blob: f5a903a9ae2f4fc6a133a3a1cbe857cb456165ae [file] [log] [blame]
/* -*- mode: C; c-basic-offset: 3; -*- */
/*--------------------------------------------------------------------*/
/*--- begin guest_arm64_toIR.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2013-2013 OpenWorks
info@open-works.net
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
The GNU General Public License is contained in the file COPYING.
*/
/* KNOWN LIMITATIONS 2014-Nov-16
* Correctness: FMAXNM, FMINNM are implemented the same as FMAX/FMIN.
Also FP comparison "unordered" .. is implemented as normal FP
comparison.
Both should be fixed. They behave incorrectly in the presence of
NaNs.
* Floating multiply-add (etc) insns. Are split into a multiply and
an add, and so suffer double rounding and hence sometimes the
least significant mantissa bit is incorrect. Fix: use the IR
multiply-add IROps instead.
*/
/* "Special" instructions.
This instruction decoder can decode four special instructions
which mean nothing natively (are no-ops as far as regs/mem are
concerned) but have meaning for supporting Valgrind. A special
instruction is flagged by a 16-byte preamble:
93CC0D8C 93CC358C 93CCCD8C 93CCF58C
(ror x12, x12, #3; ror x12, x12, #13
ror x12, x12, #51; ror x12, x12, #61)
Following that, one of the following 3 are allowed
(standard interpretation in parentheses):
AA0A014A (orr x10,x10,x10) X3 = client_request ( X4 )
AA0B016B (orr x11,x11,x11) X3 = guest_NRADDR
AA0C018C (orr x12,x12,x12) branch-and-link-to-noredir X8
AA090129 (orr x9,x9,x9) IR injection
Any other bytes following the 16-byte preamble are illegal and
constitute a failure in instruction decoding. This all assumes
that the preamble will never occur except in specific code
fragments designed for Valgrind to catch.
*/
/* Translates ARM64 code to IR. */
#include "libvex_basictypes.h"
#include "libvex_ir.h"
#include "libvex.h"
#include "libvex_guest_arm64.h"
#include "main_util.h"
#include "main_globals.h"
#include "guest_generic_bb_to_IR.h"
#include "guest_arm64_defs.h"
/*------------------------------------------------------------*/
/*--- Globals ---*/
/*------------------------------------------------------------*/
/* These are set at the start of the translation of a instruction, so
that we don't have to pass them around endlessly. CONST means does
not change during translation of the instruction.
*/
/* CONST: what is the host's endianness? We need to know this in
order to do sub-register accesses to the SIMD/FP registers
correctly. */
static VexEndness host_endness;
/* CONST: The guest address for the instruction currently being
translated. */
static Addr64 guest_PC_curr_instr;
/* MOD: The IRSB* into which we're generating code. */
static IRSB* irsb;
/*------------------------------------------------------------*/
/*--- Debugging output ---*/
/*------------------------------------------------------------*/
#define DIP(format, args...) \
if (vex_traceflags & VEX_TRACE_FE) \
vex_printf(format, ## args)
#define DIS(buf, format, args...) \
if (vex_traceflags & VEX_TRACE_FE) \
vex_sprintf(buf, format, ## args)
/*------------------------------------------------------------*/
/*--- Helper bits and pieces for deconstructing the ---*/
/*--- arm insn stream. ---*/
/*------------------------------------------------------------*/
/* Do a little-endian load of a 32-bit word, regardless of the
endianness of the underlying host. */
static inline UInt getUIntLittleEndianly ( const UChar* p )
{
UInt w = 0;
w = (w << 8) | p[3];
w = (w << 8) | p[2];
w = (w << 8) | p[1];
w = (w << 8) | p[0];
return w;
}
/* Sign extend a N-bit value up to 64 bits, by copying
bit N-1 into all higher positions. */
static ULong sx_to_64 ( ULong x, UInt n )
{
vassert(n > 1 && n < 64);
Long r = (Long)x;
r = (r << (64-n)) >> (64-n);
return (ULong)r;
}
//ZZ /* Do a little-endian load of a 16-bit word, regardless of the
//ZZ endianness of the underlying host. */
//ZZ static inline UShort getUShortLittleEndianly ( UChar* p )
//ZZ {
//ZZ UShort w = 0;
//ZZ w = (w << 8) | p[1];
//ZZ w = (w << 8) | p[0];
//ZZ return w;
//ZZ }
//ZZ
//ZZ static UInt ROR32 ( UInt x, UInt sh ) {
//ZZ vassert(sh >= 0 && sh < 32);
//ZZ if (sh == 0)
//ZZ return x;
//ZZ else
//ZZ return (x << (32-sh)) | (x >> sh);
//ZZ }
//ZZ
//ZZ static Int popcount32 ( UInt x )
//ZZ {
//ZZ Int res = 0, i;
//ZZ for (i = 0; i < 32; i++) {
//ZZ res += (x & 1);
//ZZ x >>= 1;
//ZZ }
//ZZ return res;
//ZZ }
//ZZ
//ZZ static UInt setbit32 ( UInt x, Int ix, UInt b )
//ZZ {
//ZZ UInt mask = 1 << ix;
//ZZ x &= ~mask;
//ZZ x |= ((b << ix) & mask);
//ZZ return x;
//ZZ }
#define BITS2(_b1,_b0) \
(((_b1) << 1) | (_b0))
#define BITS3(_b2,_b1,_b0) \
(((_b2) << 2) | ((_b1) << 1) | (_b0))
#define BITS4(_b3,_b2,_b1,_b0) \
(((_b3) << 3) | ((_b2) << 2) | ((_b1) << 1) | (_b0))
#define BITS8(_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0) \
((BITS4((_b7),(_b6),(_b5),(_b4)) << 4) \
| BITS4((_b3),(_b2),(_b1),(_b0)))
#define BITS5(_b4,_b3,_b2,_b1,_b0) \
(BITS8(0,0,0,(_b4),(_b3),(_b2),(_b1),(_b0)))
#define BITS6(_b5,_b4,_b3,_b2,_b1,_b0) \
(BITS8(0,0,(_b5),(_b4),(_b3),(_b2),(_b1),(_b0)))
#define BITS7(_b6,_b5,_b4,_b3,_b2,_b1,_b0) \
(BITS8(0,(_b6),(_b5),(_b4),(_b3),(_b2),(_b1),(_b0)))
#define BITS9(_b8,_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0) \
(((_b8) << 8) \
| BITS8((_b7),(_b6),(_b5),(_b4),(_b3),(_b2),(_b1),(_b0)))
#define BITS10(_b9,_b8,_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0) \
(((_b9) << 9) | ((_b8) << 8) \
| BITS8((_b7),(_b6),(_b5),(_b4),(_b3),(_b2),(_b1),(_b0)))
#define BITS11(_b10,_b9,_b8,_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0) \
(((_b10) << 10) \
| BITS10(_b9,_b8,_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0))
#define BITS12(_b11, _b10,_b9,_b8,_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0) \
(((_b11) << 11) \
| BITS11(_b10,_b9,_b8,_b7,_b6,_b5,_b4,_b3,_b2,_b1,_b0))
#define X00 BITS2(0,0)
#define X01 BITS2(0,1)
#define X10 BITS2(1,0)
#define X11 BITS2(1,1)
// produces _uint[_bMax:_bMin]
#define SLICE_UInt(_uint,_bMax,_bMin) \
(( ((UInt)(_uint)) >> (_bMin)) \
& (UInt)((1ULL << ((_bMax) - (_bMin) + 1)) - 1ULL))
/*------------------------------------------------------------*/
/*--- Helper bits and pieces for creating IR fragments. ---*/
/*------------------------------------------------------------*/
static IRExpr* mkV128 ( UShort w )
{
return IRExpr_Const(IRConst_V128(w));
}
static IRExpr* mkU64 ( ULong i )
{
return IRExpr_Const(IRConst_U64(i));
}
static IRExpr* mkU32 ( UInt i )
{
return IRExpr_Const(IRConst_U32(i));
}
static IRExpr* mkU16 ( UInt i )
{
vassert(i < 65536);
return IRExpr_Const(IRConst_U16(i));
}
static IRExpr* mkU8 ( UInt i )
{
vassert(i < 256);
return IRExpr_Const(IRConst_U8( (UChar)i ));
}
static IRExpr* mkexpr ( IRTemp tmp )
{
return IRExpr_RdTmp(tmp);
}
static IRExpr* unop ( IROp op, IRExpr* a )
{
return IRExpr_Unop(op, a);
}
static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 )
{
return IRExpr_Binop(op, a1, a2);
}
static IRExpr* triop ( IROp op, IRExpr* a1, IRExpr* a2, IRExpr* a3 )
{
return IRExpr_Triop(op, a1, a2, a3);
}
static IRExpr* loadLE ( IRType ty, IRExpr* addr )
{
return IRExpr_Load(Iend_LE, ty, addr);
}
/* Add a statement to the list held by "irbb". */
static void stmt ( IRStmt* st )
{
addStmtToIRSB( irsb, st );
}
static void assign ( IRTemp dst, IRExpr* e )
{
stmt( IRStmt_WrTmp(dst, e) );
}
static void storeLE ( IRExpr* addr, IRExpr* data )
{
stmt( IRStmt_Store(Iend_LE, addr, data) );
}
//ZZ static void storeGuardedLE ( IRExpr* addr, IRExpr* data, IRTemp guardT )
//ZZ {
//ZZ if (guardT == IRTemp_INVALID) {
//ZZ /* unconditional */
//ZZ storeLE(addr, data);
//ZZ } else {
//ZZ stmt( IRStmt_StoreG(Iend_LE, addr, data,
//ZZ binop(Iop_CmpNE32, mkexpr(guardT), mkU32(0))) );
//ZZ }
//ZZ }
//ZZ
//ZZ static void loadGuardedLE ( IRTemp dst, IRLoadGOp cvt,
//ZZ IRExpr* addr, IRExpr* alt,
//ZZ IRTemp guardT /* :: Ity_I32, 0 or 1 */ )
//ZZ {
//ZZ if (guardT == IRTemp_INVALID) {
//ZZ /* unconditional */
//ZZ IRExpr* loaded = NULL;
//ZZ switch (cvt) {
//ZZ case ILGop_Ident32:
//ZZ loaded = loadLE(Ity_I32, addr); break;
//ZZ case ILGop_8Uto32:
//ZZ loaded = unop(Iop_8Uto32, loadLE(Ity_I8, addr)); break;
//ZZ case ILGop_8Sto32:
//ZZ loaded = unop(Iop_8Sto32, loadLE(Ity_I8, addr)); break;
//ZZ case ILGop_16Uto32:
//ZZ loaded = unop(Iop_16Uto32, loadLE(Ity_I16, addr)); break;
//ZZ case ILGop_16Sto32:
//ZZ loaded = unop(Iop_16Sto32, loadLE(Ity_I16, addr)); break;
//ZZ default:
//ZZ vassert(0);
//ZZ }
//ZZ vassert(loaded != NULL);
//ZZ assign(dst, loaded);
//ZZ } else {
//ZZ /* Generate a guarded load into 'dst', but apply 'cvt' to the
//ZZ loaded data before putting the data in 'dst'. If the load
//ZZ does not take place, 'alt' is placed directly in 'dst'. */
//ZZ stmt( IRStmt_LoadG(Iend_LE, cvt, dst, addr, alt,
//ZZ binop(Iop_CmpNE32, mkexpr(guardT), mkU32(0))) );
//ZZ }
//ZZ }
/* Generate a new temporary of the given type. */
static IRTemp newTemp ( IRType ty )
{
vassert(isPlausibleIRType(ty));
return newIRTemp( irsb->tyenv, ty );
}
/* This is used in many places, so the brevity is an advantage. */
static IRTemp newTempV128(void)
{
return newTemp(Ity_V128);
}
/* Initialise V128 temporaries en masse. */
static
void newTempsV128_2(IRTemp* t1, IRTemp* t2)
{
vassert(t1 && *t1 == IRTemp_INVALID);
vassert(t2 && *t2 == IRTemp_INVALID);
*t1 = newTempV128();
*t2 = newTempV128();
}
static
void newTempsV128_3(IRTemp* t1, IRTemp* t2, IRTemp* t3)
{
vassert(t1 && *t1 == IRTemp_INVALID);
vassert(t2 && *t2 == IRTemp_INVALID);
vassert(t3 && *t3 == IRTemp_INVALID);
*t1 = newTempV128();
*t2 = newTempV128();
*t3 = newTempV128();
}
static
void newTempsV128_4(IRTemp* t1, IRTemp* t2, IRTemp* t3, IRTemp* t4)
{
vassert(t1 && *t1 == IRTemp_INVALID);
vassert(t2 && *t2 == IRTemp_INVALID);
vassert(t3 && *t3 == IRTemp_INVALID);
vassert(t4 && *t4 == IRTemp_INVALID);
*t1 = newTempV128();
*t2 = newTempV128();
*t3 = newTempV128();
*t4 = newTempV128();
}
static
void newTempsV128_7(IRTemp* t1, IRTemp* t2, IRTemp* t3,
IRTemp* t4, IRTemp* t5, IRTemp* t6, IRTemp* t7)
{
vassert(t1 && *t1 == IRTemp_INVALID);
vassert(t2 && *t2 == IRTemp_INVALID);
vassert(t3 && *t3 == IRTemp_INVALID);
vassert(t4 && *t4 == IRTemp_INVALID);
vassert(t5 && *t5 == IRTemp_INVALID);
vassert(t6 && *t6 == IRTemp_INVALID);
vassert(t7 && *t7 == IRTemp_INVALID);
*t1 = newTempV128();
*t2 = newTempV128();
*t3 = newTempV128();
*t4 = newTempV128();
*t5 = newTempV128();
*t6 = newTempV128();
*t7 = newTempV128();
}
//ZZ /* Produces a value in 0 .. 3, which is encoded as per the type
//ZZ IRRoundingMode. */
//ZZ static IRExpr* /* :: Ity_I32 */ get_FAKE_roundingmode ( void )
//ZZ {
//ZZ return mkU32(Irrm_NEAREST);
//ZZ }
//ZZ
//ZZ /* Generate an expression for SRC rotated right by ROT. */
//ZZ static IRExpr* genROR32( IRTemp src, Int rot )
//ZZ {
//ZZ vassert(rot >= 0 && rot < 32);
//ZZ if (rot == 0)
//ZZ return mkexpr(src);
//ZZ return
//ZZ binop(Iop_Or32,
//ZZ binop(Iop_Shl32, mkexpr(src), mkU8(32 - rot)),
//ZZ binop(Iop_Shr32, mkexpr(src), mkU8(rot)));
//ZZ }
//ZZ
//ZZ static IRExpr* mkU128 ( ULong i )
//ZZ {
//ZZ return binop(Iop_64HLtoV128, mkU64(i), mkU64(i));
//ZZ }
//ZZ
//ZZ /* Generate a 4-aligned version of the given expression if
//ZZ the given condition is true. Else return it unchanged. */
//ZZ static IRExpr* align4if ( IRExpr* e, Bool b )
//ZZ {
//ZZ if (b)
//ZZ return binop(Iop_And32, e, mkU32(~3));
//ZZ else
//ZZ return e;
//ZZ }
/* Other IR construction helpers. */
static IROp mkAND ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_And32;
case Ity_I64: return Iop_And64;
default: vpanic("mkAND");
}
}
static IROp mkOR ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Or32;
case Ity_I64: return Iop_Or64;
default: vpanic("mkOR");
}
}
static IROp mkXOR ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Xor32;
case Ity_I64: return Iop_Xor64;
default: vpanic("mkXOR");
}
}
static IROp mkSHL ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Shl32;
case Ity_I64: return Iop_Shl64;
default: vpanic("mkSHL");
}
}
static IROp mkSHR ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Shr32;
case Ity_I64: return Iop_Shr64;
default: vpanic("mkSHR");
}
}
static IROp mkSAR ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Sar32;
case Ity_I64: return Iop_Sar64;
default: vpanic("mkSAR");
}
}
static IROp mkNOT ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Not32;
case Ity_I64: return Iop_Not64;
default: vpanic("mkNOT");
}
}
static IROp mkADD ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Add32;
case Ity_I64: return Iop_Add64;
default: vpanic("mkADD");
}
}
static IROp mkSUB ( IRType ty ) {
switch (ty) {
case Ity_I32: return Iop_Sub32;
case Ity_I64: return Iop_Sub64;
default: vpanic("mkSUB");
}
}
static IROp mkADDF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_AddF32;
case Ity_F64: return Iop_AddF64;
default: vpanic("mkADDF");
}
}
static IROp mkSUBF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_SubF32;
case Ity_F64: return Iop_SubF64;
default: vpanic("mkSUBF");
}
}
static IROp mkMULF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_MulF32;
case Ity_F64: return Iop_MulF64;
default: vpanic("mkMULF");
}
}
static IROp mkDIVF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_DivF32;
case Ity_F64: return Iop_DivF64;
default: vpanic("mkMULF");
}
}
static IROp mkNEGF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_NegF32;
case Ity_F64: return Iop_NegF64;
default: vpanic("mkNEGF");
}
}
static IROp mkABSF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_AbsF32;
case Ity_F64: return Iop_AbsF64;
default: vpanic("mkNEGF");
}
}
static IROp mkSQRTF ( IRType ty ) {
switch (ty) {
case Ity_F32: return Iop_SqrtF32;
case Ity_F64: return Iop_SqrtF64;
default: vpanic("mkNEGF");
}
}
static IROp mkVecADD ( UInt size ) {
const IROp ops[4]
= { Iop_Add8x16, Iop_Add16x8, Iop_Add32x4, Iop_Add64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQADDU ( UInt size ) {
const IROp ops[4]
= { Iop_QAdd8Ux16, Iop_QAdd16Ux8, Iop_QAdd32Ux4, Iop_QAdd64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQADDS ( UInt size ) {
const IROp ops[4]
= { Iop_QAdd8Sx16, Iop_QAdd16Sx8, Iop_QAdd32Sx4, Iop_QAdd64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQADDEXTSUSATUU ( UInt size ) {
const IROp ops[4]
= { Iop_QAddExtSUsatUU8x16, Iop_QAddExtSUsatUU16x8,
Iop_QAddExtSUsatUU32x4, Iop_QAddExtSUsatUU64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQADDEXTUSSATSS ( UInt size ) {
const IROp ops[4]
= { Iop_QAddExtUSsatSS8x16, Iop_QAddExtUSsatSS16x8,
Iop_QAddExtUSsatSS32x4, Iop_QAddExtUSsatSS64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecSUB ( UInt size ) {
const IROp ops[4]
= { Iop_Sub8x16, Iop_Sub16x8, Iop_Sub32x4, Iop_Sub64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQSUBU ( UInt size ) {
const IROp ops[4]
= { Iop_QSub8Ux16, Iop_QSub16Ux8, Iop_QSub32Ux4, Iop_QSub64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQSUBS ( UInt size ) {
const IROp ops[4]
= { Iop_QSub8Sx16, Iop_QSub16Sx8, Iop_QSub32Sx4, Iop_QSub64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecSARN ( UInt size ) {
const IROp ops[4]
= { Iop_SarN8x16, Iop_SarN16x8, Iop_SarN32x4, Iop_SarN64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecSHRN ( UInt size ) {
const IROp ops[4]
= { Iop_ShrN8x16, Iop_ShrN16x8, Iop_ShrN32x4, Iop_ShrN64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecSHLN ( UInt size ) {
const IROp ops[4]
= { Iop_ShlN8x16, Iop_ShlN16x8, Iop_ShlN32x4, Iop_ShlN64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecCATEVENLANES ( UInt size ) {
const IROp ops[4]
= { Iop_CatEvenLanes8x16, Iop_CatEvenLanes16x8,
Iop_CatEvenLanes32x4, Iop_InterleaveLO64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecCATODDLANES ( UInt size ) {
const IROp ops[4]
= { Iop_CatOddLanes8x16, Iop_CatOddLanes16x8,
Iop_CatOddLanes32x4, Iop_InterleaveHI64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecINTERLEAVELO ( UInt size ) {
const IROp ops[4]
= { Iop_InterleaveLO8x16, Iop_InterleaveLO16x8,
Iop_InterleaveLO32x4, Iop_InterleaveLO64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecINTERLEAVEHI ( UInt size ) {
const IROp ops[4]
= { Iop_InterleaveHI8x16, Iop_InterleaveHI16x8,
Iop_InterleaveHI32x4, Iop_InterleaveHI64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMAXU ( UInt size ) {
const IROp ops[4]
= { Iop_Max8Ux16, Iop_Max16Ux8, Iop_Max32Ux4, Iop_Max64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMAXS ( UInt size ) {
const IROp ops[4]
= { Iop_Max8Sx16, Iop_Max16Sx8, Iop_Max32Sx4, Iop_Max64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMINU ( UInt size ) {
const IROp ops[4]
= { Iop_Min8Ux16, Iop_Min16Ux8, Iop_Min32Ux4, Iop_Min64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMINS ( UInt size ) {
const IROp ops[4]
= { Iop_Min8Sx16, Iop_Min16Sx8, Iop_Min32Sx4, Iop_Min64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMUL ( UInt size ) {
const IROp ops[4]
= { Iop_Mul8x16, Iop_Mul16x8, Iop_Mul32x4, Iop_INVALID };
vassert(size < 3);
return ops[size];
}
static IROp mkVecMULLU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_Mull8Ux8, Iop_Mull16Ux4, Iop_Mull32Ux2, Iop_INVALID };
vassert(sizeNarrow < 3);
return ops[sizeNarrow];
}
static IROp mkVecMULLS ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_Mull8Sx8, Iop_Mull16Sx4, Iop_Mull32Sx2, Iop_INVALID };
vassert(sizeNarrow < 3);
return ops[sizeNarrow];
}
static IROp mkVecQDMULLS ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_INVALID, Iop_QDMull16Sx4, Iop_QDMull32Sx2, Iop_INVALID };
vassert(sizeNarrow < 3);
return ops[sizeNarrow];
}
static IROp mkVecCMPEQ ( UInt size ) {
const IROp ops[4]
= { Iop_CmpEQ8x16, Iop_CmpEQ16x8, Iop_CmpEQ32x4, Iop_CmpEQ64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecCMPGTU ( UInt size ) {
const IROp ops[4]
= { Iop_CmpGT8Ux16, Iop_CmpGT16Ux8, Iop_CmpGT32Ux4, Iop_CmpGT64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecCMPGTS ( UInt size ) {
const IROp ops[4]
= { Iop_CmpGT8Sx16, Iop_CmpGT16Sx8, Iop_CmpGT32Sx4, Iop_CmpGT64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecABS ( UInt size ) {
const IROp ops[4]
= { Iop_Abs8x16, Iop_Abs16x8, Iop_Abs32x4, Iop_Abs64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecZEROHIxxOFV128 ( UInt size ) {
const IROp ops[4]
= { Iop_ZeroHI120ofV128, Iop_ZeroHI112ofV128,
Iop_ZeroHI96ofV128, Iop_ZeroHI64ofV128 };
vassert(size < 4);
return ops[size];
}
static IRExpr* mkU ( IRType ty, ULong imm ) {
switch (ty) {
case Ity_I32: return mkU32((UInt)(imm & 0xFFFFFFFFULL));
case Ity_I64: return mkU64(imm);
default: vpanic("mkU");
}
}
static IROp mkVecQDMULHIS ( UInt size ) {
const IROp ops[4]
= { Iop_INVALID, Iop_QDMulHi16Sx8, Iop_QDMulHi32Sx4, Iop_INVALID };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQRDMULHIS ( UInt size ) {
const IROp ops[4]
= { Iop_INVALID, Iop_QRDMulHi16Sx8, Iop_QRDMulHi32Sx4, Iop_INVALID };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQANDUQSH ( UInt size ) {
const IROp ops[4]
= { Iop_QandUQsh8x16, Iop_QandUQsh16x8,
Iop_QandUQsh32x4, Iop_QandUQsh64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQANDSQSH ( UInt size ) {
const IROp ops[4]
= { Iop_QandSQsh8x16, Iop_QandSQsh16x8,
Iop_QandSQsh32x4, Iop_QandSQsh64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQANDUQRSH ( UInt size ) {
const IROp ops[4]
= { Iop_QandUQRsh8x16, Iop_QandUQRsh16x8,
Iop_QandUQRsh32x4, Iop_QandUQRsh64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQANDSQRSH ( UInt size ) {
const IROp ops[4]
= { Iop_QandSQRsh8x16, Iop_QandSQRsh16x8,
Iop_QandSQRsh32x4, Iop_QandSQRsh64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecSHU ( UInt size ) {
const IROp ops[4]
= { Iop_Sh8Ux16, Iop_Sh16Ux8, Iop_Sh32Ux4, Iop_Sh64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecSHS ( UInt size ) {
const IROp ops[4]
= { Iop_Sh8Sx16, Iop_Sh16Sx8, Iop_Sh32Sx4, Iop_Sh64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecRSHU ( UInt size ) {
const IROp ops[4]
= { Iop_Rsh8Ux16, Iop_Rsh16Ux8, Iop_Rsh32Ux4, Iop_Rsh64Ux2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecRSHS ( UInt size ) {
const IROp ops[4]
= { Iop_Rsh8Sx16, Iop_Rsh16Sx8, Iop_Rsh32Sx4, Iop_Rsh64Sx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecNARROWUN ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_NarrowUn16to8x8, Iop_NarrowUn32to16x4,
Iop_NarrowUn64to32x2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQNARROWUNSU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QNarrowUn16Sto8Ux8, Iop_QNarrowUn32Sto16Ux4,
Iop_QNarrowUn64Sto32Ux2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQNARROWUNSS ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QNarrowUn16Sto8Sx8, Iop_QNarrowUn32Sto16Sx4,
Iop_QNarrowUn64Sto32Sx2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQNARROWUNUU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QNarrowUn16Uto8Ux8, Iop_QNarrowUn32Uto16Ux4,
Iop_QNarrowUn64Uto32Ux2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQANDqshrNNARROWUU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QandQShrNnarrow16Uto8Ux8, Iop_QandQShrNnarrow32Uto16Ux4,
Iop_QandQShrNnarrow64Uto32Ux2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQANDqsarNNARROWSS ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QandQSarNnarrow16Sto8Sx8, Iop_QandQSarNnarrow32Sto16Sx4,
Iop_QandQSarNnarrow64Sto32Sx2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQANDqsarNNARROWSU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QandQSarNnarrow16Sto8Ux8, Iop_QandQSarNnarrow32Sto16Ux4,
Iop_QandQSarNnarrow64Sto32Ux2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQANDqrshrNNARROWUU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QandQRShrNnarrow16Uto8Ux8, Iop_QandQRShrNnarrow32Uto16Ux4,
Iop_QandQRShrNnarrow64Uto32Ux2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQANDqrsarNNARROWSS ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QandQRSarNnarrow16Sto8Sx8, Iop_QandQRSarNnarrow32Sto16Sx4,
Iop_QandQRSarNnarrow64Sto32Sx2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQANDqrsarNNARROWSU ( UInt sizeNarrow ) {
const IROp ops[4]
= { Iop_QandQRSarNnarrow16Sto8Ux8, Iop_QandQRSarNnarrow32Sto16Ux4,
Iop_QandQRSarNnarrow64Sto32Ux2, Iop_INVALID };
vassert(sizeNarrow < 4);
return ops[sizeNarrow];
}
static IROp mkVecQSHLNSATUU ( UInt size ) {
const IROp ops[4]
= { Iop_QShlNsatUU8x16, Iop_QShlNsatUU16x8,
Iop_QShlNsatUU32x4, Iop_QShlNsatUU64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQSHLNSATSS ( UInt size ) {
const IROp ops[4]
= { Iop_QShlNsatSS8x16, Iop_QShlNsatSS16x8,
Iop_QShlNsatSS32x4, Iop_QShlNsatSS64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecQSHLNSATSU ( UInt size ) {
const IROp ops[4]
= { Iop_QShlNsatSU8x16, Iop_QShlNsatSU16x8,
Iop_QShlNsatSU32x4, Iop_QShlNsatSU64x2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecADDF ( UInt size ) {
const IROp ops[4]
= { Iop_INVALID, Iop_INVALID, Iop_Add32Fx4, Iop_Add64Fx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMAXF ( UInt size ) {
const IROp ops[4]
= { Iop_INVALID, Iop_INVALID, Iop_Max32Fx4, Iop_Max64Fx2 };
vassert(size < 4);
return ops[size];
}
static IROp mkVecMINF ( UInt size ) {
const IROp ops[4]
= { Iop_INVALID, Iop_INVALID, Iop_Min32Fx4, Iop_Min64Fx2 };
vassert(size < 4);
return ops[size];
}
/* Generate IR to create 'arg rotated right by imm', for sane values
of 'ty' and 'imm'. */
static IRTemp mathROR ( IRType ty, IRTemp arg, UInt imm )
{
UInt w = 0;
if (ty == Ity_I64) {
w = 64;
} else {
vassert(ty == Ity_I32);
w = 32;
}
vassert(w != 0);
vassert(imm < w);
if (imm == 0) {
return arg;
}
IRTemp res = newTemp(ty);
assign(res, binop(mkOR(ty),
binop(mkSHL(ty), mkexpr(arg), mkU8(w - imm)),
binop(mkSHR(ty), mkexpr(arg), mkU8(imm)) ));
return res;
}
/* Generate IR to set the returned temp to either all-zeroes or
all ones, as a copy of arg<imm>. */
static IRTemp mathREPLICATE ( IRType ty, IRTemp arg, UInt imm )
{
UInt w = 0;
if (ty == Ity_I64) {
w = 64;
} else {
vassert(ty == Ity_I32);
w = 32;
}
vassert(w != 0);
vassert(imm < w);
IRTemp res = newTemp(ty);
assign(res, binop(mkSAR(ty),
binop(mkSHL(ty), mkexpr(arg), mkU8(w - 1 - imm)),
mkU8(w - 1)));
return res;
}
/* U-widen 8/16/32/64 bit int expr to 64. */
static IRExpr* widenUto64 ( IRType srcTy, IRExpr* e )
{
switch (srcTy) {
case Ity_I64: return e;
case Ity_I32: return unop(Iop_32Uto64, e);
case Ity_I16: return unop(Iop_16Uto64, e);
case Ity_I8: return unop(Iop_8Uto64, e);
default: vpanic("widenUto64(arm64)");
}
}
/* Narrow 64 bit int expr to 8/16/32/64. Clearly only some
of these combinations make sense. */
static IRExpr* narrowFrom64 ( IRType dstTy, IRExpr* e )
{
switch (dstTy) {
case Ity_I64: return e;
case Ity_I32: return unop(Iop_64to32, e);
case Ity_I16: return unop(Iop_64to16, e);
case Ity_I8: return unop(Iop_64to8, e);
default: vpanic("narrowFrom64(arm64)");
}
}
/*------------------------------------------------------------*/
/*--- Helpers for accessing guest registers. ---*/
/*------------------------------------------------------------*/
#define OFFB_X0 offsetof(VexGuestARM64State,guest_X0)
#define OFFB_X1 offsetof(VexGuestARM64State,guest_X1)
#define OFFB_X2 offsetof(VexGuestARM64State,guest_X2)
#define OFFB_X3 offsetof(VexGuestARM64State,guest_X3)
#define OFFB_X4 offsetof(VexGuestARM64State,guest_X4)
#define OFFB_X5 offsetof(VexGuestARM64State,guest_X5)
#define OFFB_X6 offsetof(VexGuestARM64State,guest_X6)
#define OFFB_X7 offsetof(VexGuestARM64State,guest_X7)
#define OFFB_X8 offsetof(VexGuestARM64State,guest_X8)
#define OFFB_X9 offsetof(VexGuestARM64State,guest_X9)
#define OFFB_X10 offsetof(VexGuestARM64State,guest_X10)
#define OFFB_X11 offsetof(VexGuestARM64State,guest_X11)
#define OFFB_X12 offsetof(VexGuestARM64State,guest_X12)
#define OFFB_X13 offsetof(VexGuestARM64State,guest_X13)
#define OFFB_X14 offsetof(VexGuestARM64State,guest_X14)
#define OFFB_X15 offsetof(VexGuestARM64State,guest_X15)
#define OFFB_X16 offsetof(VexGuestARM64State,guest_X16)
#define OFFB_X17 offsetof(VexGuestARM64State,guest_X17)
#define OFFB_X18 offsetof(VexGuestARM64State,guest_X18)
#define OFFB_X19 offsetof(VexGuestARM64State,guest_X19)
#define OFFB_X20 offsetof(VexGuestARM64State,guest_X20)
#define OFFB_X21 offsetof(VexGuestARM64State,guest_X21)
#define OFFB_X22 offsetof(VexGuestARM64State,guest_X22)
#define OFFB_X23 offsetof(VexGuestARM64State,guest_X23)
#define OFFB_X24 offsetof(VexGuestARM64State,guest_X24)
#define OFFB_X25 offsetof(VexGuestARM64State,guest_X25)
#define OFFB_X26 offsetof(VexGuestARM64State,guest_X26)
#define OFFB_X27 offsetof(VexGuestARM64State,guest_X27)
#define OFFB_X28 offsetof(VexGuestARM64State,guest_X28)
#define OFFB_X29 offsetof(VexGuestARM64State,guest_X29)
#define OFFB_X30 offsetof(VexGuestARM64State,guest_X30)
#define OFFB_XSP offsetof(VexGuestARM64State,guest_XSP)
#define OFFB_PC offsetof(VexGuestARM64State,guest_PC)
#define OFFB_CC_OP offsetof(VexGuestARM64State,guest_CC_OP)
#define OFFB_CC_DEP1 offsetof(VexGuestARM64State,guest_CC_DEP1)
#define OFFB_CC_DEP2 offsetof(VexGuestARM64State,guest_CC_DEP2)
#define OFFB_CC_NDEP offsetof(VexGuestARM64State,guest_CC_NDEP)
#define OFFB_TPIDR_EL0 offsetof(VexGuestARM64State,guest_TPIDR_EL0)
#define OFFB_NRADDR offsetof(VexGuestARM64State,guest_NRADDR)
#define OFFB_Q0 offsetof(VexGuestARM64State,guest_Q0)
#define OFFB_Q1 offsetof(VexGuestARM64State,guest_Q1)
#define OFFB_Q2 offsetof(VexGuestARM64State,guest_Q2)
#define OFFB_Q3 offsetof(VexGuestARM64State,guest_Q3)
#define OFFB_Q4 offsetof(VexGuestARM64State,guest_Q4)
#define OFFB_Q5 offsetof(VexGuestARM64State,guest_Q5)
#define OFFB_Q6 offsetof(VexGuestARM64State,guest_Q6)
#define OFFB_Q7 offsetof(VexGuestARM64State,guest_Q7)
#define OFFB_Q8 offsetof(VexGuestARM64State,guest_Q8)
#define OFFB_Q9 offsetof(VexGuestARM64State,guest_Q9)
#define OFFB_Q10 offsetof(VexGuestARM64State,guest_Q10)
#define OFFB_Q11 offsetof(VexGuestARM64State,guest_Q11)
#define OFFB_Q12 offsetof(VexGuestARM64State,guest_Q12)
#define OFFB_Q13 offsetof(VexGuestARM64State,guest_Q13)
#define OFFB_Q14 offsetof(VexGuestARM64State,guest_Q14)
#define OFFB_Q15 offsetof(VexGuestARM64State,guest_Q15)
#define OFFB_Q16 offsetof(VexGuestARM64State,guest_Q16)
#define OFFB_Q17 offsetof(VexGuestARM64State,guest_Q17)
#define OFFB_Q18 offsetof(VexGuestARM64State,guest_Q18)
#define OFFB_Q19 offsetof(VexGuestARM64State,guest_Q19)
#define OFFB_Q20 offsetof(VexGuestARM64State,guest_Q20)
#define OFFB_Q21 offsetof(VexGuestARM64State,guest_Q21)
#define OFFB_Q22 offsetof(VexGuestARM64State,guest_Q22)
#define OFFB_Q23 offsetof(VexGuestARM64State,guest_Q23)
#define OFFB_Q24 offsetof(VexGuestARM64State,guest_Q24)
#define OFFB_Q25 offsetof(VexGuestARM64State,guest_Q25)
#define OFFB_Q26 offsetof(VexGuestARM64State,guest_Q26)
#define OFFB_Q27 offsetof(VexGuestARM64State,guest_Q27)
#define OFFB_Q28 offsetof(VexGuestARM64State,guest_Q28)
#define OFFB_Q29 offsetof(VexGuestARM64State,guest_Q29)
#define OFFB_Q30 offsetof(VexGuestARM64State,guest_Q30)
#define OFFB_Q31 offsetof(VexGuestARM64State,guest_Q31)
#define OFFB_FPCR offsetof(VexGuestARM64State,guest_FPCR)
#define OFFB_QCFLAG offsetof(VexGuestARM64State,guest_QCFLAG)
#define OFFB_CMSTART offsetof(VexGuestARM64State,guest_CMSTART)
#define OFFB_CMLEN offsetof(VexGuestARM64State,guest_CMLEN)
/* ---------------- Integer registers ---------------- */
static Int offsetIReg64 ( UInt iregNo )
{
/* Do we care about endianness here? We do if sub-parts of integer
registers are accessed. */
switch (iregNo) {
case 0: return OFFB_X0;
case 1: return OFFB_X1;
case 2: return OFFB_X2;
case 3: return OFFB_X3;
case 4: return OFFB_X4;
case 5: return OFFB_X5;
case 6: return OFFB_X6;
case 7: return OFFB_X7;
case 8: return OFFB_X8;
case 9: return OFFB_X9;
case 10: return OFFB_X10;
case 11: return OFFB_X11;
case 12: return OFFB_X12;
case 13: return OFFB_X13;
case 14: return OFFB_X14;
case 15: return OFFB_X15;
case 16: return OFFB_X16;
case 17: return OFFB_X17;
case 18: return OFFB_X18;
case 19: return OFFB_X19;
case 20: return OFFB_X20;
case 21: return OFFB_X21;
case 22: return OFFB_X22;
case 23: return OFFB_X23;
case 24: return OFFB_X24;
case 25: return OFFB_X25;
case 26: return OFFB_X26;
case 27: return OFFB_X27;
case 28: return OFFB_X28;
case 29: return OFFB_X29;
case 30: return OFFB_X30;
/* but not 31 */
default: vassert(0);
}
}
static Int offsetIReg64orSP ( UInt iregNo )
{
return iregNo == 31 ? OFFB_XSP : offsetIReg64(iregNo);
}
static const HChar* nameIReg64orZR ( UInt iregNo )
{
vassert(iregNo < 32);
static const HChar* names[32]
= { "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "xzr" };
return names[iregNo];
}
static const HChar* nameIReg64orSP ( UInt iregNo )
{
if (iregNo == 31) {
return "sp";
}
vassert(iregNo < 31);
return nameIReg64orZR(iregNo);
}
static IRExpr* getIReg64orSP ( UInt iregNo )
{
vassert(iregNo < 32);
return IRExpr_Get( offsetIReg64orSP(iregNo), Ity_I64 );
}
static IRExpr* getIReg64orZR ( UInt iregNo )
{
if (iregNo == 31) {
return mkU64(0);
}
vassert(iregNo < 31);
return IRExpr_Get( offsetIReg64orSP(iregNo), Ity_I64 );
}
static void putIReg64orSP ( UInt iregNo, IRExpr* e )
{
vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I64);
stmt( IRStmt_Put(offsetIReg64orSP(iregNo), e) );
}
static void putIReg64orZR ( UInt iregNo, IRExpr* e )
{
vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I64);
if (iregNo == 31) {
return;
}
vassert(iregNo < 31);
stmt( IRStmt_Put(offsetIReg64orSP(iregNo), e) );
}
static const HChar* nameIReg32orZR ( UInt iregNo )
{
vassert(iregNo < 32);
static const HChar* names[32]
= { "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7",
"w8", "w9", "w10", "w11", "w12", "w13", "w14", "w15",
"w16", "w17", "w18", "w19", "w20", "w21", "w22", "w23",
"w24", "w25", "w26", "w27", "w28", "w29", "w30", "wzr" };
return names[iregNo];
}
static const HChar* nameIReg32orSP ( UInt iregNo )
{
if (iregNo == 31) {
return "wsp";
}
vassert(iregNo < 31);
return nameIReg32orZR(iregNo);
}
static IRExpr* getIReg32orSP ( UInt iregNo )
{
vassert(iregNo < 32);
return unop(Iop_64to32,
IRExpr_Get( offsetIReg64orSP(iregNo), Ity_I64 ));
}
static IRExpr* getIReg32orZR ( UInt iregNo )
{
if (iregNo == 31) {
return mkU32(0);
}
vassert(iregNo < 31);
return unop(Iop_64to32,
IRExpr_Get( offsetIReg64orSP(iregNo), Ity_I64 ));
}
static void putIReg32orSP ( UInt iregNo, IRExpr* e )
{
vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32);
stmt( IRStmt_Put(offsetIReg64orSP(iregNo), unop(Iop_32Uto64, e)) );
}
static void putIReg32orZR ( UInt iregNo, IRExpr* e )
{
vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32);
if (iregNo == 31) {
return;
}
vassert(iregNo < 31);
stmt( IRStmt_Put(offsetIReg64orSP(iregNo), unop(Iop_32Uto64, e)) );
}
static const HChar* nameIRegOrSP ( Bool is64, UInt iregNo )
{
vassert(is64 == True || is64 == False);
return is64 ? nameIReg64orSP(iregNo) : nameIReg32orSP(iregNo);
}
static const HChar* nameIRegOrZR ( Bool is64, UInt iregNo )
{
vassert(is64 == True || is64 == False);
return is64 ? nameIReg64orZR(iregNo) : nameIReg32orZR(iregNo);
}
static IRExpr* getIRegOrZR ( Bool is64, UInt iregNo )
{
vassert(is64 == True || is64 == False);
return is64 ? getIReg64orZR(iregNo) : getIReg32orZR(iregNo);
}
static void putIRegOrZR ( Bool is64, UInt iregNo, IRExpr* e )
{
vassert(is64 == True || is64 == False);
if (is64) putIReg64orZR(iregNo, e); else putIReg32orZR(iregNo, e);
}
static void putPC ( IRExpr* e )
{
vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I64);
stmt( IRStmt_Put(OFFB_PC, e) );
}
/* ---------------- Vector (Q) registers ---------------- */
static Int offsetQReg128 ( UInt qregNo )
{
/* We don't care about endianness at this point. It only becomes
relevant when dealing with sections of these registers.*/
switch (qregNo) {
case 0: return OFFB_Q0;
case 1: return OFFB_Q1;
case 2: return OFFB_Q2;
case 3: return OFFB_Q3;
case 4: return OFFB_Q4;
case 5: return OFFB_Q5;
case 6: return OFFB_Q6;
case 7: return OFFB_Q7;
case 8: return OFFB_Q8;
case 9: return OFFB_Q9;
case 10: return OFFB_Q10;
case 11: return OFFB_Q11;
case 12: return OFFB_Q12;
case 13: return OFFB_Q13;
case 14: return OFFB_Q14;
case 15: return OFFB_Q15;
case 16: return OFFB_Q16;
case 17: return OFFB_Q17;
case 18: return OFFB_Q18;
case 19: return OFFB_Q19;
case 20: return OFFB_Q20;
case 21: return OFFB_Q21;
case 22: return OFFB_Q22;
case 23: return OFFB_Q23;
case 24: return OFFB_Q24;
case 25: return OFFB_Q25;
case 26: return OFFB_Q26;
case 27: return OFFB_Q27;
case 28: return OFFB_Q28;
case 29: return OFFB_Q29;
case 30: return OFFB_Q30;
case 31: return OFFB_Q31;
default: vassert(0);
}
}
/* Write to a complete Qreg. */
static void putQReg128 ( UInt qregNo, IRExpr* e )
{
vassert(qregNo < 32);
vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_V128);
stmt( IRStmt_Put(offsetQReg128(qregNo), e) );
}
/* Read a complete Qreg. */
static IRExpr* getQReg128 ( UInt qregNo )
{
vassert(qregNo < 32);
return IRExpr_Get(offsetQReg128(qregNo), Ity_V128);
}
/* Produce the IR type for some sub-part of a vector. For 32- and 64-
bit sub-parts we can choose either integer or float types, and
choose float on the basis that that is the common use case and so
will give least interference with Put-to-Get forwarding later
on. */
static IRType preferredVectorSubTypeFromSize ( UInt szB )
{
switch (szB) {
case 1: return Ity_I8;
case 2: return Ity_I16;
case 4: return Ity_I32; //Ity_F32;
case 8: return Ity_F64;
case 16: return Ity_V128;
default: vassert(0);
}
}
/* Find the offset of the laneNo'th lane of type laneTy in the given
Qreg. Since the host is little-endian, the least significant lane
has the lowest offset. */
static Int offsetQRegLane ( UInt qregNo, IRType laneTy, UInt laneNo )
{
vassert(host_endness == VexEndnessLE);
Int base = offsetQReg128(qregNo);
/* Since the host is little-endian, the least significant lane
will be at the lowest address. */
/* Restrict this to known types, so as to avoid silently accepting
stupid types. */
UInt laneSzB = 0;
switch (laneTy) {
case Ity_I8: laneSzB = 1; break;
case Ity_I16: laneSzB = 2; break;
case Ity_F32: case Ity_I32: laneSzB = 4; break;
case Ity_F64: case Ity_I64: laneSzB = 8; break;
case Ity_V128: laneSzB = 16; break;
default: break;
}
vassert(laneSzB > 0);
UInt minOff = laneNo * laneSzB;
UInt maxOff = minOff + laneSzB - 1;
vassert(maxOff < 16);
return base + minOff;
}
/* Put to the least significant lane of a Qreg. */
static void putQRegLO ( UInt qregNo, IRExpr* e )
{
IRType ty = typeOfIRExpr(irsb->tyenv, e);
Int off = offsetQRegLane(qregNo, ty, 0);
switch (ty) {
case Ity_I8: case Ity_I16: case Ity_I32: case Ity_I64:
case Ity_F32: case Ity_F64: case Ity_V128:
break;
default:
vassert(0); // Other cases are probably invalid
}
stmt(IRStmt_Put(off, e));
}
/* Get from the least significant lane of a Qreg. */
static IRExpr* getQRegLO ( UInt qregNo, IRType ty )
{
Int off = offsetQRegLane(qregNo, ty, 0);
switch (ty) {
case Ity_I8:
case Ity_I16:
case Ity_I32: case Ity_I64:
case Ity_F32: case Ity_F64: case Ity_V128:
break;
default:
vassert(0); // Other cases are ATC
}
return IRExpr_Get(off, ty);
}
static const HChar* nameQRegLO ( UInt qregNo, IRType laneTy )
{
static const HChar* namesQ[32]
= { "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
"q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
"q16", "q17", "q18", "q19", "q20", "q21", "q22", "q23",
"q24", "q25", "q26", "q27", "q28", "q29", "q30", "q31" };
static const HChar* namesD[32]
= { "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31" };
static const HChar* namesS[32]
= { "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
"s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31" };
static const HChar* namesH[32]
= { "h0", "h1", "h2", "h3", "h4", "h5", "h6", "h7",
"h8", "h9", "h10", "h11", "h12", "h13", "h14", "h15",
"h16", "h17", "h18", "h19", "h20", "h21", "h22", "h23",
"h24", "h25", "h26", "h27", "h28", "h29", "h30", "h31" };
static const HChar* namesB[32]
= { "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
"b8", "b9", "b10", "b11", "b12", "b13", "b14", "b15",
"b16", "b17", "b18", "b19", "b20", "b21", "b22", "b23",
"b24", "b25", "b26", "b27", "b28", "b29", "b30", "b31" };
vassert(qregNo < 32);
switch (sizeofIRType(laneTy)) {
case 1: return namesB[qregNo];
case 2: return namesH[qregNo];
case 4: return namesS[qregNo];
case 8: return namesD[qregNo];
case 16: return namesQ[qregNo];
default: vassert(0);
}
/*NOTREACHED*/
}
static const HChar* nameQReg128 ( UInt qregNo )
{
return nameQRegLO(qregNo, Ity_V128);
}
/* Find the offset of the most significant half (8 bytes) of the given
Qreg. This requires knowing the endianness of the host. */
static Int offsetQRegHI64 ( UInt qregNo )
{
return offsetQRegLane(qregNo, Ity_I64, 1);
}
static IRExpr* getQRegHI64 ( UInt qregNo )
{
return IRExpr_Get(offsetQRegHI64(qregNo), Ity_I64);
}
static void putQRegHI64 ( UInt qregNo, IRExpr* e )
{
IRType ty = typeOfIRExpr(irsb->tyenv, e);
Int off = offsetQRegHI64(qregNo);
switch (ty) {
case Ity_I64: case Ity_F64:
break;
default:
vassert(0); // Other cases are plain wrong
}
stmt(IRStmt_Put(off, e));
}
/* Put to a specified lane of a Qreg. */
static void putQRegLane ( UInt qregNo, UInt laneNo, IRExpr* e )
{
IRType laneTy = typeOfIRExpr(irsb->tyenv, e);
Int off = offsetQRegLane(qregNo, laneTy, laneNo);
switch (laneTy) {
case Ity_F64: case Ity_I64:
case Ity_I32: case Ity_F32:
case Ity_I16:
case Ity_I8:
break;
default:
vassert(0); // Other cases are ATC
}
stmt(IRStmt_Put(off, e));
}
/* Get from a specified lane of a Qreg. */
static IRExpr* getQRegLane ( UInt qregNo, UInt laneNo, IRType laneTy )
{
Int off = offsetQRegLane(qregNo, laneTy, laneNo);
switch (laneTy) {
case Ity_I64: case Ity_I32: case Ity_I16: case Ity_I8:
case Ity_F64: case Ity_F32:
break;
default:
vassert(0); // Other cases are ATC
}
return IRExpr_Get(off, laneTy);
}
//ZZ /* ---------------- Misc registers ---------------- */
//ZZ
//ZZ static void putMiscReg32 ( UInt gsoffset,
//ZZ IRExpr* e, /* :: Ity_I32 */
//ZZ IRTemp guardT /* :: Ity_I32, 0 or 1 */)
//ZZ {
//ZZ switch (gsoffset) {
//ZZ case OFFB_FPSCR: break;
//ZZ case OFFB_QFLAG32: break;
//ZZ case OFFB_GEFLAG0: break;
//ZZ case OFFB_GEFLAG1: break;
//ZZ case OFFB_GEFLAG2: break;
//ZZ case OFFB_GEFLAG3: break;
//ZZ default: vassert(0); /* awaiting more cases */
//ZZ }
//ZZ vassert(typeOfIRExpr(irsb->tyenv, e) == Ity_I32);
//ZZ
//ZZ if (guardT == IRTemp_INVALID) {
//ZZ /* unconditional write */
//ZZ stmt(IRStmt_Put(gsoffset, e));
//ZZ } else {
//ZZ stmt(IRStmt_Put(
//ZZ gsoffset,
//ZZ IRExpr_ITE( binop(Iop_CmpNE32, mkexpr(guardT), mkU32(0)),
//ZZ e, IRExpr_Get(gsoffset, Ity_I32) )
//ZZ ));
//ZZ }
//ZZ }
//ZZ
//ZZ static IRTemp get_ITSTATE ( void )
//ZZ {
//ZZ ASSERT_IS_THUMB;
//ZZ IRTemp t = newTemp(Ity_I32);
//ZZ assign(t, IRExpr_Get( OFFB_ITSTATE, Ity_I32));
//ZZ return t;
//ZZ }
//ZZ
//ZZ static void put_ITSTATE ( IRTemp t )
//ZZ {
//ZZ ASSERT_IS_THUMB;
//ZZ stmt( IRStmt_Put( OFFB_ITSTATE, mkexpr(t)) );
//ZZ }
//ZZ
//ZZ static IRTemp get_QFLAG32 ( void )
//ZZ {
//ZZ IRTemp t = newTemp(Ity_I32);
//ZZ assign(t, IRExpr_Get( OFFB_QFLAG32, Ity_I32));
//ZZ return t;
//ZZ }
//ZZ
//ZZ static void put_QFLAG32 ( IRTemp t, IRTemp condT )
//ZZ {
//ZZ putMiscReg32( OFFB_QFLAG32, mkexpr(t), condT );
//ZZ }
//ZZ
//ZZ /* Stickily set the 'Q' flag (APSR bit 27) of the APSR (Application Program
//ZZ Status Register) to indicate that overflow or saturation occurred.
