blob: 80680e02112449ced8802b652c1cb8a93cfab5fb [file] [log] [blame]
// Copyright 2017, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "test-pool-manager.h"
#include <stdio.h>
#include "pool-manager-impl.h"
#include "pool-manager.h"
#include "test-runner.h"
#define TEST(Name) TEST_(POOL_MANAGER_##Name)
#define IF_VERBOSE(exp) \
if (Test::verbose()) exp
#define BUFFER_ALIGNMENT 16
using namespace vixl;
static int Random() { return static_cast<int>(std::abs(mrand48())); }
static int RandomObjectID(size_t num_objects) { return Random() % num_objects; }
static int RandomObjectSize() { return 1 + Random() % 256; }
static int RandomObjectAlignment(int size) {
const int limit = static_cast<int>(floor(log2(BUFFER_ALIGNMENT)));
int log2Size = static_cast<int>(floor(log2(size)));
// Restrict alignment due to buffer alignment.
log2Size = std::min(log2Size, limit);
return (1 << (Random() % (1 + log2Size)));
}
// The size of the instruction.
static int RandomReferenceSize() { return (Random() % 2) ? 2 : 4; }
// The alignment of an instruction is either 2 or 4.
static int RandomInstructionAlignment() { return (Random() % 2) ? 2 : 4; }
static int32_t RandomMinOffset() {
const int N = 3;
static const int offsets[N] = {0, 2, 4};
return offsets[Random() % N];
}
static int32_t RandomMaxOffset() {
const int N = 5;
static const int offsets[N] = {255, 1020, 1024, 4096, 16384};
return offsets[Random() % N];
}
static int32_t RandomBranchMaxOffset() {
const int N = 10;
// The maximum offsets used for testing are taken from A32 and T32.
static const int offsets[N] =
{126, 254, 255, 1020, 1024, 2046, 4095, 1048574, 16777214, 33554428};
return offsets[Random() % N];
}
static int RandomPCIncrement() {
// A multiple of two.
return 2 * (Random() % 4 + 1);
}
class TestObject : public LocationBase<int32_t> {
public:
TestObject(int size, int alignment, int id = 0)
: LocationBase(0 /*type*/, size, alignment), id_(id) {}
void EmitPoolObject(MacroAssemblerInterface *masm) VIXL_OVERRIDE {
USE(masm);
}
bool ShouldDeletePoolObjectOnPlacement() const VIXL_OVERRIDE { return true; }
// Update the references to this object.
void ResolveReferences(internal::AssemblerBase *assembler) VIXL_OVERRIDE {
int32_t location = GetLocation();
USE(assembler);
for (std::vector<ForwardReference<int32_t> *>::iterator iter =
references_.begin();
iter != references_.end();) {
ForwardReference<int32_t> *ref = *iter;
VIXL_ASSERT(ref->LocationIsEncodable(location));
delete ref;
iter = references_.erase(iter);
}
IF_VERBOSE(printf("Placed object %d at location: 0x%x (%u)\n",
id_,
location,
location));
}
void AddReference(ForwardReference<int32_t> *ref) {
references_.push_back(ref);
}
int GetID() { return id_; }
static TestObject *CreateRandom(int id) {
int size = RandomObjectSize();
int alignment = RandomObjectAlignment(size);
IF_VERBOSE(printf("Object %d -> size = %d, alignment = %d\n",
id,
size,
alignment));
return new TestObject(size, alignment, id);
}
private:
// Store pointers to ForwardReference objects - TestObject is responsible
// for deleting them.
std::vector<ForwardReference<int32_t> *> references_;
// Object id used for debugging.
int id_;
};
class TestBranchObject : public LocationBase<int32_t> {
public:
TestBranchObject(int size, int alignment, int id = 0)
: LocationBase(1 /* type */, size, alignment), id_(id) {}
bool UsePoolObjectEmissionMargin() const VIXL_OVERRIDE { return true; }
int32_t GetPoolObjectEmissionMargin() const VIXL_OVERRIDE {
return 1 * KBytes;
}
// Do nothing for now.
void EmitPoolObject(MacroAssemblerInterface *masm) VIXL_OVERRIDE {
USE(masm);
}
bool ShouldDeletePoolObjectOnPlacement() const VIXL_OVERRIDE { return false; }
virtual void UpdatePoolObject(PoolObject<int32_t> *object) VIXL_OVERRIDE {
// Reference from the last emitted veneer:
int32_t min = location_ + min_offset_;
int32_t max = location_ + max_offset_;
// The alignment that the new "veneer" requires of the label.
