(sn, qm, sn_proc);
ProcessNaNsHelper(qn, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
}
static void ProcessNaNsHelper(float n, float m, float expected) {
VIXL_ASSERT(std::isnan(n) || std::isnan(m));
VIXL_ASSERT(std::isnan(expected));
SETUP();
START();
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all propagate NaNs correctly.
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fadd(s2, s0, s1);
__ Fsub(s3, s0, s1);
__ Fmul(s4, s0, s1);
__ Fdiv(s5, s0, s1);
__ Fmax(s6, s0, s1);
__ Fmin(s7, s0, s1);
END();
RUN();
ASSERT_EQUAL_FP32(expected, s2);
ASSERT_EQUAL_FP32(expected, s3);
ASSERT_EQUAL_FP32(expected, s4);
ASSERT_EQUAL_FP32(expected, s5);
ASSERT_EQUAL_FP32(expected, s6);
ASSERT_EQUAL_FP32(expected, s7);
TEARDOWN();
}
TEST(process_nans_float) {
// Make sure that NaN propagation works correctly.
float sn = rawbits_to_float(0x7f951111);
float sm = rawbits_to_float(0x7f952222);
float qn = rawbits_to_float(0x7fea1111);
float qm = rawbits_to_float(0x7fea2222);
VIXL_ASSERT(IsSignallingNaN(sn));
VIXL_ASSERT(IsSignallingNaN(sm));
VIXL_ASSERT(IsQuietNaN(qn));
VIXL_ASSERT(IsQuietNaN(qm));
// The input NaNs after passing through ProcessNaN.
float sn_proc = rawbits_to_float(0x7fd51111);
float sm_proc = rawbits_to_float(0x7fd52222);
float qn_proc = qn;
float qm_proc = qm;
VIXL_ASSERT(IsQuietNaN(sn_proc));
VIXL_ASSERT(IsQuietNaN(sm_proc));
VIXL_ASSERT(IsQuietNaN(qn_proc));
VIXL_ASSERT(IsQuietNaN(qm_proc));
// Quiet NaNs are propagated.
ProcessNaNsHelper(qn, 0, qn_proc);
ProcessNaNsHelper(0, qm, qm_proc);
ProcessNaNsHelper(qn, qm, qn_proc);
// Signalling NaNs are propagated, and made quiet.
ProcessNaNsHelper(sn, 0, sn_proc);
ProcessNaNsHelper(0, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
// Signalling NaNs take precedence over quiet NaNs.
ProcessNaNsHelper(sn, qm, sn_proc);
ProcessNaNsHelper(qn, sm, sm_proc);
ProcessNaNsHelper(sn, sm, sn_proc);
}
static void DefaultNaNHelper(float n, float m, float a) {
VIXL_ASSERT(std::isnan(n) || std::isnan(m) || std::isnan(a));
bool test_1op = std::isnan(n);
bool test_2op = std::isnan(n) || std::isnan(m);
SETUP();
START();
// Enable Default-NaN mode in the FPCR.
__ Mrs(x0, FPCR);
__ Orr(x1, x0, DN_mask);
__ Msr(FPCR, x1);
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all produce the default NaN.
__ Fmov(s0, n);
__ Fmov(s1, m);
__ Fmov(s2, a);
if (test_1op) {
// Operations that always propagate NaNs unchanged, even signalling NaNs.
__ Fmov(s10, s0);
__ Fabs(s11, s0);
__ Fneg(s12, s0);
// Operations that use ProcessNaN.
__ Fsqrt(s13, s0);
__ Frinta(s14, s0);
__ Frintn(s15, s0);
__ Frintz(s16, s0);
// Fcvt usually has special NaN handling, but it respects default-NaN mode.
__ Fcvt(d17, s0);
}
if (test_2op) {
__ Fadd(s18, s0, s1);
__ Fsub(s19, s0, s1);
__ Fmul(s20, s0, s1);
__ Fdiv(s21, s0, s1);
__ Fmax(s22, s0, s1);
__ Fmin(s23, s0, s1);
}
__ Fmadd(s24, s0, s1, s2);
__ Fmsub(s25, s0, s1, s2);
__ Fnmadd(s26, s0, s1, s2);
__ Fnmsub(s27, s0, s1, s2);
// Restore FPCR.
__ Msr(FPCR, x0);
END();
RUN();
if (test_1op) {
uint32_t n_raw = float_to_rawbits(n);
ASSERT_EQUAL_FP32(n, s10);
ASSERT_EQUAL_FP32(rawbits_to_float(n_raw & ~kSSignMask), s11);
ASSERT_EQUAL_FP32(rawbits_to_float(n_raw ^ kSSignMask), s12);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s13);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s14);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s15);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s16);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d17);
}
if (test_2op) {
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s18);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s19);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s20);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s21);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s22);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s23);
}
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s24);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s25);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s26);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s27);
TEARDOWN();
}
TEST(default_nan_float) {
float sn = rawbits_to_float(0x7f951111);
float sm = rawbits_to_float(0x7f952222);
float sa = rawbits_to_float(0x7f95aaaa);
float qn = rawbits_to_float(0x7fea1111);
float qm = rawbits_to_float(0x7fea2222);
float qa = rawbits_to_float(0x7feaaaaa);
VIXL_ASSERT(IsSignallingNaN(sn));
VIXL_ASSERT(IsSignallingNaN(sm));
VIXL_ASSERT(IsSignallingNaN(sa));
VIXL_ASSERT(IsQuietNaN(qn));
VIXL_ASSERT(IsQuietNaN(qm));
VIXL_ASSERT(IsQuietNaN(qa));
// - Signalling NaNs
DefaultNaNHelper(sn, 0.0f, 0.0f);
DefaultNaNHelper(0.0f, sm, 0.0f);
DefaultNaNHelper(0.0f, 0.0f, sa);
DefaultNaNHelper(sn, sm, 0.0f);
DefaultNaNHelper(0.0f, sm, sa);
DefaultNaNHelper(sn, 0.0f, sa);
DefaultNaNHelper(sn, sm, sa);
// - Quiet NaNs
DefaultNaNHelper(qn, 0.0f, 0.0f);
DefaultNaNHelper(0.0f, qm, 0.0f);
DefaultNaNHelper(0.0f, 0.0f, qa);
DefaultNaNHelper(qn, qm, 0.0f);
DefaultNaNHelper(0.0f, qm, qa);
DefaultNaNHelper(qn, 0.0f, qa);
DefaultNaNHelper(qn, qm, qa);
// - Mixed NaNs
DefaultNaNHelper(qn, sm, sa);
DefaultNaNHelper(sn, qm, sa);
DefaultNaNHelper(sn, sm, qa);
DefaultNaNHelper(qn, qm, sa);
DefaultNaNHelper(sn, qm, qa);
DefaultNaNHelper(qn, sm, qa);
DefaultNaNHelper(qn, qm, qa);
}
static void DefaultNaNHelper(double n, double m, double a) {
VIXL_ASSERT(std::isnan(n) || std::isnan(m) || std::isnan(a));
bool test_1op = std::isnan(n);
bool test_2op = std::isnan(n) || std::isnan(m);
SETUP();
START();
// Enable Default-NaN mode in the FPCR.
__ Mrs(x0, FPCR);
__ Orr(x1, x0, DN_mask);
__ Msr(FPCR, x1);
// Execute a number of instructions which all use ProcessNaNs, and check that
// they all produce the default NaN.
__ Fmov(d0, n);
__ Fmov(d1, m);
__ Fmov(d2, a);
if (test_1op) {
// Operations that always propagate NaNs unchanged, even signalling NaNs.
__ Fmov(d10, d0);
__ Fabs(d11, d0);
__ Fneg(d12, d0);
// Operations that use ProcessNaN.
__ Fsqrt(d13, d0);
__ Frinta(d14, d0);
__ Frintn(d15, d0);
__ Frintz(d16, d0);
// Fcvt usually has special NaN handling, but it respects default-NaN mode.
__ Fcvt(s17, d0);
}
if (test_2op) {
__ Fadd(d18, d0, d1);
__ Fsub(d19, d0, d1);
__ Fmul(d20, d0, d1);
__ Fdiv(d21, d0, d1);
__ Fmax(d22, d0, d1);
__ Fmin(d23, d0, d1);
}
__ Fmadd(d24, d0, d1, d2);
__ Fmsub(d25, d0, d1, d2);
__ Fnmadd(d26, d0, d1, d2);
__ Fnmsub(d27, d0, d1, d2);
// Restore FPCR.
__ Msr(FPCR, x0);
END();
RUN();
if (test_1op) {
uint64_t n_raw = double_to_rawbits(n);
ASSERT_EQUAL_FP64(n, d10);
ASSERT_EQUAL_FP64(rawbits_to_double(n_raw & ~kDSignMask), d11);
ASSERT_EQUAL_FP64(rawbits_to_double(n_raw ^ kDSignMask), d12);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d14);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d15);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d16);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s17);
}
if (test_2op) {
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d18);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d19);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d20);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d21);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d22);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d23);
}
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d24);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d25);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d26);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d27);
TEARDOWN();
}
TEST(default_nan_double) {
double sn = rawbits_to_double(0x7ff5555511111111);
double sm = rawbits_to_double(0x7ff5555522222222);
double sa = rawbits_to_double(0x7ff55555aaaaaaaa);
double qn = rawbits_to_double(0x7ffaaaaa11111111);
double qm = rawbits_to_double(0x7ffaaaaa22222222);
double qa = rawbits_to_double(0x7ffaaaaaaaaaaaaa);
VIXL_ASSERT(IsSignallingNaN(sn));
VIXL_ASSERT(IsSignallingNaN(sm));
VIXL_ASSERT(IsSignallingNaN(sa));
VIXL_ASSERT(IsQuietNaN(qn));
VIXL_ASSERT(IsQuietNaN(qm));
VIXL_ASSERT(IsQuietNaN(qa));
// - Signalling NaNs
DefaultNaNHelper(sn, 0.0, 0.0);
DefaultNaNHelper(0.0, sm, 0.0);
DefaultNaNHelper(0.0, 0.0, sa);
DefaultNaNHelper(sn, sm, 0.0);
DefaultNaNHelper(0.0, sm, sa);
DefaultNaNHelper(sn, 0.0, sa);
DefaultNaNHelper(sn, sm, sa);
// - Quiet NaNs
DefaultNaNHelper(qn, 0.0, 0.0);
DefaultNaNHelper(0.0, qm, 0.0);
DefaultNaNHelper(0.0, 0.0, qa);
DefaultNaNHelper(qn, qm, 0.0);
DefaultNaNHelper(0.0, qm, qa);
DefaultNaNHelper(qn, 0.0, qa);
DefaultNaNHelper(qn, qm, qa);
// - Mixed NaNs
DefaultNaNHelper(qn, sm, sa);
DefaultNaNHelper(sn, qm, sa);
DefaultNaNHelper(sn, sm, qa);
DefaultNaNHelper(qn, qm, sa);
DefaultNaNHelper(sn, qm, qa);
DefaultNaNHelper(qn, sm, qa);
DefaultNaNHelper(qn, qm, qa);
}
TEST(ldar_stlr) {
// The middle value is read, modified, and written. The padding exists only to
// check for over-write.
uint8_t b[] = {0, 0x12, 0};
uint16_t h[] = {0, 0x1234, 0};
uint32_t w[] = {0, 0x12345678, 0};
uint64_t x[] = {0, 0x123456789abcdef0, 0};
SETUP();
START();
__ Mov(x10, reinterpret_cast<uintptr_t>(&b[1]));
__ Ldarb(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stlrb(w0, MemOperand(x10));
__ Mov(x10, reinterpret_cast<uintptr_t>(&h[1]));
__ Ldarh(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stlrh(w0, MemOperand(x10));
__ Mov(x10, reinterpret_cast<uintptr_t>(&w[1]));
__ Ldar(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stlr(w0, MemOperand(x10));
__ Mov(x10, reinterpret_cast<uintptr_t>(&x[1]));
__ Ldar(x0, MemOperand(x10));
__ Add(x0, x0, 1);
__ Stlr(x0, MemOperand(x10));
END();
RUN();
ASSERT_EQUAL_32(0x13, b[1]);
ASSERT_EQUAL_32(0x1235, h[1]);
ASSERT_EQUAL_32(0x12345679, w[1]);
ASSERT_EQUAL_64(0x123456789abcdef1, x[1]);
// Check for over-write.
ASSERT_EQUAL_32(0, b[0]);
ASSERT_EQUAL_32(0, b[2]);
ASSERT_EQUAL_32(0, h[0]);
ASSERT_EQUAL_32(0, h[2]);
ASSERT_EQUAL_32(0, w[0]);
ASSERT_EQUAL_32(0, w[2]);
ASSERT_EQUAL_64(0, x[0]);
ASSERT_EQUAL_64(0, x[2]);
TEARDOWN();
}
TEST(ldxr_stxr) {
// The middle value is read, modified, and written. The padding exists only to
// check for over-write.
uint8_t b[] = {0, 0x12, 0};
uint16_t h[] = {0, 0x1234, 0};
uint32_t w[] = {0, 0x12345678, 0};
uint64_t x[] = {0, 0x123456789abcdef0, 0};
// As above, but get suitably-aligned values for ldxp and stxp.
uint32_t wp_data[] = {0, 0, 0, 0, 0};
uint32_t * wp = AlignUp(wp_data + 1, kWRegSizeInBytes * 2) - 1;
wp[1] = 0x12345678; // wp[1] is 64-bit-aligned.
wp[2] = 0x87654321;
uint64_t xp_data[] = {0, 0, 0, 0, 0};
uint64_t * xp = AlignUp(xp_data + 1, kXRegSizeInBytes * 2) - 1;
xp[1] = 0x123456789abcdef0; // xp[1] is 128-bit-aligned.
xp[2] = 0x0fedcba987654321;
SETUP();
START();
__ Mov(x10, reinterpret_cast<uintptr_t>(&b[1]));
Label try_b;
__ Bind(&try_b);
__ Ldxrb(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stxrb(w5, w0, MemOperand(x10));
__ Cbnz(w5, &try_b);
__ Mov(x10, reinterpret_cast<uintptr_t>(&h[1]));
Label try_h;
__ Bind(&try_h);
__ Ldxrh(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stxrh(w5, w0, MemOperand(x10));
__ Cbnz(w5, &try_h);
__ Mov(x10, reinterpret_cast<uintptr_t>(&w[1]));
Label try_w;
__ Bind(&try_w);
__ Ldxr(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stxr(w5, w0, MemOperand(x10));
__ Cbnz(w5, &try_w);
__ Mov(x10, reinterpret_cast<uintptr_t>(&x[1]));
Label try_x;
__ Bind(&try_x);
__ Ldxr(x0, MemOperand(x10));
__ Add(x0, x0, 1);
__ Stxr(w5, x0, MemOperand(x10));
__ Cbnz(w5, &try_x);
__ Mov(x10, reinterpret_cast<uintptr_t>(&wp[1]));
Label try_wp;
__ Bind(&try_wp);
__ Ldxp(w0, w1, MemOperand(x10));
__ Add(w0, w0, 1);
__ Add(w1, w1, 1);
__ Stxp(w5, w0, w1, MemOperand(x10));
__ Cbnz(w5, &try_wp);
__ Mov(x10, reinterpret_cast<uintptr_t>(&xp[1]));
Label try_xp;
__ Bind(&try_xp);
__ Ldxp(x0, x1, MemOperand(x10));
__ Add(x0, x0, 1);
__ Add(x1, x1, 1);
__ Stxp(w5, x0, x1, MemOperand(x10));
__ Cbnz(w5, &try_xp);
END();
RUN();
ASSERT_EQUAL_32(0x13, b[1]);
ASSERT_EQUAL_32(0x1235, h[1]);
ASSERT_EQUAL_32(0x12345679, w[1]);
ASSERT_EQUAL_64(0x123456789abcdef1, x[1]);
ASSERT_EQUAL_32(0x12345679, wp[1]);
ASSERT_EQUAL_32(0x87654322, wp[2]);
ASSERT_EQUAL_64(0x123456789abcdef1, xp[1]);
ASSERT_EQUAL_64(0x0fedcba987654322, xp[2]);
// Check for over-write.
ASSERT_EQUAL_32(0, b[0]);
ASSERT_EQUAL_32(0, b[2]);
ASSERT_EQUAL_32(0, h[0]);
ASSERT_EQUAL_32(0, h[2]);
ASSERT_EQUAL_32(0, w[0]);
ASSERT_EQUAL_32(0, w[2]);
ASSERT_EQUAL_64(0, x[0]);
ASSERT_EQUAL_64(0, x[2]);
ASSERT_EQUAL_32(0, wp[0]);
ASSERT_EQUAL_32(0, wp[3]);
ASSERT_EQUAL_64(0, xp[0]);
ASSERT_EQUAL_64(0, xp[3]);
TEARDOWN();
}
TEST(ldaxr_stlxr) {
// The middle value is read, modified, and written. The padding exists only to
// check for over-write.
uint8_t b[] = {0, 0x12, 0};
uint16_t h[] = {0, 0x1234, 0};
uint32_t w[] = {0, 0x12345678, 0};
uint64_t x[] = {0, 0x123456789abcdef0, 0};
// As above, but get suitably-aligned values for ldxp and stxp.
uint32_t wp_data[] = {0, 0, 0, 0, 0};
uint32_t * wp = AlignUp(wp_data + 1, kWRegSizeInBytes * 2) - 1;
wp[1] = 0x12345678; // wp[1] is 64-bit-aligned.
wp[2] = 0x87654321;
uint64_t xp_data[] = {0, 0, 0, 0, 0};
uint64_t * xp = AlignUp(xp_data + 1, kXRegSizeInBytes * 2) - 1;
xp[1] = 0x123456789abcdef0; // xp[1] is 128-bit-aligned.
xp[2] = 0x0fedcba987654321;
SETUP();
START();
__ Mov(x10, reinterpret_cast<uintptr_t>(&b[1]));
Label try_b;
__ Bind(&try_b);
__ Ldaxrb(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stlxrb(w5, w0, MemOperand(x10));
__ Cbnz(w5, &try_b);
__ Mov(x10, reinterpret_cast<uintptr_t>(&h[1]));
Label try_h;
__ Bind(&try_h);
__ Ldaxrh(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stlxrh(w5, w0, MemOperand(x10));
__ Cbnz(w5, &try_h);
__ Mov(x10, reinterpret_cast<uintptr_t>(&w[1]));
Label try_w;
__ Bind(&try_w);
__ Ldaxr(w0, MemOperand(x10));
__ Add(w0, w0, 1);
__ Stlxr(w5, w0, MemOperand(x10));
__ Cbnz(w5, &try_w);
__ Mov(x10, reinterpret_cast<uintptr_t>(&x[1]));
Label try_x;
__ Bind(&try_x);
__ Ldaxr(x0, MemOperand(x10));
__ Add(x0, x0, 1);
__ Stlxr(w5, x0, MemOperand(x10));
__ Cbnz(w5, &try_x);
__ Mov(x10, reinterpret_cast<uintptr_t>(&wp[1]));
Label try_wp;
__ Bind(&try_wp);
__ Ldaxp(w0, w1, MemOperand(x10));
__ Add(w0, w0, 1);
__ Add(w1, w1, 1);
__ Stlxp(w5, w0, w1, MemOperand(x10));
__ Cbnz(w5, &try_wp);
__ Mov(x10, reinterpret_cast<uintptr_t>(&xp[1]));
Label try_xp;
__ Bind(&try_xp);
__ Ldaxp(x0, x1, MemOperand(x10));
__ Add(x0, x0, 1);
__ Add(x1, x1, 1);
__ Stlxp(w5, x0, x1, MemOperand(x10));
__ Cbnz(w5, &try_xp);
END();
RUN();
ASSERT_EQUAL_32(0x13, b[1]);
ASSERT_EQUAL_32(0x1235, h[1]);
ASSERT_EQUAL_32(0x12345679, w[1]);
ASSERT_EQUAL_64(0x123456789abcdef1, x[1]);
ASSERT_EQUAL_32(0x12345679, wp[1]);
ASSERT_EQUAL_32(0x87654322, wp[2]);
ASSERT_EQUAL_64(0x123456789abcdef1, xp[1]);
ASSERT_EQUAL_64(0x0fedcba987654322, xp[2]);
// Check for over-write.
ASSERT_EQUAL_32(0, b[0]);
ASSERT_EQUAL_32(0, b[2]);
ASSERT_EQUAL_32(0, h[0]);
ASSERT_EQUAL_32(0, h[2]);
ASSERT_EQUAL_32(0, w[0]);
ASSERT_EQUAL_32(0, w[2]);
ASSERT_EQUAL_64(0, x[0]);
ASSERT_EQUAL_64(0, x[2]);
ASSERT_EQUAL_32(0, wp[0]);
ASSERT_EQUAL_32(0, wp[3]);
ASSERT_EQUAL_64(0, xp[0]);
ASSERT_EQUAL_64(0, xp[3]);
TEARDOWN();
}
TEST(clrex) {
// This data should never be written.
uint64_t data[] = {0, 0, 0};
uint64_t * data_aligned = AlignUp(data, kXRegSizeInBytes * 2);
SETUP();
START();
__ Mov(x10, reinterpret_cast<uintptr_t>(data_aligned));
__ Mov(w6, 0);
__ Ldxrb(w0, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Stxrb(w5, w0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldxrh(w0, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Stxrh(w5, w0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldxr(w0, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Stxr(w5, w0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldxr(x0, MemOperand(x10));
__ Clrex();
__ Add(x0, x0, 1);
__ Stxr(w5, x0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldxp(w0, w1, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Add(w1, w1, 1);
__ Stxp(w5, w0, w1, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldxp(x0, x1, MemOperand(x10));
__ Clrex();
__ Add(x0, x0, 1);
__ Add(x1, x1, 1);
__ Stxp(w5, x0, x1, MemOperand(x10));
__ Add(w6, w6, w5);
// Acquire-release variants.
__ Ldaxrb(w0, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Stlxrb(w5, w0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldaxrh(w0, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Stlxrh(w5, w0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldaxr(w0, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Stlxr(w5, w0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldaxr(x0, MemOperand(x10));
__ Clrex();
__ Add(x0, x0, 1);
__ Stlxr(w5, x0, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldaxp(w0, w1, MemOperand(x10));
__ Clrex();
__ Add(w0, w0, 1);
__ Add(w1, w1, 1);
__ Stlxp(w5, w0, w1, MemOperand(x10));
__ Add(w6, w6, w5);
__ Ldaxp(x0, x1, MemOperand(x10));
__ Clrex();
__ Add(x0, x0, 1);
__ Add(x1, x1, 1);
__ Stlxp(w5, x0, x1, MemOperand(x10));
__ Add(w6, w6, w5);
END();
RUN();
// None of the 12 store-exclusives should have succeeded.
ASSERT_EQUAL_32(12, w6);
ASSERT_EQUAL_64(0, data[0]);
ASSERT_EQUAL_64(0, data[1]);
ASSERT_EQUAL_64(0, data[2]);
TEARDOWN();
}
#ifdef VIXL_INCLUDE_SIMULATOR
// Check that the simulator occasionally makes store-exclusive fail.
TEST(ldxr_stxr_fail) {
uint64_t data[] = {0, 0, 0};
uint64_t * data_aligned = AlignUp(data, kXRegSizeInBytes * 2);
// Impose a hard limit on the number of attempts, so the test cannot hang.
static const uint64_t kWatchdog = 10000;
Label done;
SETUP();
START();
__ Mov(x10, reinterpret_cast<uintptr_t>(data_aligned));
__ Mov(x11, kWatchdog);
// This loop is the opposite of what we normally do with ldxr and stxr; we
// keep trying until we fail (or the watchdog counter runs out).
Label try_b;
__ Bind(&try_b);
__ Ldxrb(w0, MemOperand(x10));
__ Stxrb(w5, w0, MemOperand(x10));
// Check the watchdog counter.
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
// Check the exclusive-store result.
__ Cbz(w5, &try_b);
Label try_h;
__ Bind(&try_h);
__ Ldxrh(w0, MemOperand(x10));
__ Stxrh(w5, w0, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_h);
Label try_w;
__ Bind(&try_w);
__ Ldxr(w0, MemOperand(x10));
__ Stxr(w5, w0, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_w);
Label try_x;
__ Bind(&try_x);
__ Ldxr(x0, MemOperand(x10));
__ Stxr(w5, x0, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_x);
Label try_wp;
__ Bind(&try_wp);
__ Ldxp(w0, w1, MemOperand(x10));
__ Stxp(w5, w0, w1, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_wp);
Label try_xp;
__ Bind(&try_xp);
__ Ldxp(x0, x1, MemOperand(x10));
__ Stxp(w5, x0, x1, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_xp);
__ Bind(&done);
// Trigger an error if x11 (watchdog) is zero.
__ Cmp(x11, 0);
__ Cset(x12, eq);
END();
RUN();
// Check that the watchdog counter didn't run out.
ASSERT_EQUAL_64(0, x12);
TEARDOWN();
}
#endif
#ifdef VIXL_INCLUDE_SIMULATOR
// Check that the simulator occasionally makes store-exclusive fail.
TEST(ldaxr_stlxr_fail) {
uint64_t data[] = {0, 0, 0};
uint64_t * data_aligned = AlignUp(data, kXRegSizeInBytes * 2);
// Impose a hard limit on the number of attempts, so the test cannot hang.
static const uint64_t kWatchdog = 10000;
Label done;
SETUP();
START();
__ Mov(x10, reinterpret_cast<uintptr_t>(data_aligned));
__ Mov(x11, kWatchdog);
// This loop is the opposite of what we normally do with ldxr and stxr; we
// keep trying until we fail (or the watchdog counter runs out).
Label try_b;
__ Bind(&try_b);
__ Ldxrb(w0, MemOperand(x10));
__ Stxrb(w5, w0, MemOperand(x10));
// Check the watchdog counter.
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
// Check the exclusive-store result.
__ Cbz(w5, &try_b);
Label try_h;
__ Bind(&try_h);
__ Ldaxrh(w0, MemOperand(x10));
__ Stlxrh(w5, w0, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_h);
Label try_w;
__ Bind(&try_w);
__ Ldaxr(w0, MemOperand(x10));
__ Stlxr(w5, w0, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_w);
Label try_x;
__ Bind(&try_x);
__ Ldaxr(x0, MemOperand(x10));
__ Stlxr(w5, x0, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_x);
Label try_wp;
__ Bind(&try_wp);
__ Ldaxp(w0, w1, MemOperand(x10));
__ Stlxp(w5, w0, w1, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_wp);
Label try_xp;
__ Bind(&try_xp);
__ Ldaxp(x0, x1, MemOperand(x10));
__ Stlxp(w5, x0, x1, MemOperand(x10));
__ Sub(x11, x11, 1);
__ Cbz(x11, &done);
__ Cbz(w5, &try_xp);
__ Bind(&done);
// Trigger an error if x11 (watchdog) is zero.
__ Cmp(x11, 0);
__ Cset(x12, eq);
END();
RUN();
// Check that the watchdog counter didn't run out.
ASSERT_EQUAL_64(0, x12);
TEARDOWN();
}
#endif
TEST(load_store_tagged_immediate_offset) {
uint64_t tags[] = { 0x00, 0x1, 0x55, 0xff };
int tag_count = sizeof(tags) / sizeof(tags[0]);
const int kMaxDataLength = 160;
for (int i = 0; i < tag_count; i++) {
unsigned char src[kMaxDataLength];
uint64_t src_raw = reinterpret_cast<uint64_t>(src);
uint64_t src_tag = tags[i];
uint64_t src_tagged = CPU::SetPointerTag(src_raw, src_tag);
for (int k = 0; k < kMaxDataLength; k++) {
src[k] = k + 1;
}
for (int j = 0; j < tag_count; j++) {
unsigned char dst[kMaxDataLength];
uint64_t dst_raw = reinterpret_cast<uint64_t>(dst);
uint64_t dst_tag = tags[j];
uint64_t dst_tagged = CPU::SetPointerTag(dst_raw, dst_tag);
memset(dst, 0, kMaxDataLength);
SETUP();
ALLOW_ASM();
START();
__ Mov(x0, src_tagged);
__ Mov(x1, dst_tagged);
int offset = 0;
// Scaled-immediate offsets.
__ ldp(q0, q1, MemOperand(x0, offset));
__ stp(q0, q1, MemOperand(x1, offset));
offset += 2 * kQRegSizeInBytes;
__ ldp(x2, x3, MemOperand(x0, offset));
__ stp(x2, x3, MemOperand(x1, offset));
offset += 2 * kXRegSizeInBytes;
__ ldpsw(x2, x3, MemOperand(x0, offset));
__ stp(w2, w3, MemOperand(x1, offset));
offset += 2 * kWRegSizeInBytes;
__ ldp(d0, d1, MemOperand(x0, offset));
__ stp(d0, d1, MemOperand(x1, offset));
offset += 2 * kDRegSizeInBytes;
__ ldp(w2, w3, MemOperand(x0, offset));
__ stp(w2, w3, MemOperand(x1, offset));
offset += 2 * kWRegSizeInBytes;
__ ldp(s0, s1, MemOperand(x0, offset));
__ stp(s0, s1, MemOperand(x1, offset));
offset += 2 * kSRegSizeInBytes;
__ ldr(x2, MemOperand(x0, offset), RequireScaledOffset);
__ str(x2, MemOperand(x1, offset), RequireScaledOffset);
offset += kXRegSizeInBytes;
__ ldr(d0, MemOperand(x0, offset), RequireScaledOffset);
__ str(d0, MemOperand(x1, offset), RequireScaledOffset);
offset += kDRegSizeInBytes;
__ ldr(w2, MemOperand(x0, offset), RequireScaledOffset);
__ str(w2, MemOperand(x1, offset), RequireScaledOffset);
offset += kWRegSizeInBytes;
__ ldr(s0, MemOperand(x0, offset), RequireScaledOffset);
__ str(s0, MemOperand(x1, offset), RequireScaledOffset);
offset += kSRegSizeInBytes;
__ ldrh(w2, MemOperand(x0, offset), RequireScaledOffset);
__ strh(w2, MemOperand(x1, offset), RequireScaledOffset);
offset += 2;
__ ldrsh(w2, MemOperand(x0, offset), RequireScaledOffset);
__ strh(w2, MemOperand(x1, offset), RequireScaledOffset);
offset += 2;
__ ldrb(w2, MemOperand(x0, offset), RequireScaledOffset);
__ strb(w2, MemOperand(x1, offset), RequireScaledOffset);
offset += 1;
__ ldrsb(w2, MemOperand(x0, offset), RequireScaledOffset);
__ strb(w2, MemOperand(x1, offset), RequireScaledOffset);
offset += 1;
// Unscaled-immediate offsets.