//ZZ Nb: t must be zero to denote no saturation, and any nonzero
//ZZ value to indicate saturation. */
//ZZ static void or_into_QFLAG32 ( IRExpr* e, IRTemp condT )
//ZZ {
//ZZ IRTemp old = get_QFLAG32();
//ZZ IRTemp nyu = newTemp(Ity_I32);
//ZZ assign(nyu, binop(Iop_Or32, mkexpr(old), e) );
//ZZ put_QFLAG32(nyu, condT);
//ZZ }
/* ---------------- FPCR stuff ---------------- */
/* Generate IR to get hold of the rounding mode bits in FPCR, and
convert them to IR format. Bind the final result to the
returned temp. */
static IRTemp /* :: Ity_I32 */ mk_get_IR_rounding_mode ( void )
{
/* The ARMvfp encoding for rounding mode bits is:
00 to nearest
01 to +infinity
10 to -infinity
11 to zero
We need to convert that to the IR encoding:
00 to nearest (the default)
10 to +infinity
01 to -infinity
11 to zero
Which can be done by swapping bits 0 and 1.
The rmode bits are at 23:22 in FPSCR.
*/
IRTemp armEncd = newTemp(Ity_I32);
IRTemp swapped = newTemp(Ity_I32);
/* Fish FPCR[23:22] out, and slide to bottom. Doesn't matter that
we don't zero out bits 24 and above, since the assignment to
'swapped' will mask them out anyway. */
assign(armEncd,
binop(Iop_Shr32, IRExpr_Get(OFFB_FPCR, Ity_I32), mkU8(22)));
/* Now swap them. */
assign(swapped,
binop(Iop_Or32,
binop(Iop_And32,
binop(Iop_Shl32, mkexpr(armEncd), mkU8(1)),
mkU32(2)),
binop(Iop_And32,
binop(Iop_Shr32, mkexpr(armEncd), mkU8(1)),
mkU32(1))
));
return swapped;
}
/*------------------------------------------------------------*/
/*--- Helpers for flag handling and conditional insns ---*/
/*------------------------------------------------------------*/
static const HChar* nameARM64Condcode ( ARM64Condcode cond )
{
switch (cond) {
case ARM64CondEQ: return "eq";
case ARM64CondNE: return "ne";
case ARM64CondCS: return "cs"; // or 'hs'
case ARM64CondCC: return "cc"; // or 'lo'
case ARM64CondMI: return "mi";
case ARM64CondPL: return "pl";
case ARM64CondVS: return "vs";
case ARM64CondVC: return "vc";
case ARM64CondHI: return "hi";
case ARM64CondLS: return "ls";
case ARM64CondGE: return "ge";
case ARM64CondLT: return "lt";
case ARM64CondGT: return "gt";
case ARM64CondLE: return "le";
case ARM64CondAL: return "al";
case ARM64CondNV: return "nv";
default: vpanic("name_ARM64Condcode");
}
}
/* and a handy shorthand for it */
static const HChar* nameCC ( ARM64Condcode cond ) {
return nameARM64Condcode(cond);
}
/* Build IR to calculate some particular condition from stored
CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression of type
Ity_I64, suitable for narrowing. Although the return type is
Ity_I64, the returned value is either 0 or 1. 'cond' must be
:: Ity_I64 and must denote the condition to compute in
bits 7:4, and be zero everywhere else.
*/
static IRExpr* mk_arm64g_calculate_condition_dyn ( IRExpr* cond )
{
vassert(typeOfIRExpr(irsb->tyenv, cond) == Ity_I64);
/* And 'cond' had better produce a value in which only bits 7:4 are
nonzero. However, obviously we can't assert for that. */
/* So what we're constructing for the first argument is
"(cond << 4) | stored-operation".
However, as per comments above, 'cond' must be supplied
pre-shifted to this function.
This pairing scheme requires that the ARM64_CC_OP_ values all fit
in 4 bits. Hence we are passing a (COND, OP) pair in the lowest
8 bits of the first argument. */
IRExpr** args
= mkIRExprVec_4(
binop(Iop_Or64, IRExpr_Get(OFFB_CC_OP, Ity_I64), cond),
IRExpr_Get(OFFB_CC_DEP1, Ity_I64),
IRExpr_Get(OFFB_CC_DEP2, Ity_I64),
IRExpr_Get(OFFB_CC_NDEP, Ity_I64)
);
IRExpr* call
= mkIRExprCCall(
Ity_I64,
0/*regparm*/,
"arm64g_calculate_condition", &arm64g_calculate_condition,
args
);
/* Exclude the requested condition, OP and NDEP from definedness
checking. We're only interested in DEP1 and DEP2. */
call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3);
return call;
}
/* Build IR to calculate some particular condition from stored
CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression of type
Ity_I64, suitable for narrowing. Although the return type is
Ity_I64, the returned value is either 0 or 1.
*/
static IRExpr* mk_arm64g_calculate_condition ( ARM64Condcode cond )
{
/* First arg is "(cond << 4) | condition". This requires that the
ARM64_CC_OP_ values all fit in 4 bits. Hence we are passing a
(COND, OP) pair in the lowest 8 bits of the first argument. */
vassert(cond >= 0 && cond <= 15);
return mk_arm64g_calculate_condition_dyn( mkU64(cond << 4) );
}
/* Build IR to calculate just the carry flag from stored
CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression ::
Ity_I64. */
static IRExpr* mk_arm64g_calculate_flag_c ( void )
{
IRExpr** args
= mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I64),
IRExpr_Get(OFFB_CC_DEP1, Ity_I64),
IRExpr_Get(OFFB_CC_DEP2, Ity_I64),
IRExpr_Get(OFFB_CC_NDEP, Ity_I64) );
IRExpr* call
= mkIRExprCCall(
Ity_I64,
0/*regparm*/,
"arm64g_calculate_flag_c", &arm64g_calculate_flag_c,
args
);
/* Exclude OP and NDEP from definedness checking. We're only
interested in DEP1 and DEP2. */
call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3);
return call;
}
//ZZ /* Build IR to calculate just the overflow flag from stored
//ZZ CC_OP/CC_DEP1/CC_DEP2/CC_NDEP. Returns an expression ::
//ZZ Ity_I32. */
//ZZ static IRExpr* mk_armg_calculate_flag_v ( void )
//ZZ {
//ZZ IRExpr** args
//ZZ = mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I32),
//ZZ IRExpr_Get(OFFB_CC_DEP1, Ity_I32),
//ZZ IRExpr_Get(OFFB_CC_DEP2, Ity_I32),
//ZZ IRExpr_Get(OFFB_CC_NDEP, Ity_I32) );
//ZZ IRExpr* call
//ZZ = mkIRExprCCall(
//ZZ Ity_I32,
//ZZ 0/*regparm*/,
//ZZ "armg_calculate_flag_v", &armg_calculate_flag_v,
//ZZ args
//ZZ );
//ZZ /* Exclude OP and NDEP from definedness checking. We're only
//ZZ interested in DEP1 and DEP2. */
//ZZ call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3);
//ZZ return call;
//ZZ }
/* Build IR to calculate N Z C V in bits 31:28 of the
returned word. */
static IRExpr* mk_arm64g_calculate_flags_nzcv ( void )
{
IRExpr** args
= mkIRExprVec_4( IRExpr_Get(OFFB_CC_OP, Ity_I64),
IRExpr_Get(OFFB_CC_DEP1, Ity_I64),
IRExpr_Get(OFFB_CC_DEP2, Ity_I64),
IRExpr_Get(OFFB_CC_NDEP, Ity_I64) );
IRExpr* call
= mkIRExprCCall(
Ity_I64,
0/*regparm*/,
"arm64g_calculate_flags_nzcv", &arm64g_calculate_flags_nzcv,
args
);
/* Exclude OP and NDEP from definedness checking. We're only
interested in DEP1 and DEP2. */
call->Iex.CCall.cee->mcx_mask = (1<<0) | (1<<3);
return call;
}
/* Build IR to set the flags thunk, in the most general case. */
static
void setFlags_D1_D2_ND ( UInt cc_op,
IRTemp t_dep1, IRTemp t_dep2, IRTemp t_ndep )
{
vassert(typeOfIRTemp(irsb->tyenv, t_dep1 == Ity_I64));
vassert(typeOfIRTemp(irsb->tyenv, t_dep2 == Ity_I64));
vassert(typeOfIRTemp(irsb->tyenv, t_ndep == Ity_I64));
vassert(cc_op >= ARM64G_CC_OP_COPY && cc_op < ARM64G_CC_OP_NUMBER);
stmt( IRStmt_Put( OFFB_CC_OP, mkU64(cc_op) ));
stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(t_dep1) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkexpr(t_dep2) ));
stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(t_ndep) ));
}
/* Build IR to set the flags thunk after ADD or SUB. */
static
void setFlags_ADD_SUB ( Bool is64, Bool isSUB, IRTemp argL, IRTemp argR )
{
IRTemp argL64 = IRTemp_INVALID;
IRTemp argR64 = IRTemp_INVALID;
IRTemp z64 = newTemp(Ity_I64);
if (is64) {
argL64 = argL;
argR64 = argR;
} else {
argL64 = newTemp(Ity_I64);
argR64 = newTemp(Ity_I64);
assign(argL64, unop(Iop_32Uto64, mkexpr(argL)));
assign(argR64, unop(Iop_32Uto64, mkexpr(argR)));
}
assign(z64, mkU64(0));
UInt cc_op = ARM64G_CC_OP_NUMBER;
/**/ if ( isSUB && is64) { cc_op = ARM64G_CC_OP_SUB64; }
else if ( isSUB && !is64) { cc_op = ARM64G_CC_OP_SUB32; }
else if (!isSUB && is64) { cc_op = ARM64G_CC_OP_ADD64; }
else if (!isSUB && !is64) { cc_op = ARM64G_CC_OP_ADD32; }
else { vassert(0); }
setFlags_D1_D2_ND(cc_op, argL64, argR64, z64);
}
/* Build IR to set the flags thunk after ADC or SBC. */
static
void setFlags_ADC_SBC ( Bool is64, Bool isSBC,
IRTemp argL, IRTemp argR, IRTemp oldC )
{
IRTemp argL64 = IRTemp_INVALID;
IRTemp argR64 = IRTemp_INVALID;
IRTemp oldC64 = IRTemp_INVALID;
if (is64) {
argL64 = argL;
argR64 = argR;
oldC64 = oldC;
} else {
argL64 = newTemp(Ity_I64);
argR64 = newTemp(Ity_I64);
oldC64 = newTemp(Ity_I64);
assign(argL64, unop(Iop_32Uto64, mkexpr(argL)));
assign(argR64, unop(Iop_32Uto64, mkexpr(argR)));
assign(oldC64, unop(Iop_32Uto64, mkexpr(oldC)));
}
UInt cc_op = ARM64G_CC_OP_NUMBER;
/**/ if ( isSBC && is64) { cc_op = ARM64G_CC_OP_SBC64; }
else if ( isSBC && !is64) { cc_op = ARM64G_CC_OP_SBC32; }
else if (!isSBC && is64) { cc_op = ARM64G_CC_OP_ADC64; }
else if (!isSBC && !is64) { cc_op = ARM64G_CC_OP_ADC32; }
else { vassert(0); }
setFlags_D1_D2_ND(cc_op, argL64, argR64, oldC64);
}
/* Build IR to set the flags thunk after ADD or SUB, if the given
condition evaluates to True at run time. If not, the flags are set
to the specified NZCV value. */
static
void setFlags_ADD_SUB_conditionally (
Bool is64, Bool isSUB,
IRTemp cond, IRTemp argL, IRTemp argR, UInt nzcv
)
{
/* Generate IR as follows:
CC_OP = ITE(cond, OP_{ADD,SUB}{32,64}, OP_COPY)
CC_DEP1 = ITE(cond, argL64, nzcv << 28)
CC_DEP2 = ITE(cond, argR64, 0)
CC_NDEP = 0
*/
IRTemp z64 = newTemp(Ity_I64);
assign(z64, mkU64(0));
/* Establish the operation and operands for the True case. */
IRTemp t_dep1 = IRTemp_INVALID;
IRTemp t_dep2 = IRTemp_INVALID;
UInt t_op = ARM64G_CC_OP_NUMBER;
/**/ if ( isSUB && is64) { t_op = ARM64G_CC_OP_SUB64; }
else if ( isSUB && !is64) { t_op = ARM64G_CC_OP_SUB32; }
else if (!isSUB && is64) { t_op = ARM64G_CC_OP_ADD64; }
else if (!isSUB && !is64) { t_op = ARM64G_CC_OP_ADD32; }
else { vassert(0); }
/* */
if (is64) {
t_dep1 = argL;
t_dep2 = argR;
} else {
t_dep1 = newTemp(Ity_I64);
t_dep2 = newTemp(Ity_I64);
assign(t_dep1, unop(Iop_32Uto64, mkexpr(argL)));
assign(t_dep2, unop(Iop_32Uto64, mkexpr(argR)));
}
/* Establish the operation and operands for the False case. */
IRTemp f_dep1 = newTemp(Ity_I64);
IRTemp f_dep2 = z64;
UInt f_op = ARM64G_CC_OP_COPY;
assign(f_dep1, mkU64(nzcv << 28));
/* Final thunk values */
IRTemp dep1 = newTemp(Ity_I64);
IRTemp dep2 = newTemp(Ity_I64);
IRTemp op = newTemp(Ity_I64);
assign(op, IRExpr_ITE(mkexpr(cond), mkU64(t_op), mkU64(f_op)));
assign(dep1, IRExpr_ITE(mkexpr(cond), mkexpr(t_dep1), mkexpr(f_dep1)));
assign(dep2, IRExpr_ITE(mkexpr(cond), mkexpr(t_dep2), mkexpr(f_dep2)));
/* finally .. */
stmt( IRStmt_Put( OFFB_CC_OP, mkexpr(op) ));
stmt( IRStmt_Put( OFFB_CC_DEP1, mkexpr(dep1) ));
stmt( IRStmt_Put( OFFB_CC_DEP2, mkexpr(dep2) ));
stmt( IRStmt_Put( OFFB_CC_NDEP, mkexpr(z64) ));
}
/* Build IR to set the flags thunk after AND/OR/XOR or variants thereof. */
static
void setFlags_LOGIC ( Bool is64, IRTemp res )
{
IRTemp res64 = IRTemp_INVALID;
IRTemp z64 = newTemp(Ity_I64);
UInt cc_op = ARM64G_CC_OP_NUMBER;
if (is64) {
res64 = res;
cc_op = ARM64G_CC_OP_LOGIC64;
} else {
res64 = newTemp(Ity_I64);
assign(res64, unop(Iop_32Uto64, mkexpr(res)));
cc_op = ARM64G_CC_OP_LOGIC32;
}
assign(z64, mkU64(0));
setFlags_D1_D2_ND(cc_op, res64, z64, z64);
}
/* Build IR to set the flags thunk to a given NZCV value. NZCV is
located in bits 31:28 of the supplied value. */
static
void setFlags_COPY ( IRTemp nzcv_28x0 )
{
IRTemp z64 = newTemp(Ity_I64);
assign(z64, mkU64(0));
setFlags_D1_D2_ND(ARM64G_CC_OP_COPY, nzcv_28x0, z64, z64);
}
//ZZ /* Minor variant of the above that sets NDEP to zero (if it
//ZZ sets it at all) */
//ZZ static void setFlags_D1_D2 ( UInt cc_op, IRTemp t_dep1,
//ZZ IRTemp t_dep2,
//ZZ IRTemp guardT /* :: Ity_I32, 0 or 1 */ )
//ZZ {
//ZZ IRTemp z32 = newTemp(Ity_I32);
//ZZ assign( z32, mkU32(0) );
//ZZ setFlags_D1_D2_ND( cc_op, t_dep1, t_dep2, z32, guardT );
//ZZ }
//ZZ
//ZZ
//ZZ /* Minor variant of the above that sets DEP2 to zero (if it
//ZZ sets it at all) */
//ZZ static void setFlags_D1_ND ( UInt cc_op, IRTemp t_dep1,
//ZZ IRTemp t_ndep,
//ZZ IRTemp guardT /* :: Ity_I32, 0 or 1 */ )
//ZZ {
//ZZ IRTemp z32 = newTemp(Ity_I32);
//ZZ assign( z32, mkU32(0) );
//ZZ setFlags_D1_D2_ND( cc_op, t_dep1, z32, t_ndep, guardT );
//ZZ }
//ZZ
//ZZ
//ZZ /* Minor variant of the above that sets DEP2 and NDEP to zero (if it
//ZZ sets them at all) */
//ZZ static void setFlags_D1 ( UInt cc_op, IRTemp t_dep1,
//ZZ IRTemp guardT /* :: Ity_I32, 0 or 1 */ )
//ZZ {
//ZZ IRTemp z32 = newTemp(Ity_I32);
//ZZ assign( z32, mkU32(0) );
//ZZ setFlags_D1_D2_ND( cc_op, t_dep1, z32, z32, guardT );
//ZZ }
/*------------------------------------------------------------*/
/*--- Misc math helpers ---*/
/*------------------------------------------------------------*/
/* Generate IR for ((x & mask) >>u sh) | ((x << sh) & mask) */
static IRTemp math_SWAPHELPER ( IRTemp x, ULong mask, Int sh )
{
IRTemp maskT = newTemp(Ity_I64);
IRTemp res = newTemp(Ity_I64);
vassert(sh >= 1 && sh <= 63);
assign(maskT, mkU64(mask));
assign( res,
binop(Iop_Or64,
binop(Iop_Shr64,
binop(Iop_And64,mkexpr(x),mkexpr(maskT)),
mkU8(sh)),
binop(Iop_And64,
binop(Iop_Shl64,mkexpr(x),mkU8(sh)),
mkexpr(maskT))
)
);
return res;
}
/* Generates byte swaps within 32-bit lanes. */
static IRTemp math_UINTSWAP64 ( IRTemp src )
{
IRTemp res;
res = math_SWAPHELPER(src, 0xFF00FF00FF00FF00ULL, 8);
res = math_SWAPHELPER(res, 0xFFFF0000FFFF0000ULL, 16);
return res;
}
/* Generates byte swaps within 16-bit lanes. */
static IRTemp math_USHORTSWAP64 ( IRTemp src )
{
IRTemp res;
res = math_SWAPHELPER(src, 0xFF00FF00FF00FF00ULL, 8);
return res;
}
/* Generates a 64-bit byte swap. */
static IRTemp math_BYTESWAP64 ( IRTemp src )
{
IRTemp res;
res = math_SWAPHELPER(src, 0xFF00FF00FF00FF00ULL, 8);
res = math_SWAPHELPER(res, 0xFFFF0000FFFF0000ULL, 16);
res = math_SWAPHELPER(res, 0xFFFFFFFF00000000ULL, 32);
return res;
}
/* Generates a 64-bit bit swap. */
static IRTemp math_BITSWAP64 ( IRTemp src )
{
IRTemp res;
res = math_SWAPHELPER(src, 0xAAAAAAAAAAAAAAAAULL, 1);
res = math_SWAPHELPER(res, 0xCCCCCCCCCCCCCCCCULL, 2);
res = math_SWAPHELPER(res, 0xF0F0F0F0F0F0F0F0ULL, 4);
return math_BYTESWAP64(res);
}
/* Duplicates the bits at the bottom of the given word to fill the
whole word. src :: Ity_I64 is assumed to have zeroes everywhere
except for the bottom bits. */
static IRTemp math_DUP_TO_64 ( IRTemp src, IRType srcTy )
{
if (srcTy == Ity_I8) {
IRTemp t16 = newTemp(Ity_I64);
assign(t16, binop(Iop_Or64, mkexpr(src),
binop(Iop_Shl64, mkexpr(src), mkU8(8))));
IRTemp t32 = newTemp(Ity_I64);
assign(t32, binop(Iop_Or64, mkexpr(t16),
binop(Iop_Shl64, mkexpr(t16), mkU8(16))));
IRTemp t64 = newTemp(Ity_I64);
assign(t64, binop(Iop_Or64, mkexpr(t32),
binop(Iop_Shl64, mkexpr(t32), mkU8(32))));
return t64;
}
if (srcTy == Ity_I16) {
IRTemp t32 = newTemp(Ity_I64);
assign(t32, binop(Iop_Or64, mkexpr(src),
binop(Iop_Shl64, mkexpr(src), mkU8(16))));
IRTemp t64 = newTemp(Ity_I64);
assign(t64, binop(Iop_Or64, mkexpr(t32),
binop(Iop_Shl64, mkexpr(t32), mkU8(32))));
return t64;
}
if (srcTy == Ity_I32) {
IRTemp t64 = newTemp(Ity_I64);
assign(t64, binop(Iop_Or64, mkexpr(src),
binop(Iop_Shl64, mkexpr(src), mkU8(32))));
return t64;
}
if (srcTy == Ity_I64) {
return src;
}
vassert(0);
}
/* Duplicates the src element exactly so as to fill a V128 value. */
static IRTemp math_DUP_TO_V128 ( IRTemp src, IRType srcTy )
{
IRTemp res = newTempV128();
if (srcTy == Ity_F64) {
IRTemp i64 = newTemp(Ity_I64);
assign(i64, unop(Iop_ReinterpF64asI64, mkexpr(src)));
assign(res, binop(Iop_64HLtoV128, mkexpr(i64), mkexpr(i64)));
return res;
}
if (srcTy == Ity_F32) {
IRTemp i64a = newTemp(Ity_I64);
assign(i64a, unop(Iop_32Uto64, unop(Iop_ReinterpF32asI32, mkexpr(src))));
IRTemp i64b = newTemp(Ity_I64);
assign(i64b, binop(Iop_Or64, binop(Iop_Shl64, mkexpr(i64a), mkU8(32)),
mkexpr(i64a)));
assign(res, binop(Iop_64HLtoV128, mkexpr(i64b), mkexpr(i64b)));
return res;
}
if (srcTy == Ity_I64) {
assign(res, binop(Iop_64HLtoV128, mkexpr(src), mkexpr(src)));
return res;
}
if (srcTy == Ity_I32 || srcTy == Ity_I16 || srcTy == Ity_I8) {
IRTemp t1 = newTemp(Ity_I64);
assign(t1, widenUto64(srcTy, mkexpr(src)));
IRTemp t2 = math_DUP_TO_64(t1, srcTy);
assign(res, binop(Iop_64HLtoV128, mkexpr(t2), mkexpr(t2)));
return res;
}
vassert(0);
}
/* |fullWidth| is a full V128 width result. Depending on bitQ,
zero out the upper half. */
static IRExpr* math_MAYBE_ZERO_HI64 ( UInt bitQ, IRTemp fullWidth )
{
if (bitQ == 1) return mkexpr(fullWidth);
if (bitQ == 0) return unop(Iop_ZeroHI64ofV128, mkexpr(fullWidth));
vassert(0);
}
/* The same, but from an expression instead. */
static IRExpr* math_MAYBE_ZERO_HI64_fromE ( UInt bitQ, IRExpr* fullWidth )
{
IRTemp fullWidthT = newTempV128();
assign(fullWidthT, fullWidth);
return math_MAYBE_ZERO_HI64(bitQ, fullWidthT);
}
/*------------------------------------------------------------*/
/*--- FP comparison helpers ---*/
/*------------------------------------------------------------*/
/* irRes :: Ity_I32 holds a floating point comparison result encoded
as an IRCmpF64Result. Generate code to convert it to an
ARM64-encoded (N,Z,C,V) group in the lowest 4 bits of an I64 value.
Assign a new temp to hold that value, and return the temp. */
static
IRTemp mk_convert_IRCmpF64Result_to_NZCV ( IRTemp irRes32 )
{
IRTemp ix = newTemp(Ity_I64);
IRTemp termL = newTemp(Ity_I64);
IRTemp termR = newTemp(Ity_I64);
IRTemp nzcv = newTemp(Ity_I64);
IRTemp irRes = newTemp(Ity_I64);
/* This is where the fun starts. We have to convert 'irRes' from
an IR-convention return result (IRCmpF64Result) to an
ARM-encoded (N,Z,C,V) group. The final result is in the bottom
4 bits of 'nzcv'. */
/* Map compare result from IR to ARM(nzcv) */
/*
FP cmp result | IR | ARM(nzcv)
--------------------------------
UN 0x45 0011
LT 0x01 1000
GT 0x00 0010
EQ 0x40 0110
*/
/* Now since you're probably wondering WTF ..
ix fishes the useful bits out of the IR value, bits 6 and 0, and
places them side by side, giving a number which is 0, 1, 2 or 3.
termL is a sequence cooked up by GNU superopt. It converts ix
into an almost correct value NZCV value (incredibly), except
for the case of UN, where it produces 0100 instead of the
required 0011.
termR is therefore a correction term, also computed from ix. It
is 1 in the UN case and 0 for LT, GT and UN. Hence, to get
the final correct value, we subtract termR from termL.
Don't take my word for it. There's a test program at the bottom
of guest_arm_toIR.c, to try this out with.
*/
assign(irRes, unop(Iop_32Uto64, mkexpr(irRes32)));
assign(
ix,
binop(Iop_Or64,
binop(Iop_And64,
binop(Iop_Shr64, mkexpr(irRes), mkU8(5)),
mkU64(3)),
binop(Iop_And64, mkexpr(irRes), mkU64(1))));
assign(
termL,
binop(Iop_Add64,
binop(Iop_Shr64,
binop(Iop_Sub64,
binop(Iop_Shl64,
binop(Iop_Xor64, mkexpr(ix), mkU64(1)),
mkU8(62)),
mkU64(1)),
mkU8(61)),
mkU64(1)));
assign(
termR,
binop(Iop_And64,
binop(Iop_And64,
mkexpr(ix),
binop(Iop_Shr64, mkexpr(ix), mkU8(1))),
mkU64(1)));
assign(nzcv, binop(Iop_Sub64, mkexpr(termL), mkexpr(termR)));
return nzcv;
}
/*------------------------------------------------------------*/
/*--- Data processing (immediate) ---*/
/*------------------------------------------------------------*/
/* Helper functions for supporting "DecodeBitMasks" */
static ULong dbm_ROR ( Int width, ULong x, Int rot )
{
vassert(width > 0 && width <= 64);
vassert(rot >= 0 && rot < width);
if (rot == 0) return x;
ULong res = x >> rot;
res |= (x << (width - rot));
if (width < 64)
res &= ((1ULL << width) - 1);
return res;
}
static ULong dbm_RepTo64( Int esize, ULong x )
{
switch (esize) {
case 64:
return x;
case 32:
x &= 0xFFFFFFFF; x |= (x << 32);
return x;
case 16:
x &= 0xFFFF; x |= (x << 16); x |= (x << 32);
return x;
case 8:
x &= 0xFF; x |= (x << 8); x |= (x << 16); x |= (x << 32);
return x;
case 4:
x &= 0xF; x |= (x << 4); x |= (x << 8);
x |= (x << 16); x |= (x << 32);
return x;
case 2:
x &= 0x3; x |= (x << 2); x |= (x << 4); x |= (x << 8);
x |= (x << 16); x |= (x << 32);
return x;
default:
break;
}
vpanic("dbm_RepTo64");
/*NOTREACHED*/
return 0;
}
static Int dbm_highestSetBit ( ULong x )
{
Int i;
for (i = 63; i >= 0; i--) {
if (x & (1ULL << i))
return i;
}
vassert(x == 0);
return -1;
}
static
Bool dbm_DecodeBitMasks ( /*OUT*/ULong* wmask, /*OUT*/ULong* tmask,
ULong immN, ULong imms, ULong immr, Bool immediate,
UInt M /*32 or 64*/)
{
vassert(immN < (1ULL << 1));
vassert(imms < (1ULL << 6));
vassert(immr < (1ULL << 6));
vassert(immediate == False || immediate == True);
vassert(M == 32 || M == 64);
Int len = dbm_highestSetBit( ((immN << 6) & 64) | ((~imms) & 63) );
if (len < 1) { /* printf("fail1\n"); */ return False; }
vassert(len <= 6);
vassert(M >= (1 << len));
vassert(len >= 1 && len <= 6);
ULong levels = // (zeroes(6 - len) << (6-len)) | ones(len);
(1 << len) - 1;
vassert(levels >= 1 && levels <= 63);
if (immediate && ((imms & levels) == levels)) {
/* printf("fail2 imms %llu levels %llu len %d\n", imms, levels, len); */
return False;
}
ULong S = imms & levels;
ULong R = immr & levels;
Int diff = S - R;
diff &= 63;
Int esize = 1 << len;
vassert(2 <= esize && esize <= 64);
/* Be careful of these (1ULL << (S+1)) - 1 expressions, and the
same below with d. S can be 63 in which case we have an out of
range and hence undefined shift. */
vassert(S >= 0 && S <= 63);
vassert(esize >= (S+1));
ULong elem_s = // Zeroes(esize-(S+1)):Ones(S+1)
//(1ULL << (S+1)) - 1;
((1ULL << S) - 1) + (1ULL << S);
Int d = // diff<len-1:0>
diff & ((1 << len)-1);
vassert(esize >= (d+1));
vassert(d >= 0 && d <= 63);
ULong elem_d = // Zeroes(esize-(d+1)):Ones(d+1)
//(1ULL << (d+1)) - 1;
((1ULL << d) - 1) + (1ULL << d);
if (esize != 64) vassert(elem_s < (1ULL << esize));
if (esize != 64) vassert(elem_d < (1ULL << esize));
if (wmask) *wmask = dbm_RepTo64(esize, dbm_ROR(esize, elem_s, R));
if (tmask) *tmask = dbm_RepTo64(esize, elem_d);
return True;
}
static
Bool dis_ARM64_data_processing_immediate(/*MB_OUT*/DisResult* dres,
UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
/* insn[28:23]
10000x PC-rel addressing
10001x Add/subtract (immediate)
100100 Logical (immediate)
100101 Move Wide (immediate)
100110 Bitfield
100111 Extract
*/
/* ------------------ ADD/SUB{,S} imm12 ------------------ */
if (INSN(28,24) == BITS5(1,0,0,0,1)) {
Bool is64 = INSN(31,31) == 1;
Bool isSub = INSN(30,30) == 1;
Bool setCC = INSN(29,29) == 1;
UInt sh = INSN(23,22);
UInt uimm12 = INSN(21,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
const HChar* nm = isSub ? "sub" : "add";
if (sh >= 2) {
/* Invalid; fall through */
} else {
vassert(sh <= 1);
uimm12 <<= (12 * sh);
if (is64) {
IRTemp argL = newTemp(Ity_I64);
IRTemp argR = newTemp(Ity_I64);
IRTemp res = newTemp(Ity_I64);
assign(argL, getIReg64orSP(nn));
assign(argR, mkU64(uimm12));
assign(res, binop(isSub ? Iop_Sub64 : Iop_Add64,
mkexpr(argL), mkexpr(argR)));
if (setCC) {
putIReg64orZR(dd, mkexpr(res));
setFlags_ADD_SUB(True/*is64*/, isSub, argL, argR);
DIP("%ss %s, %s, 0x%x\n",
nm, nameIReg64orZR(dd), nameIReg64orSP(nn), uimm12);
} else {
putIReg64orSP(dd, mkexpr(res));
DIP("%s %s, %s, 0x%x\n",
nm, nameIReg64orSP(dd), nameIReg64orSP(nn), uimm12);
}
} else {
IRTemp argL = newTemp(Ity_I32);
IRTemp argR = newTemp(Ity_I32);
IRTemp res = newTemp(Ity_I32);
assign(argL, getIReg32orSP(nn));
assign(argR, mkU32(uimm12));
assign(res, binop(isSub ? Iop_Sub32 : Iop_Add32,
mkexpr(argL), mkexpr(argR)));
if (setCC) {
putIReg32orZR(dd, mkexpr(res));
setFlags_ADD_SUB(False/*!is64*/, isSub, argL, argR);
DIP("%ss %s, %s, 0x%x\n",
nm, nameIReg32orZR(dd), nameIReg32orSP(nn), uimm12);
} else {
putIReg32orSP(dd, mkexpr(res));
DIP("%s %s, %s, 0x%x\n",
nm, nameIReg32orSP(dd), nameIReg32orSP(nn), uimm12);
}
}
return True;
}
}
/* -------------------- ADR/ADRP -------------------- */
if (INSN(28,24) == BITS5(1,0,0,0,0)) {
UInt bP = INSN(31,31);
UInt immLo = INSN(30,29);
UInt immHi = INSN(23,5);
UInt rD = INSN(4,0);
ULong uimm = (immHi << 2) | immLo;
ULong simm = sx_to_64(uimm, 21);
ULong val;
if (bP) {
val = (guest_PC_curr_instr & 0xFFFFFFFFFFFFF000ULL) + (simm << 12);
} else {
val = guest_PC_curr_instr + simm;
}
putIReg64orZR(rD, mkU64(val));
DIP("adr%s %s, 0x%llx\n", bP ? "p" : "", nameIReg64orZR(rD), val);
return True;
}
/* -------------------- LOGIC(imm) -------------------- */
if (INSN(28,23) == BITS6(1,0,0,1,0,0)) {
/* 31 30 28 22 21 15 9 4
sf op 100100 N immr imms Rn Rd
op=00: AND Rd|SP, Rn, #imm
op=01: ORR Rd|SP, Rn, #imm
op=10: EOR Rd|SP, Rn, #imm
op=11: ANDS Rd|ZR, Rn, #imm
*/
Bool is64 = INSN(31,31) == 1;
UInt op = INSN(30,29);
UInt N = INSN(22,22);
UInt immR = INSN(21,16);
UInt immS = INSN(15,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
ULong imm = 0;
Bool ok;
if (N == 1 && !is64)
goto after_logic_imm; /* not allowed; fall through */
ok = dbm_DecodeBitMasks(&imm, NULL,
N, immS, immR, True, is64 ? 64 : 32);
if (!ok)
goto after_logic_imm;
const HChar* names[4] = { "and", "orr", "eor", "ands" };
const IROp ops64[4] = { Iop_And64, Iop_Or64, Iop_Xor64, Iop_And64 };
const IROp ops32[4] = { Iop_And32, Iop_Or32, Iop_Xor32, Iop_And32 };
vassert(op < 4);
if (is64) {
IRExpr* argL = getIReg64orZR(nn);
IRExpr* argR = mkU64(imm);
IRTemp res = newTemp(Ity_I64);
assign(res, binop(ops64[op], argL, argR));
if (op < 3) {
putIReg64orSP(dd, mkexpr(res));
DIP("%s %s, %s, 0x%llx\n", names[op],
nameIReg64orSP(dd), nameIReg64orZR(nn), imm);
} else {
putIReg64orZR(dd, mkexpr(res));
setFlags_LOGIC(True/*is64*/, res);
DIP("%s %s, %s, 0x%llx\n", names[op],
nameIReg64orZR(dd), nameIReg64orZR(nn), imm);
}
} else {
IRExpr* argL = getIReg32orZR(nn);
IRExpr* argR = mkU32((UInt)imm);
IRTemp res = newTemp(Ity_I32);
assign(res, binop(ops32[op], argL, argR));
if (op < 3) {
putIReg32orSP(dd, mkexpr(res));
DIP("%s %s, %s, 0x%x\n", names[op],
nameIReg32orSP(dd), nameIReg32orZR(nn), (UInt)imm);
} else {
putIReg32orZR(dd, mkexpr(res));
setFlags_LOGIC(False/*!is64*/, res);
DIP("%s %s, %s, 0x%x\n", names[op],
nameIReg32orZR(dd), nameIReg32orZR(nn), (UInt)imm);
}
}
return True;
}
after_logic_imm:
/* -------------------- MOV{Z,N,K} -------------------- */
if (INSN(28,23) == BITS6(1,0,0,1,0,1)) {
/* 31 30 28 22 20 4
| | | | | |
sf 10 100 101 hw imm16 Rd MOV(Z) Rd, (imm16 << (16*hw))
sf 00 100 101 hw imm16 Rd MOV(N) Rd, ~(imm16 << (16*hw))
sf 11 100 101 hw imm16 Rd MOV(K) Rd, (imm16 << (16*hw))
*/
Bool is64 = INSN(31,31) == 1;
UInt subopc = INSN(30,29);
UInt hw = INSN(22,21);
UInt imm16 = INSN(20,5);
UInt dd = INSN(4,0);
if (subopc == BITS2(0,1) || (!is64 && hw >= 2)) {
/* invalid; fall through */
} else {
ULong imm64 = ((ULong)imm16) << (16 * hw);
if (!is64)
vassert(imm64 < 0x100000000ULL);
switch (subopc) {
case BITS2(1,0): // MOVZ
putIRegOrZR(is64, dd, is64 ? mkU64(imm64) : mkU32((UInt)imm64));
DIP("movz %s, 0x%llx\n", nameIRegOrZR(is64, dd), imm64);
break;
case BITS2(0,0): // MOVN
imm64 = ~imm64;
if (!is64)
imm64 &= 0xFFFFFFFFULL;
putIRegOrZR(is64, dd, is64 ? mkU64(imm64) : mkU32((UInt)imm64));
DIP("movn %s, 0x%llx\n", nameIRegOrZR(is64, dd), imm64);
break;
case BITS2(1,1): // MOVK
/* This is more complex. We are inserting a slice into
the destination register, so we need to have the old
value of it. */
if (is64) {
IRTemp old = newTemp(Ity_I64);
assign(old, getIReg64orZR(dd));
ULong mask = 0xFFFFULL << (16 * hw);
IRExpr* res
= binop(Iop_Or64,
binop(Iop_And64, mkexpr(old), mkU64(~mask)),
mkU64(imm64));
putIReg64orZR(dd, res);
DIP("movk %s, 0x%x, lsl %u\n",
nameIReg64orZR(dd), imm16, 16*hw);
} else {
IRTemp old = newTemp(Ity_I32);
assign(old, getIReg32orZR(dd));
vassert(hw <= 1);
UInt mask = 0xFFFF << (16 * hw);
IRExpr* res
= binop(Iop_Or32,
binop(Iop_And32, mkexpr(old), mkU32(~mask)),
mkU32((UInt)imm64));
putIReg32orZR(dd, res);
DIP("movk %s, 0x%x, lsl %u\n",
nameIReg32orZR(dd), imm16, 16*hw);
}
break;
default:
vassert(0);
}
return True;
}
}
/* -------------------- {U,S,}BFM -------------------- */
/* 30 28 22 21 15 9 4
sf 10 100110 N immr imms nn dd
UBFM Wd, Wn, #immr, #imms when sf=0, N=0, immr[5]=0, imms[5]=0
UBFM Xd, Xn, #immr, #imms when sf=1, N=1
sf 00 100110 N immr imms nn dd
SBFM Wd, Wn, #immr, #imms when sf=0, N=0, immr[5]=0, imms[5]=0
SBFM Xd, Xn, #immr, #imms when sf=1, N=1
sf 01 100110 N immr imms nn dd
BFM Wd, Wn, #immr, #imms when sf=0, N=0, immr[5]=0, imms[5]=0
BFM Xd, Xn, #immr, #imms when sf=1, N=1
*/
if (INSN(28,23) == BITS6(1,0,0,1,1,0)) {
UInt sf = INSN(31,31);
UInt opc = INSN(30,29);
UInt N = INSN(22,22);
UInt immR = INSN(21,16);
UInt immS = INSN(15,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
Bool inZero = False;
Bool extend = False;
const HChar* nm = "???";
/* skip invalid combinations */
switch (opc) {
case BITS2(0,0):
inZero = True; extend = True; nm = "sbfm"; break;
case BITS2(0,1):
inZero = False; extend = False; nm = "bfm"; break;
case BITS2(1,0):
inZero = True; extend = False; nm = "ubfm"; break;
case BITS2(1,1):
goto after_bfm; /* invalid */
default:
vassert(0);
}
if (sf == 1 && N != 1) goto after_bfm;
if (sf == 0 && (N != 0 || ((immR >> 5) & 1) != 0
|| ((immS >> 5) & 1) != 0)) goto after_bfm;
ULong wmask = 0, tmask = 0;
Bool ok = dbm_DecodeBitMasks(&wmask, &tmask,
N, immS, immR, False, sf == 1 ? 64 : 32);
if (!ok) goto after_bfm; /* hmmm */
Bool is64 = sf == 1;
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp dst = newTemp(ty);
IRTemp src = newTemp(ty);
IRTemp bot = newTemp(ty);
IRTemp top = newTemp(ty);
IRTemp res = newTemp(ty);
assign(dst, inZero ? mkU(ty,0) : getIRegOrZR(is64, dd));
assign(src, getIRegOrZR(is64, nn));
/* perform bitfield move on low bits */
assign(bot, binop(mkOR(ty),
binop(mkAND(ty), mkexpr(dst), mkU(ty, ~wmask)),
binop(mkAND(ty), mkexpr(mathROR(ty, src, immR)),
mkU(ty, wmask))));
/* determine extension bits (sign, zero or dest register) */
assign(top, mkexpr(extend ? mathREPLICATE(ty, src, immS) : dst));
/* combine extension bits and result bits */
assign(res, binop(mkOR(ty),
binop(mkAND(ty), mkexpr(top), mkU(ty, ~tmask)),
binop(mkAND(ty), mkexpr(bot), mkU(ty, tmask))));
putIRegOrZR(is64, dd, mkexpr(res));
DIP("%s %s, %s, immR=%u, immS=%u\n",
nm, nameIRegOrZR(is64, dd), nameIRegOrZR(is64, nn), immR, immS);
return True;
}
after_bfm:
/* ---------------------- EXTR ---------------------- */
/* 30 28 22 20 15 9 4
1 00 100111 10 m imm6 n d EXTR Xd, Xn, Xm, #imm6
0 00 100111 00 m imm6 n d EXTR Wd, Wn, Wm, #imm6 when #imm6 < 32
*/
if (INSN(30,23) == BITS8(0,0,1,0,0,1,1,1) && INSN(21,21) == 0) {
Bool is64 = INSN(31,31) == 1;
UInt mm = INSN(20,16);
UInt imm6 = INSN(15,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
Bool valid = True;
if (INSN(31,31) != INSN(22,22))
valid = False;
if (!is64 && imm6 >= 32)
valid = False;
if (!valid) goto after_extr;
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp srcHi = newTemp(ty);
IRTemp srcLo = newTemp(ty);
IRTemp res = newTemp(ty);
assign(srcHi, getIRegOrZR(is64, nn));
assign(srcLo, getIRegOrZR(is64, mm));
if (imm6 == 0) {
assign(res, mkexpr(srcLo));
} else {
UInt szBits = 8 * sizeofIRType(ty);
vassert(imm6 > 0 && imm6 < szBits);
assign(res, binop(mkOR(ty),
binop(mkSHL(ty), mkexpr(srcHi), mkU8(szBits-imm6)),
binop(mkSHR(ty), mkexpr(srcLo), mkU8(imm6))));
}
putIRegOrZR(is64, dd, mkexpr(res));
DIP("extr %s, %s, %s, #%u\n",
nameIRegOrZR(is64,dd),
nameIRegOrZR(is64,nn), nameIRegOrZR(is64,mm), imm6);
return True;
}
after_extr:
vex_printf("ARM64 front end: data_processing_immediate\n");
return False;
# undef INSN
}
/*------------------------------------------------------------*/
/*--- Data processing (register) instructions ---*/
/*------------------------------------------------------------*/
static const HChar* nameSH ( UInt sh ) {
switch (sh) {
case 0: return "lsl";
case 1: return "lsr";
case 2: return "asr";
case 3: return "ror";
default: vassert(0);
}
}
/* Generate IR to get a register value, possibly shifted by an
immediate. Returns either a 32- or 64-bit temporary holding the
result. After the shift, the value can optionally be NOT-ed
too.
sh_how coding: 00=SHL, 01=SHR, 10=SAR, 11=ROR. sh_amt may only be
in the range 0 to (is64 ? 64 : 32)-1. For some instructions, ROR
isn't allowed, but it's the job of the caller to check that.