int reference_alignment = RandomInstructionAlignment();
reference_alignment =
std::max(reference_alignment, GetPoolObjectAlignment());
ForwardReference<int32_t> *ref =
new ForwardReference<int32_t>(location_,
4 /*size*/,
min,
max,
reference_alignment);
AddReference(ref);
object->Update(min, max, reference_alignment);
}
// Update the references to this object.
void ResolveReferences(internal::AssemblerBase *assembler) VIXL_OVERRIDE {
int32_t location = GetLocation();
USE(assembler);
for (std::vector<ForwardReference<int32_t> *>::iterator iter =
references_.begin();
iter != references_.end();) {
ForwardReference<int32_t> *ref = *iter;
VIXL_ASSERT(ref->LocationIsEncodable(location));
delete ref;
iter = references_.erase(iter);
}
IF_VERBOSE(printf("Veneer %d placed at location: 0x%x (%u)\n",
id_,
location,
location));
}
void AddReference(ForwardReference<int32_t> *ref) {
references_.push_back(ref);
}
virtual int GetMaxAlignment() const VIXL_OVERRIDE {
int max_alignment = GetPoolObjectAlignment();
for (std::vector<ForwardReference<int32_t> *>::const_iterator iter =
references_.begin();
iter != references_.end();
++iter) {
const ForwardReference<int32_t> *ref = *iter;
if (ref->GetAlignment() > max_alignment)
max_alignment = ref->GetAlignment();
}
return max_alignment;
}
virtual int32_t GetMinLocation() const VIXL_OVERRIDE {
int32_t min_location = 0;
for (std::vector<ForwardReference<int32_t> *>::const_iterator iter =
references_.begin();
iter != references_.end();
++iter) {
const ForwardReference<int32_t> *ref = *iter;
if (ref->GetMinLocation() > min_location)
min_location = ref->GetMinLocation();
}
return min_location;
}
int GetID() { return id_; }
static TestBranchObject *CreateRandom(int id) {
int size = RandomReferenceSize();
int alignment = size;
IF_VERBOSE(printf("Object %d -> size = %d, alignment = %d\n",
id,
size,
alignment));
return new TestBranchObject(size, alignment, id);
}
private:
// Store pointers to ForwardReference objects - TestBranchObject is
// responsible for deleting them.
std::vector<ForwardReference<int32_t> *> references_;
// Object id used for debugging.
int id_;
// These are the min and max offsets of the type of branch used for the
// veneer.
static const int32_t min_offset_ = 0;
static const int32_t max_offset_ = 16 * 1024 * 1024;
};
// MacroAssembler implementation that does nothing but print in verbose mode.
class TestMacroAssembler : public MacroAssemblerInterface {
public:
TestMacroAssembler() : assembler_(128) {}
void EmitPoolHeader() VIXL_OVERRIDE {
IF_VERBOSE(printf("[MASM] Emitting pool header.\n"));
}
void EmitPoolFooter() VIXL_OVERRIDE {
IF_VERBOSE(printf("[MASM] Emitting pool footer.\n"));
}
void EmitPaddingBytes(int n) VIXL_OVERRIDE {
IF_VERBOSE(printf("[MASM] Added %d bytes of padding.\n", n));
}
void EmitNopBytes(int n) VIXL_OVERRIDE {
IF_VERBOSE(printf("[MASM] Added %d bytes of NOPs.\n", n));
}
bool ArePoolsBlocked() const VIXL_OVERRIDE { return false; }
bool AllowMacroInstructions() const VIXL_OVERRIDE { return false; }
void SetAllowMacroInstructions(bool allow) VIXL_OVERRIDE { USE(allow); }
void BlockPools() VIXL_OVERRIDE {}
void ReleasePools() VIXL_OVERRIDE {}
void EnsureEmitPoolsFor(size_t) VIXL_OVERRIDE {}
internal::AssemblerBase *AsAssemblerBase() VIXL_OVERRIDE {
return &assembler_;
}
private:
internal::AssemblerBase assembler_;
};
// Used for debugging.