__ ldur(x2, MemOperand(x0, offset), RequireUnscaledOffset);
__ stur(x2, MemOperand(x1, offset), RequireUnscaledOffset);
offset += kXRegSizeInBytes;
__ ldur(d0, MemOperand(x0, offset), RequireUnscaledOffset);
__ stur(d0, MemOperand(x1, offset), RequireUnscaledOffset);
offset += kDRegSizeInBytes;
__ ldur(w2, MemOperand(x0, offset), RequireUnscaledOffset);
__ stur(w2, MemOperand(x1, offset), RequireUnscaledOffset);
offset += kWRegSizeInBytes;
__ ldur(s0, MemOperand(x0, offset), RequireUnscaledOffset);
__ stur(s0, MemOperand(x1, offset), RequireUnscaledOffset);
offset += kSRegSizeInBytes;
__ ldurh(w2, MemOperand(x0, offset), RequireUnscaledOffset);
__ sturh(w2, MemOperand(x1, offset), RequireUnscaledOffset);
offset += 2;
__ ldursh(w2, MemOperand(x0, offset), RequireUnscaledOffset);
__ sturh(w2, MemOperand(x1, offset), RequireUnscaledOffset);
offset += 2;
__ ldurb(w2, MemOperand(x0, offset), RequireUnscaledOffset);
__ sturb(w2, MemOperand(x1, offset), RequireUnscaledOffset);
offset += 1;
__ ldursb(w2, MemOperand(x0, offset), RequireUnscaledOffset);
__ sturb(w2, MemOperand(x1, offset), RequireUnscaledOffset);
offset += 1;
// Extract the tag (so we can test that it was preserved correctly).
__ Ubfx(x0, x0, kAddressTagOffset, kAddressTagWidth);
__ Ubfx(x1, x1, kAddressTagOffset, kAddressTagWidth);
VIXL_ASSERT(kMaxDataLength >= offset);
END();
RUN();
ASSERT_EQUAL_64(src_tag, x0);
ASSERT_EQUAL_64(dst_tag, x1);
for (int k = 0; k < offset; k++) {
VIXL_CHECK(src[k] == dst[k]);
}
TEARDOWN();
}
}
}
TEST(load_store_tagged_immediate_preindex) {
uint64_t tags[] = { 0x00, 0x1, 0x55, 0xff };
int tag_count = sizeof(tags) / sizeof(tags[0]);
const int kMaxDataLength = 128;
for (int i = 0; i < tag_count; i++) {
unsigned char src[kMaxDataLength];
uint64_t src_raw = reinterpret_cast<uint64_t>(src);
uint64_t src_tag = tags[i];
uint64_t src_tagged = CPU::SetPointerTag(src_raw, src_tag);
for (int k = 0; k < kMaxDataLength; k++) {
src[k] = k + 1;
}
for (int j = 0; j < tag_count; j++) {
unsigned char dst[kMaxDataLength];
uint64_t dst_raw = reinterpret_cast<uint64_t>(dst);
uint64_t dst_tag = tags[j];
uint64_t dst_tagged = CPU::SetPointerTag(dst_raw, dst_tag);
for (int k = 0; k < kMaxDataLength; k++) {
dst[k] = 0;
}
SETUP();
ALLOW_ASM();
START();
// Each MemOperand must apply a pre-index equal to the size of the
// previous access.
// Start with a non-zero preindex.
int preindex = 62 * kXRegSizeInBytes;
int data_length = 0;
__ Mov(x0, src_tagged - preindex);
__ Mov(x1, dst_tagged - preindex);
__ ldp(q0, q1, MemOperand(x0, preindex, PreIndex));
__ stp(q0, q1, MemOperand(x1, preindex, PreIndex));
preindex = 2 * kQRegSizeInBytes;
data_length = preindex;
__ ldp(x2, x3, MemOperand(x0, preindex, PreIndex));
__ stp(x2, x3, MemOperand(x1, preindex, PreIndex));
preindex = 2 * kXRegSizeInBytes;
data_length += preindex;
__ ldpsw(x2, x3, MemOperand(x0, preindex, PreIndex));
__ stp(w2, w3, MemOperand(x1, preindex, PreIndex));
preindex = 2 * kWRegSizeInBytes;
data_length += preindex;
__ ldp(d0, d1, MemOperand(x0, preindex, PreIndex));
__ stp(d0, d1, MemOperand(x1, preindex, PreIndex));
preindex = 2 * kDRegSizeInBytes;
data_length += preindex;
__ ldp(w2, w3, MemOperand(x0, preindex, PreIndex));
__ stp(w2, w3, MemOperand(x1, preindex, PreIndex));
preindex = 2 * kWRegSizeInBytes;
data_length += preindex;
__ ldp(s0, s1, MemOperand(x0, preindex, PreIndex));
__ stp(s0, s1, MemOperand(x1, preindex, PreIndex));
preindex = 2 * kSRegSizeInBytes;
data_length += preindex;
__ ldr(x2, MemOperand(x0, preindex, PreIndex));
__ str(x2, MemOperand(x1, preindex, PreIndex));
preindex = kXRegSizeInBytes;
data_length += preindex;
__ ldr(d0, MemOperand(x0, preindex, PreIndex));
__ str(d0, MemOperand(x1, preindex, PreIndex));
preindex = kDRegSizeInBytes;
data_length += preindex;
__ ldr(w2, MemOperand(x0, preindex, PreIndex));
__ str(w2, MemOperand(x1, preindex, PreIndex));
preindex = kWRegSizeInBytes;
data_length += preindex;
__ ldr(s0, MemOperand(x0, preindex, PreIndex));
__ str(s0, MemOperand(x1, preindex, PreIndex));
preindex = kSRegSizeInBytes;
data_length += preindex;
__ ldrh(w2, MemOperand(x0, preindex, PreIndex));
__ strh(w2, MemOperand(x1, preindex, PreIndex));
preindex = 2;
data_length += preindex;
__ ldrsh(w2, MemOperand(x0, preindex, PreIndex));
__ strh(w2, MemOperand(x1, preindex, PreIndex));
preindex = 2;
data_length += preindex;
__ ldrb(w2, MemOperand(x0, preindex, PreIndex));
__ strb(w2, MemOperand(x1, preindex, PreIndex));
preindex = 1;
data_length += preindex;
__ ldrsb(w2, MemOperand(x0, preindex, PreIndex));
__ strb(w2, MemOperand(x1, preindex, PreIndex));
preindex = 1;
data_length += preindex;
VIXL_ASSERT(kMaxDataLength >= data_length);
END();
RUN();
// Check that the preindex was correctly applied in each operation, and
// that the tag was preserved.
ASSERT_EQUAL_64(src_tagged + data_length - preindex, x0);
ASSERT_EQUAL_64(dst_tagged + data_length - preindex, x1);
for (int k = 0; k < data_length; k++) {
VIXL_CHECK(src[k] == dst[k]);
}
TEARDOWN();
}
}
}
TEST(load_store_tagged_immediate_postindex) {
uint64_t tags[] = { 0x00, 0x1, 0x55, 0xff };
int tag_count = sizeof(tags) / sizeof(tags[0]);
const int kMaxDataLength = 128;
for (int i = 0; i < tag_count; i++) {
unsigned char src[kMaxDataLength];
uint64_t src_raw = reinterpret_cast<uint64_t>(src);
uint64_t src_tag = tags[i];
uint64_t src_tagged = CPU::SetPointerTag(src_raw, src_tag);
for (int k = 0; k < kMaxDataLength; k++) {
src[k] = k + 1;
}
for (int j = 0; j < tag_count; j++) {
unsigned char dst[kMaxDataLength];
uint64_t dst_raw = reinterpret_cast<uint64_t>(dst);
uint64_t dst_tag = tags[j];
uint64_t dst_tagged = CPU::SetPointerTag(dst_raw, dst_tag);
for (int k = 0; k < kMaxDataLength; k++) {
dst[k] = 0;
}
SETUP();
ALLOW_ASM();
START();
int postindex = 2 * kXRegSizeInBytes;
int data_length = 0;
__ Mov(x0, src_tagged);
__ Mov(x1, dst_tagged);
__ ldp(x2, x3, MemOperand(x0, postindex, PostIndex));
__ stp(x2, x3, MemOperand(x1, postindex, PostIndex));
data_length = postindex;
postindex = 2 * kQRegSizeInBytes;
__ ldp(q0, q1, MemOperand(x0, postindex, PostIndex));
__ stp(q0, q1, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 2 * kWRegSizeInBytes;
__ ldpsw(x2, x3, MemOperand(x0, postindex, PostIndex));
__ stp(w2, w3, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 2 * kDRegSizeInBytes;
__ ldp(d0, d1, MemOperand(x0, postindex, PostIndex));
__ stp(d0, d1, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 2 * kWRegSizeInBytes;
__ ldp(w2, w3, MemOperand(x0, postindex, PostIndex));
__ stp(w2, w3, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 2 * kSRegSizeInBytes;
__ ldp(s0, s1, MemOperand(x0, postindex, PostIndex));
__ stp(s0, s1, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = kXRegSizeInBytes;
__ ldr(x2, MemOperand(x0, postindex, PostIndex));
__ str(x2, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = kDRegSizeInBytes;
__ ldr(d0, MemOperand(x0, postindex, PostIndex));
__ str(d0, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = kWRegSizeInBytes;
__ ldr(w2, MemOperand(x0, postindex, PostIndex));
__ str(w2, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = kSRegSizeInBytes;
__ ldr(s0, MemOperand(x0, postindex, PostIndex));
__ str(s0, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 2;
__ ldrh(w2, MemOperand(x0, postindex, PostIndex));
__ strh(w2, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 2;
__ ldrsh(w2, MemOperand(x0, postindex, PostIndex));
__ strh(w2, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 1;
__ ldrb(w2, MemOperand(x0, postindex, PostIndex));
__ strb(w2, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
postindex = 1;
__ ldrsb(w2, MemOperand(x0, postindex, PostIndex));
__ strb(w2, MemOperand(x1, postindex, PostIndex));
data_length += postindex;
VIXL_ASSERT(kMaxDataLength >= data_length);
END();
RUN();
// Check that the postindex was correctly applied in each operation, and
// that the tag was preserved.
ASSERT_EQUAL_64(src_tagged + data_length, x0);
ASSERT_EQUAL_64(dst_tagged + data_length, x1);
for (int k = 0; k < data_length; k++) {
VIXL_CHECK(src[k] == dst[k]);
}
TEARDOWN();
}
}
}
TEST(load_store_tagged_register_offset) {
uint64_t tags[] = { 0x00, 0x1, 0x55, 0xff };
int tag_count = sizeof(tags) / sizeof(tags[0]);
const int kMaxDataLength = 128;
for (int i = 0; i < tag_count; i++) {
unsigned char src[kMaxDataLength];
uint64_t src_raw = reinterpret_cast<uint64_t>(src);
uint64_t src_tag = tags[i];
uint64_t src_tagged = CPU::SetPointerTag(src_raw, src_tag);
for (int k = 0; k < kMaxDataLength; k++) {
src[k] = k + 1;
}
for (int j = 0; j < tag_count; j++) {
unsigned char dst[kMaxDataLength];
uint64_t dst_raw = reinterpret_cast<uint64_t>(dst);
uint64_t dst_tag = tags[j];
uint64_t dst_tagged = CPU::SetPointerTag(dst_raw, dst_tag);
// Also tag the offset register; the operation should still succeed.
for (int o = 0; o < tag_count; o++) {
uint64_t offset_base = CPU::SetPointerTag(UINT64_C(0), tags[o]);
int data_length = 0;
for (int k = 0; k < kMaxDataLength; k++) {
dst[k] = 0;
}
SETUP();
ALLOW_ASM();
START();
__ Mov(x0, src_tagged);
__ Mov(x1, dst_tagged);
__ Mov(x10, offset_base + data_length);
__ ldr(x2, MemOperand(x0, x10));
__ str(x2, MemOperand(x1, x10));
data_length += kXRegSizeInBytes;
__ Mov(x10, offset_base + data_length);
__ ldr(d0, MemOperand(x0, x10));
__ str(d0, MemOperand(x1, x10));
data_length += kDRegSizeInBytes;
__ Mov(x10, offset_base + data_length);
__ ldr(w2, MemOperand(x0, x10));
__ str(w2, MemOperand(x1, x10));
data_length += kWRegSizeInBytes;
__ Mov(x10, offset_base + data_length);
__ ldr(s0, MemOperand(x0, x10));
__ str(s0, MemOperand(x1, x10));
data_length += kSRegSizeInBytes;
__ Mov(x10, offset_base + data_length);
__ ldrh(w2, MemOperand(x0, x10));
__ strh(w2, MemOperand(x1, x10));
data_length += 2;
__ Mov(x10, offset_base + data_length);
__ ldrsh(w2, MemOperand(x0, x10));
__ strh(w2, MemOperand(x1, x10));
data_length += 2;
__ Mov(x10, offset_base + data_length);
__ ldrb(w2, MemOperand(x0, x10));
__ strb(w2, MemOperand(x1, x10));
data_length += 1;
__ Mov(x10, offset_base + data_length);
__ ldrsb(w2, MemOperand(x0, x10));
__ strb(w2, MemOperand(x1, x10));
data_length += 1;
VIXL_ASSERT(kMaxDataLength >= data_length);
END();
RUN();
// Check that the postindex was correctly applied in each operation, and
// that the tag was preserved.
ASSERT_EQUAL_64(src_tagged, x0);
ASSERT_EQUAL_64(dst_tagged, x1);
ASSERT_EQUAL_64(offset_base + data_length - 1, x10);
for (int k = 0; k < data_length; k++) {
VIXL_CHECK(src[k] == dst[k]);
}
TEARDOWN();
}
}
}
}
TEST(load_store_tagged_register_postindex) {
uint64_t src[] = { 0x0706050403020100, 0x0f0e0d0c0b0a0908 };
uint64_t tags[] = { 0x00, 0x1, 0x55, 0xff };
int tag_count = sizeof(tags) / sizeof(tags[0]);
for (int j = 0; j < tag_count; j++) {
for (int i = 0; i < tag_count; i++) {
SETUP();
uint64_t src_base = reinterpret_cast<uint64_t>(src);
uint64_t src_tagged = CPU::SetPointerTag(src_base, tags[i]);
uint64_t offset_tagged = CPU::SetPointerTag(UINT64_C(0), tags[j]);
START();
__ Mov(x10, src_tagged);
__ Mov(x11, offset_tagged);
__ Ld1(v0.V16B(), MemOperand(x10, x11, PostIndex));
// TODO: add other instructions (ld2-4, st1-4) as they become available.
END();
RUN();
ASSERT_EQUAL_128(0x0f0e0d0c0b0a0908, 0x0706050403020100, q0);
ASSERT_EQUAL_64(src_tagged + offset_tagged, x10);
TEARDOWN();
}
}
}
TEST(branch_tagged) {
SETUP();
START();
Label loop, loop_entry, done;
__ Adr(x0, &loop);
__ Mov(x1, 0);
__ B(&loop_entry);
__ Bind(&loop);
__ Add(x1, x1, 1); // Count successful jumps.
// Advance to the next tag, then bail out if we've come back around to tag 0.
__ Add(x0, x0, UINT64_C(1) << kAddressTagOffset);
__ Tst(x0, kAddressTagMask);
__ B(eq, &done);
__ Bind(&loop_entry);
__ Br(x0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(1 << kAddressTagWidth, x1);
TEARDOWN();
}
TEST(branch_and_link_tagged) {
SETUP();
START();
Label loop, loop_entry, done;
__ Adr(x0, &loop);
__ Mov(x1, 0);
__ B(&loop_entry);
__ Bind(&loop);
// Bail out (before counting a successful jump) if lr appears to be tagged.
__ Tst(lr, kAddressTagMask);
__ B(ne, &done);
__ Add(x1, x1, 1); // Count successful jumps.
// Advance to the next tag, then bail out if we've come back around to tag 0.
__ Add(x0, x0, UINT64_C(1) << kAddressTagOffset);
__ Tst(x0, kAddressTagMask);
__ B(eq, &done);
__ Bind(&loop_entry);
__ Blr(x0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(1 << kAddressTagWidth, x1);
TEARDOWN();
}
TEST(branch_tagged_and_adr_adrp) {
SETUP_CUSTOM(BUF_SIZE, PageOffsetDependentCode);
START();
Label loop, loop_entry, done;
__ Adr(x0, &loop);
__ Mov(x1, 0);
__ B(&loop_entry);
__ Bind(&loop);
// Bail out (before counting a successful jump) if `adr x10, ...` is tagged.
__ Adr(x10, &done);
__ Tst(x10, kAddressTagMask);
__ B(ne, &done);
// Bail out (before counting a successful jump) if `adrp x11, ...` is tagged.
__ Adrp(x11, &done);
__ Tst(x11, kAddressTagMask);
__ B(ne, &done);
__ Add(x1, x1, 1); // Count successful iterations.
// Advance to the next tag, then bail out if we've come back around to tag 0.
__ Add(x0, x0, UINT64_C(1) << kAddressTagOffset);
__ Tst(x0, kAddressTagMask);
__ B(eq, &done);
__ Bind(&loop_entry);
__ Br(x0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(1 << kAddressTagWidth, x1);
TEARDOWN_CUSTOM();
}
TEST(neon_3same_addp) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Addp(v16.V16B(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x00ff54ffff54aaff, 0xffffffffffffffff, q16);
TEARDOWN();
}
TEST(neon_3same_sqdmulh_sqrdmulh) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000040004008000);
__ Movi(v1.V2D(), 0x0000000000000000, 0x0000002000108000);
__ Movi(v2.V2D(), 0x0400000080000000, 0x0400000080000000);
__ Movi(v3.V2D(), 0x0000002080000000, 0x0000001080000000);
__ Sqdmulh(v16.V4H(), v0.V4H(), v1.V4H());
__ Sqdmulh(v17.V4S(), v2.V4S(), v3.V4S());
__ Sqdmulh(h18, h0, h1);
__ Sqdmulh(s19, s2, s3);
__ Sqrdmulh(v20.V4H(), v0.V4H(), v1.V4H());
__ Sqrdmulh(v21.V4S(), v2.V4S(), v3.V4S());
__ Sqrdmulh(h22, h0, h1);
__ Sqrdmulh(s23, s2, s3);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000100007fff, q16);
ASSERT_EQUAL_128(0x000000017fffffff, 0x000000007fffffff, q17);
ASSERT_EQUAL_128(0, 0x7fff, q18);
ASSERT_EQUAL_128(0, 0x7fffffff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000100017fff, q20);
ASSERT_EQUAL_128(0x000000017fffffff, 0x000000017fffffff, q21);
ASSERT_EQUAL_128(0, 0x7fff, q22);
ASSERT_EQUAL_128(0, 0x7fffffff, q23);
TEARDOWN();
}
TEST(neon_byelement_sqdmulh_sqrdmulh) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000040004008000);
__ Movi(v1.V2D(), 0x0000000000000000, 0x0000002000108000);
__ Movi(v2.V2D(), 0x0400000080000000, 0x0400000080000000);
__ Movi(v3.V2D(), 0x0000002080000000, 0x0000001080000000);
__ Sqdmulh(v16.V4H(), v0.V4H(), v1.H(), 1);
__ Sqdmulh(v17.V4S(), v2.V4S(), v3.S(), 1);
__ Sqdmulh(h18, h0, v1.H(), 0);
__ Sqdmulh(s19, s2, v3.S(), 0);
__ Sqrdmulh(v20.V4H(), v0.V4H(), v1.H(), 1);
__ Sqrdmulh(v21.V4S(), v2.V4S(), v3.S(), 1);
__ Sqrdmulh(h22, h0, v1.H(), 0);
__ Sqrdmulh(s23, s2, v3.S(), 0);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x000000000000fff0, q16);
ASSERT_EQUAL_128(0x00000000fffffff0, 0x00000000fffffff0, q17);
ASSERT_EQUAL_128(0, 0x7fff, q18);
ASSERT_EQUAL_128(0, 0x7fffffff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000010001fff0, q20);
ASSERT_EQUAL_128(0x00000001fffffff0, 0x00000001fffffff0, q21);
ASSERT_EQUAL_128(0, 0x7fff, q22);
ASSERT_EQUAL_128(0, 0x7fffffff, q23);
TEARDOWN();
}
TEST(neon_2regmisc_saddlp) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Saddlp(v16.V8H(), v0.V16B());
__ Saddlp(v17.V4H(), v0.V8B());
__ Saddlp(v18.V4S(), v0.V8H());
__ Saddlp(v19.V2S(), v0.V4H());
__ Saddlp(v20.V2D(), v0.V4S());
__ Saddlp(v21.V1D(), v0.V2S());
END();
RUN();
ASSERT_EQUAL_128(0x0080ffffff010080, 0xff01ffff0080ff01, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0xff01ffff0080ff01, q17);
ASSERT_EQUAL_128(0x0000800000000081, 0xffff7f81ffff8200, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0xffff7f81ffff8200, q19);
ASSERT_EQUAL_128(0x0000000000818000, 0xffffffff82017f81, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffff82017f81, q21);
TEARDOWN();
}
TEST(neon_2regmisc_uaddlp) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Uaddlp(v16.V8H(), v0.V16B());
__ Uaddlp(v17.V4H(), v0.V8B());
__ Uaddlp(v18.V4S(), v0.V8H());
__ Uaddlp(v19.V2S(), v0.V4H());
__ Uaddlp(v20.V2D(), v0.V4S());
__ Uaddlp(v21.V1D(), v0.V2S());
END();
RUN();
ASSERT_EQUAL_128(0x008000ff01010080, 0x010100ff00800101, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0x010100ff00800101, q17);
ASSERT_EQUAL_128(0x0000800000010081, 0x00017f8100008200, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x00017f8100008200, q19);
ASSERT_EQUAL_128(0x0000000100818000, 0x0000000082017f81, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000082017f81, q21);
TEARDOWN();
}
TEST(neon_2regmisc_sadalp) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Mov(v16.V16B(), v1.V16B());
__ Mov(v17.V16B(), v1.V16B());
__ Sadalp(v16.V8H(), v0.V16B());
__ Sadalp(v17.V4H(), v0.V8B());
__ Mov(v18.V16B(), v2.V16B());
__ Mov(v19.V16B(), v2.V16B());
__ Sadalp(v18.V4S(), v1.V8H());
__ Sadalp(v19.V2S(), v1.V4H());
__ Mov(v20.V16B(), v3.V16B());
__ Mov(v21.V16B(), v4.V16B());
__ Sadalp(v20.V2D(), v2.V4S());
__ Sadalp(v21.V1D(), v2.V2S());
END();
RUN();
ASSERT_EQUAL_128(0x80808000ff000080, 0xff00ffff00817f00, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0xff00ffff00817f00, q17);
ASSERT_EQUAL_128(0x7fff0001fffffffe, 0xffffffff80007fff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffff80007fff, q19);
ASSERT_EQUAL_128(0x7fffffff80000000, 0x800000007ffffffe, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q21);
TEARDOWN();
}
TEST(neon_2regmisc_uadalp) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Mov(v16.V16B(), v1.V16B());
__ Mov(v17.V16B(), v1.V16B());
__ Uadalp(v16.V8H(), v0.V16B());
__ Uadalp(v17.V4H(), v0.V8B());
__ Mov(v18.V16B(), v2.V16B());
__ Mov(v19.V16B(), v2.V16B());
__ Uadalp(v18.V4S(), v1.V8H());
__ Uadalp(v19.V2S(), v1.V4H());
__ Mov(v20.V16B(), v3.V16B());
__ Mov(v21.V16B(), v4.V16B());
__ Uadalp(v20.V2D(), v2.V4S());
__ Uadalp(v21.V1D(), v2.V2S());
END();
RUN();
ASSERT_EQUAL_128(0x8080810001000080, 0x010000ff00818100, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0x010000ff00818100, q17);
ASSERT_EQUAL_128(0x800100010000fffe, 0x0000ffff80007fff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000ffff80007fff, q19);
ASSERT_EQUAL_128(0x8000000180000000, 0x800000007ffffffe, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q21);
TEARDOWN();
}
TEST(neon_3same_mul) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Movi(v16.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v17.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Mla(v16.V16B(), v0.V16B(), v1.V16B());
__ Mls(v17.V16B(), v0.V16B(), v1.V16B());
__ Mul(v18.V16B(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x0102757605b1b208, 0x5f0a61450db90f56, q16);
ASSERT_EQUAL_128(0x01029192055b5c08, 0xb30ab5d30d630faa, q17);
ASSERT_EQUAL_128(0x0000727200abab00, 0x5600563900ab0056, q18);
TEARDOWN();
}
TEST(neon_3same_absdiff) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Movi(v16.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v17.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Saba(v16.V16B(), v0.V16B(), v1.V16B());
__ Uaba(v17.V16B(), v0.V16B(), v1.V16B());
__ Sabd(v18.V16B(), v0.V16B(), v1.V16B());
__ Uabd(v19.V16B(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x0202aeaf065c5d5e, 0x5e5f600c62646455, q16);
ASSERT_EQUAL_128(0x0002585904b0b1b2, 0x5e5f600c62b86455, q17);
ASSERT_EQUAL_128(0x0100abab01565656, 0x5555550055565555, q18);
ASSERT_EQUAL_128(0xff005555ffaaaaaa, 0x5555550055aa5555, q19);
TEARDOWN();
}
TEST(neon_byelement_mul) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000155aaff55ff00, 0xaa55ff55555500ff);
__ Mul(v16.V4H(), v0.V4H(), v1.H(), 0);
__ Mul(v17.V8H(), v0.V8H(), v1.H(), 7);
__ Mul(v18.V2S(), v0.V2S(), v1.S(), 0);
__ Mul(v19.V4S(), v0.V4S(), v1.S(), 3);
__ Movi(v20.V2D(), 0x0000000000000000, 0x0001000200030004);
__ Movi(v21.V2D(), 0x0005000600070008, 0x0001000200030004);
__ Mla(v20.V4H(), v0.V4H(), v1.H(), 0);
__ Mla(v21.V8H(), v0.V8H(), v1.H(), 7);
__ Movi(v22.V2D(), 0x0000000000000000, 0x0000000200000004);
__ Movi(v23.V2D(), 0x0000000600000008, 0x0000000200000004);
__ Mla(v22.V2S(), v0.V2S(), v1.S(), 0);
__ Mla(v23.V4S(), v0.V4S(), v1.S(), 3);
__ Movi(v24.V2D(), 0x0000000000000000, 0x0100aaabfe015456);
__ Movi(v25.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Mls(v24.V4H(), v0.V4H(), v1.H(), 0);
__ Mls(v25.V8H(), v0.V8H(), v1.H(), 7);
__ Movi(v26.V2D(), 0x0000000000000000, 0xc8e2aaabe1c85456);
__ Movi(v27.V2D(), 0x39545572c6aa54e4, 0x39545572c6aa54e4);
__ Mls(v26.V2S(), v0.V2S(), v1.S(), 0);
__ Mls(v27.V4S(), v0.V4S(), v1.S(), 3);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0100aaabfe015456, q16);
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xc8e2aaabe1c85456, q18);
ASSERT_EQUAL_128(0x39545572c6aa54e4, 0x39545572c6aa54e4, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0101aaadfe04545a, q20);
ASSERT_EQUAL_128(0xff05aa5b010655b2, 0xff01aa57010255ae, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0xc8e2aaade1c8545a, q22);
ASSERT_EQUAL_128(0x39545578c6aa54ec, 0x39545574c6aa54e8, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q25);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q26);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q27);
TEARDOWN();
}
TEST(neon_byelement_mull) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaa55ff55555500ff, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000155aaff55ff00, 0xaa55ff55555500ff);
__ Smull(v16.V4S(), v0.V4H(), v1.H(), 7);
__ Smull2(v17.V4S(), v0.V8H(), v1.H(), 0);
__ Umull(v18.V4S(), v0.V4H(), v1.H(), 7);
__ Umull2(v19.V4S(), v0.V8H(), v1.H(), 0);
__ Movi(v20.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Movi(v21.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Movi(v22.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Movi(v23.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Smlal(v20.V4S(), v0.V4H(), v1.H(), 7);
__ Smlal2(v21.V4S(), v0.V8H(), v1.H(), 0);
__ Umlal(v22.V4S(), v0.V4H(), v1.H(), 7);
__ Umlal2(v23.V4S(), v0.V8H(), v1.H(), 0);
__ Movi(v24.V2D(), 0xffffff00ffffaa55, 0x000000ff000055aa);
__ Movi(v25.V2D(), 0xffaaaaabffff55ab, 0x0054ffab0000fe01);
__ Movi(v26.V2D(), 0x0000ff000000aa55, 0x000000ff000055aa);
__ Movi(v27.V2D(), 0x00a9aaab00fe55ab, 0x0054ffab0000fe01);
__ Smlsl(v24.V4S(), v0.V4H(), v1.H(), 7);
__ Smlsl2(v25.V4S(), v0.V8H(), v1.H(), 0);
__ Umlsl(v26.V4S(), v0.V4H(), v1.H(), 7);
__ Umlsl2(v27.V4S(), v0.V8H(), v1.H(), 0);
END();
RUN();
ASSERT_EQUAL_128(0xffffff00ffffaa55, 0x000000ff000055aa, q16);
ASSERT_EQUAL_128(0xffaaaaabffff55ab, 0x0054ffab0000fe01, q17);
ASSERT_EQUAL_128(0x0000ff000000aa55, 0x000000ff000055aa, q18);
ASSERT_EQUAL_128(0x00a9aaab00fe55ab, 0x0054ffab0000fe01, q19);
ASSERT_EQUAL_128(0xffffff01ffffaa57, 0x00000101000055ab, q20);
ASSERT_EQUAL_128(0xffaaaaacffff55ad, 0x0054ffad0000fe02, q21);
ASSERT_EQUAL_128(0x0000ff010000aa57, 0x00000101000055ab, q22);
ASSERT_EQUAL_128(0x00a9aaac00fe55ad, 0x0054ffad0000fe02, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q25);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q26);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q27);
TEARDOWN();
}
TEST(neon_byelement_sqdmull) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaa55ff55555500ff, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000155aaff55ff00, 0xaa55ff55555500ff);
__ Sqdmull(v16.V4S(), v0.V4H(), v1.H(), 7);
__ Sqdmull2(v17.V4S(), v0.V8H(), v1.H(), 0);
__ Sqdmull(s18, h0, v1.H(), 7);
__ Movi(v20.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Movi(v21.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Movi(v22.V2D(), 0x0000000100000002, 0x0000000200000001);
__ Sqdmlal(v20.V4S(), v0.V4H(), v1.H(), 7);
__ Sqdmlal2(v21.V4S(), v0.V8H(), v1.H(), 0);
__ Sqdmlal(s22, h0, v1.H(), 7);
__ Movi(v24.V2D(), 0xfffffe00ffff54aa, 0x000001fe0000ab54);
__ Movi(v25.V2D(), 0xff555556fffeab56, 0x00a9ff560001fc02);
__ Movi(v26.V2D(), 0x0000000000000000, 0x000000000000ab54);
__ Sqdmlsl(v24.V4S(), v0.V4H(), v1.H(), 7);
__ Sqdmlsl2(v25.V4S(), v0.V8H(), v1.H(), 0);
__ Sqdmlsl(s26, h0, v1.H(), 7);
END();
RUN();
ASSERT_EQUAL_128(0xfffffe00ffff54aa, 0x000001fe0000ab54, q16);
ASSERT_EQUAL_128(0xff555556fffeab56, 0x00a9ff560001fc02, q17);
ASSERT_EQUAL_128(0, 0x0000ab54, q18);
ASSERT_EQUAL_128(0xfffffe01ffff54ac, 0x000002000000ab55, q20);
ASSERT_EQUAL_128(0xff555557fffeab58, 0x00a9ff580001fc03, q21);
ASSERT_EQUAL_128(0, 0x0000ab55, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q25);
ASSERT_EQUAL_128(0, 0x00000000, q26);
TEARDOWN();
}