*/
static IRTemp getShiftedIRegOrZR ( Bool is64,
UInt sh_how, UInt sh_amt, UInt regNo,
Bool invert )
{
vassert(sh_how < 4);
vassert(sh_amt < (is64 ? 64 : 32));
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp t0 = newTemp(ty);
assign(t0, getIRegOrZR(is64, regNo));
IRTemp t1 = newTemp(ty);
switch (sh_how) {
case BITS2(0,0):
assign(t1, binop(mkSHL(ty), mkexpr(t0), mkU8(sh_amt)));
break;
case BITS2(0,1):
assign(t1, binop(mkSHR(ty), mkexpr(t0), mkU8(sh_amt)));
break;
case BITS2(1,0):
assign(t1, binop(mkSAR(ty), mkexpr(t0), mkU8(sh_amt)));
break;
case BITS2(1,1):
assign(t1, mkexpr(mathROR(ty, t0, sh_amt)));
break;
default:
vassert(0);
}
if (invert) {
IRTemp t2 = newTemp(ty);
assign(t2, unop(mkNOT(ty), mkexpr(t1)));
return t2;
} else {
return t1;
}
}
static
Bool dis_ARM64_data_processing_register(/*MB_OUT*/DisResult* dres,
UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
/* ------------------- ADD/SUB(reg) ------------------- */
/* x==0 => 32 bit op x==1 => 64 bit op
sh: 00=LSL, 01=LSR, 10=ASR, 11=ROR(NOT ALLOWED)
31 30 29 28 23 21 20 15 9 4
| | | | | | | | | |
x 0 0 01011 sh 0 Rm imm6 Rn Rd ADD Rd,Rn, sh(Rm,imm6)
x 0 1 01011 sh 0 Rm imm6 Rn Rd ADDS Rd,Rn, sh(Rm,imm6)
x 1 0 01011 sh 0 Rm imm6 Rn Rd SUB Rd,Rn, sh(Rm,imm6)
x 1 1 01011 sh 0 Rm imm6 Rn Rd SUBS Rd,Rn, sh(Rm,imm6)
*/
if (INSN(28,24) == BITS5(0,1,0,1,1) && INSN(21,21) == 0) {
UInt bX = INSN(31,31);
UInt bOP = INSN(30,30); /* 0: ADD, 1: SUB */
UInt bS = INSN(29, 29); /* set flags? */
UInt sh = INSN(23,22);
UInt rM = INSN(20,16);
UInt imm6 = INSN(15,10);
UInt rN = INSN(9,5);
UInt rD = INSN(4,0);
Bool isSUB = bOP == 1;
Bool is64 = bX == 1;
IRType ty = is64 ? Ity_I64 : Ity_I32;
if ((!is64 && imm6 > 31) || sh == BITS2(1,1)) {
/* invalid; fall through */
} else {
IRTemp argL = newTemp(ty);
assign(argL, getIRegOrZR(is64, rN));
IRTemp argR = getShiftedIRegOrZR(is64, sh, imm6, rM, False);
IROp op = isSUB ? mkSUB(ty) : mkADD(ty);
IRTemp res = newTemp(ty);
assign(res, binop(op, mkexpr(argL), mkexpr(argR)));
if (rD != 31) putIRegOrZR(is64, rD, mkexpr(res));
if (bS) {
setFlags_ADD_SUB(is64, isSUB, argL, argR);
}
DIP("%s%s %s, %s, %s, %s #%u\n",
bOP ? "sub" : "add", bS ? "s" : "",
nameIRegOrZR(is64, rD), nameIRegOrZR(is64, rN),
nameIRegOrZR(is64, rM), nameSH(sh), imm6);
return True;
}
}
/* ------------------- ADC/SBC(reg) ------------------- */
/* x==0 => 32 bit op x==1 => 64 bit op
31 30 29 28 23 21 20 15 9 4
| | | | | | | | | |
x 0 0 11010 00 0 Rm 000000 Rn Rd ADC Rd,Rn,Rm
x 0 1 11010 00 0 Rm 000000 Rn Rd ADCS Rd,Rn,Rm
x 1 0 11010 00 0 Rm 000000 Rn Rd SBC Rd,Rn,Rm
x 1 1 11010 00 0 Rm 000000 Rn Rd SBCS Rd,Rn,Rm
*/
if (INSN(28,21) == BITS8(1,1,0,1,0,0,0,0) && INSN(15,10) == 0 ) {
UInt bX = INSN(31,31);
UInt bOP = INSN(30,30); /* 0: ADC, 1: SBC */
UInt bS = INSN(29,29); /* set flags */
UInt rM = INSN(20,16);
UInt rN = INSN(9,5);
UInt rD = INSN(4,0);
Bool isSUB = bOP == 1;
Bool is64 = bX == 1;
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp oldC = newTemp(ty);
assign(oldC,
is64 ? mk_arm64g_calculate_flag_c()
: unop(Iop_64to32, mk_arm64g_calculate_flag_c()) );
IRTemp argL = newTemp(ty);
assign(argL, getIRegOrZR(is64, rN));
IRTemp argR = newTemp(ty);
assign(argR, getIRegOrZR(is64, rM));
IROp op = isSUB ? mkSUB(ty) : mkADD(ty);
IRTemp res = newTemp(ty);
if (isSUB) {
IRExpr* one = is64 ? mkU64(1) : mkU32(1);
IROp xorOp = is64 ? Iop_Xor64 : Iop_Xor32;
assign(res,
binop(op,
binop(op, mkexpr(argL), mkexpr(argR)),
binop(xorOp, mkexpr(oldC), one)));
} else {
assign(res,
binop(op,
binop(op, mkexpr(argL), mkexpr(argR)),
mkexpr(oldC)));
}
if (rD != 31) putIRegOrZR(is64, rD, mkexpr(res));
if (bS) {
setFlags_ADC_SBC(is64, isSUB, argL, argR, oldC);
}
DIP("%s%s %s, %s, %s\n",
bOP ? "sbc" : "adc", bS ? "s" : "",
nameIRegOrZR(is64, rD), nameIRegOrZR(is64, rN),
nameIRegOrZR(is64, rM));
return True;
}
/* -------------------- LOGIC(reg) -------------------- */
/* x==0 => 32 bit op x==1 => 64 bit op
N==0 => inv? is no-op (no inversion)
N==1 => inv? is NOT
sh: 00=LSL, 01=LSR, 10=ASR, 11=ROR
31 30 28 23 21 20 15 9 4
| | | | | | | | |
x 00 01010 sh N Rm imm6 Rn Rd AND Rd,Rn, inv?(sh(Rm,imm6))
x 01 01010 sh N Rm imm6 Rn Rd ORR Rd,Rn, inv?(sh(Rm,imm6))
x 10 01010 sh N Rm imm6 Rn Rd EOR Rd,Rn, inv?(sh(Rm,imm6))
x 11 01010 sh N Rm imm6 Rn Rd ANDS Rd,Rn, inv?(sh(Rm,imm6))
With N=1, the names are: BIC ORN EON BICS
*/
if (INSN(28,24) == BITS5(0,1,0,1,0)) {
UInt bX = INSN(31,31);
UInt sh = INSN(23,22);
UInt bN = INSN(21,21);
UInt rM = INSN(20,16);
UInt imm6 = INSN(15,10);
UInt rN = INSN(9,5);
UInt rD = INSN(4,0);
Bool is64 = bX == 1;
IRType ty = is64 ? Ity_I64 : Ity_I32;
if (!is64 && imm6 > 31) {
/* invalid; fall though */
} else {
IRTemp argL = newTemp(ty);
assign(argL, getIRegOrZR(is64, rN));
IRTemp argR = getShiftedIRegOrZR(is64, sh, imm6, rM, bN == 1);
IROp op = Iop_INVALID;
switch (INSN(30,29)) {
case BITS2(0,0): case BITS2(1,1): op = mkAND(ty); break;
case BITS2(0,1): op = mkOR(ty); break;
case BITS2(1,0): op = mkXOR(ty); break;
default: vassert(0);
}
IRTemp res = newTemp(ty);
assign(res, binop(op, mkexpr(argL), mkexpr(argR)));
if (INSN(30,29) == BITS2(1,1)) {
setFlags_LOGIC(is64, res);
}
putIRegOrZR(is64, rD, mkexpr(res));
static const HChar* names_op[8]
= { "and", "orr", "eor", "ands", "bic", "orn", "eon", "bics" };
vassert(((bN << 2) | INSN(30,29)) < 8);
const HChar* nm_op = names_op[(bN << 2) | INSN(30,29)];
/* Special-case the printing of "MOV" */
if (rN == 31/*zr*/ && sh == 0/*LSL*/ && imm6 == 0 && bN == 0) {
DIP("mov %s, %s\n", nameIRegOrZR(is64, rD),
nameIRegOrZR(is64, rM));
} else {
DIP("%s %s, %s, %s, %s #%u\n", nm_op,
nameIRegOrZR(is64, rD), nameIRegOrZR(is64, rN),
nameIRegOrZR(is64, rM), nameSH(sh), imm6);
}
return True;
}
}
/* -------------------- {U,S}MULH -------------------- */
/* 31 23 22 20 15 9 4
10011011 1 10 Rm 011111 Rn Rd UMULH Xd,Xn,Xm
10011011 0 10 Rm 011111 Rn Rd SMULH Xd,Xn,Xm
*/
if (INSN(31,24) == BITS8(1,0,0,1,1,0,1,1)
&& INSN(22,21) == BITS2(1,0) && INSN(15,10) == BITS6(0,1,1,1,1,1)) {
Bool isU = INSN(23,23) == 1;
UInt mm = INSN(20,16);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
putIReg64orZR(dd, unop(Iop_128HIto64,
binop(isU ? Iop_MullU64 : Iop_MullS64,
getIReg64orZR(nn), getIReg64orZR(mm))));
DIP("%cmulh %s, %s, %s\n",
isU ? 'u' : 's',
nameIReg64orZR(dd), nameIReg64orZR(nn), nameIReg64orZR(mm));
return True;
}
/* -------------------- M{ADD,SUB} -------------------- */
/* 31 30 20 15 14 9 4
sf 00 11011 000 m 0 a n r MADD Rd,Rn,Rm,Ra d = a+m*n
sf 00 11011 000 m 1 a n r MADD Rd,Rn,Rm,Ra d = a-m*n
*/
if (INSN(30,21) == BITS10(0,0,1,1,0,1,1,0,0,0)) {
Bool is64 = INSN(31,31) == 1;
UInt mm = INSN(20,16);
Bool isAdd = INSN(15,15) == 0;
UInt aa = INSN(14,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (is64) {
putIReg64orZR(
dd,
binop(isAdd ? Iop_Add64 : Iop_Sub64,
getIReg64orZR(aa),
binop(Iop_Mul64, getIReg64orZR(mm), getIReg64orZR(nn))));
} else {
putIReg32orZR(
dd,
binop(isAdd ? Iop_Add32 : Iop_Sub32,
getIReg32orZR(aa),
binop(Iop_Mul32, getIReg32orZR(mm), getIReg32orZR(nn))));
}
DIP("%s %s, %s, %s, %s\n",
isAdd ? "madd" : "msub",
nameIRegOrZR(is64, dd), nameIRegOrZR(is64, nn),
nameIRegOrZR(is64, mm), nameIRegOrZR(is64, aa));
return True;
}
/* ---------------- CS{EL,INC,INV,NEG} ---------------- */
/* 31 30 28 20 15 11 9 4
sf 00 1101 0100 mm cond 00 nn dd CSEL Rd,Rn,Rm
sf 00 1101 0100 mm cond 01 nn dd CSINC Rd,Rn,Rm
sf 10 1101 0100 mm cond 00 nn dd CSINV Rd,Rn,Rm
sf 10 1101 0100 mm cond 01 nn dd CSNEG Rd,Rn,Rm
In all cases, the operation is: Rd = if cond then Rn else OP(Rm)
*/
if (INSN(29,21) == BITS9(0, 1,1,0,1, 0,1,0,0) && INSN(11,11) == 0) {
Bool is64 = INSN(31,31) == 1;
UInt b30 = INSN(30,30);
UInt mm = INSN(20,16);
UInt cond = INSN(15,12);
UInt b10 = INSN(10,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
UInt op = (b30 << 1) | b10; /* 00=id 01=inc 10=inv 11=neg */
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRExpr* argL = getIRegOrZR(is64, nn);
IRExpr* argR = getIRegOrZR(is64, mm);
switch (op) {
case BITS2(0,0):
break;
case BITS2(0,1):
argR = binop(mkADD(ty), argR, mkU(ty,1));
break;
case BITS2(1,0):
argR = unop(mkNOT(ty), argR);
break;
case BITS2(1,1):
argR = binop(mkSUB(ty), mkU(ty,0), argR);
break;
default:
vassert(0);
}
putIRegOrZR(
is64, dd,
IRExpr_ITE(unop(Iop_64to1, mk_arm64g_calculate_condition(cond)),
argL, argR)
);
const HChar* op_nm[4] = { "csel", "csinc", "csinv", "csneg" };
DIP("%s %s, %s, %s, %s\n", op_nm[op],
nameIRegOrZR(is64, dd), nameIRegOrZR(is64, nn),
nameIRegOrZR(is64, mm), nameCC(cond));
return True;
}
/* -------------- ADD/SUB(extended reg) -------------- */
/* 28 20 15 12 9 4
000 01011 00 1 m opt imm3 n d ADD Wd|SP, Wn|SP, Wm ext&lsld
100 01011 00 1 m opt imm3 n d ADD Xd|SP, Xn|SP, Rm ext&lsld
001 01011 00 1 m opt imm3 n d ADDS Wd, Wn|SP, Wm ext&lsld
101 01011 00 1 m opt imm3 n d ADDS Xd, Xn|SP, Rm ext&lsld
010 01011 00 1 m opt imm3 n d SUB Wd|SP, Wn|SP, Wm ext&lsld
110 01011 00 1 m opt imm3 n d SUB Xd|SP, Xn|SP, Rm ext&lsld
011 01011 00 1 m opt imm3 n d SUBS Wd, Wn|SP, Wm ext&lsld
111 01011 00 1 m opt imm3 n d SUBS Xd, Xn|SP, Rm ext&lsld
The 'm' operand is extended per opt, thusly:
000 Xm & 0xFF UXTB
001 Xm & 0xFFFF UXTH
010 Xm & (2^32)-1 UXTW
011 Xm UXTX
100 Xm sx from bit 7 SXTB
101 Xm sx from bit 15 SXTH
110 Xm sx from bit 31 SXTW
111 Xm SXTX
In the 64 bit case (bit31 == 1), UXTX and SXTX are the identity
operation on Xm. In the 32 bit case, UXTW, UXTX, SXTW and SXTX
are the identity operation on Wm.
After extension, the value is shifted left by imm3 bits, which
may only be in the range 0 .. 4 inclusive.
*/
if (INSN(28,21) == BITS8(0,1,0,1,1,0,0,1) && INSN(12,10) <= 4) {
Bool is64 = INSN(31,31) == 1;
Bool isSub = INSN(30,30) == 1;
Bool setCC = INSN(29,29) == 1;
UInt mm = INSN(20,16);
UInt opt = INSN(15,13);
UInt imm3 = INSN(12,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
const HChar* nameExt[8] = { "uxtb", "uxth", "uxtw", "uxtx",
"sxtb", "sxth", "sxtw", "sxtx" };
/* Do almost the same thing in the 32- and 64-bit cases. */
IRTemp xN = newTemp(Ity_I64);
IRTemp xM = newTemp(Ity_I64);
assign(xN, getIReg64orSP(nn));
assign(xM, getIReg64orZR(mm));
IRExpr* xMw = mkexpr(xM); /* "xM widened" */
Int shSX = 0;
/* widen Xm .. */
switch (opt) {
case BITS3(0,0,0): // UXTB
xMw = binop(Iop_And64, xMw, mkU64(0xFF)); break;
case BITS3(0,0,1): // UXTH
xMw = binop(Iop_And64, xMw, mkU64(0xFFFF)); break;
case BITS3(0,1,0): // UXTW -- noop for the 32bit case
if (is64) {
xMw = unop(Iop_32Uto64, unop(Iop_64to32, xMw));
}
break;
case BITS3(0,1,1): // UXTX -- always a noop
break;
case BITS3(1,0,0): // SXTB
shSX = 56; goto sxTo64;
case BITS3(1,0,1): // SXTH
shSX = 48; goto sxTo64;
case BITS3(1,1,0): // SXTW -- noop for the 32bit case
if (is64) {
shSX = 32; goto sxTo64;
}
break;
case BITS3(1,1,1): // SXTX -- always a noop
break;
sxTo64:
vassert(shSX >= 32);
xMw = binop(Iop_Sar64, binop(Iop_Shl64, xMw, mkU8(shSX)),
mkU8(shSX));
break;
default:
vassert(0);
}
/* and now shift */
IRTemp argL = xN;
IRTemp argR = newTemp(Ity_I64);
assign(argR, binop(Iop_Shl64, xMw, mkU8(imm3)));
IRTemp res = newTemp(Ity_I64);
assign(res, binop(isSub ? Iop_Sub64 : Iop_Add64,
mkexpr(argL), mkexpr(argR)));
if (is64) {
if (setCC) {
putIReg64orZR(dd, mkexpr(res));
setFlags_ADD_SUB(True/*is64*/, isSub, argL, argR);
} else {
putIReg64orSP(dd, mkexpr(res));
}
} else {
if (setCC) {
IRTemp argL32 = newTemp(Ity_I32);
IRTemp argR32 = newTemp(Ity_I32);
putIReg32orZR(dd, unop(Iop_64to32, mkexpr(res)));
assign(argL32, unop(Iop_64to32, mkexpr(argL)));
assign(argR32, unop(Iop_64to32, mkexpr(argR)));
setFlags_ADD_SUB(False/*!is64*/, isSub, argL32, argR32);
} else {
putIReg32orSP(dd, unop(Iop_64to32, mkexpr(res)));
}
}
DIP("%s%s %s, %s, %s %s lsl %u\n",
isSub ? "sub" : "add", setCC ? "s" : "",
setCC ? nameIRegOrZR(is64, dd) : nameIRegOrSP(is64, dd),
nameIRegOrSP(is64, nn), nameIRegOrSP(is64, mm),
nameExt[opt], imm3);
return True;
}
/* ---------------- CCMP/CCMN(imm) ---------------- */
/* Bizarrely, these appear in the "data processing register"
category, even though they are operations against an
immediate. */
/* 31 29 20 15 11 9 3
sf 1 111010010 imm5 cond 10 Rn 0 nzcv CCMP Rn, #imm5, #nzcv, cond
sf 0 111010010 imm5 cond 10 Rn 0 nzcv CCMN Rn, #imm5, #nzcv, cond
Operation is:
(CCMP) flags = if cond then flags-after-sub(Rn,imm5) else nzcv
(CCMN) flags = if cond then flags-after-add(Rn,imm5) else nzcv
*/
if (INSN(29,21) == BITS9(1,1,1,0,1,0,0,1,0)
&& INSN(11,10) == BITS2(1,0) && INSN(4,4) == 0) {
Bool is64 = INSN(31,31) == 1;
Bool isSUB = INSN(30,30) == 1;
UInt imm5 = INSN(20,16);
UInt cond = INSN(15,12);
UInt nn = INSN(9,5);
UInt nzcv = INSN(3,0);
IRTemp condT = newTemp(Ity_I1);
assign(condT, unop(Iop_64to1, mk_arm64g_calculate_condition(cond)));
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp argL = newTemp(ty);
IRTemp argR = newTemp(ty);
if (is64) {
assign(argL, getIReg64orZR(nn));
assign(argR, mkU64(imm5));
} else {
assign(argL, getIReg32orZR(nn));
assign(argR, mkU32(imm5));
}
setFlags_ADD_SUB_conditionally(is64, isSUB, condT, argL, argR, nzcv);
DIP("ccm%c %s, #%u, #%u, %s\n",
isSUB ? 'p' : 'n', nameIRegOrZR(is64, nn),
imm5, nzcv, nameCC(cond));
return True;
}
/* ---------------- CCMP/CCMN(reg) ---------------- */
/* 31 29 20 15 11 9 3
sf 1 111010010 Rm cond 00 Rn 0 nzcv CCMP Rn, Rm, #nzcv, cond
sf 0 111010010 Rm cond 00 Rn 0 nzcv CCMN Rn, Rm, #nzcv, cond
Operation is:
(CCMP) flags = if cond then flags-after-sub(Rn,Rm) else nzcv
(CCMN) flags = if cond then flags-after-add(Rn,Rm) else nzcv
*/
if (INSN(29,21) == BITS9(1,1,1,0,1,0,0,1,0)
&& INSN(11,10) == BITS2(0,0) && INSN(4,4) == 0) {
Bool is64 = INSN(31,31) == 1;
Bool isSUB = INSN(30,30) == 1;
UInt mm = INSN(20,16);
UInt cond = INSN(15,12);
UInt nn = INSN(9,5);
UInt nzcv = INSN(3,0);
IRTemp condT = newTemp(Ity_I1);
assign(condT, unop(Iop_64to1, mk_arm64g_calculate_condition(cond)));
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp argL = newTemp(ty);
IRTemp argR = newTemp(ty);
if (is64) {
assign(argL, getIReg64orZR(nn));
assign(argR, getIReg64orZR(mm));
} else {
assign(argL, getIReg32orZR(nn));
assign(argR, getIReg32orZR(mm));
}
setFlags_ADD_SUB_conditionally(is64, isSUB, condT, argL, argR, nzcv);
DIP("ccm%c %s, %s, #%u, %s\n",
isSUB ? 'p' : 'n', nameIRegOrZR(is64, nn),
nameIRegOrZR(is64, mm), nzcv, nameCC(cond));
return True;
}
/* -------------- REV/REV16/REV32/RBIT -------------- */
/* 31 30 28 20 15 11 9 4
1 10 11010110 00000 0000 11 n d (1) REV Xd, Xn
0 10 11010110 00000 0000 10 n d (2) REV Wd, Wn
1 10 11010110 00000 0000 00 n d (3) RBIT Xd, Xn
0 10 11010110 00000 0000 00 n d (4) RBIT Wd, Wn
1 10 11010110 00000 0000 01 n d (5) REV16 Xd, Xn
0 10 11010110 00000 0000 01 n d (6) REV16 Wd, Wn
1 10 11010110 00000 0000 10 n d (7) REV32 Xd, Xn
*/
if (INSN(30,21) == BITS10(1,0,1,1,0,1,0,1,1,0)
&& INSN(20,12) == BITS9(0,0,0,0,0,0,0,0,0)) {
UInt b31 = INSN(31,31);
UInt opc = INSN(11,10);
UInt ix = 0;
/**/ if (b31 == 1 && opc == BITS2(1,1)) ix = 1;
else if (b31 == 0 && opc == BITS2(1,0)) ix = 2;
else if (b31 == 1 && opc == BITS2(0,0)) ix = 3;
else if (b31 == 0 && opc == BITS2(0,0)) ix = 4;
else if (b31 == 1 && opc == BITS2(0,1)) ix = 5;
else if (b31 == 0 && opc == BITS2(0,1)) ix = 6;
else if (b31 == 1 && opc == BITS2(1,0)) ix = 7;
if (ix >= 1 && ix <= 7) {
Bool is64 = ix == 1 || ix == 3 || ix == 5 || ix == 7;
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
IRTemp src = newTemp(Ity_I64);
IRTemp dst = IRTemp_INVALID;
IRTemp (*math)(IRTemp) = NULL;
switch (ix) {
case 1: case 2: math = math_BYTESWAP64; break;
case 3: case 4: math = math_BITSWAP64; break;
case 5: case 6: math = math_USHORTSWAP64; break;
case 7: math = math_UINTSWAP64; break;
default: vassert(0);
}
const HChar* names[7]
= { "rev", "rev", "rbit", "rbit", "rev16", "rev16", "rev32" };
const HChar* nm = names[ix-1];
vassert(math);
if (ix == 6) {
/* This has to be special cased, since the logic below doesn't
handle it correctly. */
assign(src, getIReg64orZR(nn));
dst = math(src);
putIReg64orZR(dd,
unop(Iop_32Uto64, unop(Iop_64to32, mkexpr(dst))));
} else if (is64) {
assign(src, getIReg64orZR(nn));
dst = math(src);
putIReg64orZR(dd, mkexpr(dst));
} else {
assign(src, binop(Iop_Shl64, getIReg64orZR(nn), mkU8(32)));
dst = math(src);
putIReg32orZR(dd, unop(Iop_64to32, mkexpr(dst)));
}
DIP("%s %s, %s\n", nm,
nameIRegOrZR(is64,dd), nameIRegOrZR(is64,nn));
return True;
}
/* else fall through */
}
/* -------------------- CLZ/CLS -------------------- */
/* 30 28 24 20 15 9 4
sf 10 1101 0110 00000 00010 0 n d CLZ Rd, Rn
sf 10 1101 0110 00000 00010 1 n d CLS Rd, Rn
*/
if (INSN(30,21) == BITS10(1,0,1,1,0,1,0,1,1,0)
&& INSN(20,11) == BITS10(0,0,0,0,0,0,0,0,1,0)) {
Bool is64 = INSN(31,31) == 1;
Bool isCLS = INSN(10,10) == 1;
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
IRTemp src = newTemp(Ity_I64);
IRTemp srcZ = newTemp(Ity_I64);
IRTemp dst = newTemp(Ity_I64);
/* Get the argument, widened out to 64 bit */
if (is64) {
assign(src, getIReg64orZR(nn));
} else {
assign(src, binop(Iop_Shl64,
unop(Iop_32Uto64, getIReg32orZR(nn)), mkU8(32)));
}
/* If this is CLS, mash the arg around accordingly */
if (isCLS) {
IRExpr* one = mkU8(1);
assign(srcZ,
binop(Iop_Xor64,
binop(Iop_Shl64, mkexpr(src), one),
binop(Iop_Shl64, binop(Iop_Shr64, mkexpr(src), one), one)));
} else {
assign(srcZ, mkexpr(src));
}
/* And compute CLZ. */
if (is64) {
assign(dst, IRExpr_ITE(binop(Iop_CmpEQ64, mkexpr(srcZ), mkU64(0)),
mkU64(isCLS ? 63 : 64),
unop(Iop_Clz64, mkexpr(srcZ))));
putIReg64orZR(dd, mkexpr(dst));
} else {
assign(dst, IRExpr_ITE(binop(Iop_CmpEQ64, mkexpr(srcZ), mkU64(0)),
mkU64(isCLS ? 31 : 32),
unop(Iop_Clz64, mkexpr(srcZ))));
putIReg32orZR(dd, unop(Iop_64to32, mkexpr(dst)));
}
DIP("cl%c %s, %s\n", isCLS ? 's' : 'z',
nameIRegOrZR(is64, dd), nameIRegOrZR(is64, nn));
return True;
}
/* ------------------ LSLV/LSRV/ASRV/RORV ------------------ */
/* 30 28 20 15 11 9 4
sf 00 1101 0110 m 0010 00 n d LSLV Rd,Rn,Rm
sf 00 1101 0110 m 0010 01 n d LSRV Rd,Rn,Rm
sf 00 1101 0110 m 0010 10 n d ASRV Rd,Rn,Rm
sf 00 1101 0110 m 0010 11 n d RORV Rd,Rn,Rm
*/
if (INSN(30,21) == BITS10(0,0,1,1,0,1,0,1,1,0)
&& INSN(15,12) == BITS4(0,0,1,0)) {
Bool is64 = INSN(31,31) == 1;
UInt mm = INSN(20,16);
UInt op = INSN(11,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
IRType ty = is64 ? Ity_I64 : Ity_I32;
IRTemp srcL = newTemp(ty);
IRTemp srcR = newTemp(Ity_I64);
IRTemp res = newTemp(ty);
IROp iop = Iop_INVALID;
assign(srcL, getIRegOrZR(is64, nn));
assign(srcR, binop(Iop_And64, getIReg64orZR(mm),
mkU64(is64 ? 63 : 31)));
if (op < 3) {
// LSLV, LSRV, ASRV
switch (op) {
case BITS2(0,0): iop = mkSHL(ty); break;
case BITS2(0,1): iop = mkSHR(ty); break;
case BITS2(1,0): iop = mkSAR(ty); break;
default: vassert(0);
}
assign(res, binop(iop, mkexpr(srcL),
unop(Iop_64to8, mkexpr(srcR))));
} else {
// RORV
IROp opSHL = mkSHL(ty);
IROp opSHR = mkSHR(ty);
IROp opOR = mkOR(ty);
IRExpr* width = mkU64(is64 ? 64: 32);
assign(
res,
IRExpr_ITE(
binop(Iop_CmpEQ64, mkexpr(srcR), mkU64(0)),
mkexpr(srcL),
binop(opOR,
binop(opSHL,
mkexpr(srcL),
unop(Iop_64to8, binop(Iop_Sub64, width,
mkexpr(srcR)))),
binop(opSHR,
mkexpr(srcL), unop(Iop_64to8, mkexpr(srcR))))
));
}
putIRegOrZR(is64, dd, mkexpr(res));
vassert(op < 4);
const HChar* names[4] = { "lslv", "lsrv", "asrv", "rorv" };
DIP("%s %s, %s, %s\n",
names[op], nameIRegOrZR(is64,dd),
nameIRegOrZR(is64,nn), nameIRegOrZR(is64,mm));
return True;
}
/* -------------------- SDIV/UDIV -------------------- */
/* 30 28 20 15 10 9 4
sf 00 1101 0110 m 00001 1 n d SDIV Rd,Rn,Rm
sf 00 1101 0110 m 00001 0 n d UDIV Rd,Rn,Rm
*/
if (INSN(30,21) == BITS10(0,0,1,1,0,1,0,1,1,0)
&& INSN(15,11) == BITS5(0,0,0,0,1)) {
Bool is64 = INSN(31,31) == 1;
UInt mm = INSN(20,16);
Bool isS = INSN(10,10) == 1;
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (isS) {
putIRegOrZR(is64, dd, binop(is64 ? Iop_DivS64 : Iop_DivS32,
getIRegOrZR(is64, nn),
getIRegOrZR(is64, mm)));
} else {
putIRegOrZR(is64, dd, binop(is64 ? Iop_DivU64 : Iop_DivU32,
getIRegOrZR(is64, nn),
getIRegOrZR(is64, mm)));
}
DIP("%cdiv %s, %s, %s\n", isS ? 's' : 'u',
nameIRegOrZR(is64, dd),
nameIRegOrZR(is64, nn), nameIRegOrZR(is64, mm));
return True;
}
/* ------------------ {S,U}M{ADD,SUB}L ------------------ */
/* 31 23 20 15 14 9 4
1001 1011 101 m 0 a n d UMADDL Xd,Wn,Wm,Xa
1001 1011 001 m 0 a n d SMADDL Xd,Wn,Wm,Xa
1001 1011 101 m 1 a n d UMSUBL Xd,Wn,Wm,Xa
1001 1011 001 m 1 a n d SMSUBL Xd,Wn,Wm,Xa
with operation
Xd = Xa +/- (Wn *u/s Wm)
*/
if (INSN(31,24) == BITS8(1,0,0,1,1,0,1,1) && INSN(22,21) == BITS2(0,1)) {
Bool isU = INSN(23,23) == 1;
UInt mm = INSN(20,16);
Bool isAdd = INSN(15,15) == 0;
UInt aa = INSN(14,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
IRTemp wN = newTemp(Ity_I32);
IRTemp wM = newTemp(Ity_I32);
IRTemp xA = newTemp(Ity_I64);
IRTemp muld = newTemp(Ity_I64);
IRTemp res = newTemp(Ity_I64);
assign(wN, getIReg32orZR(nn));
assign(wM, getIReg32orZR(mm));
assign(xA, getIReg64orZR(aa));
assign(muld, binop(isU ? Iop_MullU32 : Iop_MullS32,
mkexpr(wN), mkexpr(wM)));
assign(res, binop(isAdd ? Iop_Add64 : Iop_Sub64,
mkexpr(xA), mkexpr(muld)));
putIReg64orZR(dd, mkexpr(res));
DIP("%cm%sl %s, %s, %s, %s\n", isU ? 'u' : 's', isAdd ? "add" : "sub",
nameIReg64orZR(dd), nameIReg32orZR(nn),
nameIReg32orZR(mm), nameIReg64orZR(aa));
return True;
}
vex_printf("ARM64 front end: data_processing_register\n");
return False;
# undef INSN
}
/*------------------------------------------------------------*/
/*--- Math helpers for vector interleave/deinterleave ---*/
/*------------------------------------------------------------*/
#define EX(_tmp) \
mkexpr(_tmp)
#define SL(_hi128,_lo128,_nbytes) \
( (_nbytes) == 0 \
? (_lo128) \
: triop(Iop_SliceV128,(_hi128),(_lo128),mkU8(_nbytes)) )
#define ROR(_v128,_nbytes) \
SL((_v128),(_v128),(_nbytes))
#define ROL(_v128,_nbytes) \
SL((_v128),(_v128),16-(_nbytes))
#define SHR(_v128,_nbytes) \
binop(Iop_ShrV128,(_v128),mkU8(8*(_nbytes)))
#define SHL(_v128,_nbytes) \
binop(Iop_ShlV128,(_v128),mkU8(8*(_nbytes)))
#define ILO64x2(_argL,_argR) \
binop(Iop_InterleaveLO64x2,(_argL),(_argR))
#define IHI64x2(_argL,_argR) \
binop(Iop_InterleaveHI64x2,(_argL),(_argR))
#define ILO32x4(_argL,_argR) \
binop(Iop_InterleaveLO32x4,(_argL),(_argR))
#define IHI32x4(_argL,_argR) \
binop(Iop_InterleaveHI32x4,(_argL),(_argR))
#define ILO16x8(_argL,_argR) \
binop(Iop_InterleaveLO16x8,(_argL),(_argR))
#define IHI16x8(_argL,_argR) \
binop(Iop_InterleaveHI16x8,(_argL),(_argR))
#define ILO8x16(_argL,_argR) \
binop(Iop_InterleaveLO8x16,(_argL),(_argR))
#define IHI8x16(_argL,_argR) \
binop(Iop_InterleaveHI8x16,(_argL),(_argR))
#define CEV32x4(_argL,_argR) \
binop(Iop_CatEvenLanes32x4,(_argL),(_argR))
#define COD32x4(_argL,_argR) \
binop(Iop_CatOddLanes32x4,(_argL),(_argR))
#define COD16x8(_argL,_argR) \
binop(Iop_CatOddLanes16x8,(_argL),(_argR))
#define COD8x16(_argL,_argR) \
binop(Iop_CatOddLanes8x16,(_argL),(_argR))
#define CEV8x16(_argL,_argR) \
binop(Iop_CatEvenLanes8x16,(_argL),(_argR))
#define AND(_arg1,_arg2) \
binop(Iop_AndV128,(_arg1),(_arg2))
#define OR2(_arg1,_arg2) \
binop(Iop_OrV128,(_arg1),(_arg2))
#define OR3(_arg1,_arg2,_arg3) \
binop(Iop_OrV128,(_arg1),binop(Iop_OrV128,(_arg2),(_arg3)))
#define OR4(_arg1,_arg2,_arg3,_arg4) \
binop(Iop_OrV128, \
binop(Iop_OrV128,(_arg1),(_arg2)), \
binop(Iop_OrV128,(_arg3),(_arg4)))
/* Do interleaving for 1 128 bit vector, for ST1 insns. */
static
void math_INTERLEAVE1_128( /*OUTx1*/ IRTemp* i0,
UInt laneSzBlg2, IRTemp u0 )
{
assign(*i0, mkexpr(u0));
}
/* Do interleaving for 2 128 bit vectors, for ST2 insns. */
static
void math_INTERLEAVE2_128( /*OUTx2*/ IRTemp* i0, IRTemp* i1,
UInt laneSzBlg2, IRTemp u0, IRTemp u1 )
{
/* This is pretty easy, since we have primitives directly to
hand. */
if (laneSzBlg2 == 3) {
// 64x2
// u1 == B1 B0, u0 == A1 A0
// i1 == B1 A1, i0 == B0 A0
assign(*i0, binop(Iop_InterleaveLO64x2, mkexpr(u1), mkexpr(u0)));
assign(*i1, binop(Iop_InterleaveHI64x2, mkexpr(u1), mkexpr(u0)));
return;
}
if (laneSzBlg2 == 2) {
// 32x4
// u1 == B3 B2 B1 B0, u0 == A3 A2 A1 A0,
// i1 == B3 A3 B2 A2, i0 == B1 A1 B0 A0
assign(*i0, binop(Iop_InterleaveLO32x4, mkexpr(u1), mkexpr(u0)));
assign(*i1, binop(Iop_InterleaveHI32x4, mkexpr(u1), mkexpr(u0)));
return;
}
if (laneSzBlg2 == 1) {
// 16x8
// u1 == B{7..0}, u0 == A{7..0}
// i0 == B3 A3 B2 A2 B1 A1 B0 A0
// i1 == B7 A7 B6 A6 B5 A5 B4 A4
assign(*i0, binop(Iop_InterleaveLO16x8, mkexpr(u1), mkexpr(u0)));
assign(*i1, binop(Iop_InterleaveHI16x8, mkexpr(u1), mkexpr(u0)));
return;
}
if (laneSzBlg2 == 0) {
// 8x16
// u1 == B{f..0}, u0 == A{f..0}
// i0 == B7 A7 B6 A6 B5 A5 B4 A4 B3 A3 B2 A2 B1 A1 B0 A0
// i1 == Bf Af Be Ae Bd Ad Bc Ac Bb Ab Ba Aa B9 A9 B8 A8
assign(*i0, binop(Iop_InterleaveLO8x16, mkexpr(u1), mkexpr(u0)));
assign(*i1, binop(Iop_InterleaveHI8x16, mkexpr(u1), mkexpr(u0)));
return;
}
/*NOTREACHED*/
vassert(0);
}
/* Do interleaving for 3 128 bit vectors, for ST3 insns. */
static
void math_INTERLEAVE3_128(
/*OUTx3*/ IRTemp* i0, IRTemp* i1, IRTemp* i2,
UInt laneSzBlg2,
IRTemp u0, IRTemp u1, IRTemp u2 )
{
if (laneSzBlg2 == 3) {
// 64x2
// u2 == C1 C0, u1 == B1 B0, u0 == A1 A0
// i2 == C1 B1, i1 == A1 C0, i0 == B0 A0,
assign(*i2, IHI64x2( EX(u2), EX(u1) ));
assign(*i1, ILO64x2( ROR(EX(u0),8), EX(u2) ));
assign(*i0, ILO64x2( EX(u1), EX(u0) ));
return;
}
if (laneSzBlg2 == 2) {
// 32x4
// u2 == C3 C2 C1 C0, u1 == B3 B2 B1 B0, u0 == A3 A2 A1 A0
// p2 == C3 C2 B3 B2, p1 == A3 A2 C1 C0, p0 == B1 B0 A1 A0
// i2 == C3 B3 A2 C2, i1 == B2 A2 C1 B1, i0 == A1 C0 B0 A0
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp c1100 = newTempV128();
IRTemp c0011 = newTempV128();
IRTemp c0110 = newTempV128();
assign(c1100, mkV128(0xFF00));
assign(c0011, mkV128(0x00FF));
assign(c0110, mkV128(0x0FF0));
// First interleave them at 64x2 granularity,
// generating partial ("p") values.
math_INTERLEAVE3_128(&p0, &p1, &p2, 3, u0, u1, u2);
// And more shuffling around for the final answer
assign(*i2, OR2( AND( IHI32x4(EX(p2), ROL(EX(p2),8)), EX(c1100) ),
AND( IHI32x4(ROR(EX(p1),4), EX(p2)), EX(c0011) ) ));
assign(*i1, OR3( SHL(EX(p2),12),
AND(EX(p1),EX(c0110)),
SHR(EX(p0),12) ));
assign(*i0, OR2( AND( ILO32x4(EX(p0),ROL(EX(p1),4)), EX(c1100) ),
AND( ILO32x4(ROR(EX(p0),8),EX(p0)), EX(c0011) ) ));
return;
}
if (laneSzBlg2 == 1) {
// 16x8
// u2 == C7 C6 C5 C4 C3 C2 C1 C0
// u1 == B7 B6 B5 B4 B3 B2 B1 B0
// u0 == A7 A6 A5 A4 A3 A2 A1 A0
//
// p2 == C7 C6 B7 B6 A7 A6 C5 C4
// p1 == B5 B4 A5 A4 C3 C2 B3 B2
// p0 == A3 A2 C1 C0 B1 B0 A1 A0
//
// i2 == C7 B7 A7 C6 B6 A6 C5 B5
// i1 == A5 C4 B4 A4 C4 B3 A3 C2
// i0 == B2 A2 C1 B1 A1 C0 B0 A0
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp c1000 = newTempV128();
IRTemp c0100 = newTempV128();
IRTemp c0010 = newTempV128();
IRTemp c0001 = newTempV128();
assign(c1000, mkV128(0xF000));
assign(c0100, mkV128(0x0F00));
assign(c0010, mkV128(0x00F0));
assign(c0001, mkV128(0x000F));
// First interleave them at 32x4 granularity,
// generating partial ("p") values.
math_INTERLEAVE3_128(&p0, &p1, &p2, 2, u0, u1, u2);
// And more shuffling around for the final answer
assign(*i2,
OR4( AND( IHI16x8( EX(p2), ROL(EX(p2),4) ), EX(c1000) ),
AND( IHI16x8( ROL(EX(p2),6), EX(p2) ), EX(c0100) ),
AND( IHI16x8( ROL(EX(p2),2), ROL(EX(p2),6) ), EX(c0010) ),
AND( ILO16x8( ROR(EX(p2),2), ROL(EX(p1),2) ), EX(c0001) )
));
assign(*i1,
OR4( AND( IHI16x8( ROL(EX(p1),4), ROR(EX(p2),2) ), EX(c1000) ),
AND( IHI16x8( EX(p1), ROL(EX(p1),4) ), EX(c0100) ),
AND( IHI16x8( ROL(EX(p1),4), ROL(EX(p1),8) ), EX(c0010) ),
AND( IHI16x8( ROR(EX(p0),6), ROL(EX(p1),4) ), EX(c0001) )
));
assign(*i0,
OR4( AND( IHI16x8( ROR(EX(p1),2), ROL(EX(p0),2) ), EX(c1000) ),
AND( IHI16x8( ROL(EX(p0),2), ROL(EX(p0),6) ), EX(c0100) ),
AND( IHI16x8( ROL(EX(p0),8), ROL(EX(p0),2) ), EX(c0010) ),
AND( IHI16x8( ROL(EX(p0),4), ROL(EX(p0),8) ), EX(c0001) )
));
return;
}
if (laneSzBlg2 == 0) {
// 8x16. It doesn't seem worth the hassle of first doing a
// 16x8 interleave, so just generate all 24 partial results
// directly :-(
// u2 == Cf .. C0, u1 == Bf .. B0, u0 == Af .. A0
// i2 == Cf Bf Af Ce .. Bb Ab Ca
// i1 == Ba Aa C9 B9 .. A6 C5 B5
// i0 == A5 C4 B4 A4 .. C0 B0 A0
IRTemp i2_FEDC = newTempV128(); IRTemp i2_BA98 = newTempV128();
IRTemp i2_7654 = newTempV128(); IRTemp i2_3210 = newTempV128();
IRTemp i1_FEDC = newTempV128(); IRTemp i1_BA98 = newTempV128();
IRTemp i1_7654 = newTempV128(); IRTemp i1_3210 = newTempV128();
IRTemp i0_FEDC = newTempV128(); IRTemp i0_BA98 = newTempV128();
IRTemp i0_7654 = newTempV128(); IRTemp i0_3210 = newTempV128();
IRTemp i2_hi64 = newTempV128(); IRTemp i2_lo64 = newTempV128();
IRTemp i1_hi64 = newTempV128(); IRTemp i1_lo64 = newTempV128();
IRTemp i0_hi64 = newTempV128(); IRTemp i0_lo64 = newTempV128();
// eg XXXX(qqq, CC, 0xF, BB, 0xA)) sets qqq to be a vector
// of the form 14 bytes junk : CC[0xF] : BB[0xA]
//
# define XXXX(_tempName,_srcVec1,_srcShift1,_srcVec2,_srcShift2) \
IRTemp t_##_tempName = newTempV128(); \
assign(t_##_tempName, \
ILO8x16( ROR(EX(_srcVec1),(_srcShift1)), \
ROR(EX(_srcVec2),(_srcShift2)) ) )
// Let CC, BB, AA be (handy) aliases of u2, u1, u0 respectively
IRTemp CC = u2; IRTemp BB = u1; IRTemp AA = u0;
// The slicing and reassembly are done as interleavedly as possible,
// so as to minimise the demand for registers in the back end, which
// was observed to be a problem in testing.