namespace vixl {
template <>
void PoolManager<int32_t>::DumpCurrentState(int32_t pc) const {
IF_VERBOSE(
printf("Number of objects: %d\n", static_cast<int>(objects_.size())));
IF_VERBOSE(printf("Current pc = 0x%x (%d)\n", pc, pc));
for (int i = 0; i < static_cast<int>(objects_.size()); ++i) {
const PoolObject<int32_t> &object = objects_[i];
IF_VERBOSE(
printf("Object %d -> size = %d, alignment = %d, range = (%d,%d)\n",
i,
object.label_base_->GetPoolObjectSizeInBytes(),
object.alignment_,
object.min_location_,
object.max_location_));
}
}
}
// Basic test - checks that emitting a very simple pool works.
TEST(Basic) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
TestObject object1(4 /*size*/, 4 /*alignment*/);
TestObject object2(128 /*size*/, 4 /*alignment*/);
ForwardReference<int32_t> *ref1_obj1 =
new ForwardReference<int32_t>(0 /*location*/, 2 /*size*/, 0, 200);
ForwardReference<int32_t> *ref2_obj1 =
new ForwardReference<int32_t>(2 /*location*/, 2 /*size*/, 2, 202);
ForwardReference<int32_t> *ref3_obj1 =
new ForwardReference<int32_t>(4 /*location*/, 2 /*size*/, 4, 204);
object1.AddReference(ref1_obj1);
object1.AddReference(ref2_obj1);
object1.AddReference(ref3_obj1);
ForwardReference<int32_t> *ref1_obj2 =
new ForwardReference<int32_t>(8 /*location*/, 2 /*size*/, 8, 500);
ForwardReference<int32_t> *ref2_obj2 =
new ForwardReference<int32_t>(12 /*location*/, 4 /*size*/, 12, 300);
ForwardReference<int32_t> *ref3_obj2 =
new ForwardReference<int32_t>(16 /*location*/, 4 /*size*/, 16, 400);
object2.AddReference(ref1_obj2);
object2.AddReference(ref2_obj2);
object2.AddReference(ref3_obj2);
pool_manager.AddObjectReference(ref1_obj1, &object1);
pool_manager.AddObjectReference(ref2_obj1, &object1);
pool_manager.AddObjectReference(ref3_obj1, &object1);
pool_manager.AddObjectReference(ref1_obj2, &object2);
pool_manager.AddObjectReference(ref2_obj2, &object2);
pool_manager.AddObjectReference(ref3_obj2, &object2);
pool_manager.Emit(&masm, 20);
}
static ForwardReference<int32_t> *CreateReference(int id,
int32_t pc,
int size,
int32_t min_offset,
int32_t max_offset,
int alignment) {
IF_VERBOSE(printf(
"About to add a new reference to object %d with min location = %d, max "
"location = %d, alignment = %d, size = %d\n",
id,
min_offset + pc,
max_offset + pc,
alignment,
size));
return new ForwardReference<int32_t>(pc,
size,
min_offset + pc,
max_offset + pc,
alignment);
}
// Fuzz test that uses literal-like objects, that get deleted when they are
// placed.
TEST(FuzzObjectDeletedWhenPlaced) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
const int kObjectNum = 100;
std::vector<TestObject *> objects;
// Create objects.
for (int i = 0; i < kObjectNum; ++i) {
objects.push_back(TestObject::CreateRandom(i));
}
int32_t pc = 0;
for (int i = 0; !objects.empty(); ++i) {
IF_VERBOSE(printf("PC = 0x%x (%d)\n", pc, pc));
int32_t pc_increment = RandomPCIncrement();
IF_VERBOSE(printf("Attempting to increment PC by %d\n", pc_increment));
if (pool_manager.MustEmit(pc, pc_increment)) {
pc = pool_manager.Emit(&masm, pc, pc_increment);
}
pc += pc_increment;
// Pick an object, randomly.