TEST(neon_3diff_absdiff) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55ab, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Movi(v16.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v17.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v18.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v19.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Sabal(v16.V8H(), v0.V8B(), v1.V8B());
__ Uabal(v17.V8H(), v0.V8B(), v1.V8B());
__ Sabal2(v18.V8H(), v0.V16B(), v1.V16B());
__ Uabal2(v19.V8H(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x01570359055b0708, 0x095f0b620d630f55, q16);
ASSERT_EQUAL_128(0x01570359055b0708, 0x095f0bb60d630f55, q17);
ASSERT_EQUAL_128(0x0103030405b107b3, 0x090b0b620d640f55, q18);
ASSERT_EQUAL_128(0x02010304055b075d, 0x0a090bb60db80fab, q19);
TEARDOWN();
}
TEST(neon_3diff_sqdmull) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7fff7fff80008000, 0x80007fff7fff8000);
__ Movi(v1.V2D(), 0x80007fff7fff8000, 0x7fff7fff80008000);
__ Movi(v2.V2D(), 0x800000007fffffff, 0x7fffffff80000000);
__ Movi(v3.V2D(), 0x8000000080000000, 0x8000000080000000);
__ Sqdmull(v16.V4S(), v0.V4H(), v1.V4H());
__ Sqdmull2(v17.V4S(), v0.V8H(), v1.V8H());
__ Sqdmull(v18.V2D(), v2.V2S(), v3.V2S());
__ Sqdmull2(v19.V2D(), v2.V4S(), v3.V4S());
__ Sqdmull(s20, h0, h1);
__ Sqdmull(d21, s2, s3);
END();
RUN();
ASSERT_EQUAL_128(0x800100007ffe0002, 0x800100007fffffff, q16);
ASSERT_EQUAL_128(0x800100007ffe0002, 0x800100007fffffff, q17);
ASSERT_EQUAL_128(0x8000000100000000, 0x7fffffffffffffff, q18);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x8000000100000000, q19);
ASSERT_EQUAL_128(0, 0x7fffffff, q20);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q21);
TEARDOWN();
}
TEST(neon_3diff_sqdmlal) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7fff7fff80008000, 0x80007fff7fff8000);
__ Movi(v1.V2D(), 0x80007fff7fff8000, 0x7fff7fff80008000);
__ Movi(v2.V2D(), 0x800000007fffffff, 0x7fffffff80000000);
__ Movi(v3.V2D(), 0x8000000080000000, 0x8000000080000000);
__ Movi(v16.V2D(), 0xffffffff00000001, 0x8fffffff00000001);
__ Movi(v17.V2D(), 0x00000001ffffffff, 0x00000001ffffffff);
__ Movi(v18.V2D(), 0x8000000000000001, 0x0000000000000001);
__ Movi(v19.V2D(), 0xffffffffffffffff, 0x7fffffffffffffff);
__ Movi(v20.V2D(), 0, 0x00000001);
__ Movi(v21.V2D(), 0, 0x00000001);
__ Sqdmlal(v16.V4S(), v0.V4H(), v1.V4H());
__ Sqdmlal2(v17.V4S(), v0.V8H(), v1.V8H());
__ Sqdmlal(v18.V2D(), v2.V2S(), v3.V2S());
__ Sqdmlal2(v19.V2D(), v2.V4S(), v3.V4S());
__ Sqdmlal(s20, h0, h1);
__ Sqdmlal(d21, s2, s3);
END();
RUN();
ASSERT_EQUAL_128(0x8000ffff7ffe0003, 0x800000007fffffff, q16);
ASSERT_EQUAL_128(0x800100017ffe0001, 0x800100017ffffffe, q17);
ASSERT_EQUAL_128(0x8000000000000000, 0x7fffffffffffffff, q18);
ASSERT_EQUAL_128(0x7ffffffffffffffe, 0x00000000ffffffff, q19);
ASSERT_EQUAL_128(0, 0x7fffffff, q20);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q21);
TEARDOWN();
}
TEST(neon_3diff_sqdmlsl) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7fff7fff80008000, 0x80007fff7fff8000);
__ Movi(v1.V2D(), 0x80007fff7fff8000, 0x7fff7fff80008000);
__ Movi(v2.V2D(), 0x800000007fffffff, 0x7fffffff80000000);
__ Movi(v3.V2D(), 0x8000000080000000, 0x8000000080000000);
__ Movi(v16.V2D(), 0xffffffff00000001, 0x7ffffffe80000001);
__ Movi(v17.V2D(), 0x00000001ffffffff, 0x7ffffffe00000001);
__ Movi(v18.V2D(), 0x8000000000000001, 0x8000000000000001);
__ Movi(v19.V2D(), 0xfffffffffffffffe, 0x7fffffffffffffff);
__ Movi(v20.V2D(), 0, 0x00000001);
__ Movi(v21.V2D(), 0, 0x00000001);
__ Sqdmlsl(v16.V4S(), v0.V4H(), v1.V4H());
__ Sqdmlsl2(v17.V4S(), v0.V8H(), v1.V8H());
__ Sqdmlsl(v18.V2D(), v2.V2S(), v3.V2S());
__ Sqdmlsl2(v19.V2D(), v2.V4S(), v3.V4S());
__ Sqdmlsl(s20, h0, h1);
__ Sqdmlsl(d21, s2, s3);
END();
RUN();
ASSERT_EQUAL_128(0x7ffeffff8001ffff, 0x7fffffff80000000, q16);
ASSERT_EQUAL_128(0x7fff00018001fffd, 0x7fffffff80000002, q17);
ASSERT_EQUAL_128(0xffffffff00000001, 0x8000000000000000, q18);
ASSERT_EQUAL_128(0x8000000000000000, 0x7fffffffffffffff, q19);
ASSERT_EQUAL_128(0, 0x80000002, q20);
ASSERT_EQUAL_128(0, 0x8000000000000002, q21);
TEARDOWN();
}
TEST(neon_3diff_mla) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55ab, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Movi(v16.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v17.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v18.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v19.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Smlal(v16.V8H(), v0.V8B(), v1.V8B());
__ Umlal(v17.V8H(), v0.V8B(), v1.V8B());
__ Smlal2(v18.V8H(), v0.V16B(), v1.V16B());
__ Umlal2(v19.V8H(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x01580304055c2341, 0x090a0ab70d0e0f56, q16);
ASSERT_EQUAL_128(0xaa580304ae5c2341, 0x090a5fb70d0eb856, q17);
ASSERT_EQUAL_128(0x01020304e878ea7a, 0x090a0ab70cb90f00, q18);
ASSERT_EQUAL_128(0x010203043d783f7a, 0x090a5fb761b90f00, q19);
TEARDOWN();
}
TEST(neon_3diff_mls) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55ab, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Movi(v16.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v17.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v18.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Movi(v19.V2D(), 0x0102030405060708, 0x090a0b0c0d0e0f00);
__ Smlsl(v16.V8H(), v0.V8B(), v1.V8B());
__ Umlsl(v17.V8H(), v0.V8B(), v1.V8B());
__ Smlsl2(v18.V8H(), v0.V16B(), v1.V16B());
__ Umlsl2(v19.V8H(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x00ac030404b0eacf, 0x090a0b610d0e0eaa, q16);
ASSERT_EQUAL_128(0x57ac03045bb0eacf, 0x090ab6610d0e65aa, q17);
ASSERT_EQUAL_128(0x0102030421942396, 0x090a0b610d630f00, q18);
ASSERT_EQUAL_128(0x01020304cc94ce96, 0x090ab661b8630f00, q19);
TEARDOWN();
}
TEST(neon_3same_compare) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Cmeq(v16.V16B(), v0.V16B(), v0.V16B());
__ Cmeq(v17.V16B(), v0.V16B(), v1.V16B());
__ Cmge(v18.V16B(), v0.V16B(), v0.V16B());
__ Cmge(v19.V16B(), v0.V16B(), v1.V16B());
__ Cmgt(v20.V16B(), v0.V16B(), v0.V16B());
__ Cmgt(v21.V16B(), v0.V16B(), v1.V16B());
__ Cmhi(v22.V16B(), v0.V16B(), v0.V16B());
__ Cmhi(v23.V16B(), v0.V16B(), v1.V16B());
__ Cmhs(v24.V16B(), v0.V16B(), v0.V16B());
__ Cmhs(v25.V16B(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q16);
ASSERT_EQUAL_128(0x00ff000000000000, 0x000000ff00000000, q17);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q18);
ASSERT_EQUAL_128(0x00ff00ffff00ff00, 0xff0000ff0000ff00, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0x000000ffff00ff00, 0xff0000000000ff00, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0xff00ff0000ff00ff, 0xff00000000ffff00, q23);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q24);
ASSERT_EQUAL_128(0xffffff0000ff00ff, 0xff0000ff00ffff00, q25);
TEARDOWN();
}
TEST(neon_3same_scalar_compare) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0xaa55ff55555500ff);
__ Cmeq(d16, d0, d0);
__ Cmeq(d17, d0, d1);
__ Cmeq(d18, d1, d0);
__ Cmge(d19, d0, d0);
__ Cmge(d20, d0, d1);
__ Cmge(d21, d1, d0);
__ Cmgt(d22, d0, d0);
__ Cmgt(d23, d0, d1);
__ Cmhi(d24, d0, d0);
__ Cmhi(d25, d0, d1);
__ Cmhs(d26, d0, d0);
__ Cmhs(d27, d0, d1);
__ Cmhs(d28, d1, d0);
END();
RUN();
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q16);
ASSERT_EQUAL_128(0, 0x0000000000000000, q17);
ASSERT_EQUAL_128(0, 0x0000000000000000, q18);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q19);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q20);
ASSERT_EQUAL_128(0, 0x0000000000000000, q21);
ASSERT_EQUAL_128(0, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q23);
ASSERT_EQUAL_128(0, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q25);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q26);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q27);
ASSERT_EQUAL_128(0, 0x0000000000000000, q28);
TEARDOWN();
}
TEST(neon_2regmisc_fcmeq) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000000000000000); // Zero.
__ Movi(v1.V2D(), 0xffffffffffffffff, 0xffffffffffffffff); // Nan.
__ Movi(v2.V2D(), 0xbf800000bf800000, 0xbf800000bf800000); // < 0.
__ Movi(v3.V2D(), 0x3f8000003f800000, 0x3f8000003f800000); // > 0.
__ Fcmeq(s16, s0, 0.0);
__ Fcmeq(s17, s1, 0.0);
__ Fcmeq(s18, s2, 0.0);
__ Fcmeq(d19, d0, 0.0);
__ Fcmeq(d20, d1, 0.0);
__ Fcmeq(d21, d2, 0.0);
__ Fcmeq(v22.V2S(), v0.V2S(), 0.0);
__ Fcmeq(v23.V4S(), v1.V4S(), 0.0);
__ Fcmeq(v24.V2D(), v1.V2D(), 0.0);
__ Fcmeq(v25.V2D(), v2.V2D(), 0.0);
END();
RUN();
ASSERT_EQUAL_128(0, 0xffffffff, q16);
ASSERT_EQUAL_128(0, 0x00000000, q17);
ASSERT_EQUAL_128(0, 0x00000000, q18);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q19);
ASSERT_EQUAL_128(0, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0, 0x0000000000000000, q21);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q25);
TEARDOWN();
}
TEST(neon_2regmisc_fcmge) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000000000000000); // Zero.
__ Movi(v1.V2D(), 0xffffffffffffffff, 0xffffffffffffffff); // Nan.
__ Movi(v2.V2D(), 0xbf800000bf800000, 0xbf800000bf800000); // < 0.
__ Movi(v3.V2D(), 0x3f8000003f800000, 0x3f8000003f800000); // > 0.
__ Fcmge(s16, s0, 0.0);
__ Fcmge(s17, s1, 0.0);
__ Fcmge(s18, s2, 0.0);
__ Fcmge(d19, d0, 0.0);
__ Fcmge(d20, d1, 0.0);
__ Fcmge(d21, d3, 0.0);
__ Fcmge(v22.V2S(), v0.V2S(), 0.0);
__ Fcmge(v23.V4S(), v1.V4S(), 0.0);
__ Fcmge(v24.V2D(), v1.V2D(), 0.0);
__ Fcmge(v25.V2D(), v3.V2D(), 0.0);
END();
RUN();
ASSERT_EQUAL_128(0, 0xffffffff, q16);
ASSERT_EQUAL_128(0, 0x00000000, q17);
ASSERT_EQUAL_128(0, 0x00000000, q18);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q19);
ASSERT_EQUAL_128(0, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q21);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q25);
TEARDOWN();
}
TEST(neon_2regmisc_fcmgt) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000000000000000); // Zero.
__ Movi(v1.V2D(), 0xffffffffffffffff, 0xffffffffffffffff); // Nan.
__ Movi(v2.V2D(), 0xbf800000bf800000, 0xbf800000bf800000); // < 0.
__ Movi(v3.V2D(), 0x3f8000003f800000, 0x3f8000003f800000); // > 0.
__ Fcmgt(s16, s0, 0.0);
__ Fcmgt(s17, s1, 0.0);
__ Fcmgt(s18, s2, 0.0);
__ Fcmgt(d19, d0, 0.0);
__ Fcmgt(d20, d1, 0.0);
__ Fcmgt(d21, d3, 0.0);
__ Fcmgt(v22.V2S(), v0.V2S(), 0.0);
__ Fcmgt(v23.V4S(), v1.V4S(), 0.0);
__ Fcmgt(v24.V2D(), v1.V2D(), 0.0);
__ Fcmgt(v25.V2D(), v3.V2D(), 0.0);
END();
RUN();
ASSERT_EQUAL_128(0, 0x00000000, q16);
ASSERT_EQUAL_128(0, 0x00000000, q17);
ASSERT_EQUAL_128(0, 0x00000000, q18);
ASSERT_EQUAL_128(0, 0x0000000000000000, q19);
ASSERT_EQUAL_128(0, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q21);
ASSERT_EQUAL_128(0, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q25);
TEARDOWN();
}
TEST(neon_2regmisc_fcmle) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000000000000000); // Zero.
__ Movi(v1.V2D(), 0xffffffffffffffff, 0xffffffffffffffff); // Nan.
__ Movi(v2.V2D(), 0xbf800000bf800000, 0xbf800000bf800000); // < 0.
__ Movi(v3.V2D(), 0x3f8000003f800000, 0x3f8000003f800000); // > 0.
__ Fcmle(s16, s0, 0.0);
__ Fcmle(s17, s1, 0.0);
__ Fcmle(s18, s3, 0.0);
__ Fcmle(d19, d0, 0.0);
__ Fcmle(d20, d1, 0.0);
__ Fcmle(d21, d2, 0.0);
__ Fcmle(v22.V2S(), v0.V2S(), 0.0);
__ Fcmle(v23.V4S(), v1.V4S(), 0.0);
__ Fcmle(v24.V2D(), v1.V2D(), 0.0);
__ Fcmle(v25.V2D(), v2.V2D(), 0.0);
END();
RUN();
ASSERT_EQUAL_128(0, 0xffffffff, q16);
ASSERT_EQUAL_128(0, 0x00000000, q17);
ASSERT_EQUAL_128(0, 0x00000000, q18);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q19);
ASSERT_EQUAL_128(0, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q21);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q25);
TEARDOWN();
}
TEST(neon_2regmisc_fcmlt) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000000000000000); // Zero.
__ Movi(v1.V2D(), 0xffffffffffffffff, 0xffffffffffffffff); // Nan.
__ Movi(v2.V2D(), 0xbf800000bf800000, 0xbf800000bf800000); // < 0.
__ Movi(v3.V2D(), 0x3f8000003f800000, 0x3f8000003f800000); // > 0.
__ Fcmlt(s16, s0, 0.0);
__ Fcmlt(s17, s1, 0.0);
__ Fcmlt(s18, s3, 0.0);
__ Fcmlt(d19, d0, 0.0);
__ Fcmlt(d20, d1, 0.0);
__ Fcmlt(d21, d2, 0.0);
__ Fcmlt(v22.V2S(), v0.V2S(), 0.0);
__ Fcmlt(v23.V4S(), v1.V4S(), 0.0);
__ Fcmlt(v24.V2D(), v1.V2D(), 0.0);
__ Fcmlt(v25.V2D(), v2.V2D(), 0.0);
END();
RUN();
ASSERT_EQUAL_128(0, 0x00000000, q16);
ASSERT_EQUAL_128(0, 0x00000000, q17);
ASSERT_EQUAL_128(0, 0x00000000, q18);
ASSERT_EQUAL_128(0, 0x0000000000000000, q19);
ASSERT_EQUAL_128(0, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q21);
ASSERT_EQUAL_128(0, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q25);
TEARDOWN();
}
TEST(neon_2regmisc_cmeq) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001000200030004, 0x0000000000000000);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0x0000ff55555500ff);
__ Cmeq(v16.V8B(), v1.V8B(), 0);
__ Cmeq(v17.V16B(), v1.V16B(), 0);
__ Cmeq(v18.V4H(), v1.V4H(), 0);
__ Cmeq(v19.V8H(), v1.V8H(), 0);
__ Cmeq(v20.V2S(), v0.V2S(), 0);
__ Cmeq(v21.V4S(), v0.V4S(), 0);
__ Cmeq(d22, d0, 0);
__ Cmeq(d23, d1, 0);
__ Cmeq(v24.V2D(), v0.V2D(), 0);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0xffff00000000ff00, q16);
ASSERT_EQUAL_128(0xffff0000000000ff, 0xffff00000000ff00, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xffff000000000000, q18);
ASSERT_EQUAL_128(0xffff000000000000, 0xffff000000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q24);
TEARDOWN();
}
TEST(neon_2regmisc_cmge) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff01000200030004, 0x0000000000000000);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0x0000ff55555500ff);
__ Cmge(v16.V8B(), v1.V8B(), 0);
__ Cmge(v17.V16B(), v1.V16B(), 0);
__ Cmge(v18.V4H(), v1.V4H(), 0);
__ Cmge(v19.V8H(), v1.V8H(), 0);
__ Cmge(v20.V2S(), v0.V2S(), 0);
__ Cmge(v21.V4S(), v0.V4S(), 0);
__ Cmge(d22, d0, 0);
__ Cmge(d23, d1, 0);
__ Cmge(v24.V2D(), v0.V2D(), 0);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0xffff00ffffffff00, q16);
ASSERT_EQUAL_128(0xffffff0000ff00ff, 0xffff00ffffffff00, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xffff0000ffffffff, q18);
ASSERT_EQUAL_128(0xffffffff00000000, 0xffff0000ffffffff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q20);
ASSERT_EQUAL_128(0x00000000ffffffff, 0xffffffffffffffff, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q24);
TEARDOWN();
}
TEST(neon_2regmisc_cmlt) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001000200030004, 0xff00000000000000);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0x0000ff55555500ff);
__ Cmlt(v16.V8B(), v1.V8B(), 0);
__ Cmlt(v17.V16B(), v1.V16B(), 0);
__ Cmlt(v18.V4H(), v1.V4H(), 0);
__ Cmlt(v19.V8H(), v1.V8H(), 0);
__ Cmlt(v20.V2S(), v1.V2S(), 0);
__ Cmlt(v21.V4S(), v1.V4S(), 0);
__ Cmlt(d22, d0, 0);
__ Cmlt(d23, d1, 0);
__ Cmlt(v24.V2D(), v0.V2D(), 0);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0000ff00000000ff, q16);
ASSERT_EQUAL_128(0x000000ffff00ff00, 0x0000ff00000000ff, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000ffff00000000, q18);
ASSERT_EQUAL_128(0x00000000ffffffff, 0x0000ffff00000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0x00000000ffffffff, 0x0000000000000000, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q24);
TEARDOWN();
}
TEST(neon_2regmisc_cmle) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001000200030004, 0x0000000000000000);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0x0000ff55555500ff);
__ Cmle(v16.V8B(), v1.V8B(), 0);
__ Cmle(v17.V16B(), v1.V16B(), 0);
__ Cmle(v18.V4H(), v1.V4H(), 0);
__ Cmle(v19.V8H(), v1.V8H(), 0);
__ Cmle(v20.V2S(), v1.V2S(), 0);
__ Cmle(v21.V4S(), v1.V4S(), 0);
__ Cmle(d22, d0, 0);
__ Cmle(d23, d1, 0);
__ Cmle(v24.V2D(), v0.V2D(), 0);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0xffffff000000ffff, q16);
ASSERT_EQUAL_128(0xffff00ffff00ffff, 0xffffff000000ffff, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffff00000000, q18);
ASSERT_EQUAL_128(0xffff0000ffffffff, 0xffffffff00000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0x00000000ffffffff, 0x0000000000000000, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q24);
TEARDOWN();
}
TEST(neon_2regmisc_cmgt) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001000200030004, 0x0000000000000000);
__ Movi(v1.V2D(), 0x000055aaff55ff00, 0x0000ff55555500ff);
__ Cmgt(v16.V8B(), v1.V8B(), 0);
__ Cmgt(v17.V16B(), v1.V16B(), 0);
__ Cmgt(v18.V4H(), v1.V4H(), 0);
__ Cmgt(v19.V8H(), v1.V8H(), 0);
__ Cmgt(v20.V2S(), v0.V2S(), 0);
__ Cmgt(v21.V4S(), v0.V4S(), 0);
__ Cmgt(d22, d0, 0);
__ Cmgt(d23, d1, 0);
__ Cmgt(v24.V2D(), v0.V2D(), 0);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x000000ffffff0000, q16);
ASSERT_EQUAL_128(0x0000ff0000ff0000, 0x000000ffffff0000, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00000000ffffffff, q18);
ASSERT_EQUAL_128(0x0000ffff00000000, 0x00000000ffffffff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0xffffffffffffffff, 0x0000000000000000, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0xffffffffffffffff, q23);
ASSERT_EQUAL_128(0xffffffffffffffff, 0x0000000000000000, q24);
TEARDOWN();
}
TEST(neon_2regmisc_neg) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Neg(v16.V8B(), v0.V8B());
__ Neg(v17.V16B(), v0.V16B());
__ Neg(v18.V4H(), v1.V4H());
__ Neg(v19.V8H(), v1.V8H());
__ Neg(v20.V2S(), v2.V2S());
__ Neg(v21.V4S(), v2.V4S());
__ Neg(d22, d3);
__ Neg(v23.V2D(), v3.V2D());
__ Neg(v24.V2D(), v4.V2D());
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x807f0100ff81807f, q16);
ASSERT_EQUAL_128(0x81ff00017f8081ff, 0x807f0100ff81807f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00010000ffff8001, q18);
ASSERT_EQUAL_128(0x80007fff00010000, 0x00010000ffff8001, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080000001, q20);
ASSERT_EQUAL_128(0x8000000000000001, 0x0000000080000001, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0x8000000000000001, q22);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x8000000000000001, q23);
ASSERT_EQUAL_128(0x8000000000000000, 0x0000000000000000, q24);
TEARDOWN();
}
TEST(neon_2regmisc_sqneg) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqneg(v16.V8B(), v0.V8B());
__ Sqneg(v17.V16B(), v0.V16B());
__ Sqneg(v18.V4H(), v1.V4H());
__ Sqneg(v19.V8H(), v1.V8H());
__ Sqneg(v20.V2S(), v2.V2S());
__ Sqneg(v21.V4S(), v2.V4S());
__ Sqneg(v22.V2D(), v3.V2D());
__ Sqneg(v23.V2D(), v4.V2D());
__ Sqneg(b24, b0);
__ Sqneg(h25, h1);
__ Sqneg(s26, s2);
__ Sqneg(d27, d3);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x7f7f0100ff817f7f, q16);
ASSERT_EQUAL_128(0x81ff00017f7f81ff, 0x7f7f0100ff817f7f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00010000ffff8001, q18);
ASSERT_EQUAL_128(0x7fff7fff00010000, 0x00010000ffff8001, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080000001, q20);
ASSERT_EQUAL_128(0x7fffffff00000001, 0x0000000080000001, q21);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x8000000000000001, q22);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0, 0x7f, q24);
ASSERT_EQUAL_128(0, 0x8001, q25);
ASSERT_EQUAL_128(0, 0x80000001, q26);
ASSERT_EQUAL_128(0, 0x8000000000000001, q27);
TEARDOWN();
}
TEST(neon_2regmisc_abs) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Abs(v16.V8B(), v0.V8B());
__ Abs(v17.V16B(), v0.V16B());
__ Abs(v18.V4H(), v1.V4H());
__ Abs(v19.V8H(), v1.V8H());
__ Abs(v20.V2S(), v2.V2S());
__ Abs(v21.V4S(), v2.V4S());
__ Abs(d22, d3);
__ Abs(v23.V2D(), v3.V2D());
__ Abs(v24.V2D(), v4.V2D());
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x807f0100017f807f, q16);
ASSERT_EQUAL_128(0x7f0100017f807f01, 0x807f0100017f807f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x0001000000017fff, q18);
ASSERT_EQUAL_128(0x80007fff00010000, 0x0001000000017fff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q20);
ASSERT_EQUAL_128(0x8000000000000001, 0x000000007fffffff, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0x7fffffffffffffff, q22);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x7fffffffffffffff, q23);
ASSERT_EQUAL_128(0x8000000000000000, 0x0000000000000000, q24);
TEARDOWN();
}
TEST(neon_2regmisc_sqabs) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqabs(v16.V8B(), v0.V8B());
__ Sqabs(v17.V16B(), v0.V16B());
__ Sqabs(v18.V4H(), v1.V4H());
__ Sqabs(v19.V8H(), v1.V8H());
__ Sqabs(v20.V2S(), v2.V2S());
__ Sqabs(v21.V4S(), v2.V4S());
__ Sqabs(v22.V2D(), v3.V2D());
__ Sqabs(v23.V2D(), v4.V2D());
__ Sqabs(b24, b0);
__ Sqabs(h25, h1);
__ Sqabs(s26, s2);
__ Sqabs(d27, d3);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x7f7f0100017f7f7f, q16);
ASSERT_EQUAL_128(0x7f0100017f7f7f01, 0x7f7f0100017f7f7f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x0001000000017fff, q18);
ASSERT_EQUAL_128(0x7fff7fff00010000, 0x0001000000017fff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q20);
ASSERT_EQUAL_128(0x7fffffff00000001, 0x000000007fffffff, q21);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x7fffffffffffffff, q22);
ASSERT_EQUAL_128(0x7fffffffffffffff, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0, 0x7f, q24);
ASSERT_EQUAL_128(0, 0x7fff, q25);
ASSERT_EQUAL_128(0, 0x7fffffff, q26);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q27);
TEARDOWN();
}
TEST(neon_2regmisc_suqadd) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x017f8081ff00017f, 0x010080ff7f0180ff);
__ Movi(v2.V2D(), 0x80008001ffff0000, 0xffff000000017ffd);
__ Movi(v3.V2D(), 0xffff000080008001, 0x00017fffffff0001);
__ Movi(v4.V2D(), 0x80000000fffffffe, 0xfffffff17ffffffe);
__ Movi(v5.V2D(), 0xffffffff80000000, 0x7fffffff00000002);
__ Movi(v6.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v7.V2D(), 0x8000000000000000, 0x8000000000000002);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v2.V2D());
__ Mov(v19.V2D(), v2.V2D());
__ Mov(v20.V2D(), v4.V2D());
__ Mov(v21.V2D(), v4.V2D());
__ Mov(v22.V2D(), v6.V2D());
__ Mov(v23.V2D(), v0.V2D());
__ Mov(v24.V2D(), v2.V2D());
__ Mov(v25.V2D(), v4.V2D());
__ Mov(v26.V2D(), v6.V2D());
__ Suqadd(v16.V8B(), v1.V8B());
__ Suqadd(v17.V16B(), v1.V16B());
__ Suqadd(v18.V4H(), v3.V4H());
__ Suqadd(v19.V8H(), v3.V8H());
__ Suqadd(v20.V2S(), v5.V2S());
__ Suqadd(v21.V4S(), v5.V4S());
__ Suqadd(v22.V2D(), v7.V2D());
__ Suqadd(b23, b1);
__ Suqadd(h24, h3);
__ Suqadd(s25, s5);
__ Suqadd(d26, d7);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x81817f7f7f7f007f, q16);
ASSERT_EQUAL_128(0x7f7f7f7f7f807f7f, 0x81817f7f7f7f007f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00007fff7fff7ffe, q18);
ASSERT_EQUAL_128(0x7fff80017fff7fff, 0x00007fff7fff7ffe, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x7ffffff07fffffff, q20);
ASSERT_EQUAL_128(0x7fffffff7ffffffe, 0x7ffffff07fffffff, q21);
ASSERT_EQUAL_128(0x0000000000000001, 0x7fffffffffffffff, q22);
ASSERT_EQUAL_128(0, 0x7f, q23);
ASSERT_EQUAL_128(0, 0x7ffe, q24);
ASSERT_EQUAL_128(0, 0x7fffffff, q25);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q26);
TEARDOWN();
}
TEST(neon_2regmisc_usqadd) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f7ffe);
__ Movi(v1.V2D(), 0x017f8081ff00017f, 0x010080ff7f018002);
__ Movi(v2.V2D(), 0x80008001fffe0000, 0xffff000000017ffd);
__ Movi(v3.V2D(), 0xffff000000028001, 0x00017fffffff0001);
__ Movi(v4.V2D(), 0x80000000fffffffe, 0x00000001fffffffe);
__ Movi(v5.V2D(), 0xffffffff80000000, 0xfffffffe00000002);
__ Movi(v6.V2D(), 0x8000000000000002, 0x7fffffffffffffff);
__ Movi(v7.V2D(), 0x7fffffffffffffff, 0x8000000000000000);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v2.V2D());
__ Mov(v19.V2D(), v2.V2D());
__ Mov(v20.V2D(), v4.V2D());
__ Mov(v21.V2D(), v4.V2D());
__ Mov(v22.V2D(), v6.V2D());
__ Mov(v23.V2D(), v0.V2D());
__ Mov(v24.V2D(), v2.V2D());
__ Mov(v25.V2D(), v4.V2D());
__ Mov(v26.V2D(), v6.V2D());
__ Usqadd(v16.V8B(), v1.V8B());
__ Usqadd(v17.V16B(), v1.V16B());
__ Usqadd(v18.V4H(), v3.V4H());
__ Usqadd(v19.V8H(), v3.V8H());
__ Usqadd(v20.V2S(), v5.V2S());
__ Usqadd(v21.V4S(), v5.V4S());
__ Usqadd(v22.V2D(), v7.V2D());
__ Usqadd(b23, b1);
__ Usqadd(h24, h3);
__ Usqadd(s25, s5);
__ Usqadd(d26, d7);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x81817f00808000ff, q16);
ASSERT_EQUAL_128(0x8080008080808080, 0x81817f00808000ff, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xffff7fff00007ffe, q18);
ASSERT_EQUAL_128(0x7fff8001ffff0000, 0xffff7fff00007ffe, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x00000000ffffffff, q20);
ASSERT_EQUAL_128(0x7fffffff7ffffffe, 0x00000000ffffffff, q21);
ASSERT_EQUAL_128(0xffffffffffffffff, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0, 0xff, q23);
ASSERT_EQUAL_128(0, 0x7ffe, q24);
ASSERT_EQUAL_128(0, 0xffffffff, q25);
ASSERT_EQUAL_128(0, 0x0000000000000000, q26);
TEARDOWN();
}
TEST(system_sys) {
SETUP();
const char* msg = "SYS test!";
uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg);
START();
__ Mov(x4, msg_addr);
__ Sys(3, 0x7, 0x5, 1, x4);
__ Mov(x3, x4);
__ Sys(3, 0x7, 0xa, 1, x3);
__ Mov(x2, x3);
__ Sys(3, 0x7, 0xb, 1, x2);
__ Mov(x1, x2);
__ Sys(3, 0x7, 0xe, 1, x1);
// TODO: Add tests to check ZVA equivalent.