XXXX(CfBf, CC, 0xf, BB, 0xf); // i2[15:14]
XXXX(AfCe, AA, 0xf, CC, 0xe);
assign(i2_FEDC, ILO16x8(EX(t_CfBf), EX(t_AfCe)));
XXXX(BeAe, BB, 0xe, AA, 0xe);
XXXX(CdBd, CC, 0xd, BB, 0xd);
assign(i2_BA98, ILO16x8(EX(t_BeAe), EX(t_CdBd)));
assign(i2_hi64, ILO32x4(EX(i2_FEDC), EX(i2_BA98)));
XXXX(AdCc, AA, 0xd, CC, 0xc);
XXXX(BcAc, BB, 0xc, AA, 0xc);
assign(i2_7654, ILO16x8(EX(t_AdCc), EX(t_BcAc)));
XXXX(CbBb, CC, 0xb, BB, 0xb);
XXXX(AbCa, AA, 0xb, CC, 0xa); // i2[1:0]
assign(i2_3210, ILO16x8(EX(t_CbBb), EX(t_AbCa)));
assign(i2_lo64, ILO32x4(EX(i2_7654), EX(i2_3210)));
assign(*i2, ILO64x2(EX(i2_hi64), EX(i2_lo64)));
XXXX(BaAa, BB, 0xa, AA, 0xa); // i1[15:14]
XXXX(C9B9, CC, 0x9, BB, 0x9);
assign(i1_FEDC, ILO16x8(EX(t_BaAa), EX(t_C9B9)));
XXXX(A9C8, AA, 0x9, CC, 0x8);
XXXX(B8A8, BB, 0x8, AA, 0x8);
assign(i1_BA98, ILO16x8(EX(t_A9C8), EX(t_B8A8)));
assign(i1_hi64, ILO32x4(EX(i1_FEDC), EX(i1_BA98)));
XXXX(C7B7, CC, 0x7, BB, 0x7);
XXXX(A7C6, AA, 0x7, CC, 0x6);
assign(i1_7654, ILO16x8(EX(t_C7B7), EX(t_A7C6)));
XXXX(B6A6, BB, 0x6, AA, 0x6);
XXXX(C5B5, CC, 0x5, BB, 0x5); // i1[1:0]
assign(i1_3210, ILO16x8(EX(t_B6A6), EX(t_C5B5)));
assign(i1_lo64, ILO32x4(EX(i1_7654), EX(i1_3210)));
assign(*i1, ILO64x2(EX(i1_hi64), EX(i1_lo64)));
XXXX(A5C4, AA, 0x5, CC, 0x4); // i0[15:14]
XXXX(B4A4, BB, 0x4, AA, 0x4);
assign(i0_FEDC, ILO16x8(EX(t_A5C4), EX(t_B4A4)));
XXXX(C3B3, CC, 0x3, BB, 0x3);
XXXX(A3C2, AA, 0x3, CC, 0x2);
assign(i0_BA98, ILO16x8(EX(t_C3B3), EX(t_A3C2)));
assign(i0_hi64, ILO32x4(EX(i0_FEDC), EX(i0_BA98)));
XXXX(B2A2, BB, 0x2, AA, 0x2);
XXXX(C1B1, CC, 0x1, BB, 0x1);
assign(i0_7654, ILO16x8(EX(t_B2A2), EX(t_C1B1)));
XXXX(A1C0, AA, 0x1, CC, 0x0);
XXXX(B0A0, BB, 0x0, AA, 0x0); // i0[1:0]
assign(i0_3210, ILO16x8(EX(t_A1C0), EX(t_B0A0)));
assign(i0_lo64, ILO32x4(EX(i0_7654), EX(i0_3210)));
assign(*i0, ILO64x2(EX(i0_hi64), EX(i0_lo64)));
# undef XXXX
return;
}
/*NOTREACHED*/
vassert(0);
}
/* Do interleaving for 4 128 bit vectors, for ST4 insns. */
static
void math_INTERLEAVE4_128(
/*OUTx4*/ IRTemp* i0, IRTemp* i1, IRTemp* i2, IRTemp* i3,
UInt laneSzBlg2,
IRTemp u0, IRTemp u1, IRTemp u2, IRTemp u3 )
{
if (laneSzBlg2 == 3) {
// 64x2
assign(*i0, ILO64x2(EX(u1), EX(u0)));
assign(*i1, ILO64x2(EX(u3), EX(u2)));
assign(*i2, IHI64x2(EX(u1), EX(u0)));
assign(*i3, IHI64x2(EX(u3), EX(u2)));
return;
}
if (laneSzBlg2 == 2) {
// 32x4
// First, interleave at the 64-bit lane size.
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp p3 = newTempV128();
math_INTERLEAVE4_128(&p0, &p1, &p2, &p3, 3, u0, u1, u2, u3);
// And interleave (cat) at the 32 bit size.
assign(*i0, CEV32x4(EX(p1), EX(p0)));
assign(*i1, COD32x4(EX(p1), EX(p0)));
assign(*i2, CEV32x4(EX(p3), EX(p2)));
assign(*i3, COD32x4(EX(p3), EX(p2)));
return;
}
if (laneSzBlg2 == 1) {
// 16x8
// First, interleave at the 32-bit lane size.
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp p3 = newTempV128();
math_INTERLEAVE4_128(&p0, &p1, &p2, &p3, 2, u0, u1, u2, u3);
// And rearrange within each vector, to get the right 16 bit lanes.
assign(*i0, COD16x8(EX(p0), SHL(EX(p0), 2)));
assign(*i1, COD16x8(EX(p1), SHL(EX(p1), 2)));
assign(*i2, COD16x8(EX(p2), SHL(EX(p2), 2)));
assign(*i3, COD16x8(EX(p3), SHL(EX(p3), 2)));
return;
}
if (laneSzBlg2 == 0) {
// 8x16
// First, interleave at the 16-bit lane size.
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp p3 = newTempV128();
math_INTERLEAVE4_128(&p0, &p1, &p2, &p3, 1, u0, u1, u2, u3);
// And rearrange within each vector, to get the right 8 bit lanes.
assign(*i0, IHI32x4(COD8x16(EX(p0),EX(p0)), CEV8x16(EX(p0),EX(p0))));
assign(*i1, IHI32x4(COD8x16(EX(p1),EX(p1)), CEV8x16(EX(p1),EX(p1))));
assign(*i2, IHI32x4(COD8x16(EX(p2),EX(p2)), CEV8x16(EX(p2),EX(p2))));
assign(*i3, IHI32x4(COD8x16(EX(p3),EX(p3)), CEV8x16(EX(p3),EX(p3))));
return;
}
/*NOTREACHED*/
vassert(0);
}
/* Do deinterleaving for 1 128 bit vector, for LD1 insns. */
static
void math_DEINTERLEAVE1_128( /*OUTx1*/ IRTemp* u0,
UInt laneSzBlg2, IRTemp i0 )
{
assign(*u0, mkexpr(i0));
}
/* Do deinterleaving for 2 128 bit vectors, for LD2 insns. */
static
void math_DEINTERLEAVE2_128( /*OUTx2*/ IRTemp* u0, IRTemp* u1,
UInt laneSzBlg2, IRTemp i0, IRTemp i1 )
{
/* This is pretty easy, since we have primitives directly to
hand. */
if (laneSzBlg2 == 3) {
// 64x2
// i1 == B1 A1, i0 == B0 A0
// u1 == B1 B0, u0 == A1 A0
assign(*u0, binop(Iop_InterleaveLO64x2, mkexpr(i1), mkexpr(i0)));
assign(*u1, binop(Iop_InterleaveHI64x2, mkexpr(i1), mkexpr(i0)));
return;
}
if (laneSzBlg2 == 2) {
// 32x4
// i1 == B3 A3 B2 A2, i0 == B1 A1 B0 A0
// u1 == B3 B2 B1 B0, u0 == A3 A2 A1 A0,
assign(*u0, binop(Iop_CatEvenLanes32x4, mkexpr(i1), mkexpr(i0)));
assign(*u1, binop(Iop_CatOddLanes32x4, mkexpr(i1), mkexpr(i0)));
return;
}
if (laneSzBlg2 == 1) {
// 16x8
// i0 == B3 A3 B2 A2 B1 A1 B0 A0
// i1 == B7 A7 B6 A6 B5 A5 B4 A4
// u1 == B{7..0}, u0 == A{7..0}
assign(*u0, binop(Iop_CatEvenLanes16x8, mkexpr(i1), mkexpr(i0)));
assign(*u1, binop(Iop_CatOddLanes16x8, mkexpr(i1), mkexpr(i0)));
return;
}
if (laneSzBlg2 == 0) {
// 8x16
// i0 == B7 A7 B6 A6 B5 A5 B4 A4 B3 A3 B2 A2 B1 A1 B0 A0
// i1 == Bf Af Be Ae Bd Ad Bc Ac Bb Ab Ba Aa B9 A9 B8 A8
// u1 == B{f..0}, u0 == A{f..0}
assign(*u0, binop(Iop_CatEvenLanes8x16, mkexpr(i1), mkexpr(i0)));
assign(*u1, binop(Iop_CatOddLanes8x16, mkexpr(i1), mkexpr(i0)));
return;
}
/*NOTREACHED*/
vassert(0);
}
/* Do deinterleaving for 3 128 bit vectors, for LD3 insns. */
static
void math_DEINTERLEAVE3_128(
/*OUTx3*/ IRTemp* u0, IRTemp* u1, IRTemp* u2,
UInt laneSzBlg2,
IRTemp i0, IRTemp i1, IRTemp i2 )
{
if (laneSzBlg2 == 3) {
// 64x2
// i2 == C1 B1, i1 == A1 C0, i0 == B0 A0,
// u2 == C1 C0, u1 == B1 B0, u0 == A1 A0
assign(*u2, ILO64x2( ROL(EX(i2),8), EX(i1) ));
assign(*u1, ILO64x2( EX(i2), ROL(EX(i0),8) ));
assign(*u0, ILO64x2( ROL(EX(i1),8), EX(i0) ));
return;
}
if (laneSzBlg2 == 2) {
// 32x4
// i2 == C3 B3 A2 C2, i1 == B2 A2 C1 B1, i0 == A1 C0 B0 A0
// p2 == C3 C2 B3 B2, p1 == A3 A2 C1 C0, p0 == B1 B0 A1 A0
// u2 == C3 C2 C1 C0, u1 == B3 B2 B1 B0, u0 == A3 A2 A1 A0
IRTemp t_a1c0b0a0 = newTempV128();
IRTemp t_a2c1b1a1 = newTempV128();
IRTemp t_a3c2b2a2 = newTempV128();
IRTemp t_a0c3b3a3 = newTempV128();
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
// Compute some intermediate values.
assign(t_a1c0b0a0, EX(i0));
assign(t_a2c1b1a1, SL(EX(i1),EX(i0),3*4));
assign(t_a3c2b2a2, SL(EX(i2),EX(i1),2*4));
assign(t_a0c3b3a3, SL(EX(i0),EX(i2),1*4));
// First deinterleave into lane-pairs
assign(p0, ILO32x4(EX(t_a2c1b1a1),EX(t_a1c0b0a0)));
assign(p1, ILO64x2(ILO32x4(EX(t_a0c3b3a3), EX(t_a3c2b2a2)),
IHI32x4(EX(t_a2c1b1a1), EX(t_a1c0b0a0))));
assign(p2, ILO32x4(ROR(EX(t_a0c3b3a3),1*4), ROR(EX(t_a3c2b2a2),1*4)));
// Then deinterleave at 64x2 granularity.
math_DEINTERLEAVE3_128(u0, u1, u2, 3, p0, p1, p2);
return;
}
if (laneSzBlg2 == 1) {
// 16x8
// u2 == C7 C6 C5 C4 C3 C2 C1 C0
// u1 == B7 B6 B5 B4 B3 B2 B1 B0
// u0 == A7 A6 A5 A4 A3 A2 A1 A0
//
// i2 == C7 B7 A7 C6 B6 A6 C5 B5
// i1 == A5 C4 B4 A4 C4 B3 A3 C2
// i0 == B2 A2 C1 B1 A1 C0 B0 A0
//
// p2 == C7 C6 B7 B6 A7 A6 C5 C4
// p1 == B5 B4 A5 A4 C3 C2 B3 B2
// p0 == A3 A2 C1 C0 B1 B0 A1 A0
IRTemp s0, s1, s2, s3, t0, t1, t2, t3, p0, p1, p2, c00111111;
s0 = s1 = s2 = s3
= t0 = t1 = t2 = t3 = p0 = p1 = p2 = c00111111 = IRTemp_INVALID;
newTempsV128_4(&s0, &s1, &s2, &s3);
newTempsV128_4(&t0, &t1, &t2, &t3);
newTempsV128_4(&p0, &p1, &p2, &c00111111);
// s0 == b2a2 c1b1a1 c0b0a0
// s1 == b4a4 c3b3c3 c2b2a2
// s2 == b6a6 c5b5a5 c4b4a4
// s3 == b0a0 c7b7a7 c6b6a6
assign(s0, EX(i0));
assign(s1, SL(EX(i1),EX(i0),6*2));
assign(s2, SL(EX(i2),EX(i1),4*2));
assign(s3, SL(EX(i0),EX(i2),2*2));
// t0 == 0 0 c1c0 b1b0 a1a0
// t1 == 0 0 c3c2 b3b2 a3a2
// t2 == 0 0 c5c4 b5b4 a5a4
// t3 == 0 0 c7c6 b7b6 a7a6
assign(c00111111, mkV128(0x0FFF));
assign(t0, AND( ILO16x8( ROR(EX(s0),3*2), EX(s0)), EX(c00111111)));
assign(t1, AND( ILO16x8( ROR(EX(s1),3*2), EX(s1)), EX(c00111111)));
assign(t2, AND( ILO16x8( ROR(EX(s2),3*2), EX(s2)), EX(c00111111)));
assign(t3, AND( ILO16x8( ROR(EX(s3),3*2), EX(s3)), EX(c00111111)));
assign(p0, OR2(EX(t0), SHL(EX(t1),6*2)));
assign(p1, OR2(SHL(EX(t2),4*2), SHR(EX(t1),2*2)));
assign(p2, OR2(SHL(EX(t3),2*2), SHR(EX(t2),4*2)));
// Then deinterleave at 32x4 granularity.
math_DEINTERLEAVE3_128(u0, u1, u2, 2, p0, p1, p2);
return;
}
if (laneSzBlg2 == 0) {
// 8x16. This is the same scheme as for 16x8, with twice the
// number of intermediate values.
//
// u2 == C{f..0}
// u1 == B{f..0}
// u0 == A{f..0}
//
// i2 == CBA{f} CBA{e} CBA{d} CBA{c} CBA{b} C{a}
// i1 == BA{a} CBA{9} CBA{8} CBA{7} CBA{6} CB{5}
// i0 == A{5} CBA{4} CBA{3} CBA{2} CBA{1} CBA{0}
//
// p2 == C{fe} B{fe} A{fe} C{dc} B{dc} A{dc} C{ba} B{ba}
// p1 == A{ba} C{98} B{98} A{98} C{76} B{76} A{76} C{54}
// p0 == B{54} A{54} C{32} B{32} A{32} C{10} B{10} A{10}
//
IRTemp s0, s1, s2, s3, s4, s5, s6, s7,
t0, t1, t2, t3, t4, t5, t6, t7, p0, p1, p2, cMASK;
s0 = s1 = s2 = s3 = s4 = s5 = s6 = s7
= t0 = t1 = t2 = t3 = t4 = t5 = t6 = t7 = p0 = p1 = p2 = cMASK
= IRTemp_INVALID;
newTempsV128_4(&s0, &s1, &s2, &s3);
newTempsV128_4(&s4, &s5, &s6, &s7);
newTempsV128_4(&t0, &t1, &t2, &t3);
newTempsV128_4(&t4, &t5, &t6, &t7);
newTempsV128_4(&p0, &p1, &p2, &cMASK);
// s0 == A{5} CBA{4} CBA{3} CBA{2} CBA{1} CBA{0}
// s1 == A{7} CBA{6} CBA{5} CBA{4} CBA{3} CBA{2}
// s2 == A{9} CBA{8} CBA{7} CBA{6} CBA{5} CBA{4}
// s3 == A{b} CBA{a} CBA{9} CBA{8} CBA{7} CBA{6}
// s4 == A{d} CBA{c} CBA{b} CBA{a} CBA{9} CBA{8}
// s5 == A{f} CBA{e} CBA{d} CBA{c} CBA{b} CBA{a}
// s6 == A{1} CBA{0} CBA{f} CBA{e} CBA{d} CBA{c}
// s7 == A{3} CBA{2} CBA{1} CBA{0} CBA{f} CBA{e}
assign(s0, SL(EX(i1),EX(i0), 0));
assign(s1, SL(EX(i1),EX(i0), 6));
assign(s2, SL(EX(i1),EX(i0),12));
assign(s3, SL(EX(i2),EX(i1), 2));
assign(s4, SL(EX(i2),EX(i1), 8));
assign(s5, SL(EX(i2),EX(i1),14));
assign(s6, SL(EX(i0),EX(i2), 4));
assign(s7, SL(EX(i0),EX(i2),10));
// t0 == 0--(ten)--0 C1 C0 B1 B0 A1 A0
// t1 == 0--(ten)--0 C3 C2 B3 B2 A3 A2
// t2 == 0--(ten)--0 C5 C4 B5 B4 A5 A4
// t3 == 0--(ten)--0 C7 C6 B7 B6 A7 A6
// t4 == 0--(ten)--0 C9 C8 B9 B8 A9 A8
// t5 == 0--(ten)--0 Cb Ca Bb Ba Ab Aa
// t6 == 0--(ten)--0 Cd Cc Bd Bc Ad Ac
// t7 == 0--(ten)--0 Cf Ce Bf Be Af Ae
assign(cMASK, mkV128(0x003F));
assign(t0, AND( ILO8x16( ROR(EX(s0),3), EX(s0)), EX(cMASK)));
assign(t1, AND( ILO8x16( ROR(EX(s1),3), EX(s1)), EX(cMASK)));
assign(t2, AND( ILO8x16( ROR(EX(s2),3), EX(s2)), EX(cMASK)));
assign(t3, AND( ILO8x16( ROR(EX(s3),3), EX(s3)), EX(cMASK)));
assign(t4, AND( ILO8x16( ROR(EX(s4),3), EX(s4)), EX(cMASK)));
assign(t5, AND( ILO8x16( ROR(EX(s5),3), EX(s5)), EX(cMASK)));
assign(t6, AND( ILO8x16( ROR(EX(s6),3), EX(s6)), EX(cMASK)));
assign(t7, AND( ILO8x16( ROR(EX(s7),3), EX(s7)), EX(cMASK)));
assign(p0, OR3( SHL(EX(t2),12), SHL(EX(t1),6), EX(t0) ));
assign(p1, OR4( SHL(EX(t5),14), SHL(EX(t4),8),
SHL(EX(t3),2), SHR(EX(t2),4) ));
assign(p2, OR3( SHL(EX(t7),10), SHL(EX(t6),4), SHR(EX(t5),2) ));
// Then deinterleave at 16x8 granularity.
math_DEINTERLEAVE3_128(u0, u1, u2, 1, p0, p1, p2);
return;
}
/*NOTREACHED*/
vassert(0);
}
/* Do deinterleaving for 4 128 bit vectors, for LD4 insns. */
static
void math_DEINTERLEAVE4_128(
/*OUTx4*/ IRTemp* u0, IRTemp* u1, IRTemp* u2, IRTemp* u3,
UInt laneSzBlg2,
IRTemp i0, IRTemp i1, IRTemp i2, IRTemp i3 )
{
if (laneSzBlg2 == 3) {
// 64x2
assign(*u0, ILO64x2(EX(i2), EX(i0)));
assign(*u1, IHI64x2(EX(i2), EX(i0)));
assign(*u2, ILO64x2(EX(i3), EX(i1)));
assign(*u3, IHI64x2(EX(i3), EX(i1)));
return;
}
if (laneSzBlg2 == 2) {
// 32x4
IRTemp p0 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p3 = newTempV128();
assign(p0, ILO32x4(EX(i1), EX(i0)));
assign(p1, IHI32x4(EX(i1), EX(i0)));
assign(p2, ILO32x4(EX(i3), EX(i2)));
assign(p3, IHI32x4(EX(i3), EX(i2)));
// And now do what we did for the 64-bit case.
math_DEINTERLEAVE4_128(u0, u1, u2, u3, 3, p0, p1, p2, p3);
return;
}
if (laneSzBlg2 == 1) {
// 16x8
// Deinterleave into 32-bit chunks, then do as the 32-bit case.
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp p3 = newTempV128();
assign(p0, IHI16x8(EX(i0), SHL(EX(i0), 8)));
assign(p1, IHI16x8(EX(i1), SHL(EX(i1), 8)));
assign(p2, IHI16x8(EX(i2), SHL(EX(i2), 8)));
assign(p3, IHI16x8(EX(i3), SHL(EX(i3), 8)));
// From here on is like the 32 bit case.
math_DEINTERLEAVE4_128(u0, u1, u2, u3, 2, p0, p1, p2, p3);
return;
}
if (laneSzBlg2 == 0) {
// 8x16
// Deinterleave into 16-bit chunks, then do as the 16-bit case.
IRTemp p0 = newTempV128();
IRTemp p1 = newTempV128();
IRTemp p2 = newTempV128();
IRTemp p3 = newTempV128();
assign(p0, IHI64x2( IHI8x16(EX(i0),ROL(EX(i0),4)),
ILO8x16(EX(i0),ROL(EX(i0),4)) ));
assign(p1, IHI64x2( IHI8x16(EX(i1),ROL(EX(i1),4)),
ILO8x16(EX(i1),ROL(EX(i1),4)) ));
assign(p2, IHI64x2( IHI8x16(EX(i2),ROL(EX(i2),4)),
ILO8x16(EX(i2),ROL(EX(i2),4)) ));
assign(p3, IHI64x2( IHI8x16(EX(i3),ROL(EX(i3),4)),
ILO8x16(EX(i3),ROL(EX(i3),4)) ));
// From here on is like the 16 bit case.
math_DEINTERLEAVE4_128(u0, u1, u2, u3, 1, p0, p1, p2, p3);
return;
}
/*NOTREACHED*/
vassert(0);
}
/* Wrappers that use the full-width (de)interleavers to do half-width
(de)interleaving. The scheme is to clone each input lane in the
lower half of each incoming value, do a full width (de)interleave
at the next lane size up, and remove every other lane of the the
result. The returned values may have any old junk in the upper
64 bits -- the caller must ignore that. */
/* Helper function -- get doubling and narrowing operations. */
static
void math_get_doubler_and_halver ( /*OUT*/IROp* doubler,
/*OUT*/IROp* halver,
UInt laneSzBlg2 )
{
switch (laneSzBlg2) {
case 2:
*doubler = Iop_InterleaveLO32x4; *halver = Iop_CatEvenLanes32x4;
break;
case 1:
*doubler = Iop_InterleaveLO16x8; *halver = Iop_CatEvenLanes16x8;
break;
case 0:
*doubler = Iop_InterleaveLO8x16; *halver = Iop_CatEvenLanes8x16;
break;
default:
vassert(0);
}
}
/* Do interleaving for 1 64 bit vector, for ST1 insns. */
static
void math_INTERLEAVE1_64( /*OUTx1*/ IRTemp* i0,
UInt laneSzBlg2, IRTemp u0 )
{
assign(*i0, mkexpr(u0));
}
/* Do interleaving for 2 64 bit vectors, for ST2 insns. */
static
void math_INTERLEAVE2_64( /*OUTx2*/ IRTemp* i0, IRTemp* i1,
UInt laneSzBlg2, IRTemp u0, IRTemp u1 )
{
if (laneSzBlg2 == 3) {
// 1x64, degenerate case
assign(*i0, EX(u0));
assign(*i1, EX(u1));
return;
}
vassert(laneSzBlg2 >= 0 && laneSzBlg2 <= 2);
IROp doubler = Iop_INVALID, halver = Iop_INVALID;
math_get_doubler_and_halver(&doubler, &halver, laneSzBlg2);
IRTemp du0 = newTempV128();
IRTemp du1 = newTempV128();
assign(du0, binop(doubler, EX(u0), EX(u0)));
assign(du1, binop(doubler, EX(u1), EX(u1)));
IRTemp di0 = newTempV128();
IRTemp di1 = newTempV128();
math_INTERLEAVE2_128(&di0, &di1, laneSzBlg2 + 1, du0, du1);
assign(*i0, binop(halver, EX(di0), EX(di0)));
assign(*i1, binop(halver, EX(di1), EX(di1)));
}
/* Do interleaving for 3 64 bit vectors, for ST3 insns. */
static
void math_INTERLEAVE3_64(
/*OUTx3*/ IRTemp* i0, IRTemp* i1, IRTemp* i2,
UInt laneSzBlg2,
IRTemp u0, IRTemp u1, IRTemp u2 )
{
if (laneSzBlg2 == 3) {
// 1x64, degenerate case
assign(*i0, EX(u0));
assign(*i1, EX(u1));
assign(*i2, EX(u2));
return;
}
vassert(laneSzBlg2 >= 0 && laneSzBlg2 <= 2);
IROp doubler = Iop_INVALID, halver = Iop_INVALID;
math_get_doubler_and_halver(&doubler, &halver, laneSzBlg2);
IRTemp du0 = newTempV128();
IRTemp du1 = newTempV128();
IRTemp du2 = newTempV128();
assign(du0, binop(doubler, EX(u0), EX(u0)));
assign(du1, binop(doubler, EX(u1), EX(u1)));
assign(du2, binop(doubler, EX(u2), EX(u2)));
IRTemp di0 = newTempV128();
IRTemp di1 = newTempV128();
IRTemp di2 = newTempV128();
math_INTERLEAVE3_128(&di0, &di1, &di2, laneSzBlg2 + 1, du0, du1, du2);
assign(*i0, binop(halver, EX(di0), EX(di0)));
assign(*i1, binop(halver, EX(di1), EX(di1)));
assign(*i2, binop(halver, EX(di2), EX(di2)));
}
/* Do interleaving for 4 64 bit vectors, for ST4 insns. */
static
void math_INTERLEAVE4_64(
/*OUTx4*/ IRTemp* i0, IRTemp* i1, IRTemp* i2, IRTemp* i3,
UInt laneSzBlg2,
IRTemp u0, IRTemp u1, IRTemp u2, IRTemp u3 )
{
if (laneSzBlg2 == 3) {
// 1x64, degenerate case
assign(*i0, EX(u0));
assign(*i1, EX(u1));
assign(*i2, EX(u2));
assign(*i3, EX(u3));
return;
}
vassert(laneSzBlg2 >= 0 && laneSzBlg2 <= 2);
IROp doubler = Iop_INVALID, halver = Iop_INVALID;
math_get_doubler_and_halver(&doubler, &halver, laneSzBlg2);
IRTemp du0 = newTempV128();
IRTemp du1 = newTempV128();
IRTemp du2 = newTempV128();
IRTemp du3 = newTempV128();
assign(du0, binop(doubler, EX(u0), EX(u0)));
assign(du1, binop(doubler, EX(u1), EX(u1)));
assign(du2, binop(doubler, EX(u2), EX(u2)));
assign(du3, binop(doubler, EX(u3), EX(u3)));
IRTemp di0 = newTempV128();
IRTemp di1 = newTempV128();
IRTemp di2 = newTempV128();
IRTemp di3 = newTempV128();
math_INTERLEAVE4_128(&di0, &di1, &di2, &di3,
laneSzBlg2 + 1, du0, du1, du2, du3);
assign(*i0, binop(halver, EX(di0), EX(di0)));
assign(*i1, binop(halver, EX(di1), EX(di1)));
assign(*i2, binop(halver, EX(di2), EX(di2)));
assign(*i3, binop(halver, EX(di3), EX(di3)));
}
/* Do deinterleaving for 1 64 bit vector, for LD1 insns. */
static
void math_DEINTERLEAVE1_64( /*OUTx1*/ IRTemp* u0,
UInt laneSzBlg2, IRTemp i0 )
{
assign(*u0, mkexpr(i0));
}
/* Do deinterleaving for 2 64 bit vectors, for LD2 insns. */
static
void math_DEINTERLEAVE2_64( /*OUTx2*/ IRTemp* u0, IRTemp* u1,
UInt laneSzBlg2, IRTemp i0, IRTemp i1 )
{
if (laneSzBlg2 == 3) {
// 1x64, degenerate case
assign(*u0, EX(i0));
assign(*u1, EX(i1));
return;
}
vassert(laneSzBlg2 >= 0 && laneSzBlg2 <= 2);
IROp doubler = Iop_INVALID, halver = Iop_INVALID;
math_get_doubler_and_halver(&doubler, &halver, laneSzBlg2);
IRTemp di0 = newTempV128();
IRTemp di1 = newTempV128();
assign(di0, binop(doubler, EX(i0), EX(i0)));
assign(di1, binop(doubler, EX(i1), EX(i1)));
IRTemp du0 = newTempV128();
IRTemp du1 = newTempV128();
math_DEINTERLEAVE2_128(&du0, &du1, laneSzBlg2 + 1, di0, di1);
assign(*u0, binop(halver, EX(du0), EX(du0)));
assign(*u1, binop(halver, EX(du1), EX(du1)));
}
/* Do deinterleaving for 3 64 bit vectors, for LD3 insns. */
static
void math_DEINTERLEAVE3_64(
/*OUTx3*/ IRTemp* u0, IRTemp* u1, IRTemp* u2,
UInt laneSzBlg2,
IRTemp i0, IRTemp i1, IRTemp i2 )
{
if (laneSzBlg2 == 3) {
// 1x64, degenerate case
assign(*u0, EX(i0));
assign(*u1, EX(i1));
assign(*u2, EX(i2));
return;
}
vassert(laneSzBlg2 >= 0 && laneSzBlg2 <= 2);
IROp doubler = Iop_INVALID, halver = Iop_INVALID;
math_get_doubler_and_halver(&doubler, &halver, laneSzBlg2);
IRTemp di0 = newTempV128();
IRTemp di1 = newTempV128();
IRTemp di2 = newTempV128();
assign(di0, binop(doubler, EX(i0), EX(i0)));
assign(di1, binop(doubler, EX(i1), EX(i1)));
assign(di2, binop(doubler, EX(i2), EX(i2)));
IRTemp du0 = newTempV128();
IRTemp du1 = newTempV128();
IRTemp du2 = newTempV128();
math_DEINTERLEAVE3_128(&du0, &du1, &du2, laneSzBlg2 + 1, di0, di1, di2);
assign(*u0, binop(halver, EX(du0), EX(du0)));
assign(*u1, binop(halver, EX(du1), EX(du1)));
assign(*u2, binop(halver, EX(du2), EX(du2)));
}
/* Do deinterleaving for 4 64 bit vectors, for LD4 insns. */
static
void math_DEINTERLEAVE4_64(
/*OUTx4*/ IRTemp* u0, IRTemp* u1, IRTemp* u2, IRTemp* u3,
UInt laneSzBlg2,
IRTemp i0, IRTemp i1, IRTemp i2, IRTemp i3 )
{
if (laneSzBlg2 == 3) {
// 1x64, degenerate case
assign(*u0, EX(i0));
assign(*u1, EX(i1));
assign(*u2, EX(i2));
assign(*u3, EX(i3));
return;
}
vassert(laneSzBlg2 >= 0 && laneSzBlg2 <= 2);
IROp doubler = Iop_INVALID, halver = Iop_INVALID;
math_get_doubler_and_halver(&doubler, &halver, laneSzBlg2);
IRTemp di0 = newTempV128();
IRTemp di1 = newTempV128();
IRTemp di2 = newTempV128();
IRTemp di3 = newTempV128();
assign(di0, binop(doubler, EX(i0), EX(i0)));
assign(di1, binop(doubler, EX(i1), EX(i1)));
assign(di2, binop(doubler, EX(i2), EX(i2)));
assign(di3, binop(doubler, EX(i3), EX(i3)));
IRTemp du0 = newTempV128();
IRTemp du1 = newTempV128();
IRTemp du2 = newTempV128();
IRTemp du3 = newTempV128();
math_DEINTERLEAVE4_128(&du0, &du1, &du2, &du3,
laneSzBlg2 + 1, di0, di1, di2, di3);
assign(*u0, binop(halver, EX(du0), EX(du0)));
assign(*u1, binop(halver, EX(du1), EX(du1)));
assign(*u2, binop(halver, EX(du2), EX(du2)));
assign(*u3, binop(halver, EX(du3), EX(du3)));
}
#undef EX
#undef SL
#undef ROR
#undef ROL
#undef SHR
#undef SHL
#undef ILO64x2
#undef IHI64x2
#undef ILO32x4
#undef IHI32x4
#undef ILO16x8
#undef IHI16x8
#undef ILO16x8
#undef IHI16x8
#undef CEV32x4
#undef COD32x4
#undef COD16x8
#undef COD8x16
#undef CEV8x16
#undef AND
#undef OR2
#undef OR3
#undef OR4
/*------------------------------------------------------------*/
/*--- Load and Store instructions ---*/
/*------------------------------------------------------------*/
/* Generate the EA for a "reg + reg" style amode. This is done from
parts of the insn, but for sanity checking sake it takes the whole
insn. This appears to depend on insn[15:12], with opt=insn[15:13]
and S=insn[12]:
The possible forms, along with their opt:S values, are:
011:0 Xn|SP + Xm
111:0 Xn|SP + Xm
011:1 Xn|SP + Xm * transfer_szB
111:1 Xn|SP + Xm * transfer_szB
010:0 Xn|SP + 32Uto64(Wm)
010:1 Xn|SP + 32Uto64(Wm) * transfer_szB
110:0 Xn|SP + 32Sto64(Wm)
110:1 Xn|SP + 32Sto64(Wm) * transfer_szB
Rm is insn[20:16]. Rn is insn[9:5]. Rt is insn[4:0]. Log2 of
the transfer size is insn[23,31,30]. For integer loads/stores,
insn[23] is zero, hence szLg2 can be at most 3 in such cases.
If the decoding fails, it returns IRTemp_INVALID.
isInt is True iff this is decoding is for transfers to/from integer
registers. If False it is for transfers to/from vector registers.
*/
static IRTemp gen_indexed_EA ( /*OUT*/HChar* buf, UInt insn, Bool isInt )
{
UInt optS = SLICE_UInt(insn, 15, 12);
UInt mm = SLICE_UInt(insn, 20, 16);
UInt nn = SLICE_UInt(insn, 9, 5);
UInt szLg2 = (isInt ? 0 : (SLICE_UInt(insn, 23, 23) << 2))
| SLICE_UInt(insn, 31, 30); // Log2 of the size
buf[0] = 0;
/* Sanity checks, that this really is a load/store insn. */
if (SLICE_UInt(insn, 11, 10) != BITS2(1,0))
goto fail;
if (isInt
&& SLICE_UInt(insn, 29, 21) != BITS9(1,1,1,0,0,0,0,1,1)/*LDR*/
&& SLICE_UInt(insn, 29, 21) != BITS9(1,1,1,0,0,0,0,0,1)/*STR*/
&& SLICE_UInt(insn, 29, 21) != BITS9(1,1,1,0,0,0,1,0,1)/*LDRSbhw Xt*/
&& SLICE_UInt(insn, 29, 21) != BITS9(1,1,1,0,0,0,1,1,1))/*LDRSbhw Wt*/
goto fail;
if (!isInt
&& SLICE_UInt(insn, 29, 24) != BITS6(1,1,1,1,0,0)) /*LDR/STR*/
goto fail;
/* Throw out non-verified but possibly valid cases. */
switch (szLg2) {
case BITS3(0,0,0): break; // 8 bit, valid for both int and vec
case BITS3(0,0,1): break; // 16 bit, valid for both int and vec
case BITS3(0,1,0): break; // 32 bit, valid for both int and vec
case BITS3(0,1,1): break; // 64 bit, valid for both int and vec
case BITS3(1,0,0): // can only ever be valid for the vector case
if (isInt) goto fail; else break;
case BITS3(1,0,1): // these sizes are never valid
case BITS3(1,1,0):
case BITS3(1,1,1): goto fail;
default: vassert(0);
}
IRExpr* rhs = NULL;
switch (optS) {
case BITS4(1,1,1,0): goto fail; //ATC
case BITS4(0,1,1,0):
rhs = getIReg64orZR(mm);
vex_sprintf(buf, "[%s, %s]",
nameIReg64orZR(nn), nameIReg64orZR(mm));
break;
case BITS4(1,1,1,1): goto fail; //ATC
case BITS4(0,1,1,1):
rhs = binop(Iop_Shl64, getIReg64orZR(mm), mkU8(szLg2));
vex_sprintf(buf, "[%s, %s lsl %u]",
nameIReg64orZR(nn), nameIReg64orZR(mm), szLg2);
break;
case BITS4(0,1,0,0):
rhs = unop(Iop_32Uto64, getIReg32orZR(mm));
vex_sprintf(buf, "[%s, %s uxtx]",
nameIReg64orZR(nn), nameIReg32orZR(mm));
break;
case BITS4(0,1,0,1):
rhs = binop(Iop_Shl64,
unop(Iop_32Uto64, getIReg32orZR(mm)), mkU8(szLg2));
vex_sprintf(buf, "[%s, %s uxtx, lsl %u]",
nameIReg64orZR(nn), nameIReg32orZR(mm), szLg2);
break;
case BITS4(1,1,0,0):
rhs = unop(Iop_32Sto64, getIReg32orZR(mm));
vex_sprintf(buf, "[%s, %s sxtx]",
nameIReg64orZR(nn), nameIReg32orZR(mm));
break;
case BITS4(1,1,0,1):
rhs = binop(Iop_Shl64,
unop(Iop_32Sto64, getIReg32orZR(mm)), mkU8(szLg2));
vex_sprintf(buf, "[%s, %s sxtx, lsl %u]",
nameIReg64orZR(nn), nameIReg32orZR(mm), szLg2);
break;
default:
/* The rest appear to be genuinely invalid */
goto fail;
}
vassert(rhs);
IRTemp res = newTemp(Ity_I64);
assign(res, binop(Iop_Add64, getIReg64orSP(nn), rhs));
return res;
fail:
vex_printf("gen_indexed_EA: unhandled case optS == 0x%x\n", optS);
return IRTemp_INVALID;
}
/* Generate an 8/16/32/64 bit integer store to ADDR for the lowest
bits of DATAE :: Ity_I64. */
static void gen_narrowing_store ( UInt szB, IRTemp addr, IRExpr* dataE )
{
IRExpr* addrE = mkexpr(addr);
switch (szB) {
case 8:
storeLE(addrE, dataE);
break;
case 4:
storeLE(addrE, unop(Iop_64to32, dataE));
break;
case 2:
storeLE(addrE, unop(Iop_64to16, dataE));
break;
case 1:
storeLE(addrE, unop(Iop_64to8, dataE));
break;
default:
vassert(0);
}
}
/* Generate an 8/16/32/64 bit unsigned widening load from ADDR,
placing the result in an Ity_I64 temporary. */
static IRTemp gen_zwidening_load ( UInt szB, IRTemp addr )
{
IRTemp res = newTemp(Ity_I64);
IRExpr* addrE = mkexpr(addr);
switch (szB) {
case 8:
assign(res, loadLE(Ity_I64,addrE));
break;
case 4:
assign(res, unop(Iop_32Uto64, loadLE(Ity_I32,addrE)));
break;
case 2:
assign(res, unop(Iop_16Uto64, loadLE(Ity_I16,addrE)));
break;
case 1:
assign(res, unop(Iop_8Uto64, loadLE(Ity_I8,addrE)));
break;
default:
vassert(0);
}
return res;
}
/* Generate a "standard 7" name, from bitQ and size. But also
allow ".1d" since that's occasionally useful. */
static
const HChar* nameArr_Q_SZ ( UInt bitQ, UInt size )
{
vassert(bitQ <= 1 && size <= 3);
const HChar* nms[8]
= { "8b", "4h", "2s", "1d", "16b", "8h", "4s", "2d" };
UInt ix = (bitQ << 2) | size;
vassert(ix < 8);
return nms[ix];
}
static
Bool dis_ARM64_load_store(/*MB_OUT*/DisResult* dres, UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
/* ------------ LDR,STR (immediate, uimm12) ----------- */
/* uimm12 is scaled by the transfer size
31 29 26 21 9 4
| | | | | |
11 111 00100 imm12 nn tt STR Xt, [Xn|SP, #imm12 * 8]
11 111 00101 imm12 nn tt LDR Xt, [Xn|SP, #imm12 * 8]
10 111 00100 imm12 nn tt STR Wt, [Xn|SP, #imm12 * 4]
10 111 00101 imm12 nn tt LDR Wt, [Xn|SP, #imm12 * 4]
01 111 00100 imm12 nn tt STRH Wt, [Xn|SP, #imm12 * 2]
01 111 00101 imm12 nn tt LDRH Wt, [Xn|SP, #imm12 * 2]
00 111 00100 imm12 nn tt STRB Wt, [Xn|SP, #imm12 * 1]
00 111 00101 imm12 nn tt LDRB Wt, [Xn|SP, #imm12 * 1]
*/
if (INSN(29,23) == BITS7(1,1,1,0,0,1,0)) {
UInt szLg2 = INSN(31,30);
UInt szB = 1 << szLg2;
Bool isLD = INSN(22,22) == 1;
UInt offs = INSN(21,10) * szB;
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
IRTemp ta = newTemp(Ity_I64);
assign(ta, binop(Iop_Add64, getIReg64orSP(nn), mkU64(offs)));
if (nn == 31) { /* FIXME generate stack alignment check */ }
vassert(szLg2 < 4);
if (isLD) {
putIReg64orZR(tt, mkexpr(gen_zwidening_load(szB, ta)));
} else {
gen_narrowing_store(szB, ta, getIReg64orZR(tt));
}
const HChar* ld_name[4] = { "ldrb", "ldrh", "ldr", "ldr" };
const HChar* st_name[4] = { "strb", "strh", "str", "str" };
DIP("%s %s, [%s, #%u]\n",
(isLD ? ld_name : st_name)[szLg2], nameIRegOrZR(szB == 8, tt),
nameIReg64orSP(nn), offs);
return True;
}
/* ------------ LDUR,STUR (immediate, simm9) ----------- */
/*
31 29 26 20 11 9 4
| | | | | | |
(at-Rn-then-Rn=EA) | | |
sz 111 00000 0 imm9 01 Rn Rt STR Rt, [Xn|SP], #simm9
sz 111 00001 0 imm9 01 Rn Rt LDR Rt, [Xn|SP], #simm9
(at-EA-then-Rn=EA)
sz 111 00000 0 imm9 11 Rn Rt STR Rt, [Xn|SP, #simm9]!
sz 111 00001 0 imm9 11 Rn Rt LDR Rt, [Xn|SP, #simm9]!