TestObject *object = objects[RandomObjectID(objects.size())];
int32_t min_offset = RandomMinOffset();
int32_t max_offset = RandomMaxOffset();
int32_t size = RandomReferenceSize();
int32_t alignment =
RandomObjectAlignment(object->GetPoolObjectSizeInBytes());
ForwardReference<int32_t> *ref = CreateReference(object->GetID(),
pc,
size,
min_offset,
max_offset,
alignment);
if (pool_manager.MustEmit(pc, size, ref, object)) {
pc = pool_manager.Emit(&masm, pc, size, ref, object);
delete ref;
// We must recreate the reference, the PC has changed, but only if
// it still is a forward reference.
if (!object->IsBound()) {
ref = CreateReference(object->GetID(),
pc,
size,
min_offset,
max_offset,
alignment);
}
}
IF_VERBOSE(printf("Incrementing PC by size of reference (%d).\n", size));
pc += size;
// We only need to track the reference if it's a forward reference.
if (!object->IsBound()) {
object->AddReference(ref);
pool_manager.AddObjectReference(ref, object);
}
VIXL_ASSERT(!pool_manager.MustEmit(pc - 1));
// Remove bound objects.
for (std::vector<TestObject *>::iterator iter = objects.begin();
iter != objects.end();) {
TestObject *object = *iter;
if (object->IsBound()) {
delete object;
iter = objects.erase(iter);
} else {
++iter;
}
}
}
pool_manager.Emit(&masm, pc);
}
// Fuzz test that uses veneer-like objects, that get updated when they are
// placed and get deleted when they are bound by the user.
TEST(FuzzObjectUpdatedWhenPlaced) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
const int kObjectNum = 1000;
std::vector<TestBranchObject *> objects;
// Create objects.
for (int i = 0; i < kObjectNum; ++i) {
objects.push_back(TestBranchObject::CreateRandom(i));
}
int32_t pc = 0;
for (int i = 0; !objects.empty(); ++i) {
IF_VERBOSE(printf("PC = 0x%x (%d)\n", pc, pc));
int32_t pc_increment = RandomPCIncrement();
IF_VERBOSE(printf("Attempting to increment PC by %d\n", pc_increment));
if (pool_manager.MustEmit(pc, pc_increment)) {
pc = pool_manager.Emit(&masm, pc, pc_increment);
}
pc += pc_increment;
// Pick a random object.
TestBranchObject *object = objects[RandomObjectID(objects.size())];
int32_t min_offset = RandomMinOffset();
int32_t max_offset = RandomBranchMaxOffset();
int32_t size = RandomReferenceSize();
int32_t alignment =
RandomObjectAlignment(object->GetPoolObjectSizeInBytes());
ForwardReference<int32_t> *ref = CreateReference(object->GetID(),
pc,
size,
min_offset,
max_offset,
alignment);
if (pool_manager.MustEmit(pc, size, ref, object)) {
pc = pool_manager.Emit(&masm, pc, size);
delete ref;
// We must recreate the reference, the PC has changed.
ref = CreateReference(object->GetID(),
pc,
size,
min_offset,
max_offset,
alignment);
}
IF_VERBOSE(printf("Incrementing PC by size of reference (%d).\n", size));
pc += size;
object->AddReference(ref);
pool_manager.AddObjectReference(ref, object);
VIXL_ASSERT(!pool_manager.MustEmit(pc - 1));
// Pick another random label to bind.
const int kProbabilityToBind = 20;
if ((Random() % 100) < kProbabilityToBind) {
TestBranchObject *object = objects[RandomObjectID(objects.size())];
// Binding can cause the pool emission, so check if we need to emit
// the pools. The actual backends will know the max alignment we
// might need here, so can simplify the check (won't need to check
// the object references).
int max_padding = object->GetMaxAlignment() - 1;
if (pool_manager.MustEmit(pc, max_padding)) {
pc = pool_manager.Emit(&masm, pc, max_padding);
}
pc = pool_manager.Bind(&masm, object, pc);
}
// Remove bound objects.
for (std::vector<TestBranchObject *>::iterator iter = objects.begin();
iter != objects.end();) {
TestBranchObject *object = *iter;
if (object->IsBound()) {
delete object;
iter = objects.erase(iter);
} else {
++iter;
}
}
}
pool_manager.Emit(&masm, pc);
}
// Test that binding an unused label works.
TEST(BindUnusedLabel) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
TestBranchObject *object = new TestBranchObject(4 /*size*/, 4 /*alignment*/);
int32_t pc = 0;
pool_manager.Bind(&masm, object, pc);
delete object;
}
// Test that binding a label adds necessary padding.
TEST(BindLabelNeedsPadding) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
// Label that needs padding because of the minimum location of the reference.