END();
RUN();
TEARDOWN();
}
TEST(system_ic) {
SETUP();
const char* msg = "IC test!";
uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg);
START();
__ Mov(x11, msg_addr);
__ Ic(IVAU, x11);
END();
RUN();
TEARDOWN();
}
TEST(system_dc) {
SETUP();
const char* msg = "DC test!";
uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg);
START();
__ Mov(x20, msg_addr);
__ Dc(CVAC, x20);
__ Mov(x21, x20);
__ Dc(CVAU, x21);
__ Mov(x22, x21);
__ Dc(CIVAC, x22);
// TODO: Add tests to check ZVA.
END();
RUN();
TEARDOWN();
}
TEST(neon_2regmisc_xtn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Xtn(v16.V8B(), v0.V8H());
__ Xtn2(v16.V16B(), v1.V8H());
__ Xtn(v17.V4H(), v1.V4S());
__ Xtn2(v17.V8H(), v2.V4S());
__ Xtn(v18.V2S(), v3.V2D());
__ Xtn2(v18.V4S(), v4.V2D());
END();
RUN();
ASSERT_EQUAL_128(0x0001ff00ff0001ff, 0x01ff800181007f81, q16);
ASSERT_EQUAL_128(0x0000ffff0000ffff, 0x8001000000007fff, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00000001ffffffff, q18);
TEARDOWN();
}
TEST(neon_2regmisc_sqxtn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f01007a81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqxtn(v16.V8B(), v0.V8H());
__ Sqxtn2(v16.V16B(), v1.V8H());
__ Sqxtn(v17.V4H(), v1.V4S());
__ Sqxtn2(v17.V8H(), v2.V4S());
__ Sqxtn(v18.V2S(), v3.V2D());
__ Sqxtn2(v18.V4S(), v4.V2D());
__ Sqxtn(b19, h0);
__ Sqxtn(h20, s0);
__ Sqxtn(s21, d0);
END();
RUN();
ASSERT_EQUAL_128(0x8080ff00ff00017f, 0x7f7a807f80807f80, q16);
ASSERT_EQUAL_128(0x8000ffff00007fff, 0x8000800080007fff, q17);
ASSERT_EQUAL_128(0x8000000000000000, 0x800000007fffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000080, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000007fff, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080000000, q21);
TEARDOWN();
}
TEST(neon_2regmisc_uqxtn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f01007a81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Uqxtn(v16.V8B(), v0.V8H());
__ Uqxtn2(v16.V16B(), v1.V8H());
__ Uqxtn(v17.V4H(), v1.V4S());
__ Uqxtn2(v17.V8H(), v2.V4S());
__ Uqxtn(v18.V2S(), v3.V2D());
__ Uqxtn2(v18.V4S(), v4.V2D());
__ Uqxtn(b19, h0);
__ Uqxtn(h20, s0);
__ Uqxtn(s21, d0);
END();
RUN();
ASSERT_EQUAL_128(0xffffff00ff0001ff, 0xff7affffffffffff, q16);
ASSERT_EQUAL_128(0xffffffff0000ffff, 0xffffffffffffffff, q17);
ASSERT_EQUAL_128(0xffffffff00000000, 0xffffffffffffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x00000000000000ff, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000000000ffff, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x00000000ffffffff, q21);
TEARDOWN();
}
TEST(neon_2regmisc_sqxtun) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f01007a81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqxtun(v16.V8B(), v0.V8H());
__ Sqxtun2(v16.V16B(), v1.V8H());
__ Sqxtun(v17.V4H(), v1.V4S());
__ Sqxtun2(v17.V8H(), v2.V4S());
__ Sqxtun(v18.V2S(), v3.V2D());
__ Sqxtun2(v18.V4S(), v4.V2D());
__ Sqxtun(b19, h0);
__ Sqxtun(h20, s0);
__ Sqxtun(s21, d0);
END();
RUN();
ASSERT_EQUAL_128(0x00000000000001ff, 0xff7a00ff0000ff00, q16);
ASSERT_EQUAL_128(0x000000000000ffff, 0x000000000000ffff, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00000000ffffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000000000ffff, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q21);
TEARDOWN();
}
TEST(neon_3same_and) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x00aa55aaff55ff00, 0xaa55ff00555500ff);
__ And(v16.V16B(), v0.V16B(), v0.V16B()); // self test
__ And(v17.V16B(), v0.V16B(), v1.V16B()); // all combinations
__ And(v24.V8B(), v0.V8B(), v0.V8B()); // self test
__ And(v25.V8B(), v0.V8B(), v1.V8B()); // all combinations
END();
RUN();
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q16);
ASSERT_EQUAL_128(0x0000000000555500, 0xaa00aa00005500aa, q17);
ASSERT_EQUAL_128(0, 0xff00aa5500ff55aa, q24);
ASSERT_EQUAL_128(0, 0xaa00aa00005500aa, q25);
TEARDOWN();
}
TEST(neon_3same_bic) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x00ffaa00aa55aaff, 0xffff005500ff00ff);
__ Bic(v16.V16B(), v0.V16B(), v0.V16B()); // self test
__ Bic(v17.V16B(), v0.V16B(), v1.V16B()); // all combinations
__ Bic(v24.V8B(), v0.V8B(), v0.V8B()); // self test
__ Bic(v25.V8B(), v0.V8B(), v1.V8B()); // all combinations
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q16);
ASSERT_EQUAL_128(0xff00005500aa5500, 0x0000aa0000005500, q17);
ASSERT_EQUAL_128(0, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0, 0x0000aa0000005500, q25);
TEARDOWN();
}
TEST(neon_3same_orr) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x00aa55aaff55ff00, 0xaa55ff00555500ff);
__ Orr(v16.V16B(), v0.V16B(), v0.V16B()); // self test
__ Orr(v17.V16B(), v0.V16B(), v1.V16B()); // all combinations
__ Orr(v24.V8B(), v0.V8B(), v0.V8B()); // self test
__ Orr(v25.V8B(), v0.V8B(), v1.V8B()); // all combinations
END();
RUN();
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q16);
ASSERT_EQUAL_128(0xffaaffffffffffaa, 0xff55ff5555ff55ff, q17);
ASSERT_EQUAL_128(0, 0xff00aa5500ff55aa, q24);
ASSERT_EQUAL_128(0, 0xff55ff5555ff55ff, q25);
TEARDOWN();
}
TEST(neon_3same_mov) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Mov(v16.V16B(), v0.V16B());
__ Mov(v17.V8H(), v0.V8H());
__ Mov(v18.V4S(), v0.V4S());
__ Mov(v19.V2D(), v0.V2D());
__ Mov(v24.V8B(), v0.V8B());
__ Mov(v25.V4H(), v0.V4H());
__ Mov(v26.V2S(), v0.V2S());
END();
RUN();
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q16);
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q17);
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q18);
ASSERT_EQUAL_128(0xff00aa5500ff55aa, 0xff00aa5500ff55aa, q19);
ASSERT_EQUAL_128(0x0, 0xff00aa5500ff55aa, q24);
ASSERT_EQUAL_128(0x0, 0xff00aa5500ff55aa, q25);
ASSERT_EQUAL_128(0x0, 0xff00aa5500ff55aa, q26);
TEARDOWN();
}
TEST(neon_3same_orn) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x00aa55aaff55ff00, 0xaa55ff00555500ff);
__ Orn(v16.V16B(), v0.V16B(), v0.V16B()); // self test
__ Orn(v17.V16B(), v0.V16B(), v1.V16B()); // all combinations
__ Orn(v24.V8B(), v0.V8B(), v0.V8B()); // self test
__ Orn(v25.V8B(), v0.V8B(), v1.V8B()); // all combinations
END();
RUN();
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q16);
ASSERT_EQUAL_128(0xff55aa5500ff55ff, 0xffaaaaffaaffffaa, q17);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q24);
ASSERT_EQUAL_128(0, 0xffaaaaffaaffffaa, q25);
TEARDOWN();
}
TEST(neon_3same_eor) {
SETUP();
START();
__ Movi(v0.V2D(), 0xff00aa5500ff55aa, 0xff00aa5500ff55aa);
__ Movi(v1.V2D(), 0x00ffaa00aa55aaff, 0xffff005500ff00ff);
__ Eor(v16.V16B(), v0.V16B(), v0.V16B()); // self test
__ Eor(v17.V16B(), v0.V16B(), v1.V16B()); // all combinations
__ Eor(v24.V8B(), v0.V8B(), v0.V8B()); // self test
__ Eor(v25.V8B(), v0.V8B(), v1.V8B()); // all combinations
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q16);
ASSERT_EQUAL_128(0xffff0055aaaaff55, 0x00ffaa0000005555, q17);
ASSERT_EQUAL_128(0, 0x0000000000000000, q24);
ASSERT_EQUAL_128(0, 0x00ffaa0000005555, q25);
TEARDOWN();
}
TEST(neon_3same_bif) {
SETUP();
START();
__ Movi(v16.V2D(), 0xffff0000ff00ffff, 0xffff00000000aaaa);
__ Movi(v0.V2D(), 0xff00ff00ff005555, 0xaaaa5555aaaaaaaa);
__ Movi(v1.V2D(), 0x00ff00ffff0055aa, 0x55aa55aa55aa55aa);
__ Movi(v17.V2D(), 0x5555aa55cccccccc, 0x33333333f0f0f0f0);
__ Movi(v2.V2D(), 0x555555aaff00ff00, 0xff00ff00ff00ff00);
__ Movi(v3.V2D(), 0xaa55aa5500ffff00, 0x00ffff0000ffff00);
__ Movi(v18.V2D(), 0, 0xf0f0f0f00f0f0f0f);
__ Movi(v4.V2D(), 0, 0xf0f0f0f0f0f0f0f0);
__ Movi(v5.V2D(), 0, 0x00ffff0000ffff00);
__ Bif(v16.V16B(), v0.V16B(), v1.V16B());
__ Bif(v17.V16B(), v2.V16B(), v3.V16B());
__ Bif(v18.V8B(), v4.V8B(), v5.V8B());
END();
RUN();
ASSERT_EQUAL_128(0xffffff00ff0055ff, 0xffaa0055aa00aaaa, q16);
ASSERT_EQUAL_128(0x5555ffffffcccc00, 0xff333300fff0f000, q17);
ASSERT_EQUAL_128(0, 0xf0f0f0f0f00f0ff0, q18);
TEARDOWN();
}
TEST(neon_3same_bit) {
SETUP();
START();
__ Movi(v16.V2D(), 0xffff0000ff00ffff, 0xffff00000000aaaa);
__ Movi(v0.V2D(), 0xff00ff00ff005555, 0xaaaa5555aaaaaaaa);
__ Movi(v1.V2D(), 0x00ff00ffff0055aa, 0x55aa55aa55aa55aa);
__ Movi(v17.V2D(), 0x5555aa55cccccccc, 0x33333333f0f0f0f0);
__ Movi(v2.V2D(), 0x555555aaff00ff00, 0xff00ff00ff00ff00);
__ Movi(v3.V2D(), 0xaa55aa5500ffff00, 0x00ffff0000ffff00);
__ Movi(v18.V2D(), 0, 0xf0f0f0f00f0f0f0f);
__ Movi(v4.V2D(), 0, 0xf0f0f0f0f0f0f0f0);
__ Movi(v5.V2D(), 0, 0x00ffff0000ffff00);
__ Bit(v16.V16B(), v0.V16B(), v1.V16B());
__ Bit(v17.V16B(), v2.V16B(), v3.V16B());
__ Bit(v18.V8B(), v4.V8B(), v5.V8B());
END();
RUN();
ASSERT_EQUAL_128(0xff000000ff00ff55, 0xaaff550000aaaaaa, q16);
ASSERT_EQUAL_128(0x55550000cc00ffcc, 0x3300ff33f000fff0, q17);
ASSERT_EQUAL_128(0, 0xf0f0f0f00ff0f00f, q18);
TEARDOWN();
}
TEST(neon_3same_bsl) {
SETUP();
START();
__ Movi(v16.V2D(), 0xffff0000ff00ffff, 0xffff00000000aaaa);
__ Movi(v0.V2D(), 0xff00ff00ff005555, 0xaaaa5555aaaaaaaa);
__ Movi(v1.V2D(), 0x00ff00ffff0055aa, 0x55aa55aa55aa55aa);
__ Movi(v17.V2D(), 0x5555aa55cccccccc, 0x33333333f0f0f0f0);
__ Movi(v2.V2D(), 0x555555aaff00ff00, 0xff00ff00ff00ff00);
__ Movi(v3.V2D(), 0xaa55aa5500ffff00, 0x00ffff0000ffff00);
__ Movi(v18.V2D(), 0, 0xf0f0f0f00f0f0f0f);
__ Movi(v4.V2D(), 0, 0xf0f0f0f0f0f0f0f0);
__ Movi(v5.V2D(), 0, 0x00ffff0000ffff00);
__ Bsl(v16.V16B(), v0.V16B(), v1.V16B());
__ Bsl(v17.V16B(), v2.V16B(), v3.V16B());
__ Bsl(v18.V8B(), v4.V8B(), v5.V8B());
END();
RUN();
ASSERT_EQUAL_128(0xff0000ffff005555, 0xaaaa55aa55aaffaa, q16);
ASSERT_EQUAL_128(0xff550000cc33ff00, 0x33ccff00f00fff00, q17);
ASSERT_EQUAL_128(0, 0xf0fffff000f0f000, q18);
TEARDOWN();
}
TEST(neon_3same_smax) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaa55555555, 0xffffffff0000aa55);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Smax(v16.V8B(), v0.V8B(), v1.V8B());
__ Smax(v18.V4H(), v0.V4H(), v1.V4H());
__ Smax(v20.V2S(), v0.V2S(), v1.V2S());
__ Smax(v17.V16B(), v0.V16B(), v1.V16B());
__ Smax(v19.V8H(), v0.V8H(), v1.V8H());
__ Smax(v21.V4S(), v0.V4S(), v1.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x0000000000005555, q16);
ASSERT_EQUAL_128(0x0, 0x00000000000055ff, q18);
ASSERT_EQUAL_128(0x0, 0x000000000000aa55, q20);
ASSERT_EQUAL_128(0x55aa555555555555, 0x0000000000005555, q17);
ASSERT_EQUAL_128(0x55aa555555555555, 0x00000000000055ff, q19);
ASSERT_EQUAL_128(0x55aa555555555555, 0x000000000000aa55, q21);
TEARDOWN();
}
TEST(neon_3same_smaxp) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaa55555555, 0xffffffff0000aa55);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Smaxp(v16.V8B(), v0.V8B(), v1.V8B());
__ Smaxp(v18.V4H(), v0.V4H(), v1.V4H());
__ Smaxp(v20.V2S(), v0.V2S(), v1.V2S());
__ Smaxp(v17.V16B(), v0.V16B(), v1.V16B());
__ Smaxp(v19.V8H(), v0.V8H(), v1.V8H());
__ Smaxp(v21.V4S(), v0.V4S(), v1.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x0000ff55ffff0055, q16);
ASSERT_EQUAL_128(0x0, 0x000055ffffff0000, q18);
ASSERT_EQUAL_128(0x0, 0x000000000000aa55, q20);
ASSERT_EQUAL_128(0x5555aaaa0000ff55, 0xaaaa5555ffff0055, q17);
ASSERT_EQUAL_128(0x55aaaaaa000055ff, 0xaaaa5555ffff0000, q19);
ASSERT_EQUAL_128(0x55aa555500000000, 0x555555550000aa55, q21);
TEARDOWN();
}
TEST(neon_addp_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Addp(d16, v0.V2D());
__ Addp(d17, v1.V2D());
__ Addp(d18, v2.V2D());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x00224466ef66fa80, q16);
ASSERT_EQUAL_128(0x0, 0x55aa5556aa5500a9, q17);
ASSERT_EQUAL_128(0x0, 0xaaaaaaa96655ff55, q18);
TEARDOWN();
}
TEST(neon_acrosslanes_addv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Addv(b16, v0.V8B());
__ Addv(b17, v0.V16B());
__ Addv(h18, v1.V4H());
__ Addv(h19, v1.V8H());
__ Addv(s20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xc7, q16);
ASSERT_EQUAL_128(0x0, 0x99, q17);
ASSERT_EQUAL_128(0x0, 0x55a9, q18);
ASSERT_EQUAL_128(0x0, 0x55fc, q19);
ASSERT_EQUAL_128(0x0, 0x1100a9fe, q20);
TEARDOWN();
}
TEST(neon_acrosslanes_saddlv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Saddlv(h16, v0.V8B());
__ Saddlv(h17, v0.V16B());
__ Saddlv(s18, v1.V4H());
__ Saddlv(s19, v1.V8H());
__ Saddlv(d20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xffc7, q16);
ASSERT_EQUAL_128(0x0, 0xff99, q17);
ASSERT_EQUAL_128(0x0, 0x000055a9, q18);
ASSERT_EQUAL_128(0x0, 0x000055fc, q19);
ASSERT_EQUAL_128(0x0, 0x0000001100a9fe, q20);
TEARDOWN();
}
TEST(neon_acrosslanes_uaddlv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Uaddlv(h16, v0.V8B());
__ Uaddlv(h17, v0.V16B());
__ Uaddlv(s18, v1.V4H());
__ Uaddlv(s19, v1.V8H());
__ Uaddlv(d20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x02c7, q16);
ASSERT_EQUAL_128(0x0, 0x0599, q17);
ASSERT_EQUAL_128(0x0, 0x000155a9, q18);
ASSERT_EQUAL_128(0x0, 0x000355fc, q19);
ASSERT_EQUAL_128(0x0, 0x000000021100a9fe, q20);
TEARDOWN();
}
TEST(neon_acrosslanes_smaxv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Smaxv(b16, v0.V8B());
__ Smaxv(b17, v0.V16B());
__ Smaxv(h18, v1.V4H());
__ Smaxv(h19, v1.V8H());
__ Smaxv(s20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x33, q16);
ASSERT_EQUAL_128(0x0, 0x44, q17);
ASSERT_EQUAL_128(0x0, 0x55ff, q18);
ASSERT_EQUAL_128(0x0, 0x55ff, q19);
ASSERT_EQUAL_128(0x0, 0x66555555, q20);
TEARDOWN();
}
TEST(neon_acrosslanes_sminv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0xfffa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Sminv(b16, v0.V8B());
__ Sminv(b17, v0.V16B());
__ Sminv(h18, v1.V4H());
__ Sminv(h19, v1.V8H());
__ Sminv(s20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xaa, q16);
ASSERT_EQUAL_128(0x0, 0x80, q17);
ASSERT_EQUAL_128(0x0, 0xffaa, q18);
ASSERT_EQUAL_128(0x0, 0xaaaa, q19);
ASSERT_EQUAL_128(0x0, 0xaaaaaaaa, q20);
TEARDOWN();
}
TEST(neon_acrosslanes_umaxv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x00112233aabbfc00);
__ Movi(v1.V2D(), 0x55aa5555aaaaffab, 0x00000000ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Umaxv(b16, v0.V8B());
__ Umaxv(b17, v0.V16B());
__ Umaxv(h18, v1.V4H());
__ Umaxv(h19, v1.V8H());
__ Umaxv(s20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xfc, q16);
ASSERT_EQUAL_128(0x0, 0xfe, q17);
ASSERT_EQUAL_128(0x0, 0xffaa, q18);
ASSERT_EQUAL_128(0x0, 0xffab, q19);
ASSERT_EQUAL_128(0x0, 0xffffffff, q20);
TEARDOWN();
}
TEST(neon_acrosslanes_uminv) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344aafe80, 0x02112233aabbfc01);
__ Movi(v1.V2D(), 0xfffa5555aaaa0000, 0x00010003ffaa55ff);
__ Movi(v2.V2D(), 0xaaaaaaaa66555555, 0xffffffff0000aa00);
__ Uminv(b16, v0.V8B());
__ Uminv(b17, v0.V16B());
__ Uminv(h18, v1.V4H());
__ Uminv(h19, v1.V8H());
__ Uminv(s20, v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x01, q16);
ASSERT_EQUAL_128(0x0, 0x00, q17);
ASSERT_EQUAL_128(0x0, 0x0001, q18);
ASSERT_EQUAL_128(0x0, 0x0000, q19);
ASSERT_EQUAL_128(0x0, 0x0000aa00, q20);
TEARDOWN();
}
TEST(neon_3same_smin) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaa55555555, 0xffffffff0000aa55);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Smin(v16.V8B(), v0.V8B(), v1.V8B());
__ Smin(v18.V4H(), v0.V4H(), v1.V4H());
__ Smin(v20.V2S(), v0.V2S(), v1.V2S());
__ Smin(v17.V16B(), v0.V16B(), v1.V16B());
__ Smin(v19.V8H(), v0.V8H(), v1.V8H());
__ Smin(v21.V4S(), v0.V4S(), v1.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xffffffffffaaaaff, q16);
ASSERT_EQUAL_128(0x0, 0xffffffffffaaaa55, q18);
ASSERT_EQUAL_128(0x0, 0xffffffffffaa55ff, q20);
ASSERT_EQUAL_128(0xaaaaaaaaaaaaaaaa, 0xffffffffffaaaaff, q17);
ASSERT_EQUAL_128(0xaaaaaaaaaaaaaaaa, 0xffffffffffaaaa55, q19);
ASSERT_EQUAL_128(0xaaaaaaaaaaaaaaaa, 0xffffffffffaa55ff, q21);
TEARDOWN();
}
TEST(neon_3same_umax) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaa55555555, 0xffffffff0000aa55);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Umax(v16.V8B(), v0.V8B(), v1.V8B());
__ Umax(v18.V4H(), v0.V4H(), v1.V4H());
__ Umax(v20.V2S(), v0.V2S(), v1.V2S());
__ Umax(v17.V16B(), v0.V16B(), v1.V16B());
__ Umax(v19.V8H(), v0.V8H(), v1.V8H());
__ Umax(v21.V4S(), v0.V4S(), v1.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xffffffffffaaaaff, q16);
ASSERT_EQUAL_128(0x0, 0xffffffffffaaaa55, q18);
ASSERT_EQUAL_128(0x0, 0xffffffffffaa55ff, q20);
ASSERT_EQUAL_128(0xaaaaaaaaaaaaaaaa, 0xffffffffffaaaaff, q17);
ASSERT_EQUAL_128(0xaaaaaaaaaaaaaaaa, 0xffffffffffaaaa55, q19);
ASSERT_EQUAL_128(0xaaaaaaaaaaaaaaaa, 0xffffffffffaa55ff, q21);
TEARDOWN();
}
TEST(neon_3same_umin) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaa55555555, 0xffffffff0000aa55);
__ Movi(v1.V2D(), 0x55aa5555aaaaaaaa, 0x00000000ffaa55ff);
__ Umin(v16.V8B(), v0.V8B(), v1.V8B());
__ Umin(v18.V4H(), v0.V4H(), v1.V4H());
__ Umin(v20.V2S(), v0.V2S(), v1.V2S());
__ Umin(v17.V16B(), v0.V16B(), v1.V16B());
__ Umin(v19.V8H(), v0.V8H(), v1.V8H());
__ Umin(v21.V4S(), v0.V4S(), v1.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x0000000000005555, q16);
ASSERT_EQUAL_128(0x0, 0x00000000000055ff, q18);
ASSERT_EQUAL_128(0x0, 0x000000000000aa55, q20);
ASSERT_EQUAL_128(0x55aa555555555555, 0x0000000000005555, q17);
ASSERT_EQUAL_128(0x55aa555555555555, 0x00000000000055ff, q19);
ASSERT_EQUAL_128(0x55aa555555555555, 0x000000000000aa55, q21);
TEARDOWN();
}
TEST(neon_2regmisc_mvn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x00ff00ffff0055aa, 0x55aa55aa55aa55aa);
__ Mvn(v16.V16B(), v0.V16B());
__ Mvn(v17.V8H(), v0.V8H());
__ Mvn(v18.V4S(), v0.V4S());
__ Mvn(v19.V2D(), v0.V2D());
__ Mvn(v24.V8B(), v0.V8B());
__ Mvn(v25.V4H(), v0.V4H());
__ Mvn(v26.V2S(), v0.V2S());
END();
RUN();
ASSERT_EQUAL_128(0xff00ff0000ffaa55, 0xaa55aa55aa55aa55, q16);
ASSERT_EQUAL_128(0xff00ff0000ffaa55, 0xaa55aa55aa55aa55, q17);
ASSERT_EQUAL_128(0xff00ff0000ffaa55, 0xaa55aa55aa55aa55, q18);
ASSERT_EQUAL_128(0xff00ff0000ffaa55, 0xaa55aa55aa55aa55, q19);
ASSERT_EQUAL_128(0x0, 0xaa55aa55aa55aa55, q24);
ASSERT_EQUAL_128(0x0, 0xaa55aa55aa55aa55, q25);
ASSERT_EQUAL_128(0x0, 0xaa55aa55aa55aa55, q26);
TEARDOWN();
}
TEST(neon_2regmisc_not) {
SETUP();
START();
__ Movi(v0.V2D(), 0x00ff00ffff0055aa, 0x55aa55aa55aa55aa);
__ Movi(v1.V2D(), 0, 0x00ffff0000ffff00);
__ Not(v16.V16B(), v0.V16B());
__ Not(v17.V8B(), v1.V8B());
END();
RUN();
ASSERT_EQUAL_128(0xff00ff0000ffaa55, 0xaa55aa55aa55aa55, q16);
ASSERT_EQUAL_128(0x0, 0xff0000ffff0000ff, q17);
TEARDOWN();
}
TEST(neon_2regmisc_cls_clz_cnt) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Cls(v16.V8B() , v1.V8B());
__ Cls(v17.V16B(), v1.V16B());
__ Cls(v18.V4H() , v1.V4H());
__ Cls(v19.V8H() , v1.V8H());
__ Cls(v20.V2S() , v1.V2S());
__ Cls(v21.V4S() , v1.V4S());
__ Clz(v22.V8B() , v0.V8B());
__ Clz(v23.V16B(), v0.V16B());
__ Clz(v24.V4H() , v0.V4H());
__ Clz(v25.V8H() , v0.V8H());
__ Clz(v26.V2S() , v0.V2S());
__ Clz(v27.V4S() , v0.V4S());
__ Cnt(v28.V8B() , v0.V8B());
__ Cnt(v29.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x0601000000000102, q16);
ASSERT_EQUAL_128(0x0601000000000102, 0x0601000000000102, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x0006000000000001, q18);
ASSERT_EQUAL_128(0x0006000000000001, 0x0006000000000001, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000600000000, q20);
ASSERT_EQUAL_128(0x0000000600000000, 0x0000000600000000, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0x0404040404040404, q22);