(at-EA)
sz 111 00000 0 imm9 00 Rn Rt STR Rt, [Xn|SP, #simm9]
sz 111 00001 0 imm9 00 Rn Rt LDR Rt, [Xn|SP, #simm9]
simm9 is unscaled.
The case 'wback && Rn == Rt && Rt != 31' is disallowed. In the
load case this is because would create two competing values for
Rt. In the store case the reason is unclear, but the spec
disallows it anyway.
Stores are narrowing, loads are unsigned widening. sz encodes
the transfer size in the normal way: 00=1, 01=2, 10=4, 11=8.
*/
if ((INSN(29,21) & BITS9(1,1,1, 1,1,1,1,0, 1))
== BITS9(1,1,1, 0,0,0,0,0, 0)) {
UInt szLg2 = INSN(31,30);
UInt szB = 1 << szLg2;
Bool isLoad = INSN(22,22) == 1;
UInt imm9 = INSN(20,12);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
Bool wBack = INSN(10,10) == 1;
UInt how = INSN(11,10);
if (how == BITS2(1,0) || (wBack && nn == tt && tt != 31)) {
/* undecodable; fall through */
} else {
if (nn == 31) { /* FIXME generate stack alignment check */ }
// Compute the transfer address TA and the writeback address WA.
IRTemp tRN = newTemp(Ity_I64);
assign(tRN, getIReg64orSP(nn));
IRTemp tEA = newTemp(Ity_I64);
Long simm9 = (Long)sx_to_64(imm9, 9);
assign(tEA, binop(Iop_Add64, mkexpr(tRN), mkU64(simm9)));
IRTemp tTA = newTemp(Ity_I64);
IRTemp tWA = newTemp(Ity_I64);
switch (how) {
case BITS2(0,1):
assign(tTA, mkexpr(tRN)); assign(tWA, mkexpr(tEA)); break;
case BITS2(1,1):
assign(tTA, mkexpr(tEA)); assign(tWA, mkexpr(tEA)); break;
case BITS2(0,0):
assign(tTA, mkexpr(tEA)); /* tWA is unused */ break;
default:
vassert(0); /* NOTREACHED */
}
/* Normally rN would be updated after the transfer. However, in
the special case typifed by
str x30, [sp,#-16]!
it is necessary to update SP before the transfer, (1)
because Memcheck will otherwise complain about a write
below the stack pointer, and (2) because the segfault
stack extension mechanism will otherwise extend the stack
only down to SP before the instruction, which might not be
far enough, if the -16 bit takes the actual access
address to the next page.
*/
Bool earlyWBack
= wBack && simm9 < 0 && szB == 8
&& how == BITS2(1,1) && nn == 31 && !isLoad && tt != nn;
if (wBack && earlyWBack)
putIReg64orSP(nn, mkexpr(tEA));
if (isLoad) {
putIReg64orZR(tt, mkexpr(gen_zwidening_load(szB, tTA)));
} else {
gen_narrowing_store(szB, tTA, getIReg64orZR(tt));
}
if (wBack && !earlyWBack)
putIReg64orSP(nn, mkexpr(tEA));
const HChar* ld_name[4] = { "ldurb", "ldurh", "ldur", "ldur" };
const HChar* st_name[4] = { "sturb", "sturh", "stur", "stur" };
const HChar* fmt_str = NULL;
switch (how) {
case BITS2(0,1):
fmt_str = "%s %s, [%s], #%lld (at-Rn-then-Rn=EA)\n";
break;
case BITS2(1,1):
fmt_str = "%s %s, [%s, #%lld]! (at-EA-then-Rn=EA)\n";
break;
case BITS2(0,0):
fmt_str = "%s %s, [%s, #%lld] (at-Rn)\n";
break;
default:
vassert(0);
}
DIP(fmt_str, (isLoad ? ld_name : st_name)[szLg2],
nameIRegOrZR(szB == 8, tt),
nameIReg64orSP(nn), simm9);
return True;
}
}
/* -------- LDP,STP (immediate, simm7) (INT REGS) -------- */
/* L==1 => mm==LD
L==0 => mm==ST
x==0 => 32 bit transfers, and zero extended loads
x==1 => 64 bit transfers
simm7 is scaled by the (single-register) transfer size
(at-Rn-then-Rn=EA)
x0 101 0001 L imm7 Rt2 Rn Rt1 mmP Rt1,Rt2, [Xn|SP], #imm
(at-EA-then-Rn=EA)
x0 101 0011 L imm7 Rt2 Rn Rt1 mmP Rt1,Rt2, [Xn|SP, #imm]!
(at-EA)
x0 101 0010 L imm7 Rt2 Rn Rt1 mmP Rt1,Rt2, [Xn|SP, #imm]
*/
UInt insn_30_23 = INSN(30,23);
if (insn_30_23 == BITS8(0,1,0,1,0,0,0,1)
|| insn_30_23 == BITS8(0,1,0,1,0,0,1,1)
|| insn_30_23 == BITS8(0,1,0,1,0,0,1,0)) {
UInt bL = INSN(22,22);
UInt bX = INSN(31,31);
UInt bWBack = INSN(23,23);
UInt rT1 = INSN(4,0);
UInt rN = INSN(9,5);
UInt rT2 = INSN(14,10);
Long simm7 = (Long)sx_to_64(INSN(21,15), 7);
if ((bWBack && (rT1 == rN || rT2 == rN) && rN != 31)
|| (bL && rT1 == rT2)) {
/* undecodable; fall through */
} else {
if (rN == 31) { /* FIXME generate stack alignment check */ }
// Compute the transfer address TA and the writeback address WA.
IRTemp tRN = newTemp(Ity_I64);
assign(tRN, getIReg64orSP(rN));
IRTemp tEA = newTemp(Ity_I64);
simm7 = (bX ? 8 : 4) * simm7;
assign(tEA, binop(Iop_Add64, mkexpr(tRN), mkU64(simm7)));
IRTemp tTA = newTemp(Ity_I64);
IRTemp tWA = newTemp(Ity_I64);
switch (INSN(24,23)) {
case BITS2(0,1):
assign(tTA, mkexpr(tRN)); assign(tWA, mkexpr(tEA)); break;
case BITS2(1,1):
assign(tTA, mkexpr(tEA)); assign(tWA, mkexpr(tEA)); break;
case BITS2(1,0):
assign(tTA, mkexpr(tEA)); /* tWA is unused */ break;
default:
vassert(0); /* NOTREACHED */
}
/* Normally rN would be updated after the transfer. However, in
the special case typifed by
stp x29, x30, [sp,#-112]!
it is necessary to update SP before the transfer, (1)
because Memcheck will otherwise complain about a write
below the stack pointer, and (2) because the segfault
stack extension mechanism will otherwise extend the stack
only down to SP before the instruction, which might not be
far enough, if the -112 bit takes the actual access
address to the next page.
*/
Bool earlyWBack
= bWBack && simm7 < 0
&& INSN(24,23) == BITS2(1,1) && rN == 31 && bL == 0;
if (bWBack && earlyWBack)
putIReg64orSP(rN, mkexpr(tEA));
/**/ if (bL == 1 && bX == 1) {
// 64 bit load
putIReg64orZR(rT1, loadLE(Ity_I64,
binop(Iop_Add64,mkexpr(tTA),mkU64(0))));
putIReg64orZR(rT2, loadLE(Ity_I64,
binop(Iop_Add64,mkexpr(tTA),mkU64(8))));
} else if (bL == 1 && bX == 0) {
// 32 bit load
putIReg32orZR(rT1, loadLE(Ity_I32,
binop(Iop_Add64,mkexpr(tTA),mkU64(0))));
putIReg32orZR(rT2, loadLE(Ity_I32,
binop(Iop_Add64,mkexpr(tTA),mkU64(4))));
} else if (bL == 0 && bX == 1) {
// 64 bit store
storeLE(binop(Iop_Add64,mkexpr(tTA),mkU64(0)),
getIReg64orZR(rT1));
storeLE(binop(Iop_Add64,mkexpr(tTA),mkU64(8)),
getIReg64orZR(rT2));
} else {
vassert(bL == 0 && bX == 0);
// 32 bit store
storeLE(binop(Iop_Add64,mkexpr(tTA),mkU64(0)),
getIReg32orZR(rT1));
storeLE(binop(Iop_Add64,mkexpr(tTA),mkU64(4)),
getIReg32orZR(rT2));
}
if (bWBack && !earlyWBack)
putIReg64orSP(rN, mkexpr(tEA));
const HChar* fmt_str = NULL;
switch (INSN(24,23)) {
case BITS2(0,1):
fmt_str = "%sp %s, %s, [%s], #%lld (at-Rn-then-Rn=EA)\n";
break;
case BITS2(1,1):
fmt_str = "%sp %s, %s, [%s, #%lld]! (at-EA-then-Rn=EA)\n";
break;
case BITS2(1,0):
fmt_str = "%sp %s, %s, [%s, #%lld] (at-Rn)\n";
break;
default:
vassert(0);
}
DIP(fmt_str, bL == 0 ? "st" : "ld",
nameIRegOrZR(bX == 1, rT1),
nameIRegOrZR(bX == 1, rT2),
nameIReg64orSP(rN), simm7);
return True;
}
}
/* ---------------- LDR (literal, int reg) ---------------- */
/* 31 29 23 4
00 011 000 imm19 Rt LDR Wt, [PC + sxTo64(imm19 << 2)]
01 011 000 imm19 Rt LDR Xt, [PC + sxTo64(imm19 << 2)]
10 011 000 imm19 Rt LDRSW Xt, [PC + sxTo64(imm19 << 2)]
11 011 000 imm19 Rt prefetch [PC + sxTo64(imm19 << 2)]
Just handles the first two cases for now.
*/
if (INSN(29,24) == BITS6(0,1,1,0,0,0) && INSN(31,31) == 0) {
UInt imm19 = INSN(23,5);
UInt rT = INSN(4,0);
UInt bX = INSN(30,30);
ULong ea = guest_PC_curr_instr + sx_to_64(imm19 << 2, 21);
if (bX) {
putIReg64orZR(rT, loadLE(Ity_I64, mkU64(ea)));
} else {
putIReg32orZR(rT, loadLE(Ity_I32, mkU64(ea)));
}
DIP("ldr %s, 0x%llx (literal)\n", nameIRegOrZR(bX == 1, rT), ea);
return True;
}
/* -------------- {LD,ST}R (integer register) --------------- */
/* 31 29 20 15 12 11 9 4
| | | | | | | |
11 111000011 Rm option S 10 Rn Rt LDR Xt, [Xn|SP, R<m>{ext/sh}]
10 111000011 Rm option S 10 Rn Rt LDR Wt, [Xn|SP, R<m>{ext/sh}]
01 111000011 Rm option S 10 Rn Rt LDRH Wt, [Xn|SP, R<m>{ext/sh}]
00 111000011 Rm option S 10 Rn Rt LDRB Wt, [Xn|SP, R<m>{ext/sh}]
11 111000001 Rm option S 10 Rn Rt STR Xt, [Xn|SP, R<m>{ext/sh}]
10 111000001 Rm option S 10 Rn Rt STR Wt, [Xn|SP, R<m>{ext/sh}]
01 111000001 Rm option S 10 Rn Rt STRH Wt, [Xn|SP, R<m>{ext/sh}]
00 111000001 Rm option S 10 Rn Rt STRB Wt, [Xn|SP, R<m>{ext/sh}]
*/
if (INSN(29,23) == BITS7(1,1,1,0,0,0,0)
&& INSN(21,21) == 1 && INSN(11,10) == BITS2(1,0)) {
HChar dis_buf[64];
UInt szLg2 = INSN(31,30);
Bool isLD = INSN(22,22) == 1;
UInt tt = INSN(4,0);
IRTemp ea = gen_indexed_EA(dis_buf, insn, True/*to/from int regs*/);
if (ea != IRTemp_INVALID) {
switch (szLg2) {
case 3: /* 64 bit */
if (isLD) {
putIReg64orZR(tt, loadLE(Ity_I64, mkexpr(ea)));
DIP("ldr %s, %s\n", nameIReg64orZR(tt), dis_buf);
} else {
storeLE(mkexpr(ea), getIReg64orZR(tt));
DIP("str %s, %s\n", nameIReg64orZR(tt), dis_buf);
}
break;
case 2: /* 32 bit */
if (isLD) {
putIReg32orZR(tt, loadLE(Ity_I32, mkexpr(ea)));
DIP("ldr %s, %s\n", nameIReg32orZR(tt), dis_buf);
} else {
storeLE(mkexpr(ea), getIReg32orZR(tt));
DIP("str %s, %s\n", nameIReg32orZR(tt), dis_buf);
}
break;
case 1: /* 16 bit */
if (isLD) {
putIReg64orZR(tt, unop(Iop_16Uto64,
loadLE(Ity_I16, mkexpr(ea))));
DIP("ldruh %s, %s\n", nameIReg32orZR(tt), dis_buf);
} else {
storeLE(mkexpr(ea), unop(Iop_64to16, getIReg64orZR(tt)));
DIP("strh %s, %s\n", nameIReg32orZR(tt), dis_buf);
}
break;
case 0: /* 8 bit */
if (isLD) {
putIReg64orZR(tt, unop(Iop_8Uto64,
loadLE(Ity_I8, mkexpr(ea))));
DIP("ldrub %s, %s\n", nameIReg32orZR(tt), dis_buf);
} else {
storeLE(mkexpr(ea), unop(Iop_64to8, getIReg64orZR(tt)));
DIP("strb %s, %s\n", nameIReg32orZR(tt), dis_buf);
}
break;
default:
vassert(0);
}
return True;
}
}
/* -------------- LDRS{B,H,W} (uimm12) -------------- */
/* 31 29 26 23 21 9 4
10 111 001 10 imm12 n t LDRSW Xt, [Xn|SP, #pimm12 * 4]
01 111 001 1x imm12 n t LDRSH Rt, [Xn|SP, #pimm12 * 2]
00 111 001 1x imm12 n t LDRSB Rt, [Xn|SP, #pimm12 * 1]
where
Rt is Wt when x==1, Xt when x==0
*/
if (INSN(29,23) == BITS7(1,1,1,0,0,1,1)) {
/* Further checks on bits 31:30 and 22 */
Bool valid = False;
switch ((INSN(31,30) << 1) | INSN(22,22)) {
case BITS3(1,0,0):
case BITS3(0,1,0): case BITS3(0,1,1):
case BITS3(0,0,0): case BITS3(0,0,1):
valid = True;
break;
}
if (valid) {
UInt szLg2 = INSN(31,30);
UInt bitX = INSN(22,22);
UInt imm12 = INSN(21,10);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
UInt szB = 1 << szLg2;
IRExpr* ea = binop(Iop_Add64,
getIReg64orSP(nn), mkU64(imm12 * szB));
switch (szB) {
case 4:
vassert(bitX == 0);
putIReg64orZR(tt, unop(Iop_32Sto64, loadLE(Ity_I32, ea)));
DIP("ldrsw %s, [%s, #%u]\n", nameIReg64orZR(tt),
nameIReg64orSP(nn), imm12 * szB);
break;
case 2:
if (bitX == 1) {
putIReg32orZR(tt, unop(Iop_16Sto32, loadLE(Ity_I16, ea)));
} else {
putIReg64orZR(tt, unop(Iop_16Sto64, loadLE(Ity_I16, ea)));
}
DIP("ldrsh %s, [%s, #%u]\n",
nameIRegOrZR(bitX == 0, tt),
nameIReg64orSP(nn), imm12 * szB);
break;
case 1:
if (bitX == 1) {
putIReg32orZR(tt, unop(Iop_8Sto32, loadLE(Ity_I8, ea)));
} else {
putIReg64orZR(tt, unop(Iop_8Sto64, loadLE(Ity_I8, ea)));
}
DIP("ldrsb %s, [%s, #%u]\n",
nameIRegOrZR(bitX == 0, tt),
nameIReg64orSP(nn), imm12 * szB);
break;
default:
vassert(0);
}
return True;
}
/* else fall through */
}
/* -------------- LDRS{B,H,W} (simm9, upd) -------------- */
/* (at-Rn-then-Rn=EA)
31 29 23 21 20 11 9 4
00 111 000 1x 0 imm9 01 n t LDRSB Rt, [Xn|SP], #simm9
01 111 000 1x 0 imm9 01 n t LDRSH Rt, [Xn|SP], #simm9
10 111 000 10 0 imm9 01 n t LDRSW Xt, [Xn|SP], #simm9
(at-EA-then-Rn=EA)
00 111 000 1x 0 imm9 11 n t LDRSB Rt, [Xn|SP, #simm9]!
01 111 000 1x 0 imm9 11 n t LDRSH Rt, [Xn|SP, #simm9]!
10 111 000 10 0 imm9 11 n t LDRSW Xt, [Xn|SP, #simm9]!
where
Rt is Wt when x==1, Xt when x==0
transfer-at-Rn when [11]==0, at EA when [11]==1
*/
if (INSN(29,23) == BITS7(1,1,1,0,0,0,1)
&& INSN(21,21) == 0 && INSN(10,10) == 1) {
/* Further checks on bits 31:30 and 22 */
Bool valid = False;
switch ((INSN(31,30) << 1) | INSN(22,22)) {
case BITS3(1,0,0): // LDRSW Xt
case BITS3(0,1,0): case BITS3(0,1,1): // LDRSH Xt, Wt
case BITS3(0,0,0): case BITS3(0,0,1): // LDRSB Xt, Wt
valid = True;
break;
}
if (valid) {
UInt szLg2 = INSN(31,30);
UInt imm9 = INSN(20,12);
Bool atRN = INSN(11,11) == 0;
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
IRTemp tRN = newTemp(Ity_I64);
IRTemp tEA = newTemp(Ity_I64);
IRTemp tTA = IRTemp_INVALID;
ULong simm9 = sx_to_64(imm9, 9);
Bool is64 = INSN(22,22) == 0;
assign(tRN, getIReg64orSP(nn));
assign(tEA, binop(Iop_Add64, mkexpr(tRN), mkU64(simm9)));
tTA = atRN ? tRN : tEA;
HChar ch = '?';
/* There are 5 cases:
byte load, SX to 64
byte load, SX to 32, ZX to 64
halfword load, SX to 64
halfword load, SX to 32, ZX to 64
word load, SX to 64
The ifs below handle them in the listed order.
*/
if (szLg2 == 0) {
ch = 'b';
if (is64) {
putIReg64orZR(tt, unop(Iop_8Sto64,
loadLE(Ity_I8, mkexpr(tTA))));
} else {
putIReg32orZR(tt, unop(Iop_8Sto32,
loadLE(Ity_I8, mkexpr(tTA))));
}
}
else if (szLg2 == 1) {
ch = 'h';
if (is64) {
putIReg64orZR(tt, unop(Iop_16Sto64,
loadLE(Ity_I16, mkexpr(tTA))));
} else {
putIReg32orZR(tt, unop(Iop_16Sto32,
loadLE(Ity_I16, mkexpr(tTA))));
}
}
else if (szLg2 == 2 && is64) {
ch = 'w';
putIReg64orZR(tt, unop(Iop_32Sto64,
loadLE(Ity_I32, mkexpr(tTA))));
}
else {
vassert(0);
}
putIReg64orSP(nn, mkexpr(tEA));
DIP(atRN ? "ldrs%c %s, [%s], #%lld\n" : "ldrs%c %s, [%s, #%lld]!",
ch, nameIRegOrZR(is64, tt), nameIReg64orSP(nn), simm9);
return True;
}
/* else fall through */
}
/* -------------- LDRS{B,H,W} (simm9, noUpd) -------------- */
/* 31 29 23 21 20 11 9 4
00 111 000 1x 0 imm9 00 n t LDURSB Rt, [Xn|SP, #simm9]
01 111 000 1x 0 imm9 00 n t LDURSH Rt, [Xn|SP, #simm9]
10 111 000 10 0 imm9 00 n t LDURSW Xt, [Xn|SP, #simm9]
where
Rt is Wt when x==1, Xt when x==0
*/
if (INSN(29,23) == BITS7(1,1,1,0,0,0,1)
&& INSN(21,21) == 0 && INSN(11,10) == BITS2(0,0)) {
/* Further checks on bits 31:30 and 22 */
Bool valid = False;
switch ((INSN(31,30) << 1) | INSN(22,22)) {
case BITS3(1,0,0): // LDURSW Xt
case BITS3(0,1,0): case BITS3(0,1,1): // LDURSH Xt, Wt
case BITS3(0,0,0): case BITS3(0,0,1): // LDURSB Xt, Wt
valid = True;
break;
}
if (valid) {
UInt szLg2 = INSN(31,30);
UInt imm9 = INSN(20,12);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
IRTemp tRN = newTemp(Ity_I64);
IRTemp tEA = newTemp(Ity_I64);
ULong simm9 = sx_to_64(imm9, 9);
Bool is64 = INSN(22,22) == 0;
assign(tRN, getIReg64orSP(nn));
assign(tEA, binop(Iop_Add64, mkexpr(tRN), mkU64(simm9)));
HChar ch = '?';
/* There are 5 cases:
byte load, SX to 64
byte load, SX to 32, ZX to 64
halfword load, SX to 64
halfword load, SX to 32, ZX to 64
word load, SX to 64
The ifs below handle them in the listed order.
*/
if (szLg2 == 0) {
ch = 'b';
if (is64) {
putIReg64orZR(tt, unop(Iop_8Sto64,
loadLE(Ity_I8, mkexpr(tEA))));
} else {
putIReg32orZR(tt, unop(Iop_8Sto32,
loadLE(Ity_I8, mkexpr(tEA))));
}
}
else if (szLg2 == 1) {
ch = 'h';
if (is64) {
putIReg64orZR(tt, unop(Iop_16Sto64,
loadLE(Ity_I16, mkexpr(tEA))));
} else {
putIReg32orZR(tt, unop(Iop_16Sto32,
loadLE(Ity_I16, mkexpr(tEA))));
}
}
else if (szLg2 == 2 && is64) {
ch = 'w';
putIReg64orZR(tt, unop(Iop_32Sto64,
loadLE(Ity_I32, mkexpr(tEA))));
}
else {
vassert(0);
}
DIP("ldurs%c %s, [%s, #%lld]",
ch, nameIRegOrZR(is64, tt), nameIReg64orSP(nn), simm9);
return True;
}
/* else fall through */
}
/* -------- LDP,STP (immediate, simm7) (FP&VEC) -------- */
/* L==1 => mm==LD
L==0 => mm==ST
sz==00 => 32 bit (S) transfers
sz==01 => 64 bit (D) transfers
sz==10 => 128 bit (Q) transfers
sz==11 isn't allowed
simm7 is scaled by the (single-register) transfer size
31 29 26 22 21 14 9 4
sz 101 1000 L imm7 t2 n t1 mmNP SDQt1, SDQt2, [Xn|SP, #imm]
(at-EA, with nontemporal hint)
sz 101 1001 L imm7 t2 n t1 mmP SDQt1, SDQt2, [Xn|SP], #imm
(at-Rn-then-Rn=EA)
sz 101 1010 L imm7 t2 n t1 mmP SDQt1, SDQt2, [Xn|SP, #imm]
(at-EA)
sz 101 1011 L imm7 t2 n t1 mmP SDQt1, SDQt2, [Xn|SP, #imm]!
(at-EA-then-Rn=EA)
*/
if (INSN(29,25) == BITS5(1,0,1,1,0)) {
UInt szSlg2 = INSN(31,30); // log2 of the xfer size in 32-bit units
Bool isLD = INSN(22,22) == 1;
Bool wBack = INSN(23,23) == 1;
Long simm7 = (Long)sx_to_64(INSN(21,15), 7);
UInt tt2 = INSN(14,10);
UInt nn = INSN(9,5);
UInt tt1 = INSN(4,0);
if (szSlg2 == BITS2(1,1) || (isLD && tt1 == tt2)) {
/* undecodable; fall through */
} else {
if (nn == 31) { /* FIXME generate stack alignment check */ }
// Compute the transfer address TA and the writeback address WA.
UInt szB = 4 << szSlg2; /* szB is the per-register size */
IRTemp tRN = newTemp(Ity_I64);
assign(tRN, getIReg64orSP(nn));
IRTemp tEA = newTemp(Ity_I64);
simm7 = szB * simm7;
assign(tEA, binop(Iop_Add64, mkexpr(tRN), mkU64(simm7)));
IRTemp tTA = newTemp(Ity_I64);
IRTemp tWA = newTemp(Ity_I64);
switch (INSN(24,23)) {
case BITS2(0,1):
assign(tTA, mkexpr(tRN)); assign(tWA, mkexpr(tEA)); break;
case BITS2(1,1):
assign(tTA, mkexpr(tEA)); assign(tWA, mkexpr(tEA)); break;
case BITS2(1,0):
case BITS2(0,0):
assign(tTA, mkexpr(tEA)); /* tWA is unused */ break;
default:
vassert(0); /* NOTREACHED */
}
IRType ty = Ity_INVALID;
switch (szB) {
case 4: ty = Ity_F32; break;
case 8: ty = Ity_F64; break;
case 16: ty = Ity_V128; break;
default: vassert(0);
}
/* Normally rN would be updated after the transfer. However, in
the special cases typifed by
stp q0, q1, [sp,#-512]!
stp d0, d1, [sp,#-512]!
stp s0, s1, [sp,#-512]!
it is necessary to update SP before the transfer, (1)
because Memcheck will otherwise complain about a write
below the stack pointer, and (2) because the segfault
stack extension mechanism will otherwise extend the stack
only down to SP before the instruction, which might not be
far enough, if the -512 bit takes the actual access
address to the next page.
*/
Bool earlyWBack
= wBack && simm7 < 0
&& INSN(24,23) == BITS2(1,1) && nn == 31 && !isLD;
if (wBack && earlyWBack)
putIReg64orSP(nn, mkexpr(tEA));
if (isLD) {
if (szB < 16) {
putQReg128(tt1, mkV128(0x0000));
}
putQRegLO(tt1,
loadLE(ty, binop(Iop_Add64, mkexpr(tTA), mkU64(0))));
if (szB < 16) {
putQReg128(tt2, mkV128(0x0000));
}
putQRegLO(tt2,
loadLE(ty, binop(Iop_Add64, mkexpr(tTA), mkU64(szB))));
} else {
storeLE(binop(Iop_Add64, mkexpr(tTA), mkU64(0)),
getQRegLO(tt1, ty));
storeLE(binop(Iop_Add64, mkexpr(tTA), mkU64(szB)),
getQRegLO(tt2, ty));
}
if (wBack && !earlyWBack)
putIReg64orSP(nn, mkexpr(tEA));
const HChar* fmt_str = NULL;
switch (INSN(24,23)) {
case BITS2(0,1):
fmt_str = "%sp %s, %s, [%s], #%lld (at-Rn-then-Rn=EA)\n";
break;
case BITS2(1,1):
fmt_str = "%sp %s, %s, [%s, #%lld]! (at-EA-then-Rn=EA)\n";
break;
case BITS2(1,0):
fmt_str = "%sp %s, %s, [%s, #%lld] (at-Rn)\n";
break;
case BITS2(0,0):
fmt_str = "%snp %s, %s, [%s, #%lld] (at-Rn)\n";
break;
default:
vassert(0);
}
DIP(fmt_str, isLD ? "ld" : "st",
nameQRegLO(tt1, ty), nameQRegLO(tt2, ty),
nameIReg64orSP(nn), simm7);
return True;
}
}
/* -------------- {LD,ST}R (vector register) --------------- */
/* 31 29 23 20 15 12 11 9 4
| | | | | | | | |
00 111100 011 Rm option S 10 Rn Rt LDR Bt, [Xn|SP, R<m>{ext/sh}]
01 111100 011 Rm option S 10 Rn Rt LDR Ht, [Xn|SP, R<m>{ext/sh}]
10 111100 011 Rm option S 10 Rn Rt LDR St, [Xn|SP, R<m>{ext/sh}]
11 111100 011 Rm option S 10 Rn Rt LDR Dt, [Xn|SP, R<m>{ext/sh}]
00 111100 111 Rm option S 10 Rn Rt LDR Qt, [Xn|SP, R<m>{ext/sh}]
00 111100 001 Rm option S 10 Rn Rt STR Bt, [Xn|SP, R<m>{ext/sh}]
01 111100 001 Rm option S 10 Rn Rt STR Ht, [Xn|SP, R<m>{ext/sh}]
10 111100 001 Rm option S 10 Rn Rt STR St, [Xn|SP, R<m>{ext/sh}]
11 111100 001 Rm option S 10 Rn Rt STR Dt, [Xn|SP, R<m>{ext/sh}]
00 111100 101 Rm option S 10 Rn Rt STR Qt, [Xn|SP, R<m>{ext/sh}]
*/
if (INSN(29,24) == BITS6(1,1,1,1,0,0)
&& INSN(21,21) == 1 && INSN(11,10) == BITS2(1,0)) {
HChar dis_buf[64];
UInt szLg2 = (INSN(23,23) << 2) | INSN(31,30);
Bool isLD = INSN(22,22) == 1;
UInt tt = INSN(4,0);
if (szLg2 > 4) goto after_LDR_STR_vector_register;
IRTemp ea = gen_indexed_EA(dis_buf, insn, False/*to/from vec regs*/);
if (ea == IRTemp_INVALID) goto after_LDR_STR_vector_register;
switch (szLg2) {
case 0: /* 8 bit */
if (isLD) {
putQReg128(tt, mkV128(0x0000));
putQRegLO(tt, loadLE(Ity_I8, mkexpr(ea)));
DIP("ldr %s, %s\n", nameQRegLO(tt, Ity_I8), dis_buf);
} else {
storeLE(mkexpr(ea), getQRegLO(tt, Ity_I8));
DIP("str %s, %s\n", nameQRegLO(tt, Ity_I8), dis_buf);
}
break;
case 1:
if (isLD) {
putQReg128(tt, mkV128(0x0000));
putQRegLO(tt, loadLE(Ity_I16, mkexpr(ea)));
DIP("ldr %s, %s\n", nameQRegLO(tt, Ity_I16), dis_buf);
} else {
storeLE(mkexpr(ea), getQRegLO(tt, Ity_I16));
DIP("str %s, %s\n", nameQRegLO(tt, Ity_I16), dis_buf);
}
break;
case 2: /* 32 bit */
if (isLD) {
putQReg128(tt, mkV128(0x0000));
putQRegLO(tt, loadLE(Ity_I32, mkexpr(ea)));
DIP("ldr %s, %s\n", nameQRegLO(tt, Ity_I32), dis_buf);
} else {
storeLE(mkexpr(ea), getQRegLO(tt, Ity_I32));
DIP("str %s, %s\n", nameQRegLO(tt, Ity_I32), dis_buf);
}
break;
case 3: /* 64 bit */
if (isLD) {
putQReg128(tt, mkV128(0x0000));
putQRegLO(tt, loadLE(Ity_I64, mkexpr(ea)));
DIP("ldr %s, %s\n", nameQRegLO(tt, Ity_I64), dis_buf);
} else {
storeLE(mkexpr(ea), getQRegLO(tt, Ity_I64));
DIP("str %s, %s\n", nameQRegLO(tt, Ity_I64), dis_buf);
}
break;
case 4:
if (isLD) {
putQReg128(tt, loadLE(Ity_V128, mkexpr(ea)));
DIP("ldr %s, %s\n", nameQReg128(tt), dis_buf);
} else {
storeLE(mkexpr(ea), getQReg128(tt));
DIP("str %s, %s\n", nameQReg128(tt), dis_buf);
}
break;
default:
vassert(0);
}
return True;
}
after_LDR_STR_vector_register:
/* ---------- LDRS{B,H,W} (integer register, SX) ---------- */
/* 31 29 22 20 15 12 11 9 4
| | | | | | | | |
10 1110001 01 Rm opt S 10 Rn Rt LDRSW Xt, [Xn|SP, R<m>{ext/sh}]
01 1110001 01 Rm opt S 10 Rn Rt LDRSH Xt, [Xn|SP, R<m>{ext/sh}]
01 1110001 11 Rm opt S 10 Rn Rt LDRSH Wt, [Xn|SP, R<m>{ext/sh}]
00 1110001 01 Rm opt S 10 Rn Rt LDRSB Xt, [Xn|SP, R<m>{ext/sh}]
00 1110001 11 Rm opt S 10 Rn Rt LDRSB Wt, [Xn|SP, R<m>{ext/sh}]
*/
if (INSN(29,23) == BITS7(1,1,1,0,0,0,1)
&& INSN(21,21) == 1 && INSN(11,10) == BITS2(1,0)) {
HChar dis_buf[64];
UInt szLg2 = INSN(31,30);
Bool sxTo64 = INSN(22,22) == 0; // else sx to 32 and zx to 64
UInt tt = INSN(4,0);
if (szLg2 == 3) goto after_LDRS_integer_register;
IRTemp ea = gen_indexed_EA(dis_buf, insn, True/*to/from int regs*/);
if (ea == IRTemp_INVALID) goto after_LDRS_integer_register;
/* Enumerate the 5 variants explicitly. */
if (szLg2 == 2/*32 bit*/ && sxTo64) {
putIReg64orZR(tt, unop(Iop_32Sto64, loadLE(Ity_I32, mkexpr(ea))));
DIP("ldrsw %s, %s\n", nameIReg64orZR(tt), dis_buf);
return True;
}
else
if (szLg2 == 1/*16 bit*/) {
if (sxTo64) {
putIReg64orZR(tt, unop(Iop_16Sto64, loadLE(Ity_I16, mkexpr(ea))));
DIP("ldrsh %s, %s\n", nameIReg64orZR(tt), dis_buf);
} else {
putIReg32orZR(tt, unop(Iop_16Sto32, loadLE(Ity_I16, mkexpr(ea))));
DIP("ldrsh %s, %s\n", nameIReg32orZR(tt), dis_buf);
}
return True;
}
else
if (szLg2 == 0/*8 bit*/) {
if (sxTo64) {
putIReg64orZR(tt, unop(Iop_8Sto64, loadLE(Ity_I8, mkexpr(ea))));
DIP("ldrsb %s, %s\n", nameIReg64orZR(tt), dis_buf);
} else {
putIReg32orZR(tt, unop(Iop_8Sto32, loadLE(Ity_I8, mkexpr(ea))));
DIP("ldrsb %s, %s\n", nameIReg32orZR(tt), dis_buf);
}
return True;
}
/* else it's an invalid combination */
}
after_LDRS_integer_register:
/* -------- LDR/STR (immediate, SIMD&FP, unsigned offset) -------- */
/* This is the Unsigned offset variant only. The Post-Index and
Pre-Index variants are below.
31 29 23 21 9 4
00 111 101 01 imm12 n t LDR Bt, [Xn|SP + imm12 * 1]
01 111 101 01 imm12 n t LDR Ht, [Xn|SP + imm12 * 2]
10 111 101 01 imm12 n t LDR St, [Xn|SP + imm12 * 4]
11 111 101 01 imm12 n t LDR Dt, [Xn|SP + imm12 * 8]
00 111 101 11 imm12 n t LDR Qt, [Xn|SP + imm12 * 16]
00 111 101 00 imm12 n t STR Bt, [Xn|SP + imm12 * 1]
01 111 101 00 imm12 n t STR Ht, [Xn|SP + imm12 * 2]
10 111 101 00 imm12 n t STR St, [Xn|SP + imm12 * 4]
11 111 101 00 imm12 n t STR Dt, [Xn|SP + imm12 * 8]
00 111 101 10 imm12 n t STR Qt, [Xn|SP + imm12 * 16]
*/
if (INSN(29,24) == BITS6(1,1,1,1,0,1)
&& ((INSN(23,23) << 2) | INSN(31,30)) <= 4) {
UInt szLg2 = (INSN(23,23) << 2) | INSN(31,30);
Bool isLD = INSN(22,22) == 1;
UInt pimm12 = INSN(21,10) << szLg2;
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
IRTemp tEA = newTemp(Ity_I64);
IRType ty = preferredVectorSubTypeFromSize(1 << szLg2);
assign(tEA, binop(Iop_Add64, getIReg64orSP(nn), mkU64(pimm12)));
if (isLD) {
if (szLg2 < 4) {
putQReg128(tt, mkV128(0x0000));
}
putQRegLO(tt, loadLE(ty, mkexpr(tEA)));
} else {
storeLE(mkexpr(tEA), getQRegLO(tt, ty));
}
DIP("%s %s, [%s, #%u]\n",
isLD ? "ldr" : "str",
nameQRegLO(tt, ty), nameIReg64orSP(nn), pimm12);
return True;
}
/* -------- LDR/STR (immediate, SIMD&FP, pre/post index) -------- */
/* These are the Post-Index and Pre-Index variants.
31 29 23 20 11 9 4
(at-Rn-then-Rn=EA)
00 111 100 01 0 imm9 01 n t LDR Bt, [Xn|SP], #simm
01 111 100 01 0 imm9 01 n t LDR Ht, [Xn|SP], #simm
10 111 100 01 0 imm9 01 n t LDR St, [Xn|SP], #simm
11 111 100 01 0 imm9 01 n t LDR Dt, [Xn|SP], #simm
00 111 100 11 0 imm9 01 n t LDR Qt, [Xn|SP], #simm
(at-EA-then-Rn=EA)
00 111 100 01 0 imm9 11 n t LDR Bt, [Xn|SP, #simm]!
01 111 100 01 0 imm9 11 n t LDR Ht, [Xn|SP, #simm]!
10 111 100 01 0 imm9 11 n t LDR St, [Xn|SP, #simm]!
11 111 100 01 0 imm9 11 n t LDR Dt, [Xn|SP, #simm]!
00 111 100 11 0 imm9 11 n t LDR Qt, [Xn|SP, #simm]!
Stores are the same except with bit 22 set to 0.
*/
if (INSN(29,24) == BITS6(1,1,1,1,0,0)
&& ((INSN(23,23) << 2) | INSN(31,30)) <= 4
&& INSN(21,21) == 0 && INSN(10,10) == 1) {
UInt szLg2 = (INSN(23,23) << 2) | INSN(31,30);
Bool isLD = INSN(22,22) == 1;
UInt imm9 = INSN(20,12);
Bool atRN = INSN(11,11) == 0;
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
IRTemp tRN = newTemp(Ity_I64);
IRTemp tEA = newTemp(Ity_I64);
IRTemp tTA = IRTemp_INVALID;
IRType ty = preferredVectorSubTypeFromSize(1 << szLg2);
ULong simm9 = sx_to_64(imm9, 9);
assign(tRN, getIReg64orSP(nn));
assign(tEA, binop(Iop_Add64, mkexpr(tRN), mkU64(simm9)));
tTA = atRN ? tRN : tEA;
if (isLD) {
if (szLg2 < 4) {
putQReg128(tt, mkV128(0x0000));
}
putQRegLO(tt, loadLE(ty, mkexpr(tTA)));
} else {
storeLE(mkexpr(tTA), getQRegLO(tt, ty));
}
putIReg64orSP(nn, mkexpr(tEA));
DIP(atRN ? "%s %s, [%s], #%lld\n" : "%s %s, [%s, #%lld]!\n",
isLD ? "ldr" : "str",
nameQRegLO(tt, ty), nameIReg64orSP(nn), simm9);
return True;
}
/* -------- LDUR/STUR (unscaled offset, SIMD&FP) -------- */
/* 31 29 23 20 11 9 4
00 111 100 01 0 imm9 00 n t LDR Bt, [Xn|SP, #simm]
01 111 100 01 0 imm9 00 n t LDR Ht, [Xn|SP, #simm]
10 111 100 01 0 imm9 00 n t LDR St, [Xn|SP, #simm]
11 111 100 01 0 imm9 00 n t LDR Dt, [Xn|SP, #simm]
00 111 100 11 0 imm9 00 n t LDR Qt, [Xn|SP, #simm]
00 111 100 00 0 imm9 00 n t STR Bt, [Xn|SP, #simm]
01 111 100 00 0 imm9 00 n t STR Ht, [Xn|SP, #simm]
10 111 100 00 0 imm9 00 n t STR St, [Xn|SP, #simm]
11 111 100 00 0 imm9 00 n t STR Dt, [Xn|SP, #simm]
00 111 100 10 0 imm9 00 n t STR Qt, [Xn|SP, #simm]
*/
if (INSN(29,24) == BITS6(1,1,1,1,0,0)
&& ((INSN(23,23) << 2) | INSN(31,30)) <= 4
&& INSN(21,21) == 0 && INSN(11,10) == BITS2(0,0)) {
UInt szLg2 = (INSN(23,23) << 2) | INSN(31,30);
Bool isLD = INSN(22,22) == 1;
UInt imm9 = INSN(20,12);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
ULong simm9 = sx_to_64(imm9, 9);
IRTemp tEA = newTemp(Ity_I64);
IRType ty = preferredVectorSubTypeFromSize(1 << szLg2);
assign(tEA, binop(Iop_Add64, getIReg64orSP(nn), mkU64(simm9)));
if (isLD) {
if (szLg2 < 4) {
putQReg128(tt, mkV128(0x0000));
}
putQRegLO(tt, loadLE(ty, mkexpr(tEA)));
} else {
storeLE(mkexpr(tEA), getQRegLO(tt, ty));
}
DIP("%s %s, [%s, #%lld]\n",
isLD ? "ldur" : "stur",
nameQRegLO(tt, ty), nameIReg64orSP(nn), (Long)simm9);
return True;
}
/* ---------------- LDR (literal, SIMD&FP) ---------------- */
/* 31 29 23 4
00 011 100 imm19 t LDR St, [PC + sxTo64(imm19 << 2)]
01 011 100 imm19 t LDR Dt, [PC + sxTo64(imm19 << 2)]
10 011 100 imm19 t LDR Qt, [PC + sxTo64(imm19 << 2)]
*/
if (INSN(29,24) == BITS6(0,1,1,1,0,0) && INSN(31,30) < BITS2(1,1)) {
UInt szB = 4 << INSN(31,30);
UInt imm19 = INSN(23,5);
UInt tt = INSN(4,0);
ULong ea = guest_PC_curr_instr + sx_to_64(imm19 << 2, 21);
IRType ty = preferredVectorSubTypeFromSize(szB);
putQReg128(tt, mkV128(0x0000));
putQRegLO(tt, loadLE(ty, mkU64(ea)));
DIP("ldr %s, 0x%llx (literal)\n", nameQRegLO(tt, ty), ea);
return True;
}
/* ------ LD1/ST1 (multiple 1-elem structs to/from 1 reg ------ */
/* ------ LD2/ST2 (multiple 2-elem structs to/from 2 regs ------ */
/* ------ LD3/ST3 (multiple 3-elem structs to/from 3 regs ------ */
/* ------ LD4/ST4 (multiple 4-elem structs to/from 4 regs ------ */
/* 31 29 26 22 21 20 15 11 9 4
0q 001 1000 L 0 00000 0000 sz n t xx4 {Vt..t+3.T}, [Xn|SP]
0q 001 1001 L 0 m 0000 sz n t xx4 {Vt..t+3.T}, [Xn|SP], step
0q 001 1000 L 0 00000 0100 sz n t xx3 {Vt..t+2.T}, [Xn|SP]
0q 001 1001 L 0 m 0100 sz n t xx3 {Vt..t+2.T}, [Xn|SP], step
0q 001 1000 L 0 00000 1000 sz n t xx2 {Vt..t+1.T}, [Xn|SP]
0q 001 1001 L 0 m 1000 sz n t xx2 {Vt..t+1.T}, [Xn|SP], step
0q 001 1000 L 0 00000 0111 sz n t xx1 {Vt.T}, [Xn|SP]
0q 001 1001 L 0 m 0111 sz n t xx1 {Vt.T}, [Xn|SP], step
T = defined by Q and sz in the normal way
step = if m == 11111 then transfer-size else Xm
xx = case L of 1 -> LD ; 0 -> ST
*/
if (INSN(31,31) == 0 && INSN(29,24) == BITS6(0,0,1,1,0,0)
&& INSN(21,21) == 0) {
Bool bitQ = INSN(30,30);
Bool isPX = INSN(23,23) == 1;
Bool isLD = INSN(22,22) == 1;
UInt mm = INSN(20,16);
UInt opc = INSN(15,12);
UInt sz = INSN(11,10);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
Bool isQ = bitQ == 1;
Bool is1d = sz == BITS2(1,1) && !isQ;
UInt nRegs = 0;
switch (opc) {
case BITS4(0,0,0,0): nRegs = 4; break;
case BITS4(0,1,0,0): nRegs = 3; break;
case BITS4(1,0,0,0): nRegs = 2; break;
case BITS4(0,1,1,1): nRegs = 1; break;
default: break;
}
/* The combination insn[23] == 0 && insn[20:16] != 0 is not allowed.