TestBranchObject *object = new TestBranchObject(4 /*size*/, 2 /*alignment*/);
ForwardReference<int32_t> *ref =
new ForwardReference<int32_t>(0 /*location*/,
2 /*size*/,
4 /*min_location*/,
500 /*max_location*/);
object->AddReference(ref);
pool_manager.AddObjectReference(ref, object);
int32_t pc = 2;
pc = pool_manager.Bind(&masm, object, pc);
VIXL_ASSERT(pc == 4);
delete object;
// Label that needs padding because of the alignment of the object.
object = new TestBranchObject(4 /*size*/, 4 /*alignment*/);
ref = new ForwardReference<int32_t>(0 /*location*/,
2 /*size*/,
0 /*min_location*/,
500 /*max_location*/);
object->AddReference(ref);
pool_manager.AddObjectReference(ref, object);
pc = 2;
pc = pool_manager.Bind(&masm, object, pc);
VIXL_ASSERT(pc == 4);
delete object;
// Label that needs padding because of the alignment of the reference.
object = new TestBranchObject(4 /*size*/, 1 /*alignment*/);
ref = new ForwardReference<int32_t>(0 /*location*/,
2 /*size*/,
0 /*min_location*/,
500 /*max_location*/,
4 /*alignment*/);
object->AddReference(ref);
pool_manager.AddObjectReference(ref, object);
pc = 2;
pc = pool_manager.Bind(&masm, object, pc);
VIXL_ASSERT(pc == 4);
delete object;
}
// This test checks that when we omit the pool header, we insert any padding
// needed in order to meet the minimum location of the first object.
TEST(PoolWithoutHeaderMinLocation) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
int object_size = 4;
int object_alignment = 1; // Do not restrict alignment for this test.
int min_location = 4; // We emit the pool at location 2, so need padding.
int max_location = 500;
TestObject object(object_size, object_alignment);
ForwardReference<int32_t> *ref = new ForwardReference<int32_t>(0 /*location*/,
2 /*size*/,
min_location,
max_location);
object.AddReference(ref);
pool_manager.AddObjectReference(ref, &object);
int32_t new_pc = pool_manager.Emit(&masm,
2,
0, /* no new code added */
NULL,
NULL,
PoolManager<int32_t>::kNoBranchRequired);
USE(new_pc);
VIXL_ASSERT(new_pc == min_location + object_size);
}
// This test checks that when we omit the pool header, we insert any padding
// needed in order to meet the alignment of the first object.
TEST(PoolWithoutHeaderAlignment) {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
int object_size = 4;
int object_alignment = 4; // We emit the pool at location 2, so need padding.
int min_location = 0; // Do not restrict this for this test.
int max_location = 500;
TestObject object(object_size, object_alignment);
ForwardReference<int32_t> *ref = new ForwardReference<int32_t>(0 /*location*/,
2 /*size*/,
min_location,
max_location);
object.AddReference(ref);
pool_manager.AddObjectReference(ref, &object);
int32_t pc = 2;
int32_t new_pc = pool_manager.Emit(&masm,
pc,
0, /* no new code added */
NULL,
NULL,
PoolManager<int32_t>::kNoBranchRequired);
USE(pc);
USE(new_pc);
VIXL_ASSERT(new_pc == AlignUp(pc, object_alignment) + object_size);
}
static int32_t AddNBranches(PoolManager<int32_t> *pool_manager,
int32_t pc,
TestBranchObject *labels[],
int num_branches,
int branch_size,
int veneer_size,
int veneer_alignment,
int branch_range) {
for (int i = 0; i < num_branches; ++i) {
labels[i] = new TestBranchObject(veneer_size, veneer_alignment);
int32_t min_location = pc;
int32_t max_location = pc + branch_range;
ForwardReference<int32_t> *ref =
new ForwardReference<int32_t>(pc,
branch_size,
min_location,
max_location);
labels[i]->AddReference(ref);
// We have picked the object sizes so that we do not need to emit now.
VIXL_ASSERT(!pool_manager->MustEmit(pc, branch_size, ref, labels[i]));
pool_manager->AddObjectReference(ref, labels[i]);
pc += branch_size;
}
return pc;
}
TEST(MustEmitNewReferenceDueToRange) {
const int kHeaderSize = 4;
const int kHeaderAlignment = 2;
const int kNumBranches = 550;
const int kBranchSize = 4;
const int kVeneerSize = 4;
const int kVeneerAlignment = 2;
const int kBranchRange = 1 * MBytes;
int32_t pc = 0;
TestMacroAssembler masm;
TestBranchObject *labels[kNumBranches];
PoolManager<int32_t> pool_manager(kHeaderSize,
kHeaderAlignment,
BUFFER_ALIGNMENT);
pc = AddNBranches(&pool_manager,
pc,
labels,
kNumBranches,
kBranchSize,
kVeneerSize,
kVeneerAlignment,
kBranchRange);
// Increment PC to close to the checkpoint of the pools.