ASSERT_EQUAL_128(0x0807060605050505, 0x0404040404040404, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0004000400040004, q24);
ASSERT_EQUAL_128(0x000f000600050005, 0x0004000400040004, q25);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000400000004, q26);
ASSERT_EQUAL_128(0x0000000f00000005, 0x0000000400000004, q27);
ASSERT_EQUAL_128(0x0000000000000000, 0x0102020302030304, q28);
ASSERT_EQUAL_128(0x0705050305030301, 0x0103030503050507, q29);
TEARDOWN();
}
TEST(neon_2regmisc_rev) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Rev16(v16.V8B() , v0.V8B());
__ Rev16(v17.V16B(), v0.V16B());
__ Rev32(v18.V8B() , v0.V8B());
__ Rev32(v19.V16B(), v0.V16B());
__ Rev32(v20.V4H() , v0.V4H());
__ Rev32(v21.V8H() , v0.V8H());
__ Rev64(v22.V8B() , v0.V8B());
__ Rev64(v23.V16B(), v0.V16B());
__ Rev64(v24.V4H() , v0.V4H());
__ Rev64(v25.V8H() , v0.V8H());
__ Rev64(v26.V2S() , v0.V2S());
__ Rev64(v27.V4S() , v0.V4S());
__ Rbit(v28.V8B() , v1.V8B());
__ Rbit(v29.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x09080b0a0d0c0f0e, q16);
ASSERT_EQUAL_128(0x0100030205040706, 0x09080b0a0d0c0f0e, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x0b0a09080f0e0d0c, q18);
ASSERT_EQUAL_128(0x0302010007060504, 0x0b0a09080f0e0d0c, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0a0b08090e0f0c0d, q20);
ASSERT_EQUAL_128(0x0203000106070405, 0x0a0b08090e0f0c0d, q21);
ASSERT_EQUAL_128(0x0000000000000000, 0x0f0e0d0c0b0a0908, q22);
ASSERT_EQUAL_128(0x0706050403020100, 0x0f0e0d0c0b0a0908, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x0e0f0c0d0a0b0809, q24);
ASSERT_EQUAL_128(0x0607040502030001, 0x0e0f0c0d0a0b0809, q25);
ASSERT_EQUAL_128(0x0000000000000000, 0x0c0d0e0f08090a0b, q26);
ASSERT_EQUAL_128(0x0405060700010203, 0x0c0d0e0f08090a0b, q27);
ASSERT_EQUAL_128(0x0000000000000000, 0x80c4a2e691d5b3f7, q28);
ASSERT_EQUAL_128(0x7f3b5d196e2a4c08, 0x80c4a2e691d5b3f7, q29);
TEARDOWN();
}
TEST(neon_sli) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v0.V2D());
__ Mov(v19.V2D(), v0.V2D());
__ Mov(v20.V2D(), v0.V2D());
__ Mov(v21.V2D(), v0.V2D());
__ Mov(v22.V2D(), v0.V2D());
__ Mov(v23.V2D(), v0.V2D());
__ Sli(v16.V8B(), v1.V8B(), 4);
__ Sli(v17.V16B(), v1.V16B(), 7);
__ Sli(v18.V4H(), v1.V4H(), 8);
__ Sli(v19.V8H(), v1.V8H(), 15);
__ Sli(v20.V2S(), v1.V2S(), 0);
__ Sli(v21.V4S(), v1.V4S(), 31);
__ Sli(v22.V2D(), v1.V2D(), 48);
__ Sli(d23, d1, 48);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x18395a7b9cbddeff, q16);
ASSERT_EQUAL_128(0x0001020304050607, 0x88898a8b8c8d8e8f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x2309670bab0def0f, q18);
ASSERT_EQUAL_128(0x0001020304050607, 0x88098a0b8c0d8e0f, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0123456789abcdef, q20);
ASSERT_EQUAL_128(0x0001020304050607, 0x88090a0b8c0d0e0f, q21);
ASSERT_EQUAL_128(0x3210020304050607, 0xcdef0a0b0c0d0e0f, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0xcdef0a0b0c0d0e0f, q23);
TEARDOWN();
}
TEST(neon_sri) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v0.V2D());
__ Mov(v19.V2D(), v0.V2D());
__ Mov(v20.V2D(), v0.V2D());
__ Mov(v21.V2D(), v0.V2D());
__ Mov(v22.V2D(), v0.V2D());
__ Mov(v23.V2D(), v0.V2D());
__ Sri(v16.V8B(), v1.V8B(), 4);
__ Sri(v17.V16B(), v1.V16B(), 7);
__ Sri(v18.V4H(), v1.V4H(), 8);
__ Sri(v19.V8H(), v1.V8H(), 15);
__ Sri(v20.V2S(), v1.V2S(), 1);
__ Sri(v21.V4S(), v1.V4S(), 31);
__ Sri(v22.V2D(), v1.V2D(), 48);
__ Sri(d23, d1, 48);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x00020406080a0c0e, q16);
ASSERT_EQUAL_128(0x0101030304040606, 0x08080a0a0d0d0f0f, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x08010a450c890ecd, q18);
ASSERT_EQUAL_128(0x0001020304040606, 0x08080a0a0c0d0e0f, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0091a2b344d5e6f7, q20);
ASSERT_EQUAL_128(0x0001020304050606, 0x08090a0a0c0d0e0f, q21);
ASSERT_EQUAL_128(0x000102030405fedc, 0x08090a0b0c0d0123, q22);
ASSERT_EQUAL_128(0x0000000000000000, 0x08090a0b0c0d0123, q23);
TEARDOWN();
}
TEST(neon_shrn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Shrn(v16.V8B(), v0.V8H(), 8);
__ Shrn2(v16.V16B(), v1.V8H(), 1);
__ Shrn(v17.V4H(), v1.V4S(), 16);
__ Shrn2(v17.V8H(), v2.V4S(), 1);
__ Shrn(v18.V2S(), v3.V2D(), 32);
__ Shrn2(v18.V4S(), v3.V2D(), 1);
END();
RUN();
ASSERT_EQUAL_128(0x0000ff00ff0000ff, 0x7f00817f80ff0180, q16);
ASSERT_EQUAL_128(0x0000ffff0000ffff, 0x8000ffffffff0001, q17);
ASSERT_EQUAL_128(0x00000000ffffffff, 0x800000007fffffff, q18);
TEARDOWN();
}
TEST(neon_rshrn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Rshrn(v16.V8B(), v0.V8H(), 8);
__ Rshrn2(v16.V16B(), v1.V8H(), 1);
__ Rshrn(v17.V4H(), v1.V4S(), 16);
__ Rshrn2(v17.V8H(), v2.V4S(), 1);
__ Rshrn(v18.V2S(), v3.V2D(), 32);
__ Rshrn2(v18.V4S(), v3.V2D(), 1);
END();
RUN();
ASSERT_EQUAL_128(0x0001000000000100, 0x7f01827f81ff0181, q16);
ASSERT_EQUAL_128(0x0000000000000000, 0x8001ffffffff0001, q17);
ASSERT_EQUAL_128(0x0000000100000000, 0x8000000080000000, q18);
TEARDOWN();
}
TEST(neon_uqshrn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Uqshrn(v16.V8B(), v0.V8H(), 8);
__ Uqshrn2(v16.V16B(), v1.V8H(), 1);
__ Uqshrn(v17.V4H(), v1.V4S(), 16);
__ Uqshrn2(v17.V8H(), v2.V4S(), 1);
__ Uqshrn(v18.V2S(), v3.V2D(), 32);
__ Uqshrn2(v18.V4S(), v3.V2D(), 1);
__ Uqshrn(b19, h0, 8);
__ Uqshrn(h20, s1, 16);
__ Uqshrn(s21, d3, 32);
END();
RUN();
ASSERT_EQUAL_128(0xffffff00ff0000ff, 0x7f00817f80ff0180, q16);
ASSERT_EQUAL_128(0xffffffff0000ffff, 0x8000ffffffff0001, q17);
ASSERT_EQUAL_128(0xffffffffffffffff, 0x800000007fffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000080, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000001, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q21);
TEARDOWN();
}
TEST(neon_uqrshrn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Uqrshrn(v16.V8B(), v0.V8H(), 8);
__ Uqrshrn2(v16.V16B(), v1.V8H(), 1);
__ Uqrshrn(v17.V4H(), v1.V4S(), 16);
__ Uqrshrn2(v17.V8H(), v2.V4S(), 1);
__ Uqrshrn(v18.V2S(), v3.V2D(), 32);
__ Uqrshrn2(v18.V4S(), v3.V2D(), 1);
__ Uqrshrn(b19, h0, 8);
__ Uqrshrn(h20, s1, 16);
__ Uqrshrn(s21, d3, 32);
END();
RUN();
ASSERT_EQUAL_128(0xffffff00ff0001ff, 0x7f01827f81ff0181, q16);
ASSERT_EQUAL_128(0xffffffff0000ffff, 0x8001ffffffff0001, q17);
ASSERT_EQUAL_128(0xffffffffffffffff, 0x8000000080000000, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000081, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000001, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080000000, q21);
TEARDOWN();
}
TEST(neon_sqshrn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqshrn(v16.V8B(), v0.V8H(), 8);
__ Sqshrn2(v16.V16B(), v1.V8H(), 1);
__ Sqshrn(v17.V4H(), v1.V4S(), 16);
__ Sqshrn2(v17.V8H(), v2.V4S(), 1);
__ Sqshrn(v18.V2S(), v3.V2D(), 32);
__ Sqshrn2(v18.V4S(), v3.V2D(), 1);
__ Sqshrn(b19, h0, 8);
__ Sqshrn(h20, s1, 16);
__ Sqshrn(s21, d3, 32);
END();
RUN();
ASSERT_EQUAL_128(0x8080ff00ff00007f, 0x7f00817f80ff0180, q16);
ASSERT_EQUAL_128(0x8000ffff00007fff, 0x8000ffffffff0001, q17);
ASSERT_EQUAL_128(0x800000007fffffff, 0x800000007fffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000080, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000001, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q21);
TEARDOWN();
}
TEST(neon_sqrshrn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqrshrn(v16.V8B(), v0.V8H(), 8);
__ Sqrshrn2(v16.V16B(), v1.V8H(), 1);
__ Sqrshrn(v17.V4H(), v1.V4S(), 16);
__ Sqrshrn2(v17.V8H(), v2.V4S(), 1);
__ Sqrshrn(v18.V2S(), v3.V2D(), 32);
__ Sqrshrn2(v18.V4S(), v3.V2D(), 1);
__ Sqrshrn(b19, h0, 8);
__ Sqrshrn(h20, s1, 16);
__ Sqrshrn(s21, d3, 32);
END();
RUN();
ASSERT_EQUAL_128(0x808000000000017f, 0x7f01827f81ff0181, q16);
ASSERT_EQUAL_128(0x8000000000007fff, 0x8001ffffffff0001, q17);
ASSERT_EQUAL_128(0x800000007fffffff, 0x800000007fffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000081, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000001, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q21);
TEARDOWN();
}
TEST(neon_sqshrun) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqshrun(v16.V8B(), v0.V8H(), 8);
__ Sqshrun2(v16.V16B(), v1.V8H(), 1);
__ Sqshrun(v17.V4H(), v1.V4S(), 16);
__ Sqshrun2(v17.V8H(), v2.V4S(), 1);
__ Sqshrun(v18.V2S(), v3.V2D(), 32);
__ Sqshrun2(v18.V4S(), v3.V2D(), 1);
__ Sqshrun(b19, h0, 8);
__ Sqshrun(h20, s1, 16);
__ Sqshrun(s21, d3, 32);
END();
RUN();
ASSERT_EQUAL_128(0x00000000000000ff, 0x7f00007f00000100, q16);
ASSERT_EQUAL_128(0x000000000000ffff, 0x0000000000000001, q17);
ASSERT_EQUAL_128(0x00000000ffffffff, 0x000000007fffffff, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000001, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q21);
TEARDOWN();
}
TEST(neon_sqrshrun) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Sqrshrun(v16.V8B(), v0.V8H(), 8);
__ Sqrshrun2(v16.V16B(), v1.V8H(), 1);
__ Sqrshrun(v17.V4H(), v1.V4S(), 16);
__ Sqrshrun2(v17.V8H(), v2.V4S(), 1);
__ Sqrshrun(v18.V2S(), v3.V2D(), 32);
__ Sqrshrun2(v18.V4S(), v3.V2D(), 1);
__ Sqrshrun(b19, h0, 8);
__ Sqrshrun(h20, s1, 16);
__ Sqrshrun(s21, d3, 32);
END();
RUN();
ASSERT_EQUAL_128(0x00000000000001ff, 0x7f01007f00000100, q16);
ASSERT_EQUAL_128(0x000000000000ffff, 0x0000000000000001, q17);
ASSERT_EQUAL_128(0x00000000ffffffff, 0x0000000080000000, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000001, q20);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080000000, q21);
TEARDOWN();
}
TEST(neon_modimm_bic) {
SETUP();
START();
__ Movi(v16.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v17.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v18.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v19.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v20.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v21.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v22.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v23.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v24.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v25.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v26.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v27.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Bic(v16.V4H(), 0x00, 0);
__ Bic(v17.V4H(), 0xff, 8);
__ Bic(v18.V8H(), 0x00, 0);
__ Bic(v19.V8H(), 0xff, 8);
__ Bic(v20.V2S(), 0x00, 0);
__ Bic(v21.V2S(), 0xff, 8);
__ Bic(v22.V2S(), 0x00, 16);
__ Bic(v23.V2S(), 0xff, 24);
__ Bic(v24.V4S(), 0xff, 0);
__ Bic(v25.V4S(), 0x00, 8);
__ Bic(v26.V4S(), 0xff, 16);
__ Bic(v27.V4S(), 0x00, 24);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x5555ffff0000aaaa, q16);
ASSERT_EQUAL_128(0x0, 0x005500ff000000aa, q17);
ASSERT_EQUAL_128(0x00aaff55ff0055aa, 0x5555ffff0000aaaa, q18);
ASSERT_EQUAL_128(0x00aa0055000000aa, 0x005500ff000000aa, q19);
ASSERT_EQUAL_128(0x0, 0x5555ffff0000aaaa, q20);
ASSERT_EQUAL_128(0x0, 0x555500ff000000aa, q21);
ASSERT_EQUAL_128(0x0, 0x5555ffff0000aaaa, q22);
ASSERT_EQUAL_128(0x0, 0x0055ffff0000aaaa, q23);
ASSERT_EQUAL_128(0x00aaff00ff005500, 0x5555ff000000aa00, q24);
ASSERT_EQUAL_128(0x00aaff55ff0055aa, 0x5555ffff0000aaaa, q25);
ASSERT_EQUAL_128(0x0000ff55ff0055aa, 0x5500ffff0000aaaa, q26);
ASSERT_EQUAL_128(0x00aaff55ff0055aa, 0x5555ffff0000aaaa, q27);
TEARDOWN();
}
TEST(neon_modimm_movi_16bit_any) {
SETUP();
START();
__ Movi(v0.V4H(), 0xabab);
__ Movi(v1.V4H(), 0xab00);
__ Movi(v2.V4H(), 0xabff);
__ Movi(v3.V8H(), 0x00ab);
__ Movi(v4.V8H(), 0xffab);
__ Movi(v5.V8H(), 0xabcd);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xabababababababab, q0);
ASSERT_EQUAL_128(0x0, 0xab00ab00ab00ab00, q1);
ASSERT_EQUAL_128(0x0, 0xabffabffabffabff, q2);
ASSERT_EQUAL_128(0x00ab00ab00ab00ab, 0x00ab00ab00ab00ab, q3);
ASSERT_EQUAL_128(0xffabffabffabffab, 0xffabffabffabffab, q4);
ASSERT_EQUAL_128(0xabcdabcdabcdabcd, 0xabcdabcdabcdabcd, q5);
TEARDOWN();
}
TEST(neon_modimm_movi_32bit_any) {
SETUP();
START();
__ Movi(v0.V2S(), 0x000000ab);
__ Movi(v1.V2S(), 0x0000ab00);
__ Movi(v2.V4S(), 0x00ab0000);
__ Movi(v3.V4S(), 0xab000000);
__ Movi(v4.V2S(), 0xffffffab);
__ Movi(v5.V2S(), 0xffffabff);
__ Movi(v6.V4S(), 0xffabffff);
__ Movi(v7.V4S(), 0xabffffff);
__ Movi(v16.V2S(), 0x0000abff);
__ Movi(v17.V2S(), 0x00abffff);
__ Movi(v18.V4S(), 0xffab0000);
__ Movi(v19.V4S(), 0xffffab00);
__ Movi(v20.V4S(), 0xabababab);
__ Movi(v21.V4S(), 0xabcdabcd);
__ Movi(v22.V4S(), 0xabcdef01);
__ Movi(v23.V4S(), 0x00ffff00);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x000000ab000000ab, q0);
ASSERT_EQUAL_128(0x0, 0x0000ab000000ab00, q1);
ASSERT_EQUAL_128(0x00ab000000ab0000, 0x00ab000000ab0000, q2);
ASSERT_EQUAL_128(0xab000000ab000000, 0xab000000ab000000, q3);
ASSERT_EQUAL_128(0x0, 0xffffffabffffffab, q4);
ASSERT_EQUAL_128(0x0, 0xffffabffffffabff, q5);
ASSERT_EQUAL_128(0xffabffffffabffff, 0xffabffffffabffff, q6);
ASSERT_EQUAL_128(0xabffffffabffffff, 0xabffffffabffffff, q7);
ASSERT_EQUAL_128(0x0, 0x0000abff0000abff, q16);
ASSERT_EQUAL_128(0x0, 0x00abffff00abffff, q17);
ASSERT_EQUAL_128(0xffab0000ffab0000, 0xffab0000ffab0000, q18);
ASSERT_EQUAL_128(0xffffab00ffffab00, 0xffffab00ffffab00, q19);
ASSERT_EQUAL_128(0xabababababababab, 0xabababababababab, q20);
ASSERT_EQUAL_128(0xabcdabcdabcdabcd, 0xabcdabcdabcdabcd, q21);
ASSERT_EQUAL_128(0xabcdef01abcdef01, 0xabcdef01abcdef01, q22);
ASSERT_EQUAL_128(0x00ffff0000ffff00, 0x00ffff0000ffff00, q23);
TEARDOWN();
}
TEST(neon_modimm_movi_64bit_any) {
SETUP();
START();
__ Movi(v0.V1D(), 0x00ffff0000ffffff);
__ Movi(v1.V2D(), 0xabababababababab);
__ Movi(v2.V2D(), 0xabcdabcdabcdabcd);
__ Movi(v3.V2D(), 0xabcdef01abcdef01);
__ Movi(v4.V1D(), 0xabcdef0123456789);
__ Movi(v5.V2D(), 0xabcdef0123456789);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x00ffff0000ffffff, q0);
ASSERT_EQUAL_128(0xabababababababab, 0xabababababababab, q1);
ASSERT_EQUAL_128(0xabcdabcdabcdabcd, 0xabcdabcdabcdabcd, q2);
ASSERT_EQUAL_128(0xabcdef01abcdef01, 0xabcdef01abcdef01, q3);
ASSERT_EQUAL_128(0x0, 0xabcdef0123456789, q4);
ASSERT_EQUAL_128(0xabcdef0123456789, 0xabcdef0123456789, q5);
TEARDOWN();
}
TEST(neon_modimm_movi) {
SETUP();
START();
__ Movi(v0.V8B(), 0xaa);
__ Movi(v1.V16B(), 0x55);
__ Movi(d2, 0x00ffff0000ffffff);
__ Movi(v3.V2D(), 0x00ffff0000ffffff);
__ Movi(v16.V4H(), 0x00, LSL, 0);
__ Movi(v17.V4H(), 0xff, LSL, 8);
__ Movi(v18.V8H(), 0x00, LSL, 0);
__ Movi(v19.V8H(), 0xff, LSL, 8);
__ Movi(v20.V2S(), 0x00, LSL, 0);
__ Movi(v21.V2S(), 0xff, LSL, 8);
__ Movi(v22.V2S(), 0x00, LSL, 16);
__ Movi(v23.V2S(), 0xff, LSL, 24);
__ Movi(v24.V4S(), 0xff, LSL, 0);
__ Movi(v25.V4S(), 0x00, LSL, 8);
__ Movi(v26.V4S(), 0xff, LSL, 16);
__ Movi(v27.V4S(), 0x00, LSL, 24);
__ Movi(v28.V2S(), 0xaa, MSL, 8);
__ Movi(v29.V2S(), 0x55, MSL, 16);
__ Movi(v30.V4S(), 0xff, MSL, 8);
__ Movi(v31.V4S(), 0x00, MSL, 16);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xaaaaaaaaaaaaaaaa, q0);
ASSERT_EQUAL_128(0x5555555555555555, 0x5555555555555555, q1);
ASSERT_EQUAL_128(0x0, 0x00ffff0000ffffff, q2);
ASSERT_EQUAL_128(0x00ffff0000ffffff, 0x00ffff0000ffffff, q3);
ASSERT_EQUAL_128(0x0, 0x0000000000000000, q16);
ASSERT_EQUAL_128(0x0, 0xff00ff00ff00ff00, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q18);
ASSERT_EQUAL_128(0xff00ff00ff00ff00, 0xff00ff00ff00ff00, q19);
ASSERT_EQUAL_128(0x0, 0x0000000000000000, q20);
ASSERT_EQUAL_128(0x0, 0x0000ff000000ff00, q21);
ASSERT_EQUAL_128(0x0, 0x0000000000000000, q22);
ASSERT_EQUAL_128(0x0, 0xff000000ff000000, q23);
ASSERT_EQUAL_128(0x000000ff000000ff, 0x000000ff000000ff, q24);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q25);
ASSERT_EQUAL_128(0x00ff000000ff0000, 0x00ff000000ff0000, q26);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000000000000, q27);
ASSERT_EQUAL_128(0x0, 0x0000aaff0000aaff, q28);
ASSERT_EQUAL_128(0x0, 0x0055ffff0055ffff, q29);
ASSERT_EQUAL_128(0x0000ffff0000ffff, 0x0000ffff0000ffff, q30);
ASSERT_EQUAL_128(0x0000ffff0000ffff, 0x0000ffff0000ffff, q31);
TEARDOWN();
}
TEST(neon_modimm_mvni) {
SETUP();
START();
__ Mvni(v16.V4H(), 0x00, LSL, 0);
__ Mvni(v17.V4H(), 0xff, LSL, 8);
__ Mvni(v18.V8H(), 0x00, LSL, 0);
__ Mvni(v19.V8H(), 0xff, LSL, 8);
__ Mvni(v20.V2S(), 0x00, LSL, 0);
__ Mvni(v21.V2S(), 0xff, LSL, 8);
__ Mvni(v22.V2S(), 0x00, LSL, 16);
__ Mvni(v23.V2S(), 0xff, LSL, 24);
__ Mvni(v24.V4S(), 0xff, LSL, 0);
__ Mvni(v25.V4S(), 0x00, LSL, 8);
__ Mvni(v26.V4S(), 0xff, LSL, 16);
__ Mvni(v27.V4S(), 0x00, LSL, 24);
__ Mvni(v28.V2S(), 0xaa, MSL, 8);
__ Mvni(v29.V2S(), 0x55, MSL, 16);
__ Mvni(v30.V4S(), 0xff, MSL, 8);
__ Mvni(v31.V4S(), 0x00, MSL, 16);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0xffffffffffffffff, q16);
ASSERT_EQUAL_128(0x0, 0x00ff00ff00ff00ff, q17);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q18);
ASSERT_EQUAL_128(0x00ff00ff00ff00ff, 0x00ff00ff00ff00ff, q19);
ASSERT_EQUAL_128(0x0, 0xffffffffffffffff, q20);
ASSERT_EQUAL_128(0x0, 0xffff00ffffff00ff, q21);
ASSERT_EQUAL_128(0x0, 0xffffffffffffffff, q22);
ASSERT_EQUAL_128(0x0, 0x00ffffff00ffffff, q23);
ASSERT_EQUAL_128(0xffffff00ffffff00, 0xffffff00ffffff00, q24);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q25);
ASSERT_EQUAL_128(0xff00ffffff00ffff, 0xff00ffffff00ffff, q26);
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q27);
ASSERT_EQUAL_128(0x0, 0xffff5500ffff5500, q28);
ASSERT_EQUAL_128(0x0, 0xffaa0000ffaa0000, q29);
ASSERT_EQUAL_128(0xffff0000ffff0000, 0xffff0000ffff0000, q30);
ASSERT_EQUAL_128(0xffff0000ffff0000, 0xffff0000ffff0000, q31);
TEARDOWN();
}
TEST(neon_modimm_orr) {
SETUP();
START();
__ Movi(v16.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v17.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v18.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v19.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v20.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v21.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v22.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v23.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v24.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v25.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v26.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Movi(v27.V2D(), 0x00aaff55ff0055aa, 0x5555ffff0000aaaa);
__ Orr(v16.V4H(), 0x00, 0);
__ Orr(v17.V4H(), 0xff, 8);
__ Orr(v18.V8H(), 0x00, 0);
__ Orr(v19.V8H(), 0xff, 8);
__ Orr(v20.V2S(), 0x00, 0);
__ Orr(v21.V2S(), 0xff, 8);
__ Orr(v22.V2S(), 0x00, 16);
__ Orr(v23.V2S(), 0xff, 24);
__ Orr(v24.V4S(), 0xff, 0);
__ Orr(v25.V4S(), 0x00, 8);
__ Orr(v26.V4S(), 0xff, 16);
__ Orr(v27.V4S(), 0x00, 24);
END();
RUN();
ASSERT_EQUAL_128(0x0, 0x5555ffff0000aaaa, q16);
ASSERT_EQUAL_128(0x0, 0xff55ffffff00ffaa, q17);
ASSERT_EQUAL_128(0x00aaff55ff0055aa, 0x5555ffff0000aaaa, q18);
ASSERT_EQUAL_128(0xffaaff55ff00ffaa, 0xff55ffffff00ffaa, q19);
ASSERT_EQUAL_128(0x0, 0x5555ffff0000aaaa, q20);
ASSERT_EQUAL_128(0x0, 0x5555ffff0000ffaa, q21);
ASSERT_EQUAL_128(0x0, 0x5555ffff0000aaaa, q22);
ASSERT_EQUAL_128(0x0, 0xff55ffffff00aaaa, q23);
ASSERT_EQUAL_128(0x00aaffffff0055ff, 0x5555ffff0000aaff, q24);
ASSERT_EQUAL_128(0x00aaff55ff0055aa, 0x5555ffff0000aaaa, q25);
ASSERT_EQUAL_128(0x00ffff55ffff55aa, 0x55ffffff00ffaaaa, q26);
ASSERT_EQUAL_128(0x00aaff55ff0055aa, 0x5555ffff0000aaaa, q27);
TEARDOWN();
}
// TODO: add arbitrary values once load literal to Q registers is supported.