If we see it, set nRegs to 0 so as to cause the next conditional
to fail. */
if (!isPX && mm != 0)
nRegs = 0;
if (nRegs == 1 /* .1d is allowed */
|| (nRegs >= 2 && nRegs <= 4 && !is1d) /* .1d is not allowed */) {
UInt xferSzB = (isQ ? 16 : 8) * nRegs;
/* Generate the transfer address (TA) and if necessary the
writeback address (WB) */
IRTemp tTA = newTemp(Ity_I64);
assign(tTA, getIReg64orSP(nn));
if (nn == 31) { /* FIXME generate stack alignment check */ }
IRTemp tWB = IRTemp_INVALID;
if (isPX) {
tWB = newTemp(Ity_I64);
assign(tWB, binop(Iop_Add64,
mkexpr(tTA),
mm == BITS5(1,1,1,1,1) ? mkU64(xferSzB)
: getIReg64orZR(mm)));
}
/* -- BEGIN generate the transfers -- */
IRTemp u0, u1, u2, u3, i0, i1, i2, i3;
u0 = u1 = u2 = u3 = i0 = i1 = i2 = i3 = IRTemp_INVALID;
switch (nRegs) {
case 4: u3 = newTempV128(); i3 = newTempV128(); /* fallthru */
case 3: u2 = newTempV128(); i2 = newTempV128(); /* fallthru */
case 2: u1 = newTempV128(); i1 = newTempV128(); /* fallthru */
case 1: u0 = newTempV128(); i0 = newTempV128(); break;
default: vassert(0);
}
/* -- Multiple 128 or 64 bit stores -- */
if (!isLD) {
switch (nRegs) {
case 4: assign(u3, getQReg128((tt+3) % 32)); /* fallthru */
case 3: assign(u2, getQReg128((tt+2) % 32)); /* fallthru */
case 2: assign(u1, getQReg128((tt+1) % 32)); /* fallthru */
case 1: assign(u0, getQReg128((tt+0) % 32)); break;
default: vassert(0);
}
switch (nRegs) {
case 4: (isQ ? math_INTERLEAVE4_128 : math_INTERLEAVE4_64)
(&i0, &i1, &i2, &i3, sz, u0, u1, u2, u3);
break;
case 3: (isQ ? math_INTERLEAVE3_128 : math_INTERLEAVE3_64)
(&i0, &i1, &i2, sz, u0, u1, u2);
break;
case 2: (isQ ? math_INTERLEAVE2_128 : math_INTERLEAVE2_64)
(&i0, &i1, sz, u0, u1);
break;
case 1: (isQ ? math_INTERLEAVE1_128 : math_INTERLEAVE1_64)
(&i0, sz, u0);
break;
default: vassert(0);
}
# define MAYBE_NARROW_TO_64(_expr) \
(isQ ? (_expr) : unop(Iop_V128to64,(_expr)))
UInt step = isQ ? 16 : 8;
switch (nRegs) {
case 4: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(3*step)),
MAYBE_NARROW_TO_64(mkexpr(i3)) );
/* fallthru */
case 3: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(2*step)),
MAYBE_NARROW_TO_64(mkexpr(i2)) );
/* fallthru */
case 2: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(1*step)),
MAYBE_NARROW_TO_64(mkexpr(i1)) );
/* fallthru */
case 1: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(0*step)),
MAYBE_NARROW_TO_64(mkexpr(i0)) );
break;
default: vassert(0);
}
# undef MAYBE_NARROW_TO_64
}
/* -- Multiple 128 or 64 bit loads -- */
else /* isLD */ {
UInt step = isQ ? 16 : 8;
IRType loadTy = isQ ? Ity_V128 : Ity_I64;
# define MAYBE_WIDEN_FROM_64(_expr) \
(isQ ? (_expr) : unop(Iop_64UtoV128,(_expr)))
switch (nRegs) {
case 4:
assign(i3, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(3 * step)))));
/* fallthru */
case 3:
assign(i2, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(2 * step)))));
/* fallthru */
case 2:
assign(i1, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(1 * step)))));
/* fallthru */
case 1:
assign(i0, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(0 * step)))));
break;
default:
vassert(0);
}
# undef MAYBE_WIDEN_FROM_64
switch (nRegs) {
case 4: (isQ ? math_DEINTERLEAVE4_128 : math_DEINTERLEAVE4_64)
(&u0, &u1, &u2, &u3, sz, i0,i1,i2,i3);
break;
case 3: (isQ ? math_DEINTERLEAVE3_128 : math_DEINTERLEAVE3_64)
(&u0, &u1, &u2, sz, i0, i1, i2);
break;
case 2: (isQ ? math_DEINTERLEAVE2_128 : math_DEINTERLEAVE2_64)
(&u0, &u1, sz, i0, i1);
break;
case 1: (isQ ? math_DEINTERLEAVE1_128 : math_DEINTERLEAVE1_64)
(&u0, sz, i0);
break;
default: vassert(0);
}
switch (nRegs) {
case 4: putQReg128( (tt+3) % 32,
math_MAYBE_ZERO_HI64(bitQ, u3));
/* fallthru */
case 3: putQReg128( (tt+2) % 32,
math_MAYBE_ZERO_HI64(bitQ, u2));
/* fallthru */
case 2: putQReg128( (tt+1) % 32,
math_MAYBE_ZERO_HI64(bitQ, u1));
/* fallthru */
case 1: putQReg128( (tt+0) % 32,
math_MAYBE_ZERO_HI64(bitQ, u0));
break;
default: vassert(0);
}
}
/* -- END generate the transfers -- */
/* Do the writeback, if necessary */
if (isPX) {
putIReg64orSP(nn, mkexpr(tWB));
}
HChar pxStr[20];
pxStr[0] = pxStr[sizeof(pxStr)-1] = 0;
if (isPX) {
if (mm == BITS5(1,1,1,1,1))
vex_sprintf(pxStr, ", #%u", xferSzB);
else
vex_sprintf(pxStr, ", %s", nameIReg64orZR(mm));
}
const HChar* arr = nameArr_Q_SZ(bitQ, sz);
DIP("%s%u {v%u.%s .. v%u.%s}, [%s]%s\n",
isLD ? "ld" : "st", nRegs,
(tt+0) % 32, arr, (tt+nRegs-1) % 32, arr, nameIReg64orSP(nn),
pxStr);
return True;
}
/* else fall through */
}
/* ------ LD1/ST1 (multiple 1-elem structs to/from 2 regs ------ */
/* ------ LD1/ST1 (multiple 1-elem structs to/from 3 regs ------ */
/* ------ LD1/ST1 (multiple 1-elem structs to/from 4 regs ------ */
/* 31 29 26 22 21 20 15 11 9 4
0q 001 1000 L 0 00000 0010 sz n t xx1 {Vt..t+3.T}, [Xn|SP]
0q 001 1001 L 0 m 0010 sz n t xx1 {Vt..t+3.T}, [Xn|SP], step
0q 001 1000 L 0 00000 0110 sz n t xx1 {Vt..t+2.T}, [Xn|SP]
0q 001 1001 L 0 m 0110 sz n t xx1 {Vt..t+2.T}, [Xn|SP], step
0q 001 1000 L 0 00000 1010 sz n t xx1 {Vt..t+1.T}, [Xn|SP]
0q 001 1001 L 0 m 1010 sz n t xx1 {Vt..t+1.T}, [Xn|SP], step
T = defined by Q and sz in the normal way
step = if m == 11111 then transfer-size else Xm
xx = case L of 1 -> LD ; 0 -> ST
*/
if (INSN(31,31) == 0 && INSN(29,24) == BITS6(0,0,1,1,0,0)
&& INSN(21,21) == 0) {
Bool bitQ = INSN(30,30);
Bool isPX = INSN(23,23) == 1;
Bool isLD = INSN(22,22) == 1;
UInt mm = INSN(20,16);
UInt opc = INSN(15,12);
UInt sz = INSN(11,10);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
Bool isQ = bitQ == 1;
UInt nRegs = 0;
switch (opc) {
case BITS4(0,0,1,0): nRegs = 4; break;
case BITS4(0,1,1,0): nRegs = 3; break;
case BITS4(1,0,1,0): nRegs = 2; break;
default: break;
}
/* The combination insn[23] == 0 && insn[20:16] != 0 is not allowed.
If we see it, set nRegs to 0 so as to cause the next conditional
to fail. */
if (!isPX && mm != 0)
nRegs = 0;
if (nRegs >= 2 && nRegs <= 4) {
UInt xferSzB = (isQ ? 16 : 8) * nRegs;
/* Generate the transfer address (TA) and if necessary the
writeback address (WB) */
IRTemp tTA = newTemp(Ity_I64);
assign(tTA, getIReg64orSP(nn));
if (nn == 31) { /* FIXME generate stack alignment check */ }
IRTemp tWB = IRTemp_INVALID;
if (isPX) {
tWB = newTemp(Ity_I64);
assign(tWB, binop(Iop_Add64,
mkexpr(tTA),
mm == BITS5(1,1,1,1,1) ? mkU64(xferSzB)
: getIReg64orZR(mm)));
}
/* -- BEGIN generate the transfers -- */
IRTemp u0, u1, u2, u3;
u0 = u1 = u2 = u3 = IRTemp_INVALID;
switch (nRegs) {
case 4: u3 = newTempV128(); /* fallthru */
case 3: u2 = newTempV128(); /* fallthru */
case 2: u1 = newTempV128();
u0 = newTempV128(); break;
default: vassert(0);
}
/* -- Multiple 128 or 64 bit stores -- */
if (!isLD) {
switch (nRegs) {
case 4: assign(u3, getQReg128((tt+3) % 32)); /* fallthru */
case 3: assign(u2, getQReg128((tt+2) % 32)); /* fallthru */
case 2: assign(u1, getQReg128((tt+1) % 32));
assign(u0, getQReg128((tt+0) % 32)); break;
default: vassert(0);
}
# define MAYBE_NARROW_TO_64(_expr) \
(isQ ? (_expr) : unop(Iop_V128to64,(_expr)))
UInt step = isQ ? 16 : 8;
switch (nRegs) {
case 4: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(3*step)),
MAYBE_NARROW_TO_64(mkexpr(u3)) );
/* fallthru */
case 3: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(2*step)),
MAYBE_NARROW_TO_64(mkexpr(u2)) );
/* fallthru */
case 2: storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(1*step)),
MAYBE_NARROW_TO_64(mkexpr(u1)) );
storeLE( binop(Iop_Add64, mkexpr(tTA), mkU64(0*step)),
MAYBE_NARROW_TO_64(mkexpr(u0)) );
break;
default: vassert(0);
}
# undef MAYBE_NARROW_TO_64
}
/* -- Multiple 128 or 64 bit loads -- */
else /* isLD */ {
UInt step = isQ ? 16 : 8;
IRType loadTy = isQ ? Ity_V128 : Ity_I64;
# define MAYBE_WIDEN_FROM_64(_expr) \
(isQ ? (_expr) : unop(Iop_64UtoV128,(_expr)))
switch (nRegs) {
case 4:
assign(u3, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(3 * step)))));
/* fallthru */
case 3:
assign(u2, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(2 * step)))));
/* fallthru */
case 2:
assign(u1, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(1 * step)))));
assign(u0, MAYBE_WIDEN_FROM_64(
loadLE(loadTy,
binop(Iop_Add64, mkexpr(tTA),
mkU64(0 * step)))));
break;
default:
vassert(0);
}
# undef MAYBE_WIDEN_FROM_64
switch (nRegs) {
case 4: putQReg128( (tt+3) % 32,
math_MAYBE_ZERO_HI64(bitQ, u3));
/* fallthru */
case 3: putQReg128( (tt+2) % 32,
math_MAYBE_ZERO_HI64(bitQ, u2));
/* fallthru */
case 2: putQReg128( (tt+1) % 32,
math_MAYBE_ZERO_HI64(bitQ, u1));
putQReg128( (tt+0) % 32,
math_MAYBE_ZERO_HI64(bitQ, u0));
break;
default: vassert(0);
}
}
/* -- END generate the transfers -- */
/* Do the writeback, if necessary */
if (isPX) {
putIReg64orSP(nn, mkexpr(tWB));
}
HChar pxStr[20];
pxStr[0] = pxStr[sizeof(pxStr)-1] = 0;
if (isPX) {
if (mm == BITS5(1,1,1,1,1))
vex_sprintf(pxStr, ", #%u", xferSzB);
else
vex_sprintf(pxStr, ", %s", nameIReg64orZR(mm));
}
const HChar* arr = nameArr_Q_SZ(bitQ, sz);
DIP("%s1 {v%u.%s .. v%u.%s}, [%s]%s\n",
isLD ? "ld" : "st",
(tt+0) % 32, arr, (tt+nRegs-1) % 32, arr, nameIReg64orSP(nn),
pxStr);
return True;
}
/* else fall through */
}
/* ---------- LD1R (single structure, replicate) ---------- */
/* ---------- LD2R (single structure, replicate) ---------- */
/* ---------- LD3R (single structure, replicate) ---------- */
/* ---------- LD4R (single structure, replicate) ---------- */
/* 31 29 22 20 15 11 9 4
0q 001 1010 10 00000 110 0 sz n t LD1R {Vt.T}, [Xn|SP]
0q 001 1011 10 m 110 0 sz n t LD1R {Vt.T}, [Xn|SP], step
0q 001 1010 11 00000 110 0 sz n t LD2R {Vt..t+1.T}, [Xn|SP]
0q 001 1011 11 m 110 0 sz n t LD2R {Vt..t+1.T}, [Xn|SP], step
0q 001 1010 10 00000 111 0 sz n t LD3R {Vt..t+2.T}, [Xn|SP]
0q 001 1011 10 m 111 0 sz n t LD3R {Vt..t+2.T}, [Xn|SP], step
0q 001 1010 11 00000 111 0 sz n t LD4R {Vt..t+3.T}, [Xn|SP]
0q 001 1011 11 m 111 0 sz n t LD4R {Vt..t+3.T}, [Xn|SP], step
step = if m == 11111 then transfer-size else Xm
*/
if (INSN(31,31) == 0 && INSN(29,24) == BITS6(0,0,1,1,0,1)
&& INSN(22,22) == 1 && INSN(15,14) == BITS2(1,1)
&& INSN(12,12) == 0) {
UInt bitQ = INSN(30,30);
Bool isPX = INSN(23,23) == 1;
UInt nRegs = ((INSN(13,13) << 1) | INSN(21,21)) + 1;
UInt mm = INSN(20,16);
UInt sz = INSN(11,10);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
/* The combination insn[23] == 0 && insn[20:16] != 0 is not allowed. */
if (isPX || mm == 0) {
IRType ty = integerIRTypeOfSize(1 << sz);
UInt laneSzB = 1 << sz;
UInt xferSzB = laneSzB * nRegs;
/* Generate the transfer address (TA) and if necessary the
writeback address (WB) */
IRTemp tTA = newTemp(Ity_I64);
assign(tTA, getIReg64orSP(nn));
if (nn == 31) { /* FIXME generate stack alignment check */ }
IRTemp tWB = IRTemp_INVALID;
if (isPX) {
tWB = newTemp(Ity_I64);
assign(tWB, binop(Iop_Add64,
mkexpr(tTA),
mm == BITS5(1,1,1,1,1) ? mkU64(xferSzB)
: getIReg64orZR(mm)));
}
/* Do the writeback, if necessary */
if (isPX) {
putIReg64orSP(nn, mkexpr(tWB));
}
IRTemp e0, e1, e2, e3, v0, v1, v2, v3;
e0 = e1 = e2 = e3 = v0 = v1 = v2 = v3 = IRTemp_INVALID;
switch (nRegs) {
case 4:
e3 = newTemp(ty);
assign(e3, loadLE(ty, binop(Iop_Add64, mkexpr(tTA),
mkU64(3 * laneSzB))));
v3 = math_DUP_TO_V128(e3, ty);
putQReg128((tt+3) % 32, math_MAYBE_ZERO_HI64(bitQ, v3));
/* fallthrough */
case 3:
e2 = newTemp(ty);
assign(e2, loadLE(ty, binop(Iop_Add64, mkexpr(tTA),
mkU64(2 * laneSzB))));
v2 = math_DUP_TO_V128(e2, ty);
putQReg128((tt+2) % 32, math_MAYBE_ZERO_HI64(bitQ, v2));
/* fallthrough */
case 2:
e1 = newTemp(ty);
assign(e1, loadLE(ty, binop(Iop_Add64, mkexpr(tTA),
mkU64(1 * laneSzB))));
v1 = math_DUP_TO_V128(e1, ty);
putQReg128((tt+1) % 32, math_MAYBE_ZERO_HI64(bitQ, v1));
/* fallthrough */
case 1:
e0 = newTemp(ty);
assign(e0, loadLE(ty, binop(Iop_Add64, mkexpr(tTA),
mkU64(0 * laneSzB))));
v0 = math_DUP_TO_V128(e0, ty);
putQReg128((tt+0) % 32, math_MAYBE_ZERO_HI64(bitQ, v0));
break;
default:
vassert(0);
}
HChar pxStr[20];
pxStr[0] = pxStr[sizeof(pxStr)-1] = 0;
if (isPX) {
if (mm == BITS5(1,1,1,1,1))
vex_sprintf(pxStr, ", #%u", xferSzB);
else
vex_sprintf(pxStr, ", %s", nameIReg64orZR(mm));
}
const HChar* arr = nameArr_Q_SZ(bitQ, sz);
DIP("ld%ur {v%u.%s .. v%u.%s}, [%s]%s\n",
nRegs,
(tt+0) % 32, arr, (tt+nRegs-1) % 32, arr, nameIReg64orSP(nn),
pxStr);
return True;
}
/* else fall through */
}
/* ------ LD1/ST1 (single structure, to/from one lane) ------ */
/* ------ LD2/ST2 (single structure, to/from one lane) ------ */
/* ------ LD3/ST3 (single structure, to/from one lane) ------ */
/* ------ LD4/ST4 (single structure, to/from one lane) ------ */
/* 31 29 22 21 20 15 11 9 4
0q 001 1010 L 0 00000 xx0 S sz n t op1 {Vt.T}[ix], [Xn|SP]
0q 001 1011 L 0 m xx0 S sz n t op1 {Vt.T}[ix], [Xn|SP], step
0q 001 1010 L 1 00000 xx0 S sz n t op2 {Vt..t+1.T}[ix], [Xn|SP]
0q 001 1011 L 1 m xx0 S sz n t op2 {Vt..t+1.T}[ix], [Xn|SP], step
0q 001 1010 L 0 00000 xx1 S sz n t op3 {Vt..t+2.T}[ix], [Xn|SP]
0q 001 1011 L 0 m xx1 S sz n t op3 {Vt..t+2.T}[ix], [Xn|SP], step
0q 001 1010 L 1 00000 xx1 S sz n t op4 {Vt..t+3.T}[ix], [Xn|SP]
0q 001 1011 L 1 m xx1 S sz n t op4 {Vt..t+3.T}[ix], [Xn|SP], step
step = if m == 11111 then transfer-size else Xm
op = case L of 1 -> LD ; 0 -> ST
laneszB,ix = case xx:q:S:sz of 00:b:b:bb -> 1, bbbb
01:b:b:b0 -> 2, bbb
10:b:b:00 -> 4, bb
10:b:0:01 -> 8, b
*/
if (INSN(31,31) == 0 && INSN(29,24) == BITS6(0,0,1,1,0,1)) {
UInt bitQ = INSN(30,30);
Bool isPX = INSN(23,23) == 1;
Bool isLD = INSN(22,22) == 1;
UInt nRegs = ((INSN(13,13) << 1) | INSN(21,21)) + 1;
UInt mm = INSN(20,16);
UInt xx = INSN(15,14);
UInt bitS = INSN(12,12);
UInt sz = INSN(11,10);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
Bool valid = True;
/* The combination insn[23] == 0 && insn[20:16] != 0 is not allowed. */
if (!isPX && mm != 0)
valid = False;
UInt laneSzB = 0; /* invalid */
UInt ix = 16; /* invalid */
UInt xx_q_S_sz = (xx << 4) | (bitQ << 3) | (bitS << 2) | sz;
switch (xx_q_S_sz) {
case 0x00: case 0x01: case 0x02: case 0x03:
case 0x04: case 0x05: case 0x06: case 0x07:
case 0x08: case 0x09: case 0x0A: case 0x0B:
case 0x0C: case 0x0D: case 0x0E: case 0x0F:
laneSzB = 1; ix = xx_q_S_sz & 0xF;
break;
case 0x10: case 0x12: case 0x14: case 0x16:
case 0x18: case 0x1A: case 0x1C: case 0x1E:
laneSzB = 2; ix = (xx_q_S_sz >> 1) & 7;
break;
case 0x20: case 0x24: case 0x28: case 0x2C:
laneSzB = 4; ix = (xx_q_S_sz >> 2) & 3;
break;
case 0x21: case 0x29:
laneSzB = 8; ix = (xx_q_S_sz >> 3) & 1;
break;
default:
break;
}
if (valid && laneSzB != 0) {
IRType ty = integerIRTypeOfSize(laneSzB);
UInt xferSzB = laneSzB * nRegs;
/* Generate the transfer address (TA) and if necessary the
writeback address (WB) */
IRTemp tTA = newTemp(Ity_I64);
assign(tTA, getIReg64orSP(nn));
if (nn == 31) { /* FIXME generate stack alignment check */ }
IRTemp tWB = IRTemp_INVALID;
if (isPX) {
tWB = newTemp(Ity_I64);
assign(tWB, binop(Iop_Add64,
mkexpr(tTA),
mm == BITS5(1,1,1,1,1) ? mkU64(xferSzB)
: getIReg64orZR(mm)));
}
/* Do the writeback, if necessary */
if (isPX) {
putIReg64orSP(nn, mkexpr(tWB));
}
switch (nRegs) {
case 4: {
IRExpr* addr
= binop(Iop_Add64, mkexpr(tTA), mkU64(3 * laneSzB));
if (isLD) {
putQRegLane((tt+3) % 32, ix, loadLE(ty, addr));
} else {
storeLE(addr, getQRegLane((tt+3) % 32, ix, ty));
}
/* fallthrough */
}
case 3: {
IRExpr* addr
= binop(Iop_Add64, mkexpr(tTA), mkU64(2 * laneSzB));
if (isLD) {
putQRegLane((tt+2) % 32, ix, loadLE(ty, addr));
} else {
storeLE(addr, getQRegLane((tt+2) % 32, ix, ty));
}
/* fallthrough */
}
case 2: {
IRExpr* addr
= binop(Iop_Add64, mkexpr(tTA), mkU64(1 * laneSzB));
if (isLD) {
putQRegLane((tt+1) % 32, ix, loadLE(ty, addr));
} else {
storeLE(addr, getQRegLane((tt+1) % 32, ix, ty));
}
/* fallthrough */
}
case 1: {
IRExpr* addr
= binop(Iop_Add64, mkexpr(tTA), mkU64(0 * laneSzB));
if (isLD) {
putQRegLane((tt+0) % 32, ix, loadLE(ty, addr));
} else {
storeLE(addr, getQRegLane((tt+0) % 32, ix, ty));
}
break;
}
default:
vassert(0);
}
HChar pxStr[20];
pxStr[0] = pxStr[sizeof(pxStr)-1] = 0;
if (isPX) {
if (mm == BITS5(1,1,1,1,1))
vex_sprintf(pxStr, ", #%u", xferSzB);
else
vex_sprintf(pxStr, ", %s", nameIReg64orZR(mm));
}
const HChar* arr = nameArr_Q_SZ(bitQ, sz);
DIP("%s%u {v%u.%s .. v%u.%s}[%u], [%s]%s\n",
isLD ? "ld" : "st", nRegs,
(tt+0) % 32, arr, (tt+nRegs-1) % 32, arr,
ix, nameIReg64orSP(nn), pxStr);
return True;
}
/* else fall through */
}
/* ------------------ LD{,A}X{R,RH,RB} ------------------ */
/* ------------------ ST{,L}X{R,RH,RB} ------------------ */
/* 31 29 23 20 14 9 4
sz 001000 010 11111 0 11111 n t LDX{R,RH,RB} Rt, [Xn|SP]
sz 001000 010 11111 1 11111 n t LDAX{R,RH,RB} Rt, [Xn|SP]
sz 001000 000 s 0 11111 n t STX{R,RH,RB} Ws, Rt, [Xn|SP]
sz 001000 000 s 1 11111 n t STLX{R,RH,RB} Ws, Rt, [Xn|SP]
*/
if (INSN(29,23) == BITS7(0,0,1,0,0,0,0)
&& (INSN(23,21) & BITS3(1,0,1)) == BITS3(0,0,0)
&& INSN(14,10) == BITS5(1,1,1,1,1)) {
UInt szBlg2 = INSN(31,30);
Bool isLD = INSN(22,22) == 1;
Bool isAcqOrRel = INSN(15,15) == 1;
UInt ss = INSN(20,16);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
vassert(szBlg2 < 4);
UInt szB = 1 << szBlg2; /* 1, 2, 4 or 8 */
IRType ty = integerIRTypeOfSize(szB);
const HChar* suffix[4] = { "rb", "rh", "r", "r" };
IRTemp ea = newTemp(Ity_I64);
assign(ea, getIReg64orSP(nn));
/* FIXME generate check that ea is szB-aligned */
if (isLD && ss == BITS5(1,1,1,1,1)) {
IRTemp res = newTemp(ty);
stmt(IRStmt_LLSC(Iend_LE, res, mkexpr(ea), NULL/*LL*/));
putIReg64orZR(tt, widenUto64(ty, mkexpr(res)));
if (isAcqOrRel) {
stmt(IRStmt_MBE(Imbe_Fence));
}
DIP("ld%sx%s %s, [%s]\n", isAcqOrRel ? "a" : "", suffix[szBlg2],
nameIRegOrZR(szB == 8, tt), nameIReg64orSP(nn));
return True;
}
if (!isLD) {
if (isAcqOrRel) {
stmt(IRStmt_MBE(Imbe_Fence));
}
IRTemp res = newTemp(Ity_I1);
IRExpr* data = narrowFrom64(ty, getIReg64orZR(tt));
stmt(IRStmt_LLSC(Iend_LE, res, mkexpr(ea), data));
/* IR semantics: res is 1 if store succeeds, 0 if it fails.
Need to set rS to 1 on failure, 0 on success. */
putIReg64orZR(ss, binop(Iop_Xor64, unop(Iop_1Uto64, mkexpr(res)),
mkU64(1)));
DIP("st%sx%s %s, %s, [%s]\n", isAcqOrRel ? "a" : "", suffix[szBlg2],
nameIRegOrZR(False, ss),
nameIRegOrZR(szB == 8, tt), nameIReg64orSP(nn));
return True;
}
/* else fall through */
}
/* ------------------ LDA{R,RH,RB} ------------------ */
/* ------------------ STL{R,RH,RB} ------------------ */
/* 31 29 23 20 14 9 4
sz 001000 110 11111 1 11111 n t LDAR<sz> Rt, [Xn|SP]
sz 001000 100 11111 1 11111 n t STLR<sz> Rt, [Xn|SP]
*/
if (INSN(29,23) == BITS7(0,0,1,0,0,0,1)
&& INSN(21,10) == BITS12(0,1,1,1,1,1,1,1,1,1,1,1)) {
UInt szBlg2 = INSN(31,30);
Bool isLD = INSN(22,22) == 1;
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
vassert(szBlg2 < 4);
UInt szB = 1 << szBlg2; /* 1, 2, 4 or 8 */
IRType ty = integerIRTypeOfSize(szB);
const HChar* suffix[4] = { "rb", "rh", "r", "r" };
IRTemp ea = newTemp(Ity_I64);
assign(ea, getIReg64orSP(nn));
/* FIXME generate check that ea is szB-aligned */
if (isLD) {
IRTemp res = newTemp(ty);
assign(res, loadLE(ty, mkexpr(ea)));
putIReg64orZR(tt, widenUto64(ty, mkexpr(res)));
stmt(IRStmt_MBE(Imbe_Fence));
DIP("lda%s %s, [%s]\n", suffix[szBlg2],
nameIRegOrZR(szB == 8, tt), nameIReg64orSP(nn));
} else {
stmt(IRStmt_MBE(Imbe_Fence));
IRExpr* data = narrowFrom64(ty, getIReg64orZR(tt));
storeLE(mkexpr(ea), data);
DIP("stl%s %s, [%s]\n", suffix[szBlg2],
nameIRegOrZR(szB == 8, tt), nameIReg64orSP(nn));
}
return True;
}
/* ------------------ PRFM (immediate) ------------------ */
/* 31 21 9 4
11 111 00110 imm12 n t PRFM pfrop=Rt, [Xn|SP, #pimm]
*/
if (INSN(31,22) == BITS10(1,1,1,1,1,0,0,1,1,0)) {
UInt imm12 = INSN(21,10);
UInt nn = INSN(9,5);
UInt tt = INSN(4,0);
/* Generating any IR here is pointless, except for documentation
purposes, as it will get optimised away later. */
IRTemp ea = newTemp(Ity_I64);
assign(ea, binop(Iop_Add64, getIReg64orSP(nn), mkU64(imm12 * 8)));
DIP("prfm prfop=%u, [%s, #%u]\n", tt, nameIReg64orSP(nn), imm12 * 8);
return True;
}
vex_printf("ARM64 front end: load_store\n");
return False;
# undef INSN
}
/*------------------------------------------------------------*/
/*--- Control flow and misc instructions ---*/
/*------------------------------------------------------------*/
static
Bool dis_ARM64_branch_etc(/*MB_OUT*/DisResult* dres, UInt insn,
const VexArchInfo* archinfo)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
/* ---------------------- B cond ----------------------- */
/* 31 24 4 3
0101010 0 imm19 0 cond */
if (INSN(31,24) == BITS8(0,1,0,1,0,1,0,0) && INSN(4,4) == 0) {
UInt cond = INSN(3,0);
ULong uimm64 = INSN(23,5) << 2;
Long simm64 = (Long)sx_to_64(uimm64, 21);
vassert(dres->whatNext == Dis_Continue);
vassert(dres->len == 4);
vassert(dres->continueAt == 0);
vassert(dres->jk_StopHere == Ijk_INVALID);
stmt( IRStmt_Exit(unop(Iop_64to1, mk_arm64g_calculate_condition(cond)),
Ijk_Boring,
IRConst_U64(guest_PC_curr_instr + simm64),
OFFB_PC) );
putPC(mkU64(guest_PC_curr_instr + 4));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Boring;
DIP("b.%s 0x%llx\n", nameCC(cond), guest_PC_curr_instr + simm64);
return True;
}
/* -------------------- B{L} uncond -------------------- */
if (INSN(30,26) == BITS5(0,0,1,0,1)) {
/* 000101 imm26 B (PC + sxTo64(imm26 << 2))
100101 imm26 B (PC + sxTo64(imm26 << 2))
*/
UInt bLink = INSN(31,31);
ULong uimm64 = INSN(25,0) << 2;
Long simm64 = (Long)sx_to_64(uimm64, 28);
if (bLink) {
putIReg64orSP(30, mkU64(guest_PC_curr_instr + 4));
}
putPC(mkU64(guest_PC_curr_instr + simm64));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Call;
DIP("b%s 0x%llx\n", bLink == 1 ? "l" : "",
guest_PC_curr_instr + simm64);
return True;
}
/* --------------------- B{L} reg --------------------- */
/* 31 24 22 20 15 9 4
1101011 00 10 11111 000000 nn 00000 RET Rn
1101011 00 01 11111 000000 nn 00000 CALL Rn
1101011 00 00 11111 000000 nn 00000 JMP Rn
*/
if (INSN(31,23) == BITS9(1,1,0,1,0,1,1,0,0)
&& INSN(20,16) == BITS5(1,1,1,1,1)
&& INSN(15,10) == BITS6(0,0,0,0,0,0)
&& INSN(4,0) == BITS5(0,0,0,0,0)) {
UInt branch_type = INSN(22,21);
UInt nn = INSN(9,5);
if (branch_type == BITS2(1,0) /* RET */) {
putPC(getIReg64orZR(nn));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Ret;
DIP("ret %s\n", nameIReg64orZR(nn));
return True;
}
if (branch_type == BITS2(0,1) /* CALL */) {
IRTemp dst = newTemp(Ity_I64);
assign(dst, getIReg64orZR(nn));
putIReg64orSP(30, mkU64(guest_PC_curr_instr + 4));
putPC(mkexpr(dst));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Call;
DIP("blr %s\n", nameIReg64orZR(nn));
return True;
}
if (branch_type == BITS2(0,0) /* JMP */) {
putPC(getIReg64orZR(nn));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Boring;
DIP("jmp %s\n", nameIReg64orZR(nn));
return True;
}
}
/* -------------------- CB{N}Z -------------------- */
/* sf 011 010 1 imm19 Rt CBNZ Xt|Wt, (PC + sxTo64(imm19 << 2))
sf 011 010 0 imm19 Rt CBZ Xt|Wt, (PC + sxTo64(imm19 << 2))
*/
if (INSN(30,25) == BITS6(0,1,1,0,1,0)) {
Bool is64 = INSN(31,31) == 1;
Bool bIfZ = INSN(24,24) == 0;
ULong uimm64 = INSN(23,5) << 2;
UInt rT = INSN(4,0);
Long simm64 = (Long)sx_to_64(uimm64, 21);
IRExpr* cond = NULL;
if (is64) {
cond = binop(bIfZ ? Iop_CmpEQ64 : Iop_CmpNE64,
getIReg64orZR(rT), mkU64(0));
} else {
cond = binop(bIfZ ? Iop_CmpEQ32 : Iop_CmpNE32,
getIReg32orZR(rT), mkU32(0));
}
stmt( IRStmt_Exit(cond,
Ijk_Boring,
IRConst_U64(guest_PC_curr_instr + simm64),
OFFB_PC) );
putPC(mkU64(guest_PC_curr_instr + 4));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Boring;
DIP("cb%sz %s, 0x%llx\n",
bIfZ ? "" : "n", nameIRegOrZR(is64, rT),
guest_PC_curr_instr + simm64);
return True;
}
/* -------------------- TB{N}Z -------------------- */
/* 31 30 24 23 18 5 4
b5 011 011 1 b40 imm14 t TBNZ Xt, #(b5:b40), (PC + sxTo64(imm14 << 2))
b5 011 011 0 b40 imm14 t TBZ Xt, #(b5:b40), (PC + sxTo64(imm14 << 2))
*/
if (INSN(30,25) == BITS6(0,1,1,0,1,1)) {
UInt b5 = INSN(31,31);
Bool bIfZ = INSN(24,24) == 0;
UInt b40 = INSN(23,19);
UInt imm14 = INSN(18,5);
UInt tt = INSN(4,0);
UInt bitNo = (b5 << 5) | b40;
ULong uimm64 = imm14 << 2;
Long simm64 = sx_to_64(uimm64, 16);
IRExpr* cond
= binop(bIfZ ? Iop_CmpEQ64 : Iop_CmpNE64,
binop(Iop_And64,
binop(Iop_Shr64, getIReg64orZR(tt), mkU8(bitNo)),
mkU64(1)),
mkU64(0));
stmt( IRStmt_Exit(cond,
Ijk_Boring,
IRConst_U64(guest_PC_curr_instr + simm64),
OFFB_PC) );
putPC(mkU64(guest_PC_curr_instr + 4));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Boring;
DIP("tb%sz %s, #%u, 0x%llx\n",
bIfZ ? "" : "n", nameIReg64orZR(tt), bitNo,
guest_PC_curr_instr + simm64);
return True;
}
/* -------------------- SVC -------------------- */
/* 11010100 000 imm16 000 01
Don't bother with anything except the imm16==0 case.
*/
if (INSN(31,0) == 0xD4000001) {
putPC(mkU64(guest_PC_curr_instr + 4));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_Sys_syscall;
DIP("svc #0\n");
return True;
}
/* ------------------ M{SR,RS} ------------------ */
/* ---- Cases for TPIDR_EL0 ----
0xD51BD0 010 Rt MSR tpidr_el0, rT
0xD53BD0 010 Rt MRS rT, tpidr_el0
*/
if ( (INSN(31,0) & 0xFFFFFFE0) == 0xD51BD040 /*MSR*/
|| (INSN(31,0) & 0xFFFFFFE0) == 0xD53BD040 /*MRS*/) {
Bool toSys = INSN(21,21) == 0;
UInt tt = INSN(4,0);
if (toSys) {
stmt( IRStmt_Put( OFFB_TPIDR_EL0, getIReg64orZR(tt)) );
DIP("msr tpidr_el0, %s\n", nameIReg64orZR(tt));
} else {
putIReg64orZR(tt, IRExpr_Get( OFFB_TPIDR_EL0, Ity_I64 ));
DIP("mrs %s, tpidr_el0\n", nameIReg64orZR(tt));
}
return True;
}
/* ---- Cases for FPCR ----
0xD51B44 000 Rt MSR fpcr, rT
0xD53B44 000 Rt MSR rT, fpcr
*/
if ( (INSN(31,0) & 0xFFFFFFE0) == 0xD51B4400 /*MSR*/
|| (INSN(31,0) & 0xFFFFFFE0) == 0xD53B4400 /*MRS*/) {
Bool toSys = INSN(21,21) == 0;
UInt tt = INSN(4,0);
if (toSys) {
stmt( IRStmt_Put( OFFB_FPCR, getIReg32orZR(tt)) );
DIP("msr fpcr, %s\n", nameIReg64orZR(tt));
} else {
putIReg32orZR(tt, IRExpr_Get(OFFB_FPCR, Ity_I32));
DIP("mrs %s, fpcr\n", nameIReg64orZR(tt));
}
return True;
}
/* ---- Cases for FPSR ----
0xD51B44 001 Rt MSR fpsr, rT
0xD53B44 001 Rt MSR rT, fpsr
The only part of this we model is FPSR.QC. All other bits
are ignored when writing to it and RAZ when reading from it.
*/
if ( (INSN(31,0) & 0xFFFFFFE0) == 0xD51B4420 /*MSR*/
|| (INSN(31,0) & 0xFFFFFFE0) == 0xD53B4420 /*MRS*/) {
Bool toSys = INSN(21,21) == 0;
UInt tt = INSN(4,0);
if (toSys) {
/* Just deal with FPSR.QC. Make up a V128 value which is
zero if Xt[27] is zero and any other value if Xt[27] is
nonzero. */
IRTemp qc64 = newTemp(Ity_I64);
assign(qc64, binop(Iop_And64,
binop(Iop_Shr64, getIReg64orZR(tt), mkU8(27)),
mkU64(1)));
IRExpr* qcV128 = binop(Iop_64HLtoV128, mkexpr(qc64), mkexpr(qc64));
stmt( IRStmt_Put( OFFB_QCFLAG, qcV128 ) );
DIP("msr fpsr, %s\n", nameIReg64orZR(tt));
} else {
/* Generate a value which is all zeroes except for bit 27,
which must be zero if QCFLAG is all zeroes and one otherwise. */
IRTemp qcV128 = newTempV128();
assign(qcV128, IRExpr_Get( OFFB_QCFLAG, Ity_V128 ));
IRTemp qc64 = newTemp(Ity_I64);
assign(qc64, binop(Iop_Or64, unop(Iop_V128HIto64, mkexpr(qcV128)),
unop(Iop_V128to64, mkexpr(qcV128))));
IRExpr* res = binop(Iop_Shl64,
unop(Iop_1Uto64,
binop(Iop_CmpNE64, mkexpr(qc64), mkU64(0))),
mkU8(27));
putIReg64orZR(tt, res);
DIP("mrs %s, fpsr\n", nameIReg64orZR(tt));
}
return True;
}
/* ---- Cases for NZCV ----
D51B42 000 Rt MSR nzcv, rT
D53B42 000 Rt MRS rT, nzcv
The only parts of NZCV that actually exist are bits 31:28, which
are the N Z C and V bits themselves. Hence the flags thunk provides
all the state we need.
*/
if ( (INSN(31,0) & 0xFFFFFFE0) == 0xD51B4200 /*MSR*/
|| (INSN(31,0) & 0xFFFFFFE0) == 0xD53B4200 /*MRS*/) {
Bool toSys = INSN(21,21) == 0;
UInt tt = INSN(4,0);
if (toSys) {
IRTemp t = newTemp(Ity_I64);
assign(t, binop(Iop_And64, getIReg64orZR(tt), mkU64(0xF0000000ULL)));
setFlags_COPY(t);
DIP("msr %s, nzcv\n", nameIReg32orZR(tt));
} else {
IRTemp res = newTemp(Ity_I64);
assign(res, mk_arm64g_calculate_flags_nzcv());
putIReg32orZR(tt, unop(Iop_64to32, mkexpr(res)));
DIP("mrs %s, nzcv\n", nameIReg64orZR(tt));
}
return True;
}
/* ---- Cases for DCZID_EL0 ----
Don't support arbitrary reads and writes to this register. Just
return the value 16, which indicates that the DC ZVA instruction
is not permitted, so we don't have to emulate it.
D5 3B 00 111 Rt MRS rT, dczid_el0
*/
if ((INSN(31,0) & 0xFFFFFFE0) == 0xD53B00E0) {
UInt tt = INSN(4,0);
putIReg64orZR(tt, mkU64(1<<4));
DIP("mrs %s, dczid_el0 (FAKED)\n", nameIReg64orZR(tt));
return True;
}
/* ---- Cases for CTR_EL0 ----
We just handle reads, and make up a value from the D and I line
sizes in the VexArchInfo we are given, and patch in the following
fields that the Foundation model gives ("natively"):
CWG = 0b0100, ERG = 0b0100, L1Ip = 0b11
D5 3B 00 001 Rt MRS rT, dczid_el0
*/
if ((INSN(31,0) & 0xFFFFFFE0) == 0xD53B0020) {
UInt tt = INSN(4,0);
/* Need to generate a value from dMinLine_lg2_szB and
dMinLine_lg2_szB. The value in the register is in 32-bit
units, so need to subtract 2 from the values in the
VexArchInfo. We can assume that the values here are valid --
disInstr_ARM64 checks them -- so there's no need to deal with
out-of-range cases. */
vassert(archinfo->arm64_dMinLine_lg2_szB >= 2
&& archinfo->arm64_dMinLine_lg2_szB <= 17
&& archinfo->arm64_iMinLine_lg2_szB >= 2
&& archinfo->arm64_iMinLine_lg2_szB <= 17);
UInt val
= 0x8440c000 | ((0xF & (archinfo->arm64_dMinLine_lg2_szB - 2)) << 16)
| ((0xF & (archinfo->arm64_iMinLine_lg2_szB - 2)) << 0);
putIReg64orZR(tt, mkU64(val));
DIP("mrs %s, ctr_el0\n", nameIReg64orZR(tt));
return True;
}
/* ---- Cases for CNTVCT_EL0 ----
This is a timestamp counter of some sort. Support reads of it only
by passing through to the host.