TestPoolManager test(&pool_manager);
pc = test.GetPoolCheckpoint() - 4;
VIXL_ASSERT(!pool_manager.MustEmit(pc));
// Now, attempt to add a reference that would make the problem impossible.
// We need to emit the pool immediately after this new instruction, and
// the current size of the pool is kVeneerSize * kNumBranches, so adding a
// short-range (smaller than the pool size) reference should trigger pool
// emission.
const int kPoolSize = kVeneerSize * kNumBranches + kHeaderSize;
const int kNewObjectSize = 2;
TestObject new_object(kNewObjectSize, 1);
ForwardReference<int32_t> temp_ref(pc,
kBranchSize,
pc,
pc + kPoolSize + kBranchSize - 1);
VIXL_ASSERT(pool_manager.MustEmit(pc, kBranchSize, &temp_ref, &new_object));
// Before actually emitting the pool, try a few different references to make
// sure that this works as expected.
{
// This reference has a large enough range, so should not force pool
// emission.
ForwardReference<int32_t> far_ref(pc,
kBranchSize,
pc,
pc + kPoolSize + kBranchSize);
VIXL_ASSERT(!pool_manager.MustEmit(pc, kBranchSize, &far_ref, &new_object));
// This reference had a large enough range but will be restricted by
// alignment so should force pool emission.
int alignment = 16;
VIXL_ASSERT((pc & (alignment - 1)) != 0);
ForwardReference<int32_t> aligned_ref(pc,
kBranchSize,
pc,
pc + kPoolSize + kBranchSize,
alignment);
VIXL_ASSERT(
pool_manager.MustEmit(pc, kBranchSize, &aligned_ref, &new_object));
}
// Emit the pool and check its size.
int32_t new_pc =
pool_manager.Emit(&masm, pc, kBranchSize, &temp_ref, &new_object);
VIXL_ASSERT(pc % kHeaderAlignment == 0); // No need for padding.
VIXL_ASSERT(new_pc == pc + kPoolSize);
pc = new_pc;
// Add the new reference, safely.
ForwardReference<int32_t> *ref =
new ForwardReference<int32_t>(pc, 4 /*size*/, pc, pc + kBranchRange);
new_object.AddReference(ref);
pool_manager.AddObjectReference(ref, &new_object);
pc += 4;
// Emit the pool again.
new_pc = pool_manager.Emit(&masm, pc);
VIXL_ASSERT(pc % kHeaderAlignment == 0); // No need for padding.
VIXL_ASSERT(new_pc == pc + kNewObjectSize + kHeaderSize);
pc = new_pc;
// Finally, bind the labels.
for (int i = 0; i < kNumBranches; ++i) {
pc = pool_manager.Bind(&masm, labels[i], pc);
delete labels[i];
}
}
TEST(MustEmitNewReferenceDueToSizeOfObject) {
const int kHeaderSize = 4;
const int kHeaderAlignment = 2;
const int kNumBranches = 550;
const int kBranchSize = 4;
const int kVeneerSize = 4;
const int kVeneerAlignment = 2;
const int kBranchRange = 1 * MBytes;
int32_t pc = 0;
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(kHeaderSize,
kHeaderAlignment,
BUFFER_ALIGNMENT);
TestBranchObject *labels[kNumBranches];
pc = AddNBranches(&pool_manager,
pc,
labels,
kNumBranches,
kBranchSize,
kVeneerSize,
kVeneerAlignment,
kBranchRange);
// Increment PC to close to the checkpoint of the pools minus a known
// thershold.
const int kBigObjectSize = 1024;
TestPoolManager test(&pool_manager);
pc = test.GetPoolCheckpoint() - kBigObjectSize;
VIXL_ASSERT(!pool_manager.MustEmit(pc));
// Now, attempt to add a reference that would make the problem impossible.