TEST(neon_modimm_fmov) {
SETUP();
// Immediates which can be encoded in the instructions.
const float kOne = 1.0f;
const float kPointFive = 0.5f;
const double kMinusThirteen = -13.0;
// Immediates which cannot be encoded in the instructions.
const float kNonImmFP32 = 255.0f;
const double kNonImmFP64 = 12.3456;
START();
__ Fmov(v11.V2S(), kOne);
__ Fmov(v12.V4S(), kPointFive);
__ Fmov(v22.V2D(), kMinusThirteen);
__ Fmov(v13.V2S(), kNonImmFP32);
__ Fmov(v14.V4S(), kNonImmFP32);
__ Fmov(v23.V2D(), kNonImmFP64);
__ Fmov(v1.V2S(), 0.0);
__ Fmov(v2.V4S(), 0.0);
__ Fmov(v3.V2D(), 0.0);
__ Fmov(v4.V2S(), kFP32PositiveInfinity);
__ Fmov(v5.V4S(), kFP32PositiveInfinity);
__ Fmov(v6.V2D(), kFP64PositiveInfinity);
END();
RUN();
const uint64_t kOne1S = float_to_rawbits(1.0);
const uint64_t kOne2S = (kOne1S << 32) | kOne1S;
const uint64_t kPointFive1S = float_to_rawbits(0.5);
const uint64_t kPointFive2S = (kPointFive1S << 32) | kPointFive1S;
const uint64_t kMinusThirteen1D = double_to_rawbits(-13.0);
const uint64_t kNonImmFP321S = float_to_rawbits(kNonImmFP32);
const uint64_t kNonImmFP322S = (kNonImmFP321S << 32) | kNonImmFP321S;
const uint64_t kNonImmFP641D = double_to_rawbits(kNonImmFP64);
const uint64_t kFP32Inf1S = float_to_rawbits(kFP32PositiveInfinity);
const uint64_t kFP32Inf2S = (kFP32Inf1S << 32) | kFP32Inf1S;
const uint64_t kFP64Inf1D = double_to_rawbits(kFP64PositiveInfinity);
ASSERT_EQUAL_128(0x0, kOne2S, q11);
ASSERT_EQUAL_128(kPointFive2S, kPointFive2S, q12);
ASSERT_EQUAL_128(kMinusThirteen1D, kMinusThirteen1D, q22);
ASSERT_EQUAL_128(0x0, kNonImmFP322S, q13);
ASSERT_EQUAL_128(kNonImmFP322S, kNonImmFP322S, q14);
ASSERT_EQUAL_128(kNonImmFP641D, kNonImmFP641D, q23);
ASSERT_EQUAL_128(0x0, 0x0, q1);
ASSERT_EQUAL_128(0x0, 0x0, q2);
ASSERT_EQUAL_128(0x0, 0x0, q3);
ASSERT_EQUAL_128(0x0, kFP32Inf2S, q4);
ASSERT_EQUAL_128(kFP32Inf2S, kFP32Inf2S, q5);
ASSERT_EQUAL_128(kFP64Inf1D, kFP64Inf1D, q6);
TEARDOWN();
}
TEST(neon_perm) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0001020304050607, 0x08090a0b0c0d0e0f);
__ Movi(v1.V2D(), 0x1011121314151617, 0x18191a1b1c1d1e1f);
__ Trn1(v16.V16B(), v0.V16B(), v1.V16B());
__ Trn2(v17.V16B(), v0.V16B(), v1.V16B());
__ Zip1(v18.V16B(), v0.V16B(), v1.V16B());
__ Zip2(v19.V16B(), v0.V16B(), v1.V16B());
__ Uzp1(v20.V16B(), v0.V16B(), v1.V16B());
__ Uzp2(v21.V16B(), v0.V16B(), v1.V16B());
END();
RUN();
ASSERT_EQUAL_128(0x1101130315051707, 0x19091b0b1d0d1f0f, q16);
ASSERT_EQUAL_128(0x1000120214041606, 0x18081a0a1c0c1e0e, q17);
ASSERT_EQUAL_128(0x180819091a0a1b0b, 0x1c0c1d0d1e0e1f0f, q18);
ASSERT_EQUAL_128(0x1000110112021303, 0x1404150516061707, q19);
ASSERT_EQUAL_128(0x11131517191b1d1f, 0x01030507090b0d0f, q20);
ASSERT_EQUAL_128(0x10121416181a1c1e, 0x00020406080a0c0e, q21);
TEARDOWN();
}
TEST(neon_copy_dup_element) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v1.V2D(), 0xffeddccbbaae9988, 0x7766554433221100);
__ Movi(v2.V2D(), 0xffeddccbbaae9988, 0x0011223344556677);
__ Movi(v3.V2D(), 0x7766554433221100, 0x8899aabbccddeeff);
__ Movi(v4.V2D(), 0x7766554433221100, 0x0123456789abcdef);
__ Movi(v5.V2D(), 0x0011223344556677, 0x0123456789abcdef);
__ Dup(v16.V16B(), v0.B(), 0);
__ Dup(v17.V8H(), v1.H(), 7);
__ Dup(v18.V4S(), v1.S(), 3);
__ Dup(v19.V2D(), v0.D(), 0);
__ Dup(v20.V8B(), v0.B(), 0);
__ Dup(v21.V4H(), v1.H(), 7);
__ Dup(v22.V2S(), v1.S(), 3);
__ Dup(v23.B(), v0.B(), 0);
__ Dup(v24.H(), v1.H(), 7);
__ Dup(v25.S(), v1.S(), 3);
__ Dup(v26.D(), v0.D(), 0);
__ Dup(v2.V16B(), v2.B(), 0);
__ Dup(v3.V8H(), v3.H(), 7);
__ Dup(v4.V4S(), v4.S(), 0);
__ Dup(v5.V2D(), v5.D(), 1);
END();
RUN();
ASSERT_EQUAL_128(0xffffffffffffffff, 0xffffffffffffffff, q16);
ASSERT_EQUAL_128(0xffedffedffedffed, 0xffedffedffedffed, q17);
ASSERT_EQUAL_128(0xffeddccbffeddccb, 0xffeddccbffeddccb, q18);
ASSERT_EQUAL_128(0x8899aabbccddeeff, 0x8899aabbccddeeff, q19);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q20);
ASSERT_EQUAL_128(0, 0xffedffedffedffed, q21);
ASSERT_EQUAL_128(0, 0xffeddccbffeddccb, q22);
ASSERT_EQUAL_128(0, 0x00000000000000ff, q23);
ASSERT_EQUAL_128(0, 0x000000000000ffed, q24);
ASSERT_EQUAL_128(0, 0x00000000ffeddccb, q25);
ASSERT_EQUAL_128(0, 0x8899aabbccddeeff, q26);
ASSERT_EQUAL_128(0x7777777777777777, 0x7777777777777777, q2);
ASSERT_EQUAL_128(0x7766776677667766, 0x7766776677667766, q3);
ASSERT_EQUAL_128(0x89abcdef89abcdef, 0x89abcdef89abcdef, q4);
ASSERT_EQUAL_128(0x0011223344556677, 0x0011223344556677, q5);
TEARDOWN();
}
TEST(neon_copy_dup_general) {
SETUP();
START();
__ Mov(x0, 0x0011223344556677);
__ Dup(v16.V16B(), w0);
__ Dup(v17.V8H(), w0);
__ Dup(v18.V4S(), w0);
__ Dup(v19.V2D(), x0);
__ Dup(v20.V8B(), w0);
__ Dup(v21.V4H(), w0);
__ Dup(v22.V2S(), w0);
__ Dup(v2.V16B(), wzr);
__ Dup(v3.V8H(), wzr);
__ Dup(v4.V4S(), wzr);
__ Dup(v5.V2D(), xzr);
END();
RUN();
ASSERT_EQUAL_128(0x7777777777777777, 0x7777777777777777, q16);
ASSERT_EQUAL_128(0x6677667766776677, 0x6677667766776677, q17);
ASSERT_EQUAL_128(0x4455667744556677, 0x4455667744556677, q18);
ASSERT_EQUAL_128(0x0011223344556677, 0x0011223344556677, q19);
ASSERT_EQUAL_128(0, 0x7777777777777777, q20);
ASSERT_EQUAL_128(0, 0x6677667766776677, q21);
ASSERT_EQUAL_128(0, 0x4455667744556677, q22);
ASSERT_EQUAL_128(0, 0, q2);
ASSERT_EQUAL_128(0, 0, q3);
ASSERT_EQUAL_128(0, 0, q4);
ASSERT_EQUAL_128(0, 0, q5);
TEARDOWN();
}
TEST(neon_copy_ins_element) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v1.V2D(), 0xffeddccbbaae9988, 0x7766554433221100);
__ Movi(v16.V2D(), 0x0123456789abcdef, 0xfedcba9876543210);
__ Movi(v17.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Movi(v18.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v19.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v2.V2D(), 0, 0x0011223344556677);
__ Movi(v3.V2D(), 0, 0x8899aabbccddeeff);
__ Movi(v4.V2D(), 0, 0x0123456789abcdef);
__ Movi(v5.V2D(), 0, 0x0123456789abcdef);
__ Ins(v16.V16B(), 15, v0.V16B(), 0);
__ Ins(v17.V8H(), 0, v1.V8H(), 7);
__ Ins(v18.V4S(), 3, v1.V4S(), 0);
__ Ins(v19.V2D(), 1, v0.V2D(), 0);
__ Ins(v2.V16B(), 2, v2.V16B(), 0);
__ Ins(v3.V8H(), 0, v3.V8H(), 7);
__ Ins(v4.V4S(), 3, v4.V4S(), 0);
__ Ins(v5.V2D(), 0, v5.V2D(), 1);
END();
RUN();
ASSERT_EQUAL_128(0xff23456789abcdef, 0xfedcba9876543210, q16);
ASSERT_EQUAL_128(0xfedcba9876543210, 0x0123456789abffed, q17);
ASSERT_EQUAL_128(0x3322110044556677, 0x8899aabbccddeeff, q18);
ASSERT_EQUAL_128(0x8899aabbccddeeff, 0x8899aabbccddeeff, q19);
ASSERT_EQUAL_128(0, 0x0011223344776677, q2);
ASSERT_EQUAL_128(0, 0x8899aabbccdd0000, q3);
ASSERT_EQUAL_128(0x89abcdef00000000, 0x0123456789abcdef, q4);
ASSERT_EQUAL_128(0, 0, q5);
TEARDOWN();
}
TEST(neon_copy_mov_element) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v1.V2D(), 0xffeddccbbaae9988, 0x7766554433221100);
__ Movi(v16.V2D(), 0x0123456789abcdef, 0xfedcba9876543210);
__ Movi(v17.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Movi(v18.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v19.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v2.V2D(), 0, 0x0011223344556677);
__ Movi(v3.V2D(), 0, 0x8899aabbccddeeff);
__ Movi(v4.V2D(), 0, 0x0123456789abcdef);
__ Movi(v5.V2D(), 0, 0x0123456789abcdef);
__ Mov(v16.V16B(), 15, v0.V16B(), 0);
__ Mov(v17.V8H(), 0, v1.V8H(), 7);
__ Mov(v18.V4S(), 3, v1.V4S(), 0);
__ Mov(v19.V2D(), 1, v0.V2D(), 0);
__ Mov(v2.V16B(), 2, v2.V16B(), 0);
__ Mov(v3.V8H(), 0, v3.V8H(), 7);
__ Mov(v4.V4S(), 3, v4.V4S(), 0);
__ Mov(v5.V2D(), 0, v5.V2D(), 1);
END();
RUN();
ASSERT_EQUAL_128(0xff23456789abcdef, 0xfedcba9876543210, q16);
ASSERT_EQUAL_128(0xfedcba9876543210, 0x0123456789abffed, q17);
ASSERT_EQUAL_128(0x3322110044556677, 0x8899aabbccddeeff, q18);
ASSERT_EQUAL_128(0x8899aabbccddeeff, 0x8899aabbccddeeff, q19);
ASSERT_EQUAL_128(0, 0x0011223344776677, q2);
ASSERT_EQUAL_128(0, 0x8899aabbccdd0000, q3);
ASSERT_EQUAL_128(0x89abcdef00000000, 0x0123456789abcdef, q4);
ASSERT_EQUAL_128(0, 0, q5);
TEARDOWN();
}
TEST(neon_copy_smov) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0123456789abcdef, 0xfedcba9876543210);
__ Smov(w0, v0.B(), 7);
__ Smov(w1, v0.B(), 15);
__ Smov(w2, v0.H(), 0);
__ Smov(w3, v0.H(), 3);
__ Smov(x4, v0.B(), 7);
__ Smov(x5, v0.B(), 15);
__ Smov(x6, v0.H(), 0);
__ Smov(x7, v0.H(), 3);
__ Smov(x16, v0.S(), 0);
__ Smov(x17, v0.S(), 1);
END();
RUN();
ASSERT_EQUAL_32(0xfffffffe, w0);
ASSERT_EQUAL_32(0x00000001, w1);
ASSERT_EQUAL_32(0x00003210, w2);
ASSERT_EQUAL_32(0xfffffedc, w3);
ASSERT_EQUAL_64(0xfffffffffffffffe, x4);
ASSERT_EQUAL_64(0x0000000000000001, x5);
ASSERT_EQUAL_64(0x0000000000003210, x6);
ASSERT_EQUAL_64(0xfffffffffffffedc, x7);
ASSERT_EQUAL_64(0x0000000076543210, x16);
ASSERT_EQUAL_64(0xfffffffffedcba98, x17);
TEARDOWN();
}
TEST(neon_copy_umov_mov) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0123456789abcdef, 0xfedcba9876543210);
__ Umov(w0, v0.B(), 15);
__ Umov(w1, v0.H(), 0);
__ Umov(w2, v0.S(), 3);
__ Umov(x3, v0.D(), 1);
__ Mov(w4, v0.S(), 3);
__ Mov(x5, v0.D(), 1);
END();
RUN();
ASSERT_EQUAL_32(0x00000001, w0);
ASSERT_EQUAL_32(0x00003210, w1);
ASSERT_EQUAL_32(0x01234567, w2);
ASSERT_EQUAL_64(0x0123456789abcdef, x3);
ASSERT_EQUAL_32(0x01234567, w4);
ASSERT_EQUAL_64(0x0123456789abcdef, x5);
TEARDOWN();
}
TEST(neon_copy_ins_general) {
SETUP();
START();
__ Mov(x0, 0x0011223344556677);
__ Movi(v16.V2D(), 0x0123456789abcdef, 0xfedcba9876543210);
__ Movi(v17.V2D(), 0xfedcba9876543210, 0x0123456789abcdef);
__ Movi(v18.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v19.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v2.V2D(), 0, 0x0011223344556677);
__ Movi(v3.V2D(), 0, 0x8899aabbccddeeff);
__ Movi(v4.V2D(), 0, 0x0123456789abcdef);
__ Movi(v5.V2D(), 0, 0x0123456789abcdef);
__ Ins(v16.V16B(), 15, w0);
__ Ins(v17.V8H(), 0, w0);
__ Ins(v18.V4S(), 3, w0);
__ Ins(v19.V2D(), 0, x0);
__ Ins(v2.V16B(), 2, w0);
__ Ins(v3.V8H(), 0, w0);
__ Ins(v4.V4S(), 3, w0);
__ Ins(v5.V2D(), 1, x0);
END();
RUN();
ASSERT_EQUAL_128(0x7723456789abcdef, 0xfedcba9876543210, q16);
ASSERT_EQUAL_128(0xfedcba9876543210, 0x0123456789ab6677, q17);
ASSERT_EQUAL_128(0x4455667744556677, 0x8899aabbccddeeff, q18);
ASSERT_EQUAL_128(0x0011223344556677, 0x0011223344556677, q19);
ASSERT_EQUAL_128(0, 0x0011223344776677, q2);
ASSERT_EQUAL_128(0, 0x8899aabbccdd6677, q3);
ASSERT_EQUAL_128(0x4455667700000000, 0x0123456789abcdef, q4);
ASSERT_EQUAL_128(0x0011223344556677, 0x0123456789abcdef, q5);
TEARDOWN();
}
TEST(neon_extract_ext) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0011223344556677, 0x8899aabbccddeeff);
__ Movi(v1.V2D(), 0xffeddccbbaae9988, 0x7766554433221100);
__ Movi(v2.V2D(), 0, 0x0011223344556677);
__ Movi(v3.V2D(), 0, 0x8899aabbccddeeff);
__ Ext(v16.V16B(), v0.V16B(), v1.V16B(), 0);
__ Ext(v17.V16B(), v0.V16B(), v1.V16B(), 15);
__ Ext(v1.V16B(), v0.V16B(), v1.V16B(), 8); // Dest is same as one Src
__ Ext(v0.V16B(), v0.V16B(), v0.V16B(), 8); // All reg are the same
__ Ext(v18.V8B(), v2.V8B(), v3.V8B(), 0);
__ Ext(v19.V8B(), v2.V8B(), v3.V8B(), 7);
__ Ext(v2.V8B(), v2.V8B(), v3.V8B(), 4); // Dest is same as one Src
__ Ext(v3.V8B(), v3.V8B(), v3.V8B(), 4); // All reg are the same
END();
RUN();
ASSERT_EQUAL_128(0x0011223344556677, 0x8899aabbccddeeff, q16);
ASSERT_EQUAL_128(0xeddccbbaae998877, 0x6655443322110000, q17);
ASSERT_EQUAL_128(0x7766554433221100, 0x0011223344556677, q1);
ASSERT_EQUAL_128(0x8899aabbccddeeff, 0x0011223344556677, q0);
ASSERT_EQUAL_128(0, 0x0011223344556677, q18);
ASSERT_EQUAL_128(0, 0x99aabbccddeeff00, q19);
ASSERT_EQUAL_128(0, 0xccddeeff00112233, q2);
ASSERT_EQUAL_128(0, 0xccddeeff8899aabb, q3);
TEARDOWN();
}
TEST(neon_3different_uaddl) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0000000000000000, 0x0000000000000000);
__ Movi(v1.V2D(), 0, 0x00010280810e0fff);
__ Movi(v2.V2D(), 0, 0x0101010101010101);
__ Movi(v3.V2D(), 0x0000000000000000, 0x0000000000000000);
__ Movi(v4.V2D(), 0x0000000000000000, 0x0000000000000000);
__ Movi(v5.V2D(), 0, 0x0000000180008001);
__ Movi(v6.V2D(), 0, 0x000e000ff000ffff);
__ Movi(v7.V2D(), 0, 0x0001000100010001);
__ Movi(v16.V2D(), 0x0000000000000000, 0x0000000000000000);
__ Movi(v17.V2D(), 0x0000000000000000, 0x0000000000000000);
__ Movi(v18.V2D(), 0, 0x0000000000000001);
__ Movi(v19.V2D(), 0, 0x80000001ffffffff);
__ Movi(v20.V2D(), 0, 0x0000000100000001);
__ Uaddl(v0.V8H(), v1.V8B(), v2.V8B());
__ Uaddl(v3.V4S(), v5.V4H(), v7.V4H());
__ Uaddl(v4.V4S(), v6.V4H(), v7.V4H());
__ Uaddl(v16.V2D(), v18.V2S(), v20.V2S());
__ Uaddl(v17.V2D(), v19.V2S(), v20.V2S());
END();
RUN();
ASSERT_EQUAL_128(0x0001000200030081, 0x0082000f00100100, q0);
ASSERT_EQUAL_128(0x0000000100000002, 0x0000800100008002, q3);
ASSERT_EQUAL_128(0x0000000f00000010, 0x0000f00100010000, q4);
ASSERT_EQUAL_128(0x0000000000000001, 0x0000000000000002, q16);
ASSERT_EQUAL_128(0x0000000080000002, 0x0000000100000000, q17);
TEARDOWN();
}
TEST(neon_3different_addhn_subhn) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Addhn(v16.V8B(), v0.V8H(), v1.V8H());
__ Addhn2(v16.V16B(), v2.V8H(), v3.V8H());
__ Raddhn(v17.V8B(), v0.V8H(), v1.V8H());
__ Raddhn2(v17.V16B(), v2.V8H(), v3.V8H());
__ Subhn(v18.V8B(), v0.V8H(), v1.V8H());
__ Subhn2(v18.V16B(), v2.V8H(), v3.V8H());
__ Rsubhn(v19.V8B(), v0.V8H(), v1.V8H());
__ Rsubhn2(v19.V16B(), v2.V8H(), v3.V8H());
END();
RUN();
ASSERT_EQUAL_128(0x0000ff007fff7fff, 0xff81817f80ff0100, q16);
ASSERT_EQUAL_128(0x0000000080008000, 0xff81817f81ff0201, q17);
ASSERT_EQUAL_128(0x0000ffff80008000, 0xff80817f80ff0100, q18);
ASSERT_EQUAL_128(0x0000000080008000, 0xff81827f81ff0101, q19);
TEARDOWN();
}
TEST(neon_d_only_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x1000000010001010);
__ Movi(v3.V2D(), 0xffffffffffffffff, 2);
__ Movi(v4.V2D(), 0xffffffffffffffff, -2);
__ Add(d16, d0, d0);
__ Add(d17, d1, d1);
__ Add(d18, d2, d2);
__ Sub(d19, d0, d0);
__ Sub(d20, d0, d1);
__ Sub(d21, d1, d0);
__ Ushl(d22, d0, d3);
__ Ushl(d23, d0, d4);
__ Sshl(d24, d0, d3);
__ Sshl(d25, d0, d4);
__ Ushr(d26, d0, 1);
__ Sshr(d27, d0, 3);
__ Shl(d28, d0, 0);
__ Shl(d29, d0, 16);
END();
RUN();
ASSERT_EQUAL_128(0, 0xe0000001e001e1e0, q16);
ASSERT_EQUAL_128(0, 0xfffffffefffefefe, q17);
ASSERT_EQUAL_128(0, 0x2000000020002020, q18);
ASSERT_EQUAL_128(0, 0, q19);
ASSERT_EQUAL_128(0, 0x7000000170017171, q20);
ASSERT_EQUAL_128(0, 0x8ffffffe8ffe8e8f, q21);
ASSERT_EQUAL_128(0, 0xc0000003c003c3c0, q22);
ASSERT_EQUAL_128(0, 0x3c0000003c003c3c, q23);
ASSERT_EQUAL_128(0, 0xc0000003c003c3c0, q24);
ASSERT_EQUAL_128(0, 0xfc0000003c003c3c, q25);
ASSERT_EQUAL_128(0, 0x7800000078007878, q26);
ASSERT_EQUAL_128(0, 0xfe0000001e001e1e, q27);
ASSERT_EQUAL_128(0, 0xf0000000f000f0f0, q28);
ASSERT_EQUAL_128(0, 0x0000f000f0f00000, q29);
TEARDOWN();
}
TEST(neon_sqshl_imm_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0, 0x7f);
__ Movi(v1.V2D(), 0x0, 0x80);
__ Movi(v2.V2D(), 0x0, 0x01);
__ Sqshl(b16, b0, 1);
__ Sqshl(b17, b1, 1);
__ Sqshl(b18, b2, 1);
__ Movi(v0.V2D(), 0x0, 0x7fff);
__ Movi(v1.V2D(), 0x0, 0x8000);
__ Movi(v2.V2D(), 0x0, 0x0001);
__ Sqshl(h19, h0, 1);
__ Sqshl(h20, h1, 1);
__ Sqshl(h21, h2, 1);
__ Movi(v0.V2D(), 0x0, 0x7fffffff);
__ Movi(v1.V2D(), 0x0, 0x80000000);
__ Movi(v2.V2D(), 0x0, 0x00000001);
__ Sqshl(s22, s0, 1);
__ Sqshl(s23, s1, 1);
__ Sqshl(s24, s2, 1);
__ Movi(v0.V2D(), 0x0, 0x7fffffffffffffff);
__ Movi(v1.V2D(), 0x0, 0x8000000000000000);
__ Movi(v2.V2D(), 0x0, 0x0000000000000001);
__ Sqshl(d25, d0, 1);
__ Sqshl(d26, d1, 1);
__ Sqshl(d27, d2, 1);
END();
RUN();
ASSERT_EQUAL_128(0, 0x7f, q16);
ASSERT_EQUAL_128(0, 0x80, q17);
ASSERT_EQUAL_128(0, 0x02, q18);
ASSERT_EQUAL_128(0, 0x7fff, q19);
ASSERT_EQUAL_128(0, 0x8000, q20);
ASSERT_EQUAL_128(0, 0x0002, q21);
ASSERT_EQUAL_128(0, 0x7fffffff, q22);
ASSERT_EQUAL_128(0, 0x80000000, q23);
ASSERT_EQUAL_128(0, 0x00000002, q24);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q25);
ASSERT_EQUAL_128(0, 0x8000000000000000, q26);
ASSERT_EQUAL_128(0, 0x0000000000000002, q27);
TEARDOWN();
}
TEST(neon_uqshl_imm_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0, 0x7f);
__ Movi(v1.V2D(), 0x0, 0x80);
__ Movi(v2.V2D(), 0x0, 0x01);
__ Uqshl(b16, b0, 1);
__ Uqshl(b17, b1, 1);
__ Uqshl(b18, b2, 1);
__ Movi(v0.V2D(), 0x0, 0x7fff);
__ Movi(v1.V2D(), 0x0, 0x8000);
__ Movi(v2.V2D(), 0x0, 0x0001);
__ Uqshl(h19, h0, 1);
__ Uqshl(h20, h1, 1);
__ Uqshl(h21, h2, 1);
__ Movi(v0.V2D(), 0x0, 0x7fffffff);
__ Movi(v1.V2D(), 0x0, 0x80000000);
__ Movi(v2.V2D(), 0x0, 0x00000001);
__ Uqshl(s22, s0, 1);
__ Uqshl(s23, s1, 1);
__ Uqshl(s24, s2, 1);
__ Movi(v0.V2D(), 0x0, 0x7fffffffffffffff);
__ Movi(v1.V2D(), 0x0, 0x8000000000000000);
__ Movi(v2.V2D(), 0x0, 0x0000000000000001);
__ Uqshl(d25, d0, 1);
__ Uqshl(d26, d1, 1);
__ Uqshl(d27, d2, 1);
END();
RUN();
ASSERT_EQUAL_128(0, 0xfe, q16);
ASSERT_EQUAL_128(0, 0xff, q17);
ASSERT_EQUAL_128(0, 0x02, q18);
ASSERT_EQUAL_128(0, 0xfffe, q19);
ASSERT_EQUAL_128(0, 0xffff, q20);
ASSERT_EQUAL_128(0, 0x0002, q21);
ASSERT_EQUAL_128(0, 0xfffffffe, q22);
ASSERT_EQUAL_128(0, 0xffffffff, q23);
ASSERT_EQUAL_128(0, 0x00000002, q24);
ASSERT_EQUAL_128(0, 0xfffffffffffffffe, q25);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q26);
ASSERT_EQUAL_128(0, 0x0000000000000002, q27);
TEARDOWN();
}
TEST(neon_sqshlu_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0x0, 0x7f);
__ Movi(v1.V2D(), 0x0, 0x80);
__ Movi(v2.V2D(), 0x0, 0x01);
__ Sqshlu(b16, b0, 2);
__ Sqshlu(b17, b1, 2);
__ Sqshlu(b18, b2, 2);
__ Movi(v0.V2D(), 0x0, 0x7fff);
__ Movi(v1.V2D(), 0x0, 0x8000);
__ Movi(v2.V2D(), 0x0, 0x0001);
__ Sqshlu(h19, h0, 2);
__ Sqshlu(h20, h1, 2);
__ Sqshlu(h21, h2, 2);
__ Movi(v0.V2D(), 0x0, 0x7fffffff);
__ Movi(v1.V2D(), 0x0, 0x80000000);
__ Movi(v2.V2D(), 0x0, 0x00000001);
__ Sqshlu(s22, s0, 2);
__ Sqshlu(s23, s1, 2);
__ Sqshlu(s24, s2, 2);
__ Movi(v0.V2D(), 0x0, 0x7fffffffffffffff);
__ Movi(v1.V2D(), 0x0, 0x8000000000000000);
__ Movi(v2.V2D(), 0x0, 0x0000000000000001);
__ Sqshlu(d25, d0, 2);
__ Sqshlu(d26, d1, 2);
__ Sqshlu(d27, d2, 2);
END();
RUN();
ASSERT_EQUAL_128(0, 0xff, q16);
ASSERT_EQUAL_128(0, 0x00, q17);
ASSERT_EQUAL_128(0, 0x04, q18);
ASSERT_EQUAL_128(0, 0xffff, q19);
ASSERT_EQUAL_128(0, 0x0000, q20);
ASSERT_EQUAL_128(0, 0x0004, q21);
ASSERT_EQUAL_128(0, 0xffffffff, q22);
ASSERT_EQUAL_128(0, 0x00000000, q23);
ASSERT_EQUAL_128(0, 0x00000004, q24);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q25);
ASSERT_EQUAL_128(0, 0x0000000000000000, q26);
ASSERT_EQUAL_128(0, 0x0000000000000004, q27);
TEARDOWN();
}
TEST(neon_sshll) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Sshll(v16.V8H(), v0.V8B(), 4);
__ Sshll2(v17.V8H(), v0.V16B(), 4);
__ Sshll(v18.V4S(), v1.V4H(), 8);
__ Sshll2(v19.V4S(), v1.V8H(), 8);
__ Sshll(v20.V2D(), v2.V2S(), 16);
__ Sshll2(v21.V2D(), v2.V4S(), 16);
END();
RUN();
ASSERT_EQUAL_128(0xf800f810fff00000, 0x001007f0f800f810, q16);
ASSERT_EQUAL_128(0x07f000100000fff0, 0xf810f80007f00010, q17);
ASSERT_EQUAL_128(0xffffff0000000000, 0x00000100007fff00, q18);
ASSERT_EQUAL_128(0xff800000ff800100, 0xffffff0000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x00007fffffff0000, q20);
ASSERT_EQUAL_128(0xffff800000000000, 0xffffffffffff0000, q21);
TEARDOWN();
}
TEST(neon_shll) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Shll(v16.V8H(), v0.V8B(), 8);
__ Shll2(v17.V8H(), v0.V16B(), 8);
__ Shll(v18.V4S(), v1.V4H(), 16);
__ Shll2(v19.V4S(), v1.V8H(), 16);
__ Shll(v20.V2D(), v2.V2S(), 32);
__ Shll2(v21.V2D(), v2.V4S(), 32);
END();
RUN();
ASSERT_EQUAL_128(0x80008100ff000000, 0x01007f0080008100, q16);
ASSERT_EQUAL_128(0x7f0001000000ff00, 0x810080007f000100, q17);
ASSERT_EQUAL_128(0xffff000000000000, 0x000100007fff0000, q18);
ASSERT_EQUAL_128(0x8000000080010000, 0xffff000000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x7fffffff00000000, q20);
ASSERT_EQUAL_128(0x8000000000000000, 0xffffffff00000000, q21);
TEARDOWN();
}
TEST(neon_ushll) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Ushll(v16.V8H(), v0.V8B(), 4);
__ Ushll2(v17.V8H(), v0.V16B(), 4);
__ Ushll(v18.V4S(), v1.V4H(), 8);
__ Ushll2(v19.V4S(), v1.V8H(), 8);
__ Ushll(v20.V2D(), v2.V2S(), 16);
__ Ushll2(v21.V2D(), v2.V4S(), 16);
END();
RUN();
ASSERT_EQUAL_128(0x080008100ff00000, 0x001007f008000810, q16);
ASSERT_EQUAL_128(0x07f0001000000ff0, 0x0810080007f00010, q17);
ASSERT_EQUAL_128(0x00ffff0000000000, 0x00000100007fff00, q18);
ASSERT_EQUAL_128(0x0080000000800100, 0x00ffff0000000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x00007fffffff0000, q20);
ASSERT_EQUAL_128(0x0000800000000000, 0x0000ffffffff0000, q21);
TEARDOWN();
}
TEST(neon_sxtl) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Sxtl(v16.V8H(), v0.V8B());
__ Sxtl2(v17.V8H(), v0.V16B());
__ Sxtl(v18.V4S(), v1.V4H());
__ Sxtl2(v19.V4S(), v1.V8H());
__ Sxtl(v20.V2D(), v2.V2S());
__ Sxtl2(v21.V2D(), v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0xff80ff81ffff0000, 0x0001007fff80ff81, q16);
ASSERT_EQUAL_128(0x007f00010000ffff, 0xff81ff80007f0001, q17);
ASSERT_EQUAL_128(0xffffffff00000000, 0x0000000100007fff, q18);
ASSERT_EQUAL_128(0xffff8000ffff8001, 0xffffffff00000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q20);
ASSERT_EQUAL_128(0xffffffff80000000, 0xffffffffffffffff, q21);
TEARDOWN();
}
TEST(neon_uxtl) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Uxtl(v16.V8H(), v0.V8B());
__ Uxtl2(v17.V8H(), v0.V16B());
__ Uxtl(v18.V4S(), v1.V4H());
__ Uxtl2(v19.V4S(), v1.V8H());
__ Uxtl(v20.V2D(), v2.V2S());
__ Uxtl2(v21.V2D(), v2.V4S());
END();
RUN();
ASSERT_EQUAL_128(0x0080008100ff0000, 0x0001007f00800081, q16);
ASSERT_EQUAL_128(0x007f0001000000ff, 0x00810080007f0001, q17);
ASSERT_EQUAL_128(0x0000ffff00000000, 0x0000000100007fff, q18);
ASSERT_EQUAL_128(0x0000800000008001, 0x0000ffff00000000, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x000000007fffffff, q20);
ASSERT_EQUAL_128(0x0000000080000000, 0x00000000ffffffff, q21);
TEARDOWN();
}
TEST(neon_ssra) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v1.V2D());