D5 3B E0 010 Rt MRS Xt, cntvct_el0
*/
if ((INSN(31,0) & 0xFFFFFFE0) == 0xD53BE040) {
UInt tt = INSN(4,0);
IRTemp val = newTemp(Ity_I64);
IRExpr** args = mkIRExprVec_0();
IRDirty* d = unsafeIRDirty_1_N (
val,
0/*regparms*/,
"arm64g_dirtyhelper_MRS_CNTVCT_EL0",
&arm64g_dirtyhelper_MRS_CNTVCT_EL0,
args
);
/* execute the dirty call, dumping the result in val. */
stmt( IRStmt_Dirty(d) );
putIReg64orZR(tt, mkexpr(val));
DIP("mrs %s, cntvct_el0\n", nameIReg64orZR(tt));
return True;
}
/* ------------------ IC_IVAU ------------------ */
/* D5 0B 75 001 Rt ic ivau, rT
*/
if ((INSN(31,0) & 0xFFFFFFE0) == 0xD50B7520) {
/* We will always be provided with a valid iMinLine value. */
vassert(archinfo->arm64_iMinLine_lg2_szB >= 2
&& archinfo->arm64_iMinLine_lg2_szB <= 17);
/* Round the requested address, in rT, down to the start of the
containing block. */
UInt tt = INSN(4,0);
ULong lineszB = 1ULL << archinfo->arm64_iMinLine_lg2_szB;
IRTemp addr = newTemp(Ity_I64);
assign( addr, binop( Iop_And64,
getIReg64orZR(tt),
mkU64(~(lineszB - 1))) );
/* Set the invalidation range, request exit-and-invalidate, with
continuation at the next instruction. */
stmt(IRStmt_Put(OFFB_CMSTART, mkexpr(addr)));
stmt(IRStmt_Put(OFFB_CMLEN, mkU64(lineszB)));
/* be paranoid ... */
stmt( IRStmt_MBE(Imbe_Fence) );
putPC(mkU64( guest_PC_curr_instr + 4 ));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_InvalICache;
DIP("ic ivau, %s\n", nameIReg64orZR(tt));
return True;
}
/* ------------------ DC_CVAU ------------------ */
/* D5 0B 7B 001 Rt dc cvau, rT
*/
if ((INSN(31,0) & 0xFFFFFFE0) == 0xD50B7B20) {
/* Exactly the same scheme as for IC IVAU, except we observe the
dMinLine size, and request an Ijk_FlushDCache instead of
Ijk_InvalICache. */
/* We will always be provided with a valid dMinLine value. */
vassert(archinfo->arm64_dMinLine_lg2_szB >= 2
&& archinfo->arm64_dMinLine_lg2_szB <= 17);
/* Round the requested address, in rT, down to the start of the
containing block. */
UInt tt = INSN(4,0);
ULong lineszB = 1ULL << archinfo->arm64_dMinLine_lg2_szB;
IRTemp addr = newTemp(Ity_I64);
assign( addr, binop( Iop_And64,
getIReg64orZR(tt),
mkU64(~(lineszB - 1))) );
/* Set the flush range, request exit-and-flush, with
continuation at the next instruction. */
stmt(IRStmt_Put(OFFB_CMSTART, mkexpr(addr)));
stmt(IRStmt_Put(OFFB_CMLEN, mkU64(lineszB)));
/* be paranoid ... */
stmt( IRStmt_MBE(Imbe_Fence) );
putPC(mkU64( guest_PC_curr_instr + 4 ));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_FlushDCache;
DIP("dc cvau, %s\n", nameIReg64orZR(tt));
return True;
}
/* ------------------ ISB, DMB, DSB ------------------ */
/* 31 21 11 7 6 4
11010 10100 0 00 011 0011 CRm 1 01 11111 DMB opt
11010 10100 0 00 011 0011 CRm 1 00 11111 DSB opt
11010 10100 0 00 011 0011 CRm 1 10 11111 ISB opt
*/
if (INSN(31,22) == BITS10(1,1,0,1,0,1,0,1,0,0)
&& INSN(21,12) == BITS10(0,0,0,0,1,1,0,0,1,1)
&& INSN(7,7) == 1
&& INSN(6,5) <= BITS2(1,0) && INSN(4,0) == BITS5(1,1,1,1,1)) {
UInt opc = INSN(6,5);
UInt CRm = INSN(11,8);
vassert(opc <= 2 && CRm <= 15);
stmt(IRStmt_MBE(Imbe_Fence));
const HChar* opNames[3]
= { "dsb", "dmb", "isb" };
const HChar* howNames[16]
= { "#0", "oshld", "oshst", "osh", "#4", "nshld", "nshst", "nsh",
"#8", "ishld", "ishst", "ish", "#12", "ld", "st", "sy" };
DIP("%s %s\n", opNames[opc], howNames[CRm]);
return True;
}
/* -------------------- NOP -------------------- */
if (INSN(31,0) == 0xD503201F) {
DIP("nop\n");
return True;
}
/* -------------------- BRK -------------------- */
/* 31 23 20 4
1101 0100 001 imm16 00000 BRK #imm16
*/
if (INSN(31,24) == BITS8(1,1,0,1,0,1,0,0)
&& INSN(23,21) == BITS3(0,0,1) && INSN(4,0) == BITS5(0,0,0,0,0)) {
UInt imm16 = INSN(20,5);
/* Request SIGTRAP and then restart of this insn. */
putPC(mkU64(guest_PC_curr_instr + 0));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_SigTRAP;
DIP("brk #%u\n", imm16);
return True;
}
//fail:
vex_printf("ARM64 front end: branch_etc\n");
return False;
# undef INSN
}
/*------------------------------------------------------------*/
/*--- SIMD and FP instructions: helper functions ---*/
/*------------------------------------------------------------*/
/* Some constructors for interleave/deinterleave expressions. */
static IRExpr* mk_CatEvenLanes64x2 ( IRTemp a10, IRTemp b10 ) {
// returns a0 b0
return binop(Iop_InterleaveLO64x2, mkexpr(a10), mkexpr(b10));
}
static IRExpr* mk_CatOddLanes64x2 ( IRTemp a10, IRTemp b10 ) {
// returns a1 b1
return binop(Iop_InterleaveHI64x2, mkexpr(a10), mkexpr(b10));
}
static IRExpr* mk_CatEvenLanes32x4 ( IRTemp a3210, IRTemp b3210 ) {
// returns a2 a0 b2 b0
return binop(Iop_CatEvenLanes32x4, mkexpr(a3210), mkexpr(b3210));
}
static IRExpr* mk_CatOddLanes32x4 ( IRTemp a3210, IRTemp b3210 ) {
// returns a3 a1 b3 b1
return binop(Iop_CatOddLanes32x4, mkexpr(a3210), mkexpr(b3210));
}
static IRExpr* mk_InterleaveLO32x4 ( IRTemp a3210, IRTemp b3210 ) {
// returns a1 b1 a0 b0
return binop(Iop_InterleaveLO32x4, mkexpr(a3210), mkexpr(b3210));
}
static IRExpr* mk_InterleaveHI32x4 ( IRTemp a3210, IRTemp b3210 ) {
// returns a3 b3 a2 b2
return binop(Iop_InterleaveHI32x4, mkexpr(a3210), mkexpr(b3210));
}
static IRExpr* mk_CatEvenLanes16x8 ( IRTemp a76543210, IRTemp b76543210 ) {
// returns a6 a4 a2 a0 b6 b4 b2 b0
return binop(Iop_CatEvenLanes16x8, mkexpr(a76543210), mkexpr(b76543210));
}
static IRExpr* mk_CatOddLanes16x8 ( IRTemp a76543210, IRTemp b76543210 ) {
// returns a7 a5 a3 a1 b7 b5 b3 b1
return binop(Iop_CatOddLanes16x8, mkexpr(a76543210), mkexpr(b76543210));
}
static IRExpr* mk_InterleaveLO16x8 ( IRTemp a76543210, IRTemp b76543210 ) {
// returns a3 b3 a2 b2 a1 b1 a0 b0
return binop(Iop_InterleaveLO16x8, mkexpr(a76543210), mkexpr(b76543210));
}
static IRExpr* mk_InterleaveHI16x8 ( IRTemp a76543210, IRTemp b76543210 ) {
// returns a7 b7 a6 b6 a5 b5 a4 b4
return binop(Iop_InterleaveHI16x8, mkexpr(a76543210), mkexpr(b76543210));
}
static IRExpr* mk_CatEvenLanes8x16 ( IRTemp aFEDCBA9876543210,
IRTemp bFEDCBA9876543210 ) {
// returns aE aC aA a8 a6 a4 a2 a0 bE bC bA b8 b6 b4 b2 b0
return binop(Iop_CatEvenLanes8x16, mkexpr(aFEDCBA9876543210),
mkexpr(bFEDCBA9876543210));
}
static IRExpr* mk_CatOddLanes8x16 ( IRTemp aFEDCBA9876543210,
IRTemp bFEDCBA9876543210 ) {
// returns aF aD aB a9 a7 a5 a3 a1 bF bD bB b9 b7 b5 b3 b1
return binop(Iop_CatOddLanes8x16, mkexpr(aFEDCBA9876543210),
mkexpr(bFEDCBA9876543210));
}
static IRExpr* mk_InterleaveLO8x16 ( IRTemp aFEDCBA9876543210,
IRTemp bFEDCBA9876543210 ) {
// returns a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1 a0 b0
return binop(Iop_InterleaveLO8x16, mkexpr(aFEDCBA9876543210),
mkexpr(bFEDCBA9876543210));
}
static IRExpr* mk_InterleaveHI8x16 ( IRTemp aFEDCBA9876543210,
IRTemp bFEDCBA9876543210 ) {
// returns aF bF aE bE aD bD aC bC aB bB aA bA a9 b9 a8 b8
return binop(Iop_InterleaveHI8x16, mkexpr(aFEDCBA9876543210),
mkexpr(bFEDCBA9876543210));
}
/* Generate N copies of |bit| in the bottom of a ULong. */
static ULong Replicate ( ULong bit, Int N )
{
vassert(bit <= 1 && N >= 1 && N < 64);
if (bit == 0) {
return 0;
} else {
/* Careful. This won't work for N == 64. */
return (1ULL << N) - 1;
}
}
static ULong Replicate32x2 ( ULong bits32 )
{
vassert(0 == (bits32 & ~0xFFFFFFFFULL));
return (bits32 << 32) | bits32;
}
static ULong Replicate16x4 ( ULong bits16 )
{
vassert(0 == (bits16 & ~0xFFFFULL));
return Replicate32x2((bits16 << 16) | bits16);
}
static ULong Replicate8x8 ( ULong bits8 )
{
vassert(0 == (bits8 & ~0xFFULL));
return Replicate16x4((bits8 << 8) | bits8);
}
/* Expand the VFPExpandImm-style encoding in the bottom 8 bits of
|imm8| to either a 32-bit value if N is 32 or a 64 bit value if N
is 64. In the former case, the upper 32 bits of the returned value
are guaranteed to be zero. */
static ULong VFPExpandImm ( ULong imm8, Int N )
{
vassert(imm8 <= 0xFF);
vassert(N == 32 || N == 64);
Int E = ((N == 32) ? 8 : 11) - 2; // The spec incorrectly omits the -2.
Int F = N - E - 1;
ULong imm8_6 = (imm8 >> 6) & 1;
/* sign: 1 bit */
/* exp: E bits */
/* frac: F bits */
ULong sign = (imm8 >> 7) & 1;
ULong exp = ((imm8_6 ^ 1) << (E-1)) | Replicate(imm8_6, E-1);
ULong frac = ((imm8 & 63) << (F-6)) | Replicate(0, F-6);
vassert(sign < (1ULL << 1));
vassert(exp < (1ULL << E));
vassert(frac < (1ULL << F));
vassert(1 + E + F == N);
ULong res = (sign << (E+F)) | (exp << F) | frac;
return res;
}
/* Expand an AdvSIMDExpandImm-style encoding into a 64-bit value.
This might fail, as indicated by the returned Bool. Page 2530 of
the manual. */
static Bool AdvSIMDExpandImm ( /*OUT*/ULong* res,
UInt op, UInt cmode, UInt imm8 )
{
vassert(op <= 1);
vassert(cmode <= 15);
vassert(imm8 <= 255);
*res = 0; /* will overwrite iff returning True */
ULong imm64 = 0;
Bool testimm8 = False;
switch (cmode >> 1) {
case 0:
testimm8 = False; imm64 = Replicate32x2(imm8); break;
case 1:
testimm8 = True; imm64 = Replicate32x2(imm8 << 8); break;
case 2:
testimm8 = True; imm64 = Replicate32x2(imm8 << 16); break;
case 3:
testimm8 = True; imm64 = Replicate32x2(imm8 << 24); break;
case 4:
testimm8 = False; imm64 = Replicate16x4(imm8); break;
case 5:
testimm8 = True; imm64 = Replicate16x4(imm8 << 8); break;
case 6:
testimm8 = True;
if ((cmode & 1) == 0)
imm64 = Replicate32x2((imm8 << 8) | 0xFF);
else
imm64 = Replicate32x2((imm8 << 16) | 0xFFFF);
break;
case 7:
testimm8 = False;
if ((cmode & 1) == 0 && op == 0)
imm64 = Replicate8x8(imm8);
if ((cmode & 1) == 0 && op == 1) {
imm64 = 0; imm64 |= (imm8 & 0x80) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x40) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x20) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x10) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x08) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x04) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x02) ? 0xFF : 0x00;
imm64 <<= 8; imm64 |= (imm8 & 0x01) ? 0xFF : 0x00;
}
if ((cmode & 1) == 1 && op == 0) {
ULong imm8_7 = (imm8 >> 7) & 1;
ULong imm8_6 = (imm8 >> 6) & 1;
ULong imm8_50 = imm8 & 63;
ULong imm32 = (imm8_7 << (1 + 5 + 6 + 19))
| ((imm8_6 ^ 1) << (5 + 6 + 19))
| (Replicate(imm8_6, 5) << (6 + 19))
| (imm8_50 << 19);
imm64 = Replicate32x2(imm32);
}
if ((cmode & 1) == 1 && op == 1) {
// imm64 = imm8<7>:NOT(imm8<6>)
// :Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);
ULong imm8_7 = (imm8 >> 7) & 1;
ULong imm8_6 = (imm8 >> 6) & 1;
ULong imm8_50 = imm8 & 63;
imm64 = (imm8_7 << 63) | ((imm8_6 ^ 1) << 62)
| (Replicate(imm8_6, 8) << 54)
| (imm8_50 << 48);
}
break;
default:
vassert(0);
}
if (testimm8 && imm8 == 0)
return False;
*res = imm64;
return True;
}
/* Help a bit for decoding laneage for vector operations that can be
of the form 4x32, 2x64 or 2x32-and-zero-upper-half, as encoded by Q
and SZ bits, typically for vector floating point. */
static Bool getLaneInfo_Q_SZ ( /*OUT*/IRType* tyI, /*OUT*/IRType* tyF,
/*OUT*/UInt* nLanes, /*OUT*/Bool* zeroUpper,
/*OUT*/const HChar** arrSpec,
Bool bitQ, Bool bitSZ )
{
vassert(bitQ == True || bitQ == False);
vassert(bitSZ == True || bitSZ == False);
if (bitQ && bitSZ) { // 2x64
if (tyI) *tyI = Ity_I64;
if (tyF) *tyF = Ity_F64;
if (nLanes) *nLanes = 2;
if (zeroUpper) *zeroUpper = False;
if (arrSpec) *arrSpec = "2d";
return True;
}
if (bitQ && !bitSZ) { // 4x32
if (tyI) *tyI = Ity_I32;
if (tyF) *tyF = Ity_F32;
if (nLanes) *nLanes = 4;
if (zeroUpper) *zeroUpper = False;
if (arrSpec) *arrSpec = "4s";
return True;
}
if (!bitQ && !bitSZ) { // 2x32
if (tyI) *tyI = Ity_I32;
if (tyF) *tyF = Ity_F32;
if (nLanes) *nLanes = 2;
if (zeroUpper) *zeroUpper = True;
if (arrSpec) *arrSpec = "2s";
return True;
}
// Else impliedly 1x64, which isn't allowed.
return False;
}
/* Helper for decoding laneage for shift-style vector operations
that involve an immediate shift amount. */
static Bool getLaneInfo_IMMH_IMMB ( /*OUT*/UInt* shift, /*OUT*/UInt* szBlg2,
UInt immh, UInt immb )
{
vassert(immh < (1<<4));
vassert(immb < (1<<3));
UInt immhb = (immh << 3) | immb;
if (immh & 8) {
if (shift) *shift = 128 - immhb;
if (szBlg2) *szBlg2 = 3;
return True;
}
if (immh & 4) {
if (shift) *shift = 64 - immhb;
if (szBlg2) *szBlg2 = 2;
return True;
}
if (immh & 2) {
if (shift) *shift = 32 - immhb;
if (szBlg2) *szBlg2 = 1;
return True;
}
if (immh & 1) {
if (shift) *shift = 16 - immhb;
if (szBlg2) *szBlg2 = 0;
return True;
}
return False;
}
/* Generate IR to fold all lanes of the V128 value in 'src' as
characterised by the operator 'op', and return the result in the
bottom bits of a V128, with all other bits set to zero. */
static IRTemp math_FOLDV ( IRTemp src, IROp op )
{
/* The basic idea is to use repeated applications of Iop_CatEven*
and Iop_CatOdd* operators to 'src' so as to clone each lane into
a complete vector. Then fold all those vectors with 'op' and
zero out all but the least significant lane. */
switch (op) {
case Iop_Min8Sx16: case Iop_Min8Ux16:
case Iop_Max8Sx16: case Iop_Max8Ux16: case Iop_Add8x16: {
/* NB: temp naming here is misleading -- the naming is for 8
lanes of 16 bit, whereas what is being operated on is 16
lanes of 8 bits. */
IRTemp x76543210 = src;
IRTemp x76547654 = newTempV128();
IRTemp x32103210 = newTempV128();
assign(x76547654, mk_CatOddLanes64x2 (x76543210, x76543210));
assign(x32103210, mk_CatEvenLanes64x2(x76543210, x76543210));
IRTemp x76767676 = newTempV128();
IRTemp x54545454 = newTempV128();
IRTemp x32323232 = newTempV128();
IRTemp x10101010 = newTempV128();
assign(x76767676, mk_CatOddLanes32x4 (x76547654, x76547654));
assign(x54545454, mk_CatEvenLanes32x4(x76547654, x76547654));
assign(x32323232, mk_CatOddLanes32x4 (x32103210, x32103210));
assign(x10101010, mk_CatEvenLanes32x4(x32103210, x32103210));
IRTemp x77777777 = newTempV128();
IRTemp x66666666 = newTempV128();
IRTemp x55555555 = newTempV128();
IRTemp x44444444 = newTempV128();
IRTemp x33333333 = newTempV128();
IRTemp x22222222 = newTempV128();
IRTemp x11111111 = newTempV128();
IRTemp x00000000 = newTempV128();
assign(x77777777, mk_CatOddLanes16x8 (x76767676, x76767676));
assign(x66666666, mk_CatEvenLanes16x8(x76767676, x76767676));
assign(x55555555, mk_CatOddLanes16x8 (x54545454, x54545454));
assign(x44444444, mk_CatEvenLanes16x8(x54545454, x54545454));
assign(x33333333, mk_CatOddLanes16x8 (x32323232, x32323232));
assign(x22222222, mk_CatEvenLanes16x8(x32323232, x32323232));
assign(x11111111, mk_CatOddLanes16x8 (x10101010, x10101010));
assign(x00000000, mk_CatEvenLanes16x8(x10101010, x10101010));
/* Naming not misleading after here. */
IRTemp xAllF = newTempV128();
IRTemp xAllE = newTempV128();
IRTemp xAllD = newTempV128();
IRTemp xAllC = newTempV128();
IRTemp xAllB = newTempV128();
IRTemp xAllA = newTempV128();
IRTemp xAll9 = newTempV128();
IRTemp xAll8 = newTempV128();
IRTemp xAll7 = newTempV128();
IRTemp xAll6 = newTempV128();
IRTemp xAll5 = newTempV128();
IRTemp xAll4 = newTempV128();
IRTemp xAll3 = newTempV128();
IRTemp xAll2 = newTempV128();
IRTemp xAll1 = newTempV128();
IRTemp xAll0 = newTempV128();
assign(xAllF, mk_CatOddLanes8x16 (x77777777, x77777777));
assign(xAllE, mk_CatEvenLanes8x16(x77777777, x77777777));
assign(xAllD, mk_CatOddLanes8x16 (x66666666, x66666666));
assign(xAllC, mk_CatEvenLanes8x16(x66666666, x66666666));
assign(xAllB, mk_CatOddLanes8x16 (x55555555, x55555555));
assign(xAllA, mk_CatEvenLanes8x16(x55555555, x55555555));
assign(xAll9, mk_CatOddLanes8x16 (x44444444, x44444444));
assign(xAll8, mk_CatEvenLanes8x16(x44444444, x44444444));
assign(xAll7, mk_CatOddLanes8x16 (x33333333, x33333333));
assign(xAll6, mk_CatEvenLanes8x16(x33333333, x33333333));
assign(xAll5, mk_CatOddLanes8x16 (x22222222, x22222222));
assign(xAll4, mk_CatEvenLanes8x16(x22222222, x22222222));
assign(xAll3, mk_CatOddLanes8x16 (x11111111, x11111111));
assign(xAll2, mk_CatEvenLanes8x16(x11111111, x11111111));
assign(xAll1, mk_CatOddLanes8x16 (x00000000, x00000000));
assign(xAll0, mk_CatEvenLanes8x16(x00000000, x00000000));
IRTemp maxFE = newTempV128();
IRTemp maxDC = newTempV128();
IRTemp maxBA = newTempV128();
IRTemp max98 = newTempV128();
IRTemp max76 = newTempV128();
IRTemp max54 = newTempV128();
IRTemp max32 = newTempV128();
IRTemp max10 = newTempV128();
assign(maxFE, binop(op, mkexpr(xAllF), mkexpr(xAllE)));
assign(maxDC, binop(op, mkexpr(xAllD), mkexpr(xAllC)));
assign(maxBA, binop(op, mkexpr(xAllB), mkexpr(xAllA)));
assign(max98, binop(op, mkexpr(xAll9), mkexpr(xAll8)));
assign(max76, binop(op, mkexpr(xAll7), mkexpr(xAll6)));
assign(max54, binop(op, mkexpr(xAll5), mkexpr(xAll4)));
assign(max32, binop(op, mkexpr(xAll3), mkexpr(xAll2)));
assign(max10, binop(op, mkexpr(xAll1), mkexpr(xAll0)));
IRTemp maxFEDC = newTempV128();
IRTemp maxBA98 = newTempV128();
IRTemp max7654 = newTempV128();
IRTemp max3210 = newTempV128();
assign(maxFEDC, binop(op, mkexpr(maxFE), mkexpr(maxDC)));
assign(maxBA98, binop(op, mkexpr(maxBA), mkexpr(max98)));
assign(max7654, binop(op, mkexpr(max76), mkexpr(max54)));
assign(max3210, binop(op, mkexpr(max32), mkexpr(max10)));
IRTemp maxFEDCBA98 = newTempV128();
IRTemp max76543210 = newTempV128();
assign(maxFEDCBA98, binop(op, mkexpr(maxFEDC), mkexpr(maxBA98)));
assign(max76543210, binop(op, mkexpr(max7654), mkexpr(max3210)));
IRTemp maxAllLanes = newTempV128();
assign(maxAllLanes, binop(op, mkexpr(maxFEDCBA98),
mkexpr(max76543210)));
IRTemp res = newTempV128();
assign(res, unop(Iop_ZeroHI120ofV128, mkexpr(maxAllLanes)));
return res;
}
case Iop_Min16Sx8: case Iop_Min16Ux8:
case Iop_Max16Sx8: case Iop_Max16Ux8: case Iop_Add16x8: {
IRTemp x76543210 = src;
IRTemp x76547654 = newTempV128();
IRTemp x32103210 = newTempV128();
assign(x76547654, mk_CatOddLanes64x2 (x76543210, x76543210));
assign(x32103210, mk_CatEvenLanes64x2(x76543210, x76543210));
IRTemp x76767676 = newTempV128();
IRTemp x54545454 = newTempV128();
IRTemp x32323232 = newTempV128();
IRTemp x10101010 = newTempV128();
assign(x76767676, mk_CatOddLanes32x4 (x76547654, x76547654));
assign(x54545454, mk_CatEvenLanes32x4(x76547654, x76547654));
assign(x32323232, mk_CatOddLanes32x4 (x32103210, x32103210));
assign(x10101010, mk_CatEvenLanes32x4(x32103210, x32103210));
IRTemp x77777777 = newTempV128();
IRTemp x66666666 = newTempV128();
IRTemp x55555555 = newTempV128();
IRTemp x44444444 = newTempV128();
IRTemp x33333333 = newTempV128();
IRTemp x22222222 = newTempV128();
IRTemp x11111111 = newTempV128();
IRTemp x00000000 = newTempV128();
assign(x77777777, mk_CatOddLanes16x8 (x76767676, x76767676));
assign(x66666666, mk_CatEvenLanes16x8(x76767676, x76767676));
assign(x55555555, mk_CatOddLanes16x8 (x54545454, x54545454));
assign(x44444444, mk_CatEvenLanes16x8(x54545454, x54545454));
assign(x33333333, mk_CatOddLanes16x8 (x32323232, x32323232));
assign(x22222222, mk_CatEvenLanes16x8(x32323232, x32323232));
assign(x11111111, mk_CatOddLanes16x8 (x10101010, x10101010));
assign(x00000000, mk_CatEvenLanes16x8(x10101010, x10101010));
IRTemp max76 = newTempV128();
IRTemp max54 = newTempV128();
IRTemp max32 = newTempV128();
IRTemp max10 = newTempV128();
assign(max76, binop(op, mkexpr(x77777777), mkexpr(x66666666)));
assign(max54, binop(op, mkexpr(x55555555), mkexpr(x44444444)));
assign(max32, binop(op, mkexpr(x33333333), mkexpr(x22222222)));
assign(max10, binop(op, mkexpr(x11111111), mkexpr(x00000000)));
IRTemp max7654 = newTempV128();
IRTemp max3210 = newTempV128();
assign(max7654, binop(op, mkexpr(max76), mkexpr(max54)));
assign(max3210, binop(op, mkexpr(max32), mkexpr(max10)));
IRTemp max76543210 = newTempV128();
assign(max76543210, binop(op, mkexpr(max7654), mkexpr(max3210)));
IRTemp res = newTempV128();
assign(res, unop(Iop_ZeroHI112ofV128, mkexpr(max76543210)));
return res;
}
case Iop_Min32Sx4: case Iop_Min32Ux4:
case Iop_Max32Sx4: case Iop_Max32Ux4: case Iop_Add32x4: {
IRTemp x3210 = src;
IRTemp x3232 = newTempV128();
IRTemp x1010 = newTempV128();
assign(x3232, mk_CatOddLanes64x2 (x3210, x3210));
assign(x1010, mk_CatEvenLanes64x2(x3210, x3210));
IRTemp x3333 = newTempV128();
IRTemp x2222 = newTempV128();
IRTemp x1111 = newTempV128();
IRTemp x0000 = newTempV128();
assign(x3333, mk_CatOddLanes32x4 (x3232, x3232));
assign(x2222, mk_CatEvenLanes32x4(x3232, x3232));
assign(x1111, mk_CatOddLanes32x4 (x1010, x1010));
assign(x0000, mk_CatEvenLanes32x4(x1010, x1010));
IRTemp max32 = newTempV128();
IRTemp max10 = newTempV128();
assign(max32, binop(op, mkexpr(x3333), mkexpr(x2222)));
assign(max10, binop(op, mkexpr(x1111), mkexpr(x0000)));
IRTemp max3210 = newTempV128();
assign(max3210, binop(op, mkexpr(max32), mkexpr(max10)));
IRTemp res = newTempV128();
assign(res, unop(Iop_ZeroHI96ofV128, mkexpr(max3210)));
return res;
}
case Iop_Add64x2: {
IRTemp x10 = src;
IRTemp x00 = newTempV128();
IRTemp x11 = newTempV128();
assign(x11, binop(Iop_InterleaveHI64x2, mkexpr(x10), mkexpr(x10)));
assign(x00, binop(Iop_InterleaveLO64x2, mkexpr(x10), mkexpr(x10)));
IRTemp max10 = newTempV128();
assign(max10, binop(op, mkexpr(x11), mkexpr(x00)));
IRTemp res = newTempV128();
assign(res, unop(Iop_ZeroHI64ofV128, mkexpr(max10)));
return res;
}
default:
vassert(0);
}
}
/* Generate IR for TBL and TBX. This deals with the 128 bit case
only. */
static IRTemp math_TBL_TBX ( IRTemp tab[4], UInt len, IRTemp src,
IRTemp oor_values )
{
vassert(len >= 0 && len <= 3);
/* Generate some useful constants as concisely as possible. */
IRTemp half15 = newTemp(Ity_I64);
assign(half15, mkU64(0x0F0F0F0F0F0F0F0FULL));
IRTemp half16 = newTemp(Ity_I64);
assign(half16, mkU64(0x1010101010101010ULL));
/* A zero vector */
IRTemp allZero = newTempV128();
assign(allZero, mkV128(0x0000));
/* A vector containing 15 in each 8-bit lane */
IRTemp all15 = newTempV128();
assign(all15, binop(Iop_64HLtoV128, mkexpr(half15), mkexpr(half15)));
/* A vector containing 16 in each 8-bit lane */
IRTemp all16 = newTempV128();
assign(all16, binop(Iop_64HLtoV128, mkexpr(half16), mkexpr(half16)));
/* A vector containing 32 in each 8-bit lane */
IRTemp all32 = newTempV128();
assign(all32, binop(Iop_Add8x16, mkexpr(all16), mkexpr(all16)));
/* A vector containing 48 in each 8-bit lane */
IRTemp all48 = newTempV128();
assign(all48, binop(Iop_Add8x16, mkexpr(all16), mkexpr(all32)));
/* A vector containing 64 in each 8-bit lane */
IRTemp all64 = newTempV128();
assign(all64, binop(Iop_Add8x16, mkexpr(all32), mkexpr(all32)));
/* Group the 16/32/48/64 vectors so as to be indexable. */
IRTemp allXX[4] = { all16, all32, all48, all64 };
/* Compute the result for each table vector, with zeroes in places
where the index values are out of range, and OR them into the
running vector. */
IRTemp running_result = newTempV128();
assign(running_result, mkV128(0));
UInt tabent;
for (tabent = 0; tabent <= len; tabent++) {
vassert(tabent >= 0 && tabent < 4);
IRTemp bias = newTempV128();
assign(bias,
mkexpr(tabent == 0 ? allZero : allXX[tabent-1]));
IRTemp biased_indices = newTempV128();
assign(biased_indices,
binop(Iop_Sub8x16, mkexpr(src), mkexpr(bias)));
IRTemp valid_mask = newTempV128();
assign(valid_mask,
binop(Iop_CmpGT8Ux16, mkexpr(all16), mkexpr(biased_indices)));
IRTemp safe_biased_indices = newTempV128();
assign(safe_biased_indices,
binop(Iop_AndV128, mkexpr(biased_indices), mkexpr(all15)));
IRTemp results_or_junk = newTempV128();
assign(results_or_junk,
binop(Iop_Perm8x16, mkexpr(tab[tabent]),
mkexpr(safe_biased_indices)));
IRTemp results_or_zero = newTempV128();
assign(results_or_zero,
binop(Iop_AndV128, mkexpr(results_or_junk), mkexpr(valid_mask)));
/* And OR that into the running result. */
IRTemp tmp = newTempV128();
assign(tmp, binop(Iop_OrV128, mkexpr(results_or_zero),
mkexpr(running_result)));
running_result = tmp;
}
/* So now running_result holds the overall result where the indices
are in range, and zero in out-of-range lanes. Now we need to
compute an overall validity mask and use this to copy in the
lanes in the oor_values for out of range indices. This is
unnecessary for TBL but will get folded out by iropt, so we lean
on that and generate the same code for TBL and TBX here. */
IRTemp overall_valid_mask = newTempV128();
assign(overall_valid_mask,
binop(Iop_CmpGT8Ux16, mkexpr(allXX[len]), mkexpr(src)));
IRTemp result = newTempV128();
assign(result,
binop(Iop_OrV128,
mkexpr(running_result),
binop(Iop_AndV128,
mkexpr(oor_values),
unop(Iop_NotV128, mkexpr(overall_valid_mask)))));
return result;
}
/* Let |argL| and |argR| be V128 values, and let |opI64x2toV128| be
an op which takes two I64s and produces a V128. That is, a widening
operator. Generate IR which applies |opI64x2toV128| to either the
lower (if |is2| is False) or upper (if |is2| is True) halves of
|argL| and |argR|, and return the value in a new IRTemp.
*/
static
IRTemp math_BINARY_WIDENING_V128 ( Bool is2, IROp opI64x2toV128,
IRExpr* argL, IRExpr* argR )
{
IRTemp res = newTempV128();
IROp slice = is2 ? Iop_V128HIto64 : Iop_V128to64;
assign(res, binop(opI64x2toV128, unop(slice, argL),
unop(slice, argR)));
return res;
}
/* Generate signed/unsigned absolute difference vector IR. */
static
IRTemp math_ABD ( Bool isU, UInt size, IRExpr* argLE, IRExpr* argRE )
{
vassert(size <= 3);
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
IRTemp msk = newTempV128();
IRTemp res = newTempV128();
assign(argL, argLE);
assign(argR, argRE);
assign(msk, binop(isU ? mkVecCMPGTU(size) : mkVecCMPGTS(size),
mkexpr(argL), mkexpr(argR)));
assign(res,
binop(Iop_OrV128,
binop(Iop_AndV128,
binop(mkVecSUB(size), mkexpr(argL), mkexpr(argR)),
mkexpr(msk)),
binop(Iop_AndV128,
binop(mkVecSUB(size), mkexpr(argR), mkexpr(argL)),
unop(Iop_NotV128, mkexpr(msk)))));
return res;
}
/* Generate IR that takes a V128 and sign- or zero-widens
either the lower or upper set of lanes to twice-as-wide,
resulting in a new V128 value. */
static
IRTemp math_WIDEN_LO_OR_HI_LANES ( Bool zWiden, Bool fromUpperHalf,
UInt sizeNarrow, IRExpr* srcE )
{
IRTemp src = newTempV128();
IRTemp res = newTempV128();
assign(src, srcE);
switch (sizeNarrow) {
case X10:
assign(res,
binop(zWiden ? Iop_ShrN64x2 : Iop_SarN64x2,
binop(fromUpperHalf ? Iop_InterleaveHI32x4
: Iop_InterleaveLO32x4,
mkexpr(src),
mkexpr(src)),
mkU8(32)));
break;
case X01:
assign(res,
binop(zWiden ? Iop_ShrN32x4 : Iop_SarN32x4,
binop(fromUpperHalf ? Iop_InterleaveHI16x8
: Iop_InterleaveLO16x8,
mkexpr(src),
mkexpr(src)),
mkU8(16)));
break;
case X00:
assign(res,
binop(zWiden ? Iop_ShrN16x8 : Iop_SarN16x8,
binop(fromUpperHalf ? Iop_InterleaveHI8x16
: Iop_InterleaveLO8x16,
mkexpr(src),
mkexpr(src)),
mkU8(8)));
break;
default:
vassert(0);
}
return res;
}
/* Generate IR that takes a V128 and sign- or zero-widens
either the even or odd lanes to twice-as-wide,
resulting in a new V128 value. */
static
IRTemp math_WIDEN_EVEN_OR_ODD_LANES ( Bool zWiden, Bool fromOdd,
UInt sizeNarrow, IRExpr* srcE )
{
IRTemp src = newTempV128();
IRTemp res = newTempV128();
IROp opSAR = mkVecSARN(sizeNarrow+1);
IROp opSHR = mkVecSHRN(sizeNarrow+1);
IROp opSHL = mkVecSHLN(sizeNarrow+1);
IROp opSxR = zWiden ? opSHR : opSAR;
UInt amt = 0;
switch (sizeNarrow) {
case X10: amt = 32; break;
case X01: amt = 16; break;
case X00: amt = 8; break;
default: vassert(0);
}
assign(src, srcE);
if (fromOdd) {
assign(res, binop(opSxR, mkexpr(src), mkU8(amt)));
} else {
assign(res, binop(opSxR, binop(opSHL, mkexpr(src), mkU8(amt)),
mkU8(amt)));
}
return res;
}
/* Generate IR that takes two V128s and narrows (takes lower half)
of each lane, producing a single V128 value. */
static
IRTemp math_NARROW_LANES ( IRTemp argHi, IRTemp argLo, UInt sizeNarrow )
{
IRTemp res = newTempV128();
assign(res, binop(mkVecCATEVENLANES(sizeNarrow),
mkexpr(argHi), mkexpr(argLo)));
return res;
}
/* Return a temp which holds the vector dup of the lane of width
(1 << size) obtained from src[laneNo]. */
static
IRTemp math_DUP_VEC_ELEM ( IRExpr* src, UInt size, UInt laneNo )
{
vassert(size <= 3);
/* Normalise |laneNo| so it is of the form
x000 for D, xx00 for S, xxx0 for H, and xxxx for B.
This puts the bits we want to inspect at constant offsets
regardless of the value of |size|.
*/
UInt ix = laneNo << size;
vassert(ix <= 15);
IROp ops[4] = { Iop_INVALID, Iop_INVALID, Iop_INVALID, Iop_INVALID };
switch (size) {
case 0: /* B */
ops[0] = (ix & 1) ? Iop_CatOddLanes8x16 : Iop_CatEvenLanes8x16;
/* fallthrough */
case 1: /* H */
ops[1] = (ix & 2) ? Iop_CatOddLanes16x8 : Iop_CatEvenLanes16x8;
/* fallthrough */
case 2: /* S */
ops[2] = (ix & 4) ? Iop_CatOddLanes32x4 : Iop_CatEvenLanes32x4;
/* fallthrough */
case 3: /* D */
ops[3] = (ix & 8) ? Iop_InterleaveHI64x2 : Iop_InterleaveLO64x2;
break;
default:
vassert(0);
}
IRTemp res = newTempV128();
assign(res, src);
Int i;
for (i = 3; i >= 0; i--) {
if (ops[i] == Iop_INVALID)
break;
IRTemp tmp = newTempV128();
assign(tmp, binop(ops[i], mkexpr(res), mkexpr(res)));
res = tmp;
}
return res;
}
/* Let |srcV| be a V128 value, and let |imm5| be a lane-and-size
selector encoded as shown below. Return a new V128 holding the
selected lane from |srcV| dup'd out to V128, and also return the
lane number, log2 of the lane size in bytes, and width-character via
*laneNo, *laneSzLg2 and *laneCh respectively. It may be that imm5
is an invalid selector, in which case return
IRTemp_INVALID, 0, 0 and '?' respectively.
imm5 = xxxx1 signifies .b[xxxx]
= xxx10 .h[xxx]
= xx100 .s[xx]
= x1000 .d[x]
otherwise invalid
*/
static
IRTemp handle_DUP_VEC_ELEM ( /*OUT*/UInt* laneNo,
/*OUT*/UInt* laneSzLg2, /*OUT*/HChar* laneCh,
IRExpr* srcV, UInt imm5 )
{
*laneNo = 0;
*laneSzLg2 = 0;
*laneCh = '?';
if (imm5 & 1) {
*laneNo = (imm5 >> 1) & 15;
*laneSzLg2 = 0;
*laneCh = 'b';
}
else if (imm5 & 2) {
*laneNo = (imm5 >> 2) & 7;
*laneSzLg2 = 1;
*laneCh = 'h';
}
else if (imm5 & 4) {
*laneNo = (imm5 >> 3) & 3;
*laneSzLg2 = 2;
*laneCh = 's';
}
else if (imm5 & 8) {
*laneNo = (imm5 >> 4) & 1;
*laneSzLg2 = 3;
*laneCh = 'd';
}
else {
/* invalid */
return IRTemp_INVALID;
}
return math_DUP_VEC_ELEM(srcV, *laneSzLg2, *laneNo);
}
/* Clone |imm| to every lane of a V128, with lane size log2 of |size|. */
static
IRTemp math_VEC_DUP_IMM ( UInt size, ULong imm )
{
IRType ty = Ity_INVALID;
IRTemp rcS = IRTemp_INVALID;
switch (size) {
case X01:
vassert(imm <= 0xFFFFULL);
ty = Ity_I16;
rcS = newTemp(ty); assign(rcS, mkU16( (UShort)imm ));
break;
case X10:
vassert(imm <= 0xFFFFFFFFULL);
ty = Ity_I32;
rcS = newTemp(ty); assign(rcS, mkU32( (UInt)imm ));
break;
case X11:
ty = Ity_I64;
rcS = newTemp(ty); assign(rcS, mkU64(imm)); break;
default:
vassert(0);
}
IRTemp rcV = math_DUP_TO_V128(rcS, ty);
return rcV;
}
/* Let |new64| be a V128 in which only the lower 64 bits are interesting,
and the upper can contain any value -- it is ignored. If |is2| is False,
generate IR to put |new64| in the lower half of vector reg |dd| and zero
the upper half. If |is2| is True, generate IR to put |new64| in the upper
half of vector reg |dd| and leave the lower half unchanged. This
simulates the behaviour of the "foo/foo2" instructions in which the
destination is half the width of sources, for example addhn/addhn2.
*/
static
void putLO64andZUorPutHI64 ( Bool is2, UInt dd, IRTemp new64 )
{
if (is2) {
/* Get the old contents of Vdd, zero the upper half, and replace
it with 'x'. */
IRTemp t_zero_oldLO = newTempV128();
assign(t_zero_oldLO, unop(Iop_ZeroHI64ofV128, getQReg128(dd)));
IRTemp t_newHI_zero = newTempV128();
assign(t_newHI_zero, binop(Iop_InterleaveLO64x2, mkexpr(new64),
mkV128(0x0000)));
IRTemp res = newTempV128();
assign(res, binop(Iop_OrV128, mkexpr(t_zero_oldLO),
mkexpr(t_newHI_zero)));
putQReg128(dd, mkexpr(res));
} else {
/* This is simple. */
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(new64)));
}
}
/* Compute vector SQABS at lane size |size| for |srcE|, returning
the q result in |*qabs| and the normal result in |*nabs|. */
static
void math_SQABS ( /*OUT*/IRTemp* qabs, /*OUT*/IRTemp* nabs,
IRExpr* srcE, UInt size )
{
IRTemp src, mask, maskn, nsub, qsub;
src = mask = maskn = nsub = qsub = IRTemp_INVALID;
newTempsV128_7(&src, &mask, &maskn, &nsub, &qsub, nabs, qabs);
assign(src, srcE);
assign(mask, binop(mkVecCMPGTS(size), mkV128(0x0000), mkexpr(src)));
assign(maskn, unop(Iop_NotV128, mkexpr(mask)));
assign(nsub, binop(mkVecSUB(size), mkV128(0x0000), mkexpr(src)));
assign(qsub, binop(mkVecQSUBS(size), mkV128(0x0000), mkexpr(src)));
assign(*nabs, binop(Iop_OrV128,
binop(Iop_AndV128, mkexpr(nsub), mkexpr(mask)),
binop(Iop_AndV128, mkexpr(src), mkexpr(maskn))));
assign(*qabs, binop(Iop_OrV128,
binop(Iop_AndV128, mkexpr(qsub), mkexpr(mask)),
binop(Iop_AndV128, mkexpr(src), mkexpr(maskn))));
}
/* Compute vector SQNEG at lane size |size| for |srcE|, returning
the q result in |*qneg| and the normal result in |*nneg|. */
static
void math_SQNEG ( /*OUT*/IRTemp* qneg, /*OUT*/IRTemp* nneg,
IRExpr* srcE, UInt size )
{
IRTemp src = IRTemp_INVALID;
newTempsV128_3(&src, nneg, qneg);
assign(src, srcE);
assign(*nneg, binop(mkVecSUB(size), mkV128(0x0000), mkexpr(src)));
assign(*qneg, binop(mkVecQSUBS(size), mkV128(0x0000), mkexpr(src)));
}
/* Zero all except the least significant lane of |srcE|, where |size|
indicates the lane size in the usual way. */
static IRTemp math_ZERO_ALL_EXCEPT_LOWEST_LANE ( UInt size, IRExpr* srcE )
{
vassert(size < 4);
IRTemp t = newTempV128();
assign(t, unop(mkVecZEROHIxxOFV128(size), srcE));
return t;
}
/* Generate IR to compute vector widening MULL from either the lower
(is2==False) or upper (is2==True) halves of vecN and vecM. The
widening multiplies are unsigned when isU==True and signed when
isU==False. |size| is the narrow lane size indication. Optionally,
the product may be added to or subtracted from vecD, at the wide lane
size. This happens when |mas| is 'a' (add) or 's' (sub). When |mas|
is 'm' (only multiply) then the accumulate part does not happen, and
|vecD| is expected to == IRTemp_INVALID.