// If we add a short-range (smaller than the pool size) reference with a
// large size (larger than the margin we have until pool emission), pool
// emission should be triggered.
const int kPoolSize = kVeneerSize * kNumBranches + kHeaderSize;
TestObject new_object(kBigObjectSize, 1);
ForwardReference<int32_t> temp_ref(pc, kBranchSize, pc, pc + kPoolSize);
VIXL_ASSERT(pool_manager.MustEmit(pc, kBranchSize, &temp_ref, &new_object));
// Before actually emitting the pool, try a few different references to make
// sure that this works as expected.
{
// If the object is smaller, we can emit the reference.
TestObject smaller_object(kBigObjectSize - 4, 1);
ForwardReference<int32_t> temp_ref(pc, kBranchSize, pc, pc + kPoolSize);
VIXL_ASSERT(
!pool_manager.MustEmit(pc, kBranchSize, &temp_ref, &smaller_object));
// If the reference is going to be added after the current objects in the
// pool, we can still emit it.
ForwardReference<int32_t> far_ref(pc, kBranchSize, pc, pc + kBranchRange);
VIXL_ASSERT(!pool_manager.MustEmit(pc, kBranchSize, &far_ref, &new_object));
}
// Emit the pool and check its size.
int32_t new_pc =
pool_manager.Emit(&masm, pc, kBranchSize, &temp_ref, &new_object);
VIXL_ASSERT(pc % kHeaderAlignment == 0); // No need for padding.
VIXL_ASSERT(new_pc == pc + kPoolSize);
pc = new_pc;
// Add the new reference, safely.
ForwardReference<int32_t> *ref =
new ForwardReference<int32_t>(pc, 4 /*size*/, pc, pc + kBranchRange);
new_object.AddReference(ref);
pool_manager.AddObjectReference(ref, &new_object);
pc += 4;
// Emit the pool again.
new_pc = pool_manager.Emit(&masm, pc);
VIXL_ASSERT(pc % kHeaderAlignment == 0); // No need for padding.
VIXL_ASSERT(new_pc == pc + kBigObjectSize + kHeaderSize);
pc = new_pc;
// Finally, bind the labels.
for (int i = 0; i < kNumBranches; ++i) {
pc = pool_manager.Bind(&masm, labels[i], pc);
delete labels[i];
}
}
template <typename ObjectType>
void ManagedLocationBaseTestHelper() {
TestMacroAssembler masm;
PoolManager<int32_t> pool_manager(4 /*header_size*/,
2 /*header_alignment*/,
BUFFER_ALIGNMENT);
ObjectType *object1 = new ObjectType();
ObjectType *object2 = new ObjectType();
ForwardReference<int32_t> *ref_obj1 =
new ForwardReference<int32_t>(0 /*location*/, 2 /*size*/, 0, 200);
object1->AddReference(ref_obj1);
ForwardReference<int32_t> *ref_obj2 =
new ForwardReference<int32_t>(8 /*location*/, 2 /*size*/, 8, 500);
object2->AddReference(ref_obj2);
pool_manager.AddObjectReference(ref_obj1, object1);
pool_manager.AddObjectReference(ref_obj2, object2);
pool_manager.Emit(&masm, 20);
}
class TestObjectDeletedOnPlacement : public TestObject {
public:
TestObjectDeletedOnPlacement() : TestObject(4 /*size*/, 4 /*alignment*/) {}
// After passing ownership of this type of object to the pool manager, it is
// not safe to use it anymore.
virtual bool ShouldBeDeletedOnPlacementByPoolManager() const VIXL_OVERRIDE {
return true;
}
};
TEST(DeleteLocationBaseOnPlacement) {
ManagedLocationBaseTestHelper<TestObjectDeletedOnPlacement>();
}
class TestObjectDeletedOnPoolManagerDestruction : public TestObject {
public:
TestObjectDeletedOnPoolManagerDestruction()
: TestObject(4 /*size*/, 4 /*alignment*/) {}
// We can continue using this type of object after passing its ownership to
// the pool manager, as it will be deleted only when the pool manager is
// destroyed.
virtual bool ShouldBeDeletedOnPoolManagerDestruction() const VIXL_OVERRIDE {
return true;
}
};
TEST(DeleteLocationBaseOnPoolManagerDestruction) {
ManagedLocationBaseTestHelper<TestObjectDeletedOnPoolManagerDestruction>();
}