__ Mov(v19.V2D(), v1.V2D());
__ Mov(v20.V2D(), v2.V2D());
__ Mov(v21.V2D(), v2.V2D());
__ Mov(v22.V2D(), v3.V2D());
__ Mov(v23.V2D(), v4.V2D());
__ Mov(v24.V2D(), v3.V2D());
__ Mov(v25.V2D(), v4.V2D());
__ Ssra(v16.V8B(), v0.V8B(), 4);
__ Ssra(v17.V16B(), v0.V16B(), 4);
__ Ssra(v18.V4H(), v1.V4H(), 8);
__ Ssra(v19.V8H(), v1.V8H(), 8);
__ Ssra(v20.V2S(), v2.V2S(), 16);
__ Ssra(v21.V4S(), v2.V4S(), 16);
__ Ssra(v22.V2D(), v3.V2D(), 32);
__ Ssra(v23.V2D(), v4.V2D(), 32);
__ Ssra(d24, d3, 48);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x7879fe0001867879, q16);
ASSERT_EQUAL_128(0x860100fe79788601, 0x7879fe0001867879, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xfffe00000001807e, q18);
ASSERT_EQUAL_128(0x7f807f81fffe0000, 0xfffe00000001807e, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080007ffe, q20);
ASSERT_EQUAL_128(0x7fff8000fffffffe, 0x0000000080007ffe, q21);
ASSERT_EQUAL_128(0x7fffffff80000001, 0x800000007ffffffe, q22);
ASSERT_EQUAL_128(0x7fffffff80000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x8000000000007ffe, q24);
TEARDOWN();
}
TEST(neon_srsra) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v1.V2D());
__ Mov(v19.V2D(), v1.V2D());
__ Mov(v20.V2D(), v2.V2D());
__ Mov(v21.V2D(), v2.V2D());
__ Mov(v22.V2D(), v3.V2D());
__ Mov(v23.V2D(), v4.V2D());
__ Mov(v24.V2D(), v3.V2D());
__ Mov(v25.V2D(), v4.V2D());
__ Srsra(v16.V8B(), v0.V8B(), 4);
__ Srsra(v17.V16B(), v0.V16B(), 4);
__ Srsra(v18.V4H(), v1.V4H(), 8);
__ Srsra(v19.V8H(), v1.V8H(), 8);
__ Srsra(v20.V2S(), v2.V2S(), 16);
__ Srsra(v21.V4S(), v2.V4S(), 16);
__ Srsra(v22.V2D(), v3.V2D(), 32);
__ Srsra(v23.V2D(), v4.V2D(), 32);
__ Srsra(d24, d3, 48);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x7879ff0001877879, q16);
ASSERT_EQUAL_128(0x870100ff79788701, 0x7879ff0001877879, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0xffff00000001807f, q18);
ASSERT_EQUAL_128(0x7f807f81ffff0000, 0xffff00000001807f, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080007fff, q20);
ASSERT_EQUAL_128(0x7fff8000ffffffff, 0x0000000080007fff, q21);
ASSERT_EQUAL_128(0x7fffffff80000001, 0x800000007fffffff, q22);
ASSERT_EQUAL_128(0x7fffffff80000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x8000000000007fff, q24);
TEARDOWN();
}
TEST(neon_usra) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v1.V2D());
__ Mov(v19.V2D(), v1.V2D());
__ Mov(v20.V2D(), v2.V2D());
__ Mov(v21.V2D(), v2.V2D());
__ Mov(v22.V2D(), v3.V2D());
__ Mov(v23.V2D(), v4.V2D());
__ Mov(v24.V2D(), v3.V2D());
__ Mov(v25.V2D(), v4.V2D());
__ Usra(v16.V8B(), v0.V8B(), 4);
__ Usra(v17.V16B(), v0.V16B(), 4);
__ Usra(v18.V4H(), v1.V4H(), 8);
__ Usra(v19.V8H(), v1.V8H(), 8);
__ Usra(v20.V2S(), v2.V2S(), 16);
__ Usra(v21.V4S(), v2.V4S(), 16);
__ Usra(v22.V2D(), v3.V2D(), 32);
__ Usra(v23.V2D(), v4.V2D(), 32);
__ Usra(d24, d3, 48);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x88890e0001868889, q16);
ASSERT_EQUAL_128(0x8601000e89888601, 0x88890e0001868889, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00fe00000001807e, q18);
ASSERT_EQUAL_128(0x8080808100fe0000, 0x00fe00000001807e, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080007ffe, q20);
ASSERT_EQUAL_128(0x800080000000fffe, 0x0000000080007ffe, q21);
ASSERT_EQUAL_128(0x8000000080000001, 0x800000007ffffffe, q22);
ASSERT_EQUAL_128(0x8000000080000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x8000000000007ffe, q24);
TEARDOWN();
}
TEST(neon_ursra) {
SETUP();
START();
__ Movi(v0.V2D(), 0x7f0100ff81807f01, 0x8081ff00017f8081);
__ Movi(v1.V2D(), 0x80008001ffff0000, 0xffff000000017fff);
__ Movi(v2.V2D(), 0x80000000ffffffff, 0x000000007fffffff);
__ Movi(v3.V2D(), 0x8000000000000001, 0x7fffffffffffffff);
__ Movi(v4.V2D(), 0x8000000000000000, 0x0000000000000000);
__ Mov(v16.V2D(), v0.V2D());
__ Mov(v17.V2D(), v0.V2D());
__ Mov(v18.V2D(), v1.V2D());
__ Mov(v19.V2D(), v1.V2D());
__ Mov(v20.V2D(), v2.V2D());
__ Mov(v21.V2D(), v2.V2D());
__ Mov(v22.V2D(), v3.V2D());
__ Mov(v23.V2D(), v4.V2D());
__ Mov(v24.V2D(), v3.V2D());
__ Mov(v25.V2D(), v4.V2D());
__ Ursra(v16.V8B(), v0.V8B(), 4);
__ Ursra(v17.V16B(), v0.V16B(), 4);
__ Ursra(v18.V4H(), v1.V4H(), 8);
__ Ursra(v19.V8H(), v1.V8H(), 8);
__ Ursra(v20.V2S(), v2.V2S(), 16);
__ Ursra(v21.V4S(), v2.V4S(), 16);
__ Ursra(v22.V2D(), v3.V2D(), 32);
__ Ursra(v23.V2D(), v4.V2D(), 32);
__ Ursra(d24, d3, 48);
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x88890f0001878889, q16);
ASSERT_EQUAL_128(0x8701000f89888701, 0x88890f0001878889, q17);
ASSERT_EQUAL_128(0x0000000000000000, 0x00ff00000001807f, q18);
ASSERT_EQUAL_128(0x8080808100ff0000, 0x00ff00000001807f, q19);
ASSERT_EQUAL_128(0x0000000000000000, 0x0000000080007fff, q20);
ASSERT_EQUAL_128(0x800080000000ffff, 0x0000000080007fff, q21);
ASSERT_EQUAL_128(0x8000000080000001, 0x800000007fffffff, q22);
ASSERT_EQUAL_128(0x8000000080000000, 0x0000000000000000, q23);
ASSERT_EQUAL_128(0x0000000000000000, 0x8000000000007fff, q24);
TEARDOWN();
}
TEST(neon_uqshl_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x0000000000000001);
__ Movi(v3.V2D(), 0xaaaaaaaaaaaaaaaa, 0xffffffffffffffff);
__ Uqshl(b16, b0, b2);
__ Uqshl(b17, b0, b3);
__ Uqshl(b18, b1, b2);
__ Uqshl(b19, b1, b3);
__ Uqshl(h20, h0, h2);
__ Uqshl(h21, h0, h3);
__ Uqshl(h22, h1, h2);
__ Uqshl(h23, h1, h3);
__ Uqshl(s24, s0, s2);
__ Uqshl(s25, s0, s3);
__ Uqshl(s26, s1, s2);
__ Uqshl(s27, s1, s3);
__ Uqshl(d28, d0, d2);
__ Uqshl(d29, d0, d3);
__ Uqshl(d30, d1, d2);
__ Uqshl(d31, d1, d3);
END();
RUN();
ASSERT_EQUAL_128(0, 0xff, q16);
ASSERT_EQUAL_128(0, 0x78, q17);
ASSERT_EQUAL_128(0, 0xfe, q18);
ASSERT_EQUAL_128(0, 0x3f, q19);
ASSERT_EQUAL_128(0, 0xffff, q20);
ASSERT_EQUAL_128(0, 0x7878, q21);
ASSERT_EQUAL_128(0, 0xfefe, q22);
ASSERT_EQUAL_128(0, 0x3fbf, q23);
ASSERT_EQUAL_128(0, 0xffffffff, q24);
ASSERT_EQUAL_128(0, 0x78007878, q25);
ASSERT_EQUAL_128(0, 0xfffefefe, q26);
ASSERT_EQUAL_128(0, 0x3fffbfbf, q27);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q28);
ASSERT_EQUAL_128(0, 0x7800000078007878, q29);
ASSERT_EQUAL_128(0, 0xfffffffefffefefe, q30);
ASSERT_EQUAL_128(0, 0x3fffffffbfffbfbf, q31);
TEARDOWN();
}
TEST(neon_sqshl_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xbfffffffbfffbfbf);
__ Movi(v1.V2D(), 0x5555555555555555, 0x4000000040004040);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x0000000000000001);
__ Movi(v3.V2D(), 0xaaaaaaaaaaaaaaaa, 0xffffffffffffffff);
__ Sqshl(b16, b0, b2);
__ Sqshl(b17, b0, b3);
__ Sqshl(b18, b1, b2);
__ Sqshl(b19, b1, b3);
__ Sqshl(h20, h0, h2);
__ Sqshl(h21, h0, h3);
__ Sqshl(h22, h1, h2);
__ Sqshl(h23, h1, h3);
__ Sqshl(s24, s0, s2);
__ Sqshl(s25, s0, s3);
__ Sqshl(s26, s1, s2);
__ Sqshl(s27, s1, s3);
__ Sqshl(d28, d0, d2);
__ Sqshl(d29, d0, d3);
__ Sqshl(d30, d1, d2);
__ Sqshl(d31, d1, d3);
END();
RUN();
ASSERT_EQUAL_128(0, 0x80, q16);
ASSERT_EQUAL_128(0, 0xdf, q17);
ASSERT_EQUAL_128(0, 0x7f, q18);
ASSERT_EQUAL_128(0, 0x20, q19);
ASSERT_EQUAL_128(0, 0x8000, q20);
ASSERT_EQUAL_128(0, 0xdfdf, q21);
ASSERT_EQUAL_128(0, 0x7fff, q22);
ASSERT_EQUAL_128(0, 0x2020, q23);
ASSERT_EQUAL_128(0, 0x80000000, q24);
ASSERT_EQUAL_128(0, 0xdfffdfdf, q25);
ASSERT_EQUAL_128(0, 0x7fffffff, q26);
ASSERT_EQUAL_128(0, 0x20002020, q27);
ASSERT_EQUAL_128(0, 0x8000000000000000, q28);
ASSERT_EQUAL_128(0, 0xdfffffffdfffdfdf, q29);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q30);
ASSERT_EQUAL_128(0, 0x2000000020002020, q31);
TEARDOWN();
}
TEST(neon_urshl_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x0000000000000001);
__ Movi(v3.V2D(), 0xaaaaaaaaaaaaaaaa, 0xffffffffffffffff);
__ Urshl(d28, d0, d2);
__ Urshl(d29, d0, d3);
__ Urshl(d30, d1, d2);
__ Urshl(d31, d1, d3);
END();
RUN();
ASSERT_EQUAL_128(0, 0xe0000001e001e1e0, q28);
ASSERT_EQUAL_128(0, 0x7800000078007878, q29);
ASSERT_EQUAL_128(0, 0xfffffffefffefefe, q30);
ASSERT_EQUAL_128(0, 0x3fffffffbfffbfc0, q31);
TEARDOWN();
}
TEST(neon_srshl_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xbfffffffbfffbfbf);
__ Movi(v1.V2D(), 0x5555555555555555, 0x4000000040004040);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x0000000000000001);
__ Movi(v3.V2D(), 0xaaaaaaaaaaaaaaaa, 0xffffffffffffffff);
__ Srshl(d28, d0, d2);
__ Srshl(d29, d0, d3);
__ Srshl(d30, d1, d2);
__ Srshl(d31, d1, d3);
END();
RUN();
ASSERT_EQUAL_128(0, 0x7fffffff7fff7f7e, q28);
ASSERT_EQUAL_128(0, 0xdfffffffdfffdfe0, q29);
ASSERT_EQUAL_128(0, 0x8000000080008080, q30);
ASSERT_EQUAL_128(0, 0x2000000020002020, q31);
TEARDOWN();
}
TEST(neon_uqrshl_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x0000000000000001);
__ Movi(v3.V2D(), 0xaaaaaaaaaaaaaaaa, 0xffffffffffffffff);
__ Uqrshl(b16, b0, b2);
__ Uqrshl(b17, b0, b3);
__ Uqrshl(b18, b1, b2);
__ Uqrshl(b19, b1, b3);
__ Uqrshl(h20, h0, h2);
__ Uqrshl(h21, h0, h3);
__ Uqrshl(h22, h1, h2);
__ Uqrshl(h23, h1, h3);
__ Uqrshl(s24, s0, s2);
__ Uqrshl(s25, s0, s3);
__ Uqrshl(s26, s1, s2);
__ Uqrshl(s27, s1, s3);
__ Uqrshl(d28, d0, d2);
__ Uqrshl(d29, d0, d3);
__ Uqrshl(d30, d1, d2);
__ Uqrshl(d31, d1, d3);
END();
RUN();
ASSERT_EQUAL_128(0, 0xff, q16);
ASSERT_EQUAL_128(0, 0x78, q17);
ASSERT_EQUAL_128(0, 0xfe, q18);
ASSERT_EQUAL_128(0, 0x40, q19);
ASSERT_EQUAL_128(0, 0xffff, q20);
ASSERT_EQUAL_128(0, 0x7878, q21);
ASSERT_EQUAL_128(0, 0xfefe, q22);
ASSERT_EQUAL_128(0, 0x3fc0, q23);
ASSERT_EQUAL_128(0, 0xffffffff, q24);
ASSERT_EQUAL_128(0, 0x78007878, q25);
ASSERT_EQUAL_128(0, 0xfffefefe, q26);
ASSERT_EQUAL_128(0, 0x3fffbfc0, q27);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q28);
ASSERT_EQUAL_128(0, 0x7800000078007878, q29);
ASSERT_EQUAL_128(0, 0xfffffffefffefefe, q30);
ASSERT_EQUAL_128(0, 0x3fffffffbfffbfc0, q31);
TEARDOWN();
}
TEST(neon_sqrshl_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xbfffffffbfffbfbf);
__ Movi(v1.V2D(), 0x5555555555555555, 0x4000000040004040);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x0000000000000001);
__ Movi(v3.V2D(), 0xaaaaaaaaaaaaaaaa, 0xffffffffffffffff);
__ Sqrshl(b16, b0, b2);
__ Sqrshl(b17, b0, b3);
__ Sqrshl(b18, b1, b2);
__ Sqrshl(b19, b1, b3);
__ Sqrshl(h20, h0, h2);
__ Sqrshl(h21, h0, h3);
__ Sqrshl(h22, h1, h2);
__ Sqrshl(h23, h1, h3);
__ Sqrshl(s24, s0, s2);
__ Sqrshl(s25, s0, s3);
__ Sqrshl(s26, s1, s2);
__ Sqrshl(s27, s1, s3);
__ Sqrshl(d28, d0, d2);
__ Sqrshl(d29, d0, d3);
__ Sqrshl(d30, d1, d2);
__ Sqrshl(d31, d1, d3);
END();
RUN();
ASSERT_EQUAL_128(0, 0x80, q16);
ASSERT_EQUAL_128(0, 0xe0, q17);
ASSERT_EQUAL_128(0, 0x7f, q18);
ASSERT_EQUAL_128(0, 0x20, q19);
ASSERT_EQUAL_128(0, 0x8000, q20);
ASSERT_EQUAL_128(0, 0xdfe0, q21);
ASSERT_EQUAL_128(0, 0x7fff, q22);
ASSERT_EQUAL_128(0, 0x2020, q23);
ASSERT_EQUAL_128(0, 0x80000000, q24);
ASSERT_EQUAL_128(0, 0xdfffdfe0, q25);
ASSERT_EQUAL_128(0, 0x7fffffff, q26);
ASSERT_EQUAL_128(0, 0x20002020, q27);
ASSERT_EQUAL_128(0, 0x8000000000000000, q28);
ASSERT_EQUAL_128(0, 0xdfffffffdfffdfe0, q29);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q30);
ASSERT_EQUAL_128(0, 0x2000000020002020, q31);
TEARDOWN();
}
TEST(neon_uqadd_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x1000000010001010);
__ Uqadd(b16, b0, b0);
__ Uqadd(b17, b1, b1);
__ Uqadd(b18, b2, b2);
__ Uqadd(h19, h0, h0);
__ Uqadd(h20, h1, h1);
__ Uqadd(h21, h2, h2);
__ Uqadd(s22, s0, s0);
__ Uqadd(s23, s1, s1);
__ Uqadd(s24, s2, s2);
__ Uqadd(d25, d0, d0);
__ Uqadd(d26, d1, d1);
__ Uqadd(d27, d2, d2);
END();
RUN();
ASSERT_EQUAL_128(0, 0xff, q16);
ASSERT_EQUAL_128(0, 0xfe, q17);
ASSERT_EQUAL_128(0, 0x20, q18);
ASSERT_EQUAL_128(0, 0xffff, q19);
ASSERT_EQUAL_128(0, 0xfefe, q20);
ASSERT_EQUAL_128(0, 0x2020, q21);
ASSERT_EQUAL_128(0, 0xffffffff, q22);
ASSERT_EQUAL_128(0, 0xfffefefe, q23);
ASSERT_EQUAL_128(0, 0x20002020, q24);
ASSERT_EQUAL_128(0, 0xffffffffffffffff, q25);
ASSERT_EQUAL_128(0, 0xfffffffefffefefe, q26);
ASSERT_EQUAL_128(0, 0x2000000020002020, q27);
TEARDOWN();
}
TEST(neon_sqadd_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0x8000000180018181);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Movi(v2.V2D(), 0xaaaaaaaaaaaaaaaa, 0x1000000010001010);
__ Sqadd(b16, b0, b0);
__ Sqadd(b17, b1, b1);
__ Sqadd(b18, b2, b2);
__ Sqadd(h19, h0, h0);
__ Sqadd(h20, h1, h1);
__ Sqadd(h21, h2, h2);
__ Sqadd(s22, s0, s0);
__ Sqadd(s23, s1, s1);
__ Sqadd(s24, s2, s2);
__ Sqadd(d25, d0, d0);
__ Sqadd(d26, d1, d1);
__ Sqadd(d27, d2, d2);
END();
RUN();
ASSERT_EQUAL_128(0, 0x80, q16);
ASSERT_EQUAL_128(0, 0x7f, q17);
ASSERT_EQUAL_128(0, 0x20, q18);
ASSERT_EQUAL_128(0, 0x8000, q19);
ASSERT_EQUAL_128(0, 0x7fff, q20);
ASSERT_EQUAL_128(0, 0x2020, q21);
ASSERT_EQUAL_128(0, 0x80000000, q22);
ASSERT_EQUAL_128(0, 0x7fffffff, q23);
ASSERT_EQUAL_128(0, 0x20002020, q24);
ASSERT_EQUAL_128(0, 0x8000000000000000, q25);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q26);
ASSERT_EQUAL_128(0, 0x2000000020002020, q27);
TEARDOWN();
}
TEST(neon_uqsub_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7fffffff7fff7f7f);
__ Uqsub(b16, b0, b0);
__ Uqsub(b17, b0, b1);
__ Uqsub(b18, b1, b0);
__ Uqsub(h19, h0, h0);
__ Uqsub(h20, h0, h1);
__ Uqsub(h21, h1, h0);
__ Uqsub(s22, s0, s0);
__ Uqsub(s23, s0, s1);
__ Uqsub(s24, s1, s0);
__ Uqsub(d25, d0, d0);
__ Uqsub(d26, d0, d1);
__ Uqsub(d27, d1, d0);
END();
RUN();
ASSERT_EQUAL_128(0, 0, q16);
ASSERT_EQUAL_128(0, 0x71, q17);
ASSERT_EQUAL_128(0, 0, q18);
ASSERT_EQUAL_128(0, 0, q19);
ASSERT_EQUAL_128(0, 0x7171, q20);
ASSERT_EQUAL_128(0, 0, q21);
ASSERT_EQUAL_128(0, 0, q22);
ASSERT_EQUAL_128(0, 0x70017171, q23);
ASSERT_EQUAL_128(0, 0, q24);
ASSERT_EQUAL_128(0, 0, q25);
ASSERT_EQUAL_128(0, 0x7000000170017171, q26);
ASSERT_EQUAL_128(0, 0, q27);
TEARDOWN();
}
TEST(neon_sqsub_scalar) {
SETUP();
START();
__ Movi(v0.V2D(), 0xaaaaaaaaaaaaaaaa, 0xf0000000f000f0f0);
__ Movi(v1.V2D(), 0x5555555555555555, 0x7eeeeeee7eee7e7e);
__ Sqsub(b16, b0, b0);
__ Sqsub(b17, b0, b1);
__ Sqsub(b18, b1, b0);
__ Sqsub(h19, h0, h0);
__ Sqsub(h20, h0, h1);
__ Sqsub(h21, h1, h0);
__ Sqsub(s22, s0, s0);
__ Sqsub(s23, s0, s1);
__ Sqsub(s24, s1, s0);
__ Sqsub(d25, d0, d0);
__ Sqsub(d26, d0, d1);
__ Sqsub(d27, d1, d0);
END();
RUN();
ASSERT_EQUAL_128(0, 0, q16);
ASSERT_EQUAL_128(0, 0x80, q17);
ASSERT_EQUAL_128(0, 0x7f, q18);
ASSERT_EQUAL_128(0, 0, q19);
ASSERT_EQUAL_128(0, 0x8000, q20);
ASSERT_EQUAL_128(0, 0x7fff, q21);
ASSERT_EQUAL_128(0, 0, q22);
ASSERT_EQUAL_128(0, 0x80000000, q23);
ASSERT_EQUAL_128(0, 0x7fffffff, q24);
ASSERT_EQUAL_128(0, 0, q25);
ASSERT_EQUAL_128(0, 0x8000000000000000, q26);
ASSERT_EQUAL_128(0, 0x7fffffffffffffff, q27);
TEARDOWN();
}
TEST(neon_fmla_fmls) {
SETUP();
START();
__ Movi(v0.V2D(), 0x3f80000040000000, 0x4100000000000000);
__ Movi(v1.V2D(), 0x400000003f800000, 0x000000003f800000);
__ Movi(v2.V2D(), 0x3f800000ffffffff, 0x7f800000ff800000);
__ Mov(v16.V16B(), v0.V16B());
__ Mov(v17.V16B(), v0.V16B());
__ Mov(v18.V16B(), v0.V16B());
__ Mov(v19.V16B(), v0.V16B());
__ Mov(v20.V16B(), v0.V16B());
__ Mov(v21.V16B(), v0.V16B());
__ Fmla(v16.V2S(), v1.V2S(), v2.V2S());
__ Fmla(v17.V4S(), v1.V4S(), v2.V4S());
__ Fmla(v18.V2D(), v1.V2D(), v2.V2D());
__ Fmls(v19.V2S(), v1.V2S(), v2.V2S());
__ Fmls(v20.V4S(), v1.V4S(), v2.V4S());
__ Fmls(v21.V2D(), v1.V2D(), v2.V2D());
END();
RUN();
ASSERT_EQUAL_128(0x0000000000000000, 0x7fc00000ff800000, q16);
ASSERT_EQUAL_128(0x40400000ffffffff, 0x7fc00000ff800000, q17);
ASSERT_EQUAL_128(0x3f9800015f8003f7, 0x41000000000000fe, q18);
ASSERT_EQUAL_128(0x0000000000000000, 0x7fc000007f800000, q19);
ASSERT_EQUAL_128(0xbf800000ffffffff, 0x7fc000007f800000, q20);
ASSERT_EQUAL_128(0xbf8000023f0007ee, 0x40fffffffffffe04, q21);
TEARDOWN();
}
TEST(neon_fmulx_scalar) {
SETUP();
START();
__ Fmov(s0, 2.0);
__ Fmov(s1, 0.5);
__ Fmov(s2, 0.0);
__ Fmov(s3, -0.0);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fmulx(s16, s0, s1);
__ Fmulx(s17, s2, s4);
__ Fmulx(s18, s2, s5);
__ Fmulx(s19, s3, s4);
__ Fmulx(s20, s3, s5);
__ Fmov(d21, 2.0);
__ Fmov(d22, 0.5);
__ Fmov(d23, 0.0);
__ Fmov(d24, -0.0);
__ Fmov(d25, kFP64PositiveInfinity);
__ Fmov(d26, kFP64NegativeInfinity);
__ Fmulx(d27, d21, d22);
__ Fmulx(d28, d23, d25);
__ Fmulx(d29, d23, d26);
__ Fmulx(d30, d24, d25);
__ Fmulx(d31, d24, d26);
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s16);
ASSERT_EQUAL_FP32(2.0, s17);
ASSERT_EQUAL_FP32(-2.0, s18);
ASSERT_EQUAL_FP32(-2.0, s19);
ASSERT_EQUAL_FP32(2.0, s20);
ASSERT_EQUAL_FP64(1.0, d27);
ASSERT_EQUAL_FP64(2.0, d28);
ASSERT_EQUAL_FP64(-2.0, d29);
ASSERT_EQUAL_FP64(-2.0, d30);
ASSERT_EQUAL_FP64(2.0, d31);
TEARDOWN();
}
TEST(crc32b) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
__ Crc32b(w10, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x138);
__ Crc32b(w11, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x38);
__ Crc32b(w12, w0, w1);
__ Mov(w0, 0);
__ Mov(w1, 128);
__ Crc32b(w13, w0, w1);
__ Mov(w0, UINT32_MAX);
__ Mov(w1, 255);
__ Crc32b(w14, w0, w1);
__ Mov(w0, 0x00010001);
__ Mov(w1, 0x10001000);
__ Crc32b(w15, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0x5f058808, x11);
ASSERT_EQUAL_64(0x5f058808, x12);
ASSERT_EQUAL_64(0xedb88320, x13);
ASSERT_EQUAL_64(0x00ffffff, x14);
ASSERT_EQUAL_64(0x77073196, x15);
TEARDOWN();
}
TEST(crc32h) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
__ Crc32h(w10, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x10038);
__ Crc32h(w11, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x38);
__ Crc32h(w12, w0, w1);
__ Mov(w0, 0);
__ Mov(w1, 128);
__ Crc32h(w13, w0, w1);
__ Mov(w0, UINT32_MAX);
__ Mov(w1, 255);
__ Crc32h(w14, w0, w1);
__ Mov(w0, 0x00010001);
__ Mov(w1, 0x10001000);
__ Crc32h(w15, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0x0e848dba, x11);
ASSERT_EQUAL_64(0x0e848dba, x12);
ASSERT_EQUAL_64(0x3b83984b, x13);
ASSERT_EQUAL_64(0x2d021072, x14);
ASSERT_EQUAL_64(0x04ac2124, x15);
TEARDOWN();
}
TEST(crc32w) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
__ Crc32w(w10, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x80000031);
__ Crc32w(w11, w0, w1);
__ Mov(w0, 0);
__ Mov(w1, 128);
__ Crc32w(w13, w0, w1);
__ Mov(w0, UINT32_MAX);
__ Mov(w1, 255);
__ Crc32w(w14, w0, w1);
__ Mov(w0, 0x00010001);
__ Mov(w1, 0x10001000);
__ Crc32w(w15, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0x1d937b81, x11);
ASSERT_EQUAL_64(0xed59b63b, x13);
ASSERT_EQUAL_64(0x00be2612, x14);
ASSERT_EQUAL_64(0xa036e530, x15);
TEARDOWN();
}
TEST(crc32x) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(x1, 0);
__ Crc32x(w10, w0, x1);
__ Mov(w0, 0x1);
__ Mov(x1, UINT64_C(0x0000000800000031));
__ Crc32x(w11, w0, x1);
__ Mov(w0, 0);
__ Mov(x1, 128);
__ Crc32x(w13, w0, x1);
__ Mov(w0, UINT32_MAX);
__ Mov(x1, 255);
__ Crc32x(w14, w0, x1);
__ Mov(w0, 0x00010001);
__ Mov(x1, UINT64_C(0x1000100000000000));
__ Crc32x(w15, w0, x1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0x40797b92, x11);
ASSERT_EQUAL_64(0x533b85da, x13);
ASSERT_EQUAL_64(0xbc962670, x14);
ASSERT_EQUAL_64(0x0667602f, x15);
TEARDOWN();
}
TEST(crc32cb) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
__ Crc32cb(w10, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x138);
__ Crc32cb(w11, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x38);
__ Crc32cb(w12, w0, w1);
__ Mov(w0, 0);
__ Mov(w1, 128);
__ Crc32cb(w13, w0, w1);
__ Mov(w0, UINT32_MAX);
__ Mov(w1, 255);
__ Crc32cb(w14, w0, w1);
__ Mov(w0, 0x00010001);
__ Mov(w1, 0x10001000);
__ Crc32cb(w15, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0x4851927d, x11);
ASSERT_EQUAL_64(0x4851927d, x12);
ASSERT_EQUAL_64(0x82f63b78, x13);
ASSERT_EQUAL_64(0x00ffffff, x14);
ASSERT_EQUAL_64(0xf26b8203, x15);
TEARDOWN();
}
TEST(crc32ch) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
__ Crc32ch(w10, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x10038);
__ Crc32ch(w11, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x38);
__ Crc32ch(w12, w0, w1);
__ Mov(w0, 0);
__ Mov(w1, 128);
__ Crc32ch(w13, w0, w1);
__ Mov(w0, UINT32_MAX);
__ Mov(w1, 255);
__ Crc32ch(w14, w0, w1);
__ Mov(w0, 0x00010001);
__ Mov(w1, 0x10001000);
__ Crc32ch(w15, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0xcef8494c, x11);
ASSERT_EQUAL_64(0xcef8494c, x12);
ASSERT_EQUAL_64(0xfbc3faf9, x13);
ASSERT_EQUAL_64(0xad7dacae, x14);
ASSERT_EQUAL_64(0x03fc5f19, x15);
TEARDOWN();
}
TEST(crc32cw) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(w1, 0);
__ Crc32cw(w10, w0, w1);
__ Mov(w0, 0x1);
__ Mov(w1, 0x80000031);
__ Crc32cw(w11, w0, w1);
__ Mov(w0, 0);
__ Mov(w1, 128);
__ Crc32cw(w13, w0, w1);
__ Mov(w0, UINT32_MAX);
__ Mov(w1, 255);
__ Crc32cw(w14, w0, w1);
__ Mov(w0, 0x00010001);
__ Mov(w1, 0x10001000);
__ Crc32cw(w15, w0, w1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0xbcb79ece, x11);
ASSERT_EQUAL_64(0x52a0c93f, x13);
ASSERT_EQUAL_64(0x9f9b5c7a, x14);
ASSERT_EQUAL_64(0xae1b882a, x15);
TEARDOWN();
}
TEST(crc32cx) {
SETUP();
START();
__ Mov(w0, 0);
__ Mov(x1, 0);
__ Crc32cx(w10, w0, x1);
__ Mov(w0, 0x1);
__ Mov(x1, UINT64_C(0x0000000800000031));
__ Crc32cx(w11, w0, x1);
__ Mov(w0, 0);
__ Mov(x1, 128);
__ Crc32cx(w13, w0, x1);
__ Mov(w0, UINT32_MAX);
__ Mov(x1, 255);
__ Crc32cx(w14, w0, x1);
__ Mov(w0, 0x00010001);
__ Mov(x1, UINT64_C(0x1000100000000000));
__ Crc32cx(w15, w0, x1);
END();
RUN();
ASSERT_EQUAL_64(0x0, x10);
ASSERT_EQUAL_64(0x7f320fcb, x11);
ASSERT_EQUAL_64(0x34019664, x13);
ASSERT_EQUAL_64(0x6cc27dd0, x14);
ASSERT_EQUAL_64(0xc6f0acdb, x15);
TEARDOWN();
}
TEST(neon_fabd_scalar) {
SETUP();
START();
__ Fmov(s0, 2.0);
__ Fmov(s1, 0.5);
__ Fmov(s2, 0.0);
__ Fmov(s3, -0.0);
__ Fmov(s4, kFP32PositiveInfinity);
__ Fmov(s5, kFP32NegativeInfinity);
__ Fabd(s16, s1, s0);
__ Fabd(s17, s2, s3);
__ Fabd(s18, s2, s5);
__ Fabd(s19, s3, s4);
__ Fabd(s20, s3, s5);
__ Fmov(d21, 2.0);
__ Fmov(d22, 0.5);
__ Fmov(d23, 0.0);
__ Fmov(d24, -0.0);
__ Fmov(d25, kFP64PositiveInfinity);
__ Fmov(d26, kFP64NegativeInfinity);
__ Fabd(d27, d21, d22);
__ Fabd(d28, d23, d24);
__ Fabd(d29, d23, d26);
__ Fabd(d30, d24, d25);
__ Fabd(d31, d24, d26);
END();
RUN();
ASSERT_EQUAL_FP32(1.5, s16);
ASSERT_EQUAL_FP32(0.0, s17);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s18);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s19);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s20);
ASSERT_EQUAL_FP64(1.5, d27);
ASSERT_EQUAL_FP64(0.0, d28);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d29);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d30);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d31);
TEARDOWN();
}
TEST(neon_faddp_scalar) {
SETUP();
START();
__ Movi(d0, 0x3f80000040000000);
__ Movi(d1, 0xff8000007f800000);
__ Movi(d2, 0x0000000080000000);
__ Faddp(s0, v0.V2S());
__ Faddp(s1, v1.V2S());
__ Faddp(s2, v2.V2S());
__ Movi(v3.V2D(), 0xc000000000000000, 0x4000000000000000);
__ Movi(v4.V2D(), 0xfff8000000000000, 0x7ff8000000000000);
__ Movi(v5.V2D(), 0x0000000000000000, 0x8000000000000000);
__ Faddp(d3, v3.V2D());
__ Faddp(d4, v4.V2D());
__ Faddp(d5, v5.V2D());
END();
RUN();
ASSERT_EQUAL_FP32(3.0, s0);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s1);
ASSERT_EQUAL_FP32(0.0, s2);
ASSERT_EQUAL_FP64(0.0, d3);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d4);
ASSERT_EQUAL_FP64(0.0, d5);
TEARDOWN();
}
TEST(neon_fmaxp_scalar) {
SETUP();
START();
__ Movi(d0, 0x3f80000040000000);
__ Movi(d1, 0xff8000007f800000);
__ Movi(d2, 0x7fc00000ff800000);
__ Fmaxp(s0, v0.V2S());
__ Fmaxp(s1, v1.V2S());
__ Fmaxp(s2, v2.V2S());
__ Movi(v3.V2D(), 0x3ff0000000000000, 0x4000000000000000);
__ Movi(v4.V2D(), 0xfff0000000000000, 0x7ff0000000000000);
__ Movi(v5.V2D(), 0x7ff0000000000000, 0x7ff8000000000000);
__ Fmaxp(d3, v3.V2D());
__ Fmaxp(d4, v4.V2D());
__ Fmaxp(d5, v5.V2D());
END();
RUN();
ASSERT_EQUAL_FP32(2.0, s0);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s1);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s2);
ASSERT_EQUAL_FP64(2.0, d3);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d4);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d5);
TEARDOWN();
}
TEST(neon_fmaxnmp_scalar) {
SETUP();
START();
__ Movi(d0, 0x3f80000040000000);
__ Movi(d1, 0xff8000007f800000);
__ Movi(d2, 0x7fc00000ff800000);
__ Fmaxnmp(s0, v0.V2S());
__ Fmaxnmp(s1, v1.V2S());
__ Fmaxnmp(s2, v2.V2S());
__ Movi(v3.V2D(), 0x3ff0000000000000, 0x4000000000000000);
__ Movi(v4.V2D(), 0xfff0000000000000, 0x7ff0000000000000);
__ Movi(v5.V2D(), 0x7ff8000000000000, 0xfff0000000000000);
__ Fmaxnmp(d3, v3.V2D());
__ Fmaxnmp(d4, v4.V2D());
__ Fmaxnmp(d5, v5.V2D());
END();
RUN();
ASSERT_EQUAL_FP32(2.0, s0);
ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s1);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s2);
ASSERT_EQUAL_FP64(2.0, d3);
ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d4);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d5);
TEARDOWN();
}
TEST(neon_fminp_scalar) {
SETUP();
START();
__ Movi(d0, 0x3f80000040000000);
__ Movi(d1, 0xff8000007f800000);
__ Movi(d2, 0x7fc00000ff800000);
__ Fminp(s0, v0.V2S());
__ Fminp(s1, v1.V2S());
__ Fminp(s2, v2.V2S());
__ Movi(v3.V2D(), 0x3ff0000000000000, 0x4000000000000000);
__ Movi(v4.V2D(), 0xfff0000000000000, 0x7ff0000000000000);
__ Movi(v5.V2D(), 0x7ff0000000000000, 0x7ff8000000000000);
__ Fminp(d3, v3.V2D());
__ Fminp(d4, v4.V2D());
__ Fminp(d5, v5.V2D());
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s1);
ASSERT_EQUAL_FP32(kFP32DefaultNaN, s2);
ASSERT_EQUAL_FP64(1.0, d3);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d4);
ASSERT_EQUAL_FP64(kFP64DefaultNaN, d5);
TEARDOWN();
}
TEST(neon_fminnmp_scalar) {
SETUP();
START();
__ Movi(d0, 0x3f80000040000000);
__ Movi(d1, 0xff8000007f800000);
__ Movi(d2, 0x7fc00000ff800000);
__ Fminnmp(s0, v0.V2S());
__ Fminnmp(s1, v1.V2S());
__ Fminnmp(s2, v2.V2S());
__ Movi(v3.V2D(), 0x3ff0000000000000, 0x4000000000000000);
__ Movi(v4.V2D(), 0xfff0000000000000, 0x7ff0000000000000);
__ Movi(v5.V2D(), 0x7ff8000000000000, 0xfff0000000000000);
__ Fminnmp(d3, v3.V2D());
__ Fminnmp(d4, v4.V2D());
__ Fminnmp(d5, v5.V2D());
END();
RUN();
ASSERT_EQUAL_FP32(1.0, s0);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s1);
ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s2);
ASSERT_EQUAL_FP64(1.0, d3);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d4);
ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d5);
TEARDOWN();
}
TEST(neon_tbl) {
SETUP();
START();
__ Movi(v30.V2D(), 0xbf561e188b1280e9, 0xbd542b8cbd24e8e8);
__ Movi(v31.V2D(), 0xb5e9883d2c88a46d, 0x12276d5b614c915e);
__ Movi(v0.V2D(), 0xc45b7782bc5ecd72, 0x5dd4fe5a4bc6bf5e);
__ Movi(v1.V2D(), 0x1e3254094bd1746a, 0xf099ecf50e861c80);
__ Movi(v4.V2D(), 0xf80c030100031f16, 0x00070504031201ff);
__ Movi(v5.V2D(), 0x1f01001afc14202a, 0x2a081e1b0c02020c);
__ Movi(v6.V2D(), 0x353f1a13022a2360, 0x2c464a00203a0a33);
__ Movi(v7.V2D(), 0x64801a1c054cf30d, 0x793a2c052e213739);
__ Movi(v8.V2D(), 0xb7f60ad7d7d88f13, 0x13eefc240496e842);
__ Movi(v9.V2D(), 0x1be199c7c69b47ec, 0x8e4b9919f6eed443);
__ Movi(v10.V2D(), 0x9bd2e1654c69e48f, 0x2143d089e426c6d2);
__ Movi(v11.V2D(), 0xc31dbdc4a0393065, 0x1ecc2077caaf64d8);
__ Movi(v12.V2D(), 0x29b24463967bc6eb, 0xdaf59970df01c93b);
__ Movi(v13.V2D(), 0x3e20a4a4cb6813f4, 0x20a5832713dae669);
__ Movi(v14.V2D(), 0xc5ff9a94041b1fdf, 0x2f46cde38cba2682);
__ Movi(v15.V2D(), 0xd8cc5b0e61f387e6, 0xe69d6d314971e8fd);
__ Tbl(v8.V16B(), v1.V16B(), v4.V16B());
__ Tbl(v9.V16B(), v0.V16B(), v1.V16B(), v5.V16B());
__ Tbl(v10.V16B(), v31.V16B(), v0.V16B(), v1.V16B(), v6.V16B());
__ Tbl(v11.V16B(), v30.V16B(), v31.V16B(), v0.V16B(), v1.V16B(), v7.V16B());
__ Tbl(v12.V8B(), v1.V16B(), v4.V8B());
__ Tbl(v13.V8B(), v0.V16B(), v1.V16B(), v5.V8B());
__ Tbl(v14.V8B(), v31.V16B(), v0.V16B(), v1.V16B(), v6.V8B());
__ Tbl(v15.V8B(), v30.V16B(), v31.V16B(), v0.V16B(), v1.V16B(), v7.V8B());
__ Movi(v16.V2D(), 0xb7f60ad7d7d88f13, 0x13eefc240496e842);
__ Movi(v17.V2D(), 0x1be199c7c69b47ec, 0x8e4b9919f6eed443);
__ Movi(v18.V2D(), 0x9bd2e1654c69e48f, 0x2143d089e426c6d2);
__ Movi(v19.V2D(), 0xc31dbdc4a0393065, 0x1ecc2077caaf64d8);
__ Movi(v20.V2D(), 0x29b24463967bc6eb, 0xdaf59970df01c93b);
__ Movi(v21.V2D(), 0x3e20a4a4cb6813f4, 0x20a5832713dae669);
__ Movi(v22.V2D(), 0xc5ff9a94041b1fdf, 0x2f46cde38cba2682);
__ Movi(v23.V2D(), 0xd8cc5b0e61f387e6, 0xe69d6d314971e8fd);
__ Tbx(v16.V16B(), v1.V16B(), v4.V16B());
__ Tbx(v17.V16B(), v0.V16B(), v1.V16B(), v5.V16B());
__ Tbx(v18.V16B(), v31.V16B(), v0.V16B(), v1.V16B(), v6.V16B());
__ Tbx(v19.V16B(), v30.V16B(), v31.V16B(), v0.V16B(), v1.V16B(), v7.V16B());
__ Tbx(v20.V8B(), v1.V16B(), v4.V8B());
__ Tbx(v21.V8B(), v0.V16B(), v1.V16B(), v5.V8B());
__ Tbx(v22.V8B(), v31.V16B(), v0.V16B(), v1.V16B(), v6.V8B());
__ Tbx(v23.V8B(), v30.V16B(), v31.V16B(), v0.V16B(), v1.V16B(), v7.V8B());
END();
RUN();
ASSERT_EQUAL_128(0x00090e1c800e0000, 0x80f0ecf50e001c00, v8);
ASSERT_EQUAL_128(0x1ebf5ed100f50000, 0x0072324b82c6c682, v9);
ASSERT_EQUAL_128(0x00005e4b4cd10e00, 0x0900005e80008800, v10);
ASSERT_EQUAL_128(0x0000883d2b00001e, 0x00d1822b5bbff074, v11);
ASSERT_EQUAL_128(0x0000000000000000, 0x80f0ecf50e001c00, v12);
ASSERT_EQUAL_128(0x0000000000000000, 0x0072324b82c6c682, v13);
ASSERT_EQUAL_128(0x0000000000000000, 0x0900005e80008800, v14);
ASSERT_EQUAL_128(0x0000000000000000, 0x00d1822b5bbff074, v15);
ASSERT_EQUAL_128(0xb7090e1c800e8f13, 0x80f0ecf50e961c42, v16);
ASSERT_EQUAL_128(0x1ebf5ed1c6f547ec, 0x8e72324b82c6c682, v17);
ASSERT_EQUAL_128(0x9bd25e4b4cd10e8f, 0x0943d05e802688d2, v18);
ASSERT_EQUAL_128(0xc31d883d2b39301e, 0x1ed1822b5bbff074, v19);
ASSERT_EQUAL_128(0x0000000000000000, 0x80f0ecf50e011c3b, v20);
ASSERT_EQUAL_128(0x0000000000000000, 0x2072324b82c6c682, v21);
ASSERT_EQUAL_128(0x0000000000000000, 0x0946cd5e80ba8882, v22);
ASSERT_EQUAL_128(0x0000000000000000, 0xe6d1822b5bbff074, v23);
TEARDOWN();
}
TEST(regress_cmp_shift_imm) {
SETUP();
START();
__ Mov(x0, 0x3d720c8d);
__ Cmp(x0, Operand(0x3d720c8d));
END();
RUN();
ASSERT_EQUAL_NZCV(ZCFlag);
TEARDOWN();
}
TEST(compute_address) {
SETUP();
START();
int64_t base_address = INT64_C(0x123000000abc);
int64_t reg_offset = INT64_C(0x1087654321);
Register base = x0;
Register offset = x1;
__ Mov(base, base_address);
__ Mov(offset, reg_offset);
__ ComputeAddress(x2, MemOperand(base, 0));
__ ComputeAddress(x3, MemOperand(base, 8));
__ ComputeAddress(x4, MemOperand(base, -100));
__ ComputeAddress(x5, MemOperand(base, offset));
__ ComputeAddress(x6, MemOperand(base, offset, LSL, 2));
__ ComputeAddress(x7, MemOperand(base, offset, LSL, 4));
__ ComputeAddress(x8, MemOperand(base, offset, LSL, 8));
__ ComputeAddress(x9, MemOperand(base, offset, SXTW));
__ ComputeAddress(x10, MemOperand(base, offset, UXTW, 1));
__ ComputeAddress(x11, MemOperand(base, offset, SXTW, 2));
__ ComputeAddress(x12, MemOperand(base, offset, UXTW, 3));
END();
RUN();
ASSERT_EQUAL_64(base_address, base);
ASSERT_EQUAL_64(INT64_C(0x123000000abc), x2);
ASSERT_EQUAL_64(INT64_C(0x123000000ac4), x3);
ASSERT_EQUAL_64(INT64_C(0x123000000a58), x4);
ASSERT_EQUAL_64(INT64_C(0x124087654ddd), x5);
ASSERT_EQUAL_64(INT64_C(0x12721d951740), x6);
ASSERT_EQUAL_64(INT64_C(0x133876543ccc), x7);
ASSERT_EQUAL_64(INT64_C(0x22b765432bbc), x8);
ASSERT_EQUAL_64(INT64_C(0x122f87654ddd), x9);
ASSERT_EQUAL_64(INT64_C(0x12310eca90fe), x10);
ASSERT_EQUAL_64(INT64_C(0x122e1d951740), x11);
ASSERT_EQUAL_64(INT64_C(0x12343b2a23c4), x12);
TEARDOWN();
}
TEST(far_branch_backward) {
// Test that the MacroAssembler correctly resolves backward branches to labels
// that are outside the immediate range of branch instructions.
// Take into account that backward branches can reach one instruction further
// than forward branches.
const int overflow_size = kInstructionSize +
std::max(Instruction::ImmBranchForwardRange(TestBranchType),
std::max(Instruction::ImmBranchForwardRange(CompareBranchType),
Instruction::ImmBranchForwardRange(CondBranchType)));
SETUP();
START();
Label done, fail;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ B(&test_tbz);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
for (unsigned i = 0; i < overflow_size / kInstructionSize; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
// For each out-of-range branch instructions, at least two instructions should
// have been generated.
VIXL_CHECK(masm.SizeOfCodeGeneratedSince(&test_tbz) >= 7 * kInstructionSize);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x7, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(single_veneer) {
SETUP();
START();
const int max_range = Instruction::ImmBranchForwardRange(TestBranchType);
Label success, fail, done;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ Tbz(x10, 7, &success);
// Generate enough code to overflow the immediate range of the `tbz`.
for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&success);
__ Mov(x0, 1);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(1, x0);
ASSERT_EQUAL_64(1, x1);
TEARDOWN();
}
TEST(simple_veneers) {
// Test that the MacroAssembler correctly emits veneers for forward branches
// to labels that are outside the immediate range of branch instructions.
const int max_range =
std::max(Instruction::ImmBranchForwardRange(TestBranchType),
std::max(Instruction::ImmBranchForwardRange(CompareBranchType),
Instruction::ImmBranchForwardRange(CondBranchType)));
SETUP();
START();
Label done, fail;
Label test_tbz, test_cbz, test_bcond;
Label success_tbz, success_cbz, success_bcond;
__ Mov(x0, 0);
__ Mov(x1, 1);
__ Mov(x10, 0);
__ Bind(&test_tbz);
__ Tbz(x10, 7, &success_tbz);
__ Bind(&test_cbz);
__ Cbz(x10, &success_cbz);
__ Bind(&test_bcond);
__ Cmp(x10, 0);
__ B(eq, &success_bcond);
// Generate enough code to overflow the immediate range of the three types of
// branches below.
for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) {
if (i % 100 == 0) {
// If we do land in this code, we do not want to execute so many nops
// before reaching the end of test (especially if tracing is activated).
__ B(&fail);
} else {
__ Nop();
}
}
__ B(&fail);
__ Bind(&success_tbz);
__ Orr(x0, x0, 1 << 0);
__ B(&test_cbz);
__ Bind(&success_cbz);
__ Orr(x0, x0, 1 << 1);
__ B(&test_bcond);
__ Bind(&success_bcond);
__ Orr(x0, x0, 1 << 2);
__ B(&done);
__ Bind(&fail);
__ Mov(x1, 0);
__ Bind(&done);
END();
RUN();
ASSERT_EQUAL_64(0x7, x0);
ASSERT_EQUAL_64(0x1, x1);
TEARDOWN();
}
TEST(veneers_stress) {
SETUP();
START();
// This is a code generation test stressing the emission of veneers. The code
// generated is not executed.
Label target;
const unsigned max_range = Instruction::ImmBranchForwardRange(CondBranchType);
const unsigned iterations =
(max_range + max_range / 4) / (4 * kInstructionSize);
for (unsigned i = 0; i < iterations; i++) {
__ B(&target);
__ B(eq, &target);
__ Cbz(x0, &target);
__ Tbz(x0, 0, &target);
}
__ Bind(&target);
END();
TEARDOWN();
}
TEST(veneers_two_out_of_range) {
SETUP();
START();
// This is a code generation test. The code generated is not executed.
// Ensure that the MacroAssembler considers unresolved branches to chose when
// a veneer pool should be emitted. We generate two branches that go out of
// range at the same offset. When the MacroAssembler decides to emit the
// veneer pool, the emission of a first veneer should not cause the other
// branch to go out of range.
int range_cbz = Instruction::ImmBranchForwardRange(CompareBranchType);
int range_tbz = Instruction::ImmBranchForwardRange(TestBranchType);
int max_target = static_cast<int>(masm.CursorOffset()) + range_cbz;
Label done;
// We use different labels to prevent the MacroAssembler from sharing veneers.
Label target_cbz, target_tbz;
__ Cbz(x0, &target_cbz);
while (masm.CursorOffset() < max_target - range_tbz) {
__ Nop();
}
__ Tbz(x0, 0, &target_tbz);
while (masm.CursorOffset() < max_target) {
__ Nop();
}
// This additional nop makes the branches go out of range.
__ Nop();
__ Bind(&target_cbz);
__ Bind(&target_tbz);
END();
TEARDOWN();
}
TEST(veneers_hanging) {
SETUP();
START();
// This is a code generation test. The code generated is not executed.
// Ensure that the MacroAssembler considers unresolved branches to chose when
// a veneer pool should be emitted. This is similar to the
// 'veneers_two_out_of_range' test. We try to trigger the following situation:
// b.eq label
// b.eq label
// ...
// nop
// ...
// cbz x0, label
// cbz x0, label
// ...
// tbz x0, 0 label
// nop
// ...
// nop <- From here the `b.eq` and `cbz` instructions run out of range,
// so a literal pool is required.
// veneer
// veneer
// veneer <- The `tbz` runs out of range somewhere in the middle of the
// veneer veneer pool.
// veneer
const int range_bcond = Instruction::ImmBranchForwardRange(CondBranchType);
const int range_cbz = Instruction::ImmBranchForwardRange(CompareBranchType);
const int range_tbz = Instruction::ImmBranchForwardRange(TestBranchType);
const int max_target = static_cast<int>(masm.CursorOffset()) + range_bcond;
Label done;
const int n_bcond = 100;
const int n_cbz = 100;
const int n_tbz = 1;
const int kNTotalBranches = n_bcond + n_cbz + n_tbz;
// We use different labels to prevent the MacroAssembler from sharing veneers.
Label labels[kNTotalBranches];
for (int i = 0; i < kNTotalBranches; i++) {
new(&labels[i]) Label();
}
for (int i = 0; i < n_bcond; i++) {
__ B(eq, &labels[i]);
}
while (masm.CursorOffset() < max_target - range_cbz) {
__ Nop();
}
for (int i = 0; i < n_cbz; i++) {
__ Cbz(x0, &labels[n_bcond + i]);
}
// Ensure the 'tbz' will go out of range after some of the previously
// generated branches.
int margin = (n_bcond / 2) * kInstructionSize;
while (masm.CursorOffset() < max_target - range_tbz + margin) {
__ Nop();
}
__ Tbz(x0, 0, &labels[n_bcond + n_cbz]);
while (masm.CursorOffset() < max_target) {
__ Nop();
}
// This additional nop makes the 'b.eq' and 'cbz' instructions go out of range
// and forces the emission of a veneer pool. The 'tbz' is not yet out of
// range, but will go out of range while veneers are emitted for the other
// branches.
// The MacroAssembler should ensure that veneers are correctly emitted for all
// the branches, including the 'tbz'. Checks will fail if the target of a
// branch is out of range.
__ Nop();
for (int i = 0; i < kNTotalBranches; i++) {
__ Bind(&labels[i]);
}
END();
TEARDOWN();
}
TEST(collision_literal_veneer_pools) {
SETUP();
START();
// This is a code generation test. The code generated is not executed.
// Make sure the literal pool is empty;
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
ASSERT_LITERAL_POOL_SIZE(0);
// We chose the offsets below to (try to) trigger the following situation:
// buffer offset
// 0: tbz x0, 0, target_tbz ----------------------------------.
// 4: nop |
// ... |
// nop |
// literal gen: ldr s0, [pc + ...] ; load from `pool start + 0` |
// ldr s0, [pc + ...] ; load from `pool start + 4` |
// ... |
// ldr s0, [pc + ...] |
// pool start: floating-point literal (0.1) |
// floating-point literal (1.1) |
// ... |
// floating-point literal (<n>.1) <-----tbz-max-range--'
// floating-point literal (<n+1>.1)
// ...
const int range_tbz = Instruction::ImmBranchForwardRange(TestBranchType);
const int max_target = static_cast<int>(masm.CursorOffset()) + range_tbz;
const size_t target_literal_pool_size = 100 * kInstructionSize;
const int offset_start_literal_gen =
target_literal_pool_size + target_literal_pool_size / 2;
Label target_tbz;
__ Tbz(x0, 0, &target_tbz);
VIXL_CHECK(masm.NumberOfPotentialVeneers() == 1);
while (masm.CursorOffset() < max_target - offset_start_literal_gen) {
__ Nop();
}
VIXL_CHECK(masm.NumberOfPotentialVeneers() == 1);
for (int i = 0; i < 100; i++) {
// Use a different value to force one literal pool entry per iteration.
__ Ldr(s0, i + 0.1);
}
VIXL_CHECK(masm.LiteralPoolSize() >= target_literal_pool_size);
// Force emission of a literal pool.
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
ASSERT_LITERAL_POOL_SIZE(0);
// The branch should not have gone out of range during the emission of the
// literal pool.
__ Bind(&target_tbz);
VIXL_CHECK(masm.NumberOfPotentialVeneers() == 0);
END();
TEARDOWN();
}
TEST(ldr_literal_explicit) {
SETUP();
START();
Literal<int64_t> automatically_placed_literal(1, masm.GetLiteralPool());
Literal<int64_t> manually_placed_literal(2);
{
CodeBufferCheckScope scope(&masm,
kInstructionSize + sizeof(int64_t),
CodeBufferCheckScope::kCheck,
CodeBufferCheckScope::kExactSize);
Label over_literal;
__ b(&over_literal);
__ place(&manually_placed_literal);
__ bind(&over_literal);
}
__ Ldr(x1, &manually_placed_literal);
__ Ldr(x2, &automatically_placed_literal);
__ Add(x0, x1, x2);
END();
RUN();
ASSERT_EQUAL_64(3, x0);
TEARDOWN();
}
TEST(ldr_literal_automatically_placed) {
SETUP();
START();
// We start with an empty literal pool.
ASSERT_LITERAL_POOL_SIZE(0);
// Create a literal that should be placed by the literal pool.
Literal<int64_t> explicit_literal(2, masm.GetLiteralPool());
// It should not appear in the literal pool until its first use.
ASSERT_LITERAL_POOL_SIZE(0);
// Check that using standard literals does not break the use of explicitly
// created literals.
__ Ldr(d1, 1.1);
ASSERT_LITERAL_POOL_SIZE(8);
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
ASSERT_LITERAL_POOL_SIZE(0);
__ Ldr(x2, &explicit_literal);
ASSERT_LITERAL_POOL_SIZE(8);
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
ASSERT_LITERAL_POOL_SIZE(0);
__ Ldr(d3, 3.3);
ASSERT_LITERAL_POOL_SIZE(8);
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
ASSERT_LITERAL_POOL_SIZE(0);
// Re-use our explicitly created literal. It has already been placed, so it
// should not impact the literal pool.
__ Ldr(x4, &explicit_literal);
ASSERT_LITERAL_POOL_SIZE(0);
END();
RUN();
ASSERT_EQUAL_FP64(1.1, d1);
ASSERT_EQUAL_64(2, x2);
ASSERT_EQUAL_FP64(3.3, d3);
ASSERT_EQUAL_64(2, x4);
TEARDOWN();
}
TEST(literal_update_overwrite) {
SETUP();
START();
ASSERT_LITERAL_POOL_SIZE(0);
LiteralPool* literal_pool = masm.GetLiteralPool();
Literal<int32_t> lit_32_update_before_pool(0xbad, literal_pool);
Literal<int32_t> lit_32_update_after_pool(0xbad, literal_pool);
Literal<int64_t> lit_64_update_before_pool(0xbad, literal_pool);
Literal<int64_t> lit_64_update_after_pool(0xbad, literal_pool);
ASSERT_LITERAL_POOL_SIZE(0);
lit_32_update_before_pool.UpdateValue(32);
lit_64_update_before_pool.UpdateValue(64);
__ Ldr(w1, &lit_32_update_before_pool);
__ Ldr(x2, &lit_64_update_before_pool);
__ Ldr(w3, &lit_32_update_after_pool);
__ Ldr(x4, &lit_64_update_after_pool);
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
VIXL_ASSERT(lit_32_update_after_pool.IsPlaced());
VIXL_ASSERT(lit_64_update_after_pool.IsPlaced());
lit_32_update_after_pool.UpdateValue(128, &masm);
lit_64_update_after_pool.UpdateValue(256, &masm);
END();
RUN();
ASSERT_EQUAL_64(32, x1);
ASSERT_EQUAL_64(64, x2);
ASSERT_EQUAL_64(128, x3);
ASSERT_EQUAL_64(256, x4);
TEARDOWN();
}
TEST(literal_deletion_policies) {
SETUP();
START();
// We cannot check exactly when the deletion of the literals occur, but we
// check that usage of the deletion policies is not broken.
ASSERT_LITERAL_POOL_SIZE(0);
LiteralPool* literal_pool = masm.GetLiteralPool();
Literal<int32_t> lit_manual(0xbad, literal_pool);
Literal<int32_t>* lit_deleted_on_placement =
new Literal<int32_t>(0xbad,
literal_pool,
RawLiteral::kDeletedOnPlacementByPool);
Literal<int32_t>* lit_deleted_on_pool_destruction =
new Literal<int32_t>(0xbad,
literal_pool,
RawLiteral::kDeletedOnPoolDestruction);
ASSERT_LITERAL_POOL_SIZE(0);
lit_manual.UpdateValue(32);
lit_deleted_on_placement->UpdateValue(64);
__ Ldr(w1, &lit_manual);
__ Ldr(w2, lit_deleted_on_placement);
__ Ldr(w3, lit_deleted_on_pool_destruction);
masm.EmitLiteralPool(LiteralPool::kBranchRequired);
VIXL_ASSERT(lit_manual.IsPlaced());
VIXL_ASSERT(lit_deleted_on_pool_destruction->IsPlaced());
lit_deleted_on_pool_destruction->UpdateValue(128, &masm);
END();
RUN();
ASSERT_EQUAL_64(32, x1);
ASSERT_EQUAL_64(64, x2);
ASSERT_EQUAL_64(128, x3);
TEARDOWN();
}
TEST(move_immediate_helpers) {
// Using these helpers to query information (without generating code) should
// not crash.
MacroAssembler::MoveImmediateHelper(NULL, x0, 0x12345678);
MacroAssembler::OneInstrMoveImmediateHelper(NULL, x1, 0xabcdef);
}
} // namespace vixl