Only size==0 (h_b_b), size==1 (s_h_h) and size==2 (d_s_s) variants
are allowed. The result is returned in a new IRTemp, which is
returned in *res. */
static
void math_MULL_ACC ( /*OUT*/IRTemp* res,
Bool is2, Bool isU, UInt size, HChar mas,
IRTemp vecN, IRTemp vecM, IRTemp vecD )
{
vassert(res && *res == IRTemp_INVALID);
vassert(size <= 2);
vassert(mas == 'm' || mas == 'a' || mas == 's');
if (mas == 'm') vassert(vecD == IRTemp_INVALID);
IROp mulOp = isU ? mkVecMULLU(size) : mkVecMULLS(size);
IROp accOp = (mas == 'a') ? mkVecADD(size+1)
: (mas == 's' ? mkVecSUB(size+1)
: Iop_INVALID);
IRTemp mul = math_BINARY_WIDENING_V128(is2, mulOp,
mkexpr(vecN), mkexpr(vecM));
*res = newTempV128();
assign(*res, mas == 'm' ? mkexpr(mul)
: binop(accOp, mkexpr(vecD), mkexpr(mul)));
}
/* Same as math_MULL_ACC, except the multiply is signed widening,
the multiplied value is then doubled, before being added to or
subtracted from the accumulated value. And everything is
saturated. In all cases, saturation residuals are returned
via (sat1q, sat1n), and in the accumulate cases,
via (sat2q, sat2n) too. All results are returned in new temporaries.
In the no-accumulate case, *sat2q and *sat2n are never instantiated,
so the caller can tell this has happened. */
static
void math_SQDMULL_ACC ( /*OUT*/IRTemp* res,
/*OUT*/IRTemp* sat1q, /*OUT*/IRTemp* sat1n,
/*OUT*/IRTemp* sat2q, /*OUT*/IRTemp* sat2n,
Bool is2, UInt size, HChar mas,
IRTemp vecN, IRTemp vecM, IRTemp vecD )
{
vassert(size <= 2);
vassert(mas == 'm' || mas == 'a' || mas == 's');
/* Compute
sat1q = vecN.D[is2] *sq vecM.d[is2] *q 2
sat1n = vecN.D[is2] *s vecM.d[is2] * 2
IOW take either the low or high halves of vecN and vecM, signed widen,
multiply, double that, and signedly saturate. Also compute the same
but without saturation.
*/
vassert(sat2q && *sat2q == IRTemp_INVALID);
vassert(sat2n && *sat2n == IRTemp_INVALID);
newTempsV128_3(sat1q, sat1n, res);
IRTemp tq = math_BINARY_WIDENING_V128(is2, mkVecQDMULLS(size),
mkexpr(vecN), mkexpr(vecM));
IRTemp tn = math_BINARY_WIDENING_V128(is2, mkVecMULLS(size),
mkexpr(vecN), mkexpr(vecM));
assign(*sat1q, mkexpr(tq));
assign(*sat1n, binop(mkVecADD(size+1), mkexpr(tn), mkexpr(tn)));
/* If there is no accumulation, the final result is sat1q,
and there's no assignment to sat2q or sat2n. */
if (mas == 'm') {
assign(*res, mkexpr(*sat1q));
return;
}
/* Compute
sat2q = vecD +sq/-sq sat1q
sat2n = vecD +/- sat1n
result = sat2q
*/
newTempsV128_2(sat2q, sat2n);
assign(*sat2q, binop(mas == 'a' ? mkVecQADDS(size+1) : mkVecQSUBS(size+1),
mkexpr(vecD), mkexpr(*sat1q)));
assign(*sat2n, binop(mas == 'a' ? mkVecADD(size+1) : mkVecSUB(size+1),
mkexpr(vecD), mkexpr(*sat1n)));
assign(*res, mkexpr(*sat2q));
}
/* Generate IR for widening signed vector multiplies. The operands
have their lane width signedly widened, and they are then multiplied
at the wider width, returning results in two new IRTemps. */
static
void math_MULLS ( /*OUT*/IRTemp* resHI, /*OUT*/IRTemp* resLO,
UInt sizeNarrow, IRTemp argL, IRTemp argR )
{
vassert(sizeNarrow <= 2);
newTempsV128_2(resHI, resLO);
IRTemp argLhi = newTemp(Ity_I64);
IRTemp argLlo = newTemp(Ity_I64);
IRTemp argRhi = newTemp(Ity_I64);
IRTemp argRlo = newTemp(Ity_I64);
assign(argLhi, unop(Iop_V128HIto64, mkexpr(argL)));
assign(argLlo, unop(Iop_V128to64, mkexpr(argL)));
assign(argRhi, unop(Iop_V128HIto64, mkexpr(argR)));
assign(argRlo, unop(Iop_V128to64, mkexpr(argR)));
IROp opMulls = mkVecMULLS(sizeNarrow);
assign(*resHI, binop(opMulls, mkexpr(argLhi), mkexpr(argRhi)));
assign(*resLO, binop(opMulls, mkexpr(argLlo), mkexpr(argRlo)));
}
/* Generate IR for SQDMULH and SQRDMULH: signedly wideningly multiply,
double that, possibly add a rounding constant (R variants), and take
the high half. */
static
void math_SQDMULH ( /*OUT*/IRTemp* res,
/*OUT*/IRTemp* sat1q, /*OUT*/IRTemp* sat1n,
Bool isR, UInt size, IRTemp vN, IRTemp vM )
{
vassert(size == X01 || size == X10); /* s or h only */
newTempsV128_3(res, sat1q, sat1n);
IRTemp mullsHI = IRTemp_INVALID, mullsLO = IRTemp_INVALID;
math_MULLS(&mullsHI, &mullsLO, size, vN, vM);
IRTemp addWide = mkVecADD(size+1);
if (isR) {
assign(*sat1q, binop(mkVecQRDMULHIS(size), mkexpr(vN), mkexpr(vM)));
Int rcShift = size == X01 ? 15 : 31;
IRTemp roundConst = math_VEC_DUP_IMM(size+1, 1ULL << rcShift);
assign(*sat1n,
binop(mkVecCATODDLANES(size),
binop(addWide,
binop(addWide, mkexpr(mullsHI), mkexpr(mullsHI)),
mkexpr(roundConst)),
binop(addWide,
binop(addWide, mkexpr(mullsLO), mkexpr(mullsLO)),
mkexpr(roundConst))));
} else {
assign(*sat1q, binop(mkVecQDMULHIS(size), mkexpr(vN), mkexpr(vM)));
assign(*sat1n,
binop(mkVecCATODDLANES(size),
binop(addWide, mkexpr(mullsHI), mkexpr(mullsHI)),
binop(addWide, mkexpr(mullsLO), mkexpr(mullsLO))));
}
assign(*res, mkexpr(*sat1q));
}
/* Generate IR for SQSHL, UQSHL, SQSHLU by imm. Put the result in
a new temp in *res, and the Q difference pair in new temps in
*qDiff1 and *qDiff2 respectively. |nm| denotes which of the
three operations it is. */
static
void math_QSHL_IMM ( /*OUT*/IRTemp* res,
/*OUT*/IRTemp* qDiff1, /*OUT*/IRTemp* qDiff2,
IRTemp src, UInt size, UInt shift, const HChar* nm )
{
vassert(size <= 3);
UInt laneBits = 8 << size;
vassert(shift < laneBits);
newTempsV128_3(res, qDiff1, qDiff2);
IRTemp z128 = newTempV128();
assign(z128, mkV128(0x0000));
/* UQSHL */
if (vex_streq(nm, "uqshl")) {
IROp qop = mkVecQSHLNSATUU(size);
assign(*res, binop(qop, mkexpr(src), mkU8(shift)));
if (shift == 0) {
/* No shift means no saturation. */
assign(*qDiff1, mkexpr(z128));
assign(*qDiff2, mkexpr(z128));
} else {
/* Saturation has occurred if any of the shifted-out bits are
nonzero. We get the shifted-out bits by right-shifting the
original value. */
UInt rshift = laneBits - shift;
vassert(rshift >= 1 && rshift < laneBits);
assign(*qDiff1, binop(mkVecSHRN(size), mkexpr(src), mkU8(rshift)));
assign(*qDiff2, mkexpr(z128));
}
return;
}
/* SQSHL */
if (vex_streq(nm, "sqshl")) {
IROp qop = mkVecQSHLNSATSS(size);
assign(*res, binop(qop, mkexpr(src), mkU8(shift)));
if (shift == 0) {
/* No shift means no saturation. */
assign(*qDiff1, mkexpr(z128));
assign(*qDiff2, mkexpr(z128));
} else {
/* Saturation has occurred if any of the shifted-out bits are
different from the top bit of the original value. */
UInt rshift = laneBits - 1 - shift;
vassert(rshift >= 0 && rshift < laneBits-1);
/* qDiff1 is the shifted out bits, and the top bit of the original
value, preceded by zeroes. */
assign(*qDiff1, binop(mkVecSHRN(size), mkexpr(src), mkU8(rshift)));
/* qDiff2 is the top bit of the original value, cloned the
correct number of times. */
assign(*qDiff2, binop(mkVecSHRN(size),
binop(mkVecSARN(size), mkexpr(src),
mkU8(laneBits-1)),
mkU8(rshift)));
/* This also succeeds in comparing the top bit of the original
value to itself, which is a bit stupid, but not wrong. */
}
return;
}
/* SQSHLU */
if (vex_streq(nm, "sqshlu")) {
IROp qop = mkVecQSHLNSATSU(size);
assign(*res, binop(qop, mkexpr(src), mkU8(shift)));
if (shift == 0) {
/* If there's no shift, saturation depends on the top bit
of the source. */
assign(*qDiff1, binop(mkVecSHRN(size), mkexpr(src), mkU8(laneBits-1)));
assign(*qDiff2, mkexpr(z128));
} else {
/* Saturation has occurred if any of the shifted-out bits are
nonzero. We get the shifted-out bits by right-shifting the
original value. */
UInt rshift = laneBits - shift;
vassert(rshift >= 1 && rshift < laneBits);
assign(*qDiff1, binop(mkVecSHRN(size), mkexpr(src), mkU8(rshift)));
assign(*qDiff2, mkexpr(z128));
}
return;
}
vassert(0);
}
/* Generate IR to do SRHADD and URHADD. */
static
IRTemp math_RHADD ( UInt size, Bool isU, IRTemp aa, IRTemp bb )
{
/* Generate this:
(A >> 1) + (B >> 1) + (((A & 1) + (B & 1) + 1) >> 1)
*/
vassert(size <= 3);
IROp opSHR = isU ? mkVecSHRN(size) : mkVecSARN(size);
IROp opADD = mkVecADD(size);
/* The only tricky bit is to generate the correct vector 1 constant. */
const ULong ones64[4]
= { 0x0101010101010101ULL, 0x0001000100010001ULL,
0x0000000100000001ULL, 0x0000000000000001ULL };
IRTemp imm64 = newTemp(Ity_I64);
assign(imm64, mkU64(ones64[size]));
IRTemp vecOne = newTempV128();
assign(vecOne, binop(Iop_64HLtoV128, mkexpr(imm64), mkexpr(imm64)));
IRTemp scaOne = newTemp(Ity_I8);
assign(scaOne, mkU8(1));
IRTemp res = newTempV128();
assign(res,
binop(opADD,
binop(opSHR, mkexpr(aa), mkexpr(scaOne)),
binop(opADD,
binop(opSHR, mkexpr(bb), mkexpr(scaOne)),
binop(opSHR,
binop(opADD,
binop(opADD,
binop(Iop_AndV128, mkexpr(aa),
mkexpr(vecOne)),
binop(Iop_AndV128, mkexpr(bb),
mkexpr(vecOne))
),
mkexpr(vecOne)
),
mkexpr(scaOne)
)
)
)
);
return res;
}
/* QCFLAG tracks the SIMD sticky saturation status. Update the status
thusly: if, after application of |opZHI| to both |qres| and |nres|,
they have the same value, leave QCFLAG unchanged. Otherwise, set it
(implicitly) to 1. |opZHI| may only be one of the Iop_ZeroHIxxofV128
operators, or Iop_INVALID, in which case |qres| and |nres| are used
unmodified. The presence |opZHI| means this function can be used to
generate QCFLAG update code for both scalar and vector SIMD operations.
*/
static
void updateQCFLAGwithDifferenceZHI ( IRTemp qres, IRTemp nres, IROp opZHI )
{
IRTemp diff = newTempV128();
IRTemp oldQCFLAG = newTempV128();
IRTemp newQCFLAG = newTempV128();
if (opZHI == Iop_INVALID) {
assign(diff, binop(Iop_XorV128, mkexpr(qres), mkexpr(nres)));
} else {
vassert(opZHI == Iop_ZeroHI64ofV128
|| opZHI == Iop_ZeroHI96ofV128 || opZHI == Iop_ZeroHI112ofV128);
assign(diff, unop(opZHI, binop(Iop_XorV128, mkexpr(qres), mkexpr(nres))));
}
assign(oldQCFLAG, IRExpr_Get(OFFB_QCFLAG, Ity_V128));
assign(newQCFLAG, binop(Iop_OrV128, mkexpr(oldQCFLAG), mkexpr(diff)));
stmt(IRStmt_Put(OFFB_QCFLAG, mkexpr(newQCFLAG)));
}
/* A variant of updateQCFLAGwithDifferenceZHI in which |qres| and |nres|
are used unmodified, hence suitable for QCFLAG updates for whole-vector
operations. */
static
void updateQCFLAGwithDifference ( IRTemp qres, IRTemp nres )
{
updateQCFLAGwithDifferenceZHI(qres, nres, Iop_INVALID);
}
/* Generate IR to rearrange two vector values in a way which is useful
for doing S/D add-pair etc operations. There are 3 cases:
2d: [m1 m0] [n1 n0] --> [m1 n1] [m0 n0]
4s: [m3 m2 m1 m0] [n3 n2 n1 n0] --> [m3 m1 n3 n1] [m2 m0 n2 n0]
2s: [m2 m2 m1 m0] [n3 n2 n1 n0] --> [0 0 m1 n1] [0 0 m0 n0]
The cases are distinguished as follows:
isD == True, bitQ == 1 => 2d
isD == False, bitQ == 1 => 4s
isD == False, bitQ == 0 => 2s
*/
static
void math_REARRANGE_FOR_FLOATING_PAIRWISE (
/*OUT*/IRTemp* rearrL, /*OUT*/IRTemp* rearrR,
IRTemp vecM, IRTemp vecN, Bool isD, UInt bitQ
)
{
vassert(rearrL && *rearrL == IRTemp_INVALID);
vassert(rearrR && *rearrR == IRTemp_INVALID);
*rearrL = newTempV128();
*rearrR = newTempV128();
if (isD) {
// 2d case
vassert(bitQ == 1);
assign(*rearrL, binop(Iop_InterleaveHI64x2, mkexpr(vecM), mkexpr(vecN)));
assign(*rearrR, binop(Iop_InterleaveLO64x2, mkexpr(vecM), mkexpr(vecN)));
}
else if (!isD && bitQ == 1) {
// 4s case
assign(*rearrL, binop(Iop_CatOddLanes32x4, mkexpr(vecM), mkexpr(vecN)));
assign(*rearrR, binop(Iop_CatEvenLanes32x4, mkexpr(vecM), mkexpr(vecN)));
} else {
// 2s case
vassert(!isD && bitQ == 0);
IRTemp m1n1m0n0 = newTempV128();
IRTemp m0n0m1n1 = newTempV128();
assign(m1n1m0n0, binop(Iop_InterleaveLO32x4,
mkexpr(vecM), mkexpr(vecN)));
assign(m0n0m1n1, triop(Iop_SliceV128,
mkexpr(m1n1m0n0), mkexpr(m1n1m0n0), mkU8(8)));
assign(*rearrL, unop(Iop_ZeroHI64ofV128, mkexpr(m1n1m0n0)));
assign(*rearrR, unop(Iop_ZeroHI64ofV128, mkexpr(m0n0m1n1)));
}
}
/* Returns 2.0 ^ (-n) for n in 1 .. 64 */
static Double two_to_the_minus ( Int n )
{
if (n == 1) return 0.5;
vassert(n >= 2 && n <= 64);
Int half = n / 2;
return two_to_the_minus(half) * two_to_the_minus(n - half);
}
/*------------------------------------------------------------*/
/*--- SIMD and FP instructions ---*/
/*------------------------------------------------------------*/
static
Bool dis_AdvSIMD_EXT(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 29 23 21 20 15 14 10 9 4
0 q 101110 op2 0 m 0 imm4 0 n d
Decode fields: op2
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(29,24) != BITS6(1,0,1,1,1,0)
|| INSN(21,21) != 0 || INSN(15,15) != 0 || INSN(10,10) != 0) {
return False;
}
UInt bitQ = INSN(30,30);
UInt op2 = INSN(23,22);
UInt mm = INSN(20,16);
UInt imm4 = INSN(14,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (op2 == BITS2(0,0)) {
/* -------- 00: EXT 16b_16b_16b, 8b_8b_8b -------- */
IRTemp sHi = newTempV128();
IRTemp sLo = newTempV128();
IRTemp res = newTempV128();
assign(sHi, getQReg128(mm));
assign(sLo, getQReg128(nn));
if (bitQ == 1) {
if (imm4 == 0) {
assign(res, mkexpr(sLo));
} else {
vassert(imm4 >= 1 && imm4 <= 15);
assign(res, triop(Iop_SliceV128,
mkexpr(sHi), mkexpr(sLo), mkU8(imm4)));
}
putQReg128(dd, mkexpr(res));
DIP("ext v%u.16b, v%u.16b, v%u.16b, #%u\n", dd, nn, mm, imm4);
} else {
if (imm4 >= 8) return False;
if (imm4 == 0) {
assign(res, mkexpr(sLo));
} else {
vassert(imm4 >= 1 && imm4 <= 7);
IRTemp hi64lo64 = newTempV128();
assign(hi64lo64, binop(Iop_InterleaveLO64x2,
mkexpr(sHi), mkexpr(sLo)));
assign(res, triop(Iop_SliceV128,
mkexpr(hi64lo64), mkexpr(hi64lo64), mkU8(imm4)));
}
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
DIP("ext v%u.8b, v%u.8b, v%u.8b, #%u\n", dd, nn, mm, imm4);
}
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_TBL_TBX(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 29 23 21 20 15 14 12 11 9 4
0 q 001110 op2 0 m 0 len op 00 n d
Decode fields: op2,len,op
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(29,24) != BITS6(0,0,1,1,1,0)
|| INSN(21,21) != 0
|| INSN(15,15) != 0
|| INSN(11,10) != BITS2(0,0)) {
return False;
}
UInt bitQ = INSN(30,30);
UInt op2 = INSN(23,22);
UInt mm = INSN(20,16);
UInt len = INSN(14,13);
UInt bitOP = INSN(12,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (op2 == X00) {
/* -------- 00,xx,0 TBL, xx register table -------- */
/* -------- 00,xx,1 TBX, xx register table -------- */
/* 31 28 20 15 14 12 9 4
0q0 01110 000 m 0 len 000 n d TBL Vd.Ta, {Vn .. V(n+len)%32}, Vm.Ta
0q0 01110 000 m 0 len 100 n d TBX Vd.Ta, {Vn .. V(n+len)%32}, Vm.Ta
where Ta = 16b(q=1) or 8b(q=0)
*/
Bool isTBX = bitOP == 1;
/* The out-of-range values to use. */
IRTemp oor_values = newTempV128();
assign(oor_values, isTBX ? getQReg128(dd) : mkV128(0));
/* src value */
IRTemp src = newTempV128();
assign(src, getQReg128(mm));
/* The table values */
IRTemp tab[4];
UInt i;
for (i = 0; i <= len; i++) {
vassert(i < 4);
tab[i] = newTempV128();
assign(tab[i], getQReg128((nn + i) % 32));
}
IRTemp res = math_TBL_TBX(tab, len, src, oor_values);
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* Ta = bitQ ==1 ? "16b" : "8b";
const HChar* nm = isTBX ? "tbx" : "tbl";
DIP("%s %s.%s, {v%d.16b .. v%d.16b}, %s.%s\n",
nm, nameQReg128(dd), Ta, nn, (nn + len) % 32, nameQReg128(mm), Ta);
return True;
}
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_ZIP_UZP_TRN(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 29 23 21 20 15 14 11 9 4
0 q 001110 size 0 m 0 opcode 10 n d
Decode fields: opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(29,24) != BITS6(0,0,1,1,1,0)
|| INSN(21,21) != 0 || INSN(15,15) != 0 || INSN(11,10) != BITS2(1,0)) {
return False;
}
UInt bitQ = INSN(30,30);
UInt size = INSN(23,22);
UInt mm = INSN(20,16);
UInt opcode = INSN(14,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (opcode == BITS3(0,0,1) || opcode == BITS3(1,0,1)) {
/* -------- 001 UZP1 std7_std7_std7 -------- */
/* -------- 101 UZP2 std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isUZP1 = opcode == BITS3(0,0,1);
IROp op = isUZP1 ? mkVecCATEVENLANES(size)
: mkVecCATODDLANES(size);
IRTemp preL = newTempV128();
IRTemp preR = newTempV128();
IRTemp res = newTempV128();
if (bitQ == 0) {
assign(preL, binop(Iop_InterleaveLO64x2, getQReg128(mm),
getQReg128(nn)));
assign(preR, mkexpr(preL));
} else {
assign(preL, getQReg128(mm));
assign(preR, getQReg128(nn));
}
assign(res, binop(op, mkexpr(preL), mkexpr(preR)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isUZP1 ? "uzp1" : "uzp2";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS3(0,1,0) || opcode == BITS3(1,1,0)) {
/* -------- 010 TRN1 std7_std7_std7 -------- */
/* -------- 110 TRN2 std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isTRN1 = opcode == BITS3(0,1,0);
IROp op1 = isTRN1 ? mkVecCATEVENLANES(size)
: mkVecCATODDLANES(size);
IROp op2 = mkVecINTERLEAVEHI(size);
IRTemp srcM = newTempV128();
IRTemp srcN = newTempV128();
IRTemp res = newTempV128();
assign(srcM, getQReg128(mm));
assign(srcN, getQReg128(nn));
assign(res, binop(op2, binop(op1, mkexpr(srcM), mkexpr(srcM)),
binop(op1, mkexpr(srcN), mkexpr(srcN))));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isTRN1 ? "trn1" : "trn2";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS3(0,1,1) || opcode == BITS3(1,1,1)) {
/* -------- 011 ZIP1 std7_std7_std7 -------- */
/* -------- 111 ZIP2 std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isZIP1 = opcode == BITS3(0,1,1);
IROp op = isZIP1 ? mkVecINTERLEAVELO(size)
: mkVecINTERLEAVEHI(size);
IRTemp preL = newTempV128();
IRTemp preR = newTempV128();
IRTemp res = newTempV128();
if (bitQ == 0 && !isZIP1) {
IRTemp z128 = newTempV128();
assign(z128, mkV128(0x0000));
// preL = Vm shifted left 32 bits
// preR = Vn shifted left 32 bits
assign(preL, triop(Iop_SliceV128,
getQReg128(mm), mkexpr(z128), mkU8(12)));
assign(preR, triop(Iop_SliceV128,
getQReg128(nn), mkexpr(z128), mkU8(12)));
} else {
assign(preL, getQReg128(mm));
assign(preR, getQReg128(nn));
}
assign(res, binop(op, mkexpr(preL), mkexpr(preR)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isZIP1 ? "zip1" : "zip2";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_across_lanes(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 16 11 9 4
0 q u 01110 size 11000 opcode 10 n d
Decode fields: u,size,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,24) != BITS5(0,1,1,1,0)
|| INSN(21,17) != BITS5(1,1,0,0,0) || INSN(11,10) != BITS2(1,0)) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt opcode = INSN(16,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (opcode == BITS5(0,0,0,1,1)) {
/* -------- 0,xx,00011 SADDLV -------- */
/* -------- 1,xx,00011 UADDLV -------- */
/* size is the narrow size */
if (size == X11 || (size == X10 && bitQ == 0)) return False;
Bool isU = bitU == 1;
IRTemp src = newTempV128();
assign(src, getQReg128(nn));
/* The basic plan is to widen the lower half, and if Q = 1,
the upper half too. Add them together (if Q = 1), and in
either case fold with add at twice the lane width.
*/
IRExpr* widened
= mkexpr(math_WIDEN_LO_OR_HI_LANES(
isU, False/*!fromUpperHalf*/, size, mkexpr(src)));
if (bitQ == 1) {
widened
= binop(mkVecADD(size+1),
widened,
mkexpr(math_WIDEN_LO_OR_HI_LANES(
isU, True/*fromUpperHalf*/, size, mkexpr(src)))
);
}
/* Now fold. */
IRTemp tWi = newTempV128();
assign(tWi, widened);
IRTemp res = math_FOLDV(tWi, mkVecADD(size+1));
putQReg128(dd, mkexpr(res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
const HChar ch = "bhsd"[size];
DIP("%s %s.%c, %s.%s\n", isU ? "uaddlv" : "saddlv",
nameQReg128(dd), ch, nameQReg128(nn), arr);
return True;
}
UInt ix = 0;
/**/ if (opcode == BITS5(0,1,0,1,0)) { ix = bitU == 0 ? 1 : 2; }
else if (opcode == BITS5(1,1,0,1,0)) { ix = bitU == 0 ? 3 : 4; }
else if (opcode == BITS5(1,1,0,1,1) && bitU == 0) { ix = 5; }
/**/
if (ix != 0) {
/* -------- 0,xx,01010: SMAXV -------- (1) */
/* -------- 1,xx,01010: UMAXV -------- (2) */
/* -------- 0,xx,11010: SMINV -------- (3) */
/* -------- 1,xx,11010: UMINV -------- (4) */
/* -------- 0,xx,11011: ADDV -------- (5) */
vassert(ix >= 1 && ix <= 5);
if (size == X11) return False; // 1d,2d cases not allowed
if (size == X10 && bitQ == 0) return False; // 2s case not allowed
const IROp opMAXS[3]
= { Iop_Max8Sx16, Iop_Max16Sx8, Iop_Max32Sx4 };
const IROp opMAXU[3]
= { Iop_Max8Ux16, Iop_Max16Ux8, Iop_Max32Ux4 };
const IROp opMINS[3]
= { Iop_Min8Sx16, Iop_Min16Sx8, Iop_Min32Sx4 };
const IROp opMINU[3]
= { Iop_Min8Ux16, Iop_Min16Ux8, Iop_Min32Ux4 };
const IROp opADD[3]
= { Iop_Add8x16, Iop_Add16x8, Iop_Add32x4 };
vassert(size < 3);
IROp op = Iop_INVALID;
const HChar* nm = NULL;
switch (ix) {
case 1: op = opMAXS[size]; nm = "smaxv"; break;
case 2: op = opMAXU[size]; nm = "umaxv"; break;
case 3: op = opMINS[size]; nm = "sminv"; break;
case 4: op = opMINU[size]; nm = "uminv"; break;
case 5: op = opADD[size]; nm = "addv"; break;
default: vassert(0);
}
vassert(op != Iop_INVALID && nm != NULL);
IRTemp tN1 = newTempV128();
assign(tN1, getQReg128(nn));
/* If Q == 0, we're just folding lanes in the lower half of
the value. In which case, copy the lower half of the
source into the upper half, so we can then treat it the
same as the full width case. Except for the addition case,
in which we have to zero out the upper half. */
IRTemp tN2 = newTempV128();
assign(tN2, bitQ == 0
? (ix == 5 ? unop(Iop_ZeroHI64ofV128, mkexpr(tN1))
: mk_CatEvenLanes64x2(tN1,tN1))
: mkexpr(tN1));
IRTemp res = math_FOLDV(tN2, op);
if (res == IRTemp_INVALID)
return False; /* means math_MINMAXV
doesn't handle this case yet */
putQReg128(dd, mkexpr(res));
const IRType tys[3] = { Ity_I8, Ity_I16, Ity_I32 };
IRType laneTy = tys[size];
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s, %s.%s\n", nm,
nameQRegLO(dd, laneTy), nameQReg128(nn), arr);
return True;
}
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_copy(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 20 15 14 10 9 4
0 q op 01110000 imm5 0 imm4 1 n d
Decode fields: q,op,imm4
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,21) != BITS8(0,1,1,1,0,0,0,0)
|| INSN(15,15) != 0 || INSN(10,10) != 1) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitOP = INSN(29,29);
UInt imm5 = INSN(20,16);
UInt imm4 = INSN(14,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
/* -------- x,0,0000: DUP (element, vector) -------- */
/* 31 28 20 15 9 4
0q0 01110000 imm5 000001 n d DUP Vd.T, Vn.Ts[index]
*/
if (bitOP == 0 && imm4 == BITS4(0,0,0,0)) {
UInt laneNo = 0;
UInt laneSzLg2 = 0;
HChar laneCh = '?';
IRTemp res = handle_DUP_VEC_ELEM(&laneNo, &laneSzLg2, &laneCh,
getQReg128(nn), imm5);
if (res == IRTemp_INVALID)
return False;
if (bitQ == 0 && laneSzLg2 == X11)
return False; /* .1d case */
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arT = nameArr_Q_SZ(bitQ, laneSzLg2);
DIP("dup %s.%s, %s.%c[%u]\n",
nameQReg128(dd), arT, nameQReg128(nn), laneCh, laneNo);
return True;
}
/* -------- x,0,0001: DUP (general, vector) -------- */
/* 31 28 20 15 9 4
0q0 01110000 imm5 0 0001 1 n d DUP Vd.T, Rn
Q=0 writes 64, Q=1 writes 128
imm5: xxxx1 8B(q=0) or 16b(q=1), R=W
xxx10 4H(q=0) or 8H(q=1), R=W
xx100 2S(q=0) or 4S(q=1), R=W
x1000 Invalid(q=0) or 2D(q=1), R=X
x0000 Invalid(q=0) or Invalid(q=1)
Require op=0, imm4=0001
*/
if (bitOP == 0 && imm4 == BITS4(0,0,0,1)) {
Bool isQ = bitQ == 1;
IRTemp w0 = newTemp(Ity_I64);
const HChar* arT = "??";
IRType laneTy = Ity_INVALID;
if (imm5 & 1) {
arT = isQ ? "16b" : "8b";
laneTy = Ity_I8;
assign(w0, unop(Iop_8Uto64, unop(Iop_64to8, getIReg64orZR(nn))));
}
else if (imm5 & 2) {
arT = isQ ? "8h" : "4h";
laneTy = Ity_I16;
assign(w0, unop(Iop_16Uto64, unop(Iop_64to16, getIReg64orZR(nn))));
}
else if (imm5 & 4) {
arT = isQ ? "4s" : "2s";
laneTy = Ity_I32;
assign(w0, unop(Iop_32Uto64, unop(Iop_64to32, getIReg64orZR(nn))));
}
else if ((imm5 & 8) && isQ) {
arT = "2d";
laneTy = Ity_I64;
assign(w0, getIReg64orZR(nn));
}
else {
/* invalid; leave laneTy unchanged. */
}
/* */
if (laneTy != Ity_INVALID) {
IRTemp w1 = math_DUP_TO_64(w0, laneTy);
putQReg128(dd, binop(Iop_64HLtoV128,
isQ ? mkexpr(w1) : mkU64(0), mkexpr(w1)));
DIP("dup %s.%s, %s\n",
nameQReg128(dd), arT, nameIRegOrZR(laneTy == Ity_I64, nn));
return True;
}
/* invalid */
return False;
}
/* -------- 1,0,0011: INS (general) -------- */
/* 31 28 20 15 9 4
010 01110000 imm5 000111 n d INS Vd.Ts[ix], Rn
where Ts,ix = case imm5 of xxxx1 -> B, xxxx
xxx10 -> H, xxx
xx100 -> S, xx
x1000 -> D, x
*/
if (bitQ == 1 && bitOP == 0 && imm4 == BITS4(0,0,1,1)) {
HChar ts = '?';
UInt laneNo = 16;
IRExpr* src = NULL;
if (imm5 & 1) {
src = unop(Iop_64to8, getIReg64orZR(nn));
laneNo = (imm5 >> 1) & 15;
ts = 'b';
}
else if (imm5 & 2) {
src = unop(Iop_64to16, getIReg64orZR(nn));
laneNo = (imm5 >> 2) & 7;
ts = 'h';
}
else if (imm5 & 4) {
src = unop(Iop_64to32, getIReg64orZR(nn));
laneNo = (imm5 >> 3) & 3;
ts = 's';
}
else if (imm5 & 8) {
src = getIReg64orZR(nn);
laneNo = (imm5 >> 4) & 1;
ts = 'd';
}
/* */
if (src) {
vassert(laneNo < 16);
putQRegLane(dd, laneNo, src);
DIP("ins %s.%c[%u], %s\n",
nameQReg128(dd), ts, laneNo, nameIReg64orZR(nn));
return True;
}
/* invalid */
return False;
}
/* -------- x,0,0101: SMOV -------- */
/* -------- x,0,0111: UMOV -------- */
/* 31 28 20 15 9 4
0q0 01110 000 imm5 001111 n d UMOV Xd/Wd, Vn.Ts[index]
0q0 01110 000 imm5 001011 n d SMOV Xd/Wd, Vn.Ts[index]
dest is Xd when q==1, Wd when q==0
UMOV:
Ts,index,ops = case q:imm5 of
0:xxxx1 -> B, xxxx, 8Uto64
1:xxxx1 -> invalid
0:xxx10 -> H, xxx, 16Uto64
1:xxx10 -> invalid
0:xx100 -> S, xx, 32Uto64
1:xx100 -> invalid
1:x1000 -> D, x, copy64
other -> invalid
SMOV:
Ts,index,ops = case q:imm5 of
0:xxxx1 -> B, xxxx, (32Uto64 . 8Sto32)
1:xxxx1 -> B, xxxx, 8Sto64
0:xxx10 -> H, xxx, (32Uto64 . 16Sto32)
1:xxx10 -> H, xxx, 16Sto64
0:xx100 -> invalid
1:xx100 -> S, xx, 32Sto64
1:x1000 -> invalid
other -> invalid
*/
if (bitOP == 0 && (imm4 == BITS4(0,1,0,1) || imm4 == BITS4(0,1,1,1))) {
Bool isU = (imm4 & 2) == 2;
const HChar* arTs = "??";
UInt laneNo = 16; /* invalid */
// Setting 'res' to non-NULL determines valid/invalid
IRExpr* res = NULL;
if (!bitQ && (imm5 & 1)) { // 0:xxxx1
laneNo = (imm5 >> 1) & 15;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I8);
res = isU ? unop(Iop_8Uto64, lane)
: unop(Iop_32Uto64, unop(Iop_8Sto32, lane));
arTs = "b";
}
else if (bitQ && (imm5 & 1)) { // 1:xxxx1
laneNo = (imm5 >> 1) & 15;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I8);
res = isU ? NULL
: unop(Iop_8Sto64, lane);
arTs = "b";
}
else if (!bitQ && (imm5 & 2)) { // 0:xxx10
laneNo = (imm5 >> 2) & 7;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I16);
res = isU ? unop(Iop_16Uto64, lane)
: unop(Iop_32Uto64, unop(Iop_16Sto32, lane));
arTs = "h";
}
else if (bitQ && (imm5 & 2)) { // 1:xxx10
laneNo = (imm5 >> 2) & 7;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I16);
res = isU ? NULL
: unop(Iop_16Sto64, lane);
arTs = "h";
}
else if (!bitQ && (imm5 & 4)) { // 0:xx100
laneNo = (imm5 >> 3) & 3;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I32);
res = isU ? unop(Iop_32Uto64, lane)
: NULL;
arTs = "s";
}
else if (bitQ && (imm5 & 4)) { // 1:xxx10
laneNo = (imm5 >> 3) & 3;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I32);
res = isU ? NULL
: unop(Iop_32Sto64, lane);
arTs = "s";
}
else if (bitQ && (imm5 & 8)) { // 1:x1000
laneNo = (imm5 >> 4) & 1;
IRExpr* lane = getQRegLane(nn, laneNo, Ity_I64);
res = isU ? lane
: NULL;
arTs = "d";
}
/* */
if (res) {
vassert(laneNo < 16);
putIReg64orZR(dd, res);
DIP("%cmov %s, %s.%s[%u]\n", isU ? 'u' : 's',
nameIRegOrZR(bitQ == 1, dd),
nameQReg128(nn), arTs, laneNo);
return True;
}
/* invalid */
return False;
}
/* -------- 1,1,xxxx: INS (element) -------- */
/* 31 28 20 14 9 4
011 01110000 imm5 0 imm4 n d INS Vd.Ts[ix1], Vn.Ts[ix2]
where Ts,ix1,ix2
= case imm5 of xxxx1 -> B, xxxx, imm4[3:0]
xxx10 -> H, xxx, imm4[3:1]
xx100 -> S, xx, imm4[3:2]
x1000 -> D, x, imm4[3:3]
*/
if (bitQ == 1 && bitOP == 1) {
HChar ts = '?';
IRType ity = Ity_INVALID;
UInt ix1 = 16;
UInt ix2 = 16;
if (imm5 & 1) {
ts = 'b';
ity = Ity_I8;
ix1 = (imm5 >> 1) & 15;
ix2 = (imm4 >> 0) & 15;
}
else if (imm5 & 2) {
ts = 'h';
ity = Ity_I16;
ix1 = (imm5 >> 2) & 7;
ix2 = (imm4 >> 1) & 7;
}
else if (imm5 & 4) {
ts = 's';
ity = Ity_I32;
ix1 = (imm5 >> 3) & 3;
ix2 = (imm4 >> 2) & 3;
}
else if (imm5 & 8) {
ts = 'd';
ity = Ity_I64;
ix1 = (imm5 >> 4) & 1;
ix2 = (imm4 >> 3) & 1;
}
/* */
if (ity != Ity_INVALID) {
vassert(ix1 < 16);
vassert(ix2 < 16);
putQRegLane(dd, ix1, getQRegLane(nn, ix2, ity));
DIP("ins %s.%c[%u], %s.%c[%u]\n",
nameQReg128(dd), ts, ix1, nameQReg128(nn), ts, ix2);
return True;
}
/* invalid */
return False;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_modified_immediate(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 18 15 11 9 4
0q op 01111 00000 abc cmode 01 defgh d
Decode fields: q,op,cmode
Bit 11 is really "o2", but it is always zero.
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,19) != BITS10(0,1,1,1,1,0,0,0,0,0)
|| INSN(11,10) != BITS2(0,1)) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitOP = INSN(29,29);
UInt cmode = INSN(15,12);
UInt abcdefgh = (INSN(18,16) << 5) | INSN(9,5);
UInt dd = INSN(4,0);
ULong imm64lo = 0;
UInt op_cmode = (bitOP << 4) | cmode;
Bool ok = False;
Bool isORR = False;
Bool isBIC = False;
Bool isMOV = False;
Bool isMVN = False;
Bool isFMOV = False;
switch (op_cmode) {
/* -------- x,0,0000 MOVI 32-bit shifted imm -------- */
/* -------- x,0,0010 MOVI 32-bit shifted imm -------- */
/* -------- x,0,0100 MOVI 32-bit shifted imm -------- */
/* -------- x,0,0110 MOVI 32-bit shifted imm -------- */
case BITS5(0,0,0,0,0): case BITS5(0,0,0,1,0):
case BITS5(0,0,1,0,0): case BITS5(0,0,1,1,0): // 0:0xx0
ok = True; isMOV = True; break;
/* -------- x,0,0001 ORR (vector, immediate) 32-bit -------- */
/* -------- x,0,0011 ORR (vector, immediate) 32-bit -------- */
/* -------- x,0,0101 ORR (vector, immediate) 32-bit -------- */
/* -------- x,0,0111 ORR (vector, immediate) 32-bit -------- */
case BITS5(0,0,0,0,1): case BITS5(0,0,0,1,1):
case BITS5(0,0,1,0,1): case BITS5(0,0,1,1,1): // 0:0xx1
ok = True; isORR = True; break;
/* -------- x,0,1000 MOVI 16-bit shifted imm -------- */
/* -------- x,0,1010 MOVI 16-bit shifted imm -------- */
case BITS5(0,1,0,0,0): case BITS5(0,1,0,1,0): // 0:10x0
ok = True; isMOV = True; break;
/* -------- x,0,1001 ORR (vector, immediate) 16-bit -------- */
/* -------- x,0,1011 ORR (vector, immediate) 16-bit -------- */
case BITS5(0,1,0,0,1): case BITS5(0,1,0,1,1): // 0:10x1
ok = True; isORR = True; break;
/* -------- x,0,1100 MOVI 32-bit shifting ones -------- */
/* -------- x,0,1101 MOVI 32-bit shifting ones -------- */
case BITS5(0,1,1,0,0): case BITS5(0,1,1,0,1): // 0:110x
ok = True; isMOV = True; break;
/* -------- x,0,1110 MOVI 8-bit -------- */
case BITS5(0,1,1,1,0):
ok = True; isMOV = True; break;
/* FMOV (vector, immediate, single precision) */
/* -------- x,1,0000 MVNI 32-bit shifted imm -------- */
/* -------- x,1,0010 MVNI 32-bit shifted imm -------- */
/* -------- x,1,0100 MVNI 32-bit shifted imm -------- */
/* -------- x,1,0110 MVNI 32-bit shifted imm -------- */
case BITS5(1,0,0,0,0): case BITS5(1,0,0,1,0):
case BITS5(1,0,1,0,0): case BITS5(1,0,1,1,0): // 1:0xx0
ok = True; isMVN = True; break;
/* -------- x,1,0001 BIC (vector, immediate) 32-bit -------- */
/* -------- x,1,0011 BIC (vector, immediate) 32-bit -------- */
/* -------- x,1,0101 BIC (vector, immediate) 32-bit -------- */
/* -------- x,1,0111 BIC (vector, immediate) 32-bit -------- */
case BITS5(1,0,0,0,1): case BITS5(1,0,0,1,1):
case BITS5(1,0,1,0,1): case BITS5(1,0,1,1,1): // 1:0xx1
ok = True; isBIC = True; break;
/* -------- x,1,1000 MVNI 16-bit shifted imm -------- */
/* -------- x,1,1010 MVNI 16-bit shifted imm -------- */
case BITS5(1,1,0,0,0): case BITS5(1,1,0,1,0): // 1:10x0
ok = True; isMVN = True; break;
/* -------- x,1,1001 BIC (vector, immediate) 16-bit -------- */
/* -------- x,1,1011 BIC (vector, immediate) 16-bit -------- */
case BITS5(1,1,0,0,1): case BITS5(1,1,0,1,1): // 1:10x1
ok = True; isBIC = True; break;
/* -------- x,1,1100 MVNI 32-bit shifting ones -------- */
/* -------- x,1,1101 MVNI 32-bit shifting ones -------- */
case BITS5(1,1,1,0,0): case BITS5(1,1,1,0,1): // 1:110x
ok = True; isMVN = True; break;
/* -------- 0,1,1110 MOVI 64-bit scalar -------- */
/* -------- 1,1,1110 MOVI 64-bit vector -------- */
case BITS5(1,1,1,1,0):
ok = True; isMOV = True; break;
/* -------- 1,1,1111 FMOV (vector, immediate) -------- */
case BITS5(1,1,1,1,1): // 1:1111
ok = bitQ == 1; isFMOV = True; break;
default:
break;
}
if (ok) {
vassert(1 == (isMOV ? 1 : 0) + (isMVN ? 1 : 0)
+ (isORR ? 1 : 0) + (isBIC ? 1 : 0) + (isFMOV ? 1 : 0));
ok = AdvSIMDExpandImm(&imm64lo, bitOP, cmode, abcdefgh);
}
if (ok) {
if (isORR || isBIC) {
ULong inv
= isORR ? 0ULL : ~0ULL;
IRExpr* immV128
= binop(Iop_64HLtoV128, mkU64(inv ^ imm64lo), mkU64(inv ^ imm64lo));
IRExpr* res
= binop(isORR ? Iop_OrV128 : Iop_AndV128, getQReg128(dd), immV128);
const HChar* nm = isORR ? "orr" : "bic";
if (bitQ == 0) {
putQReg128(dd, unop(Iop_ZeroHI64ofV128, res));
DIP("%s %s.1d, %016llx\n", nm, nameQReg128(dd), imm64lo);
} else {
putQReg128(dd, res);
DIP("%s %s.2d, #0x%016llx'%016llx\n", nm,
nameQReg128(dd), imm64lo, imm64lo);
}
}
else if (isMOV || isMVN || isFMOV) {
if (isMVN) imm64lo = ~imm64lo;
ULong imm64hi = bitQ == 0 ? 0 : imm64lo;
IRExpr* immV128 = binop(Iop_64HLtoV128, mkU64(imm64hi),
mkU64(imm64lo));
putQReg128(dd, immV128);
DIP("mov %s, #0x%016llx'%016llx\n", nameQReg128(dd), imm64hi, imm64lo);
}
return True;
}
/* else fall through */
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_copy(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 20 15 14 10 9 4
01 op 11110000 imm5 0 imm4 1 n d
Decode fields: op,imm4
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,21) != BITS8(1,1,1,1,0,0,0,0)
|| INSN(15,15) != 0 || INSN(10,10) != 1) {
return False;
}
UInt bitOP = INSN(29,29);
UInt imm5 = INSN(20,16);
UInt imm4 = INSN(14,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (bitOP == 0 && imm4 == BITS4(0,0,0,0)) {
/* -------- 0,0000 DUP (element, scalar) -------- */
IRTemp w0 = newTemp(Ity_I64);
const HChar* arTs = "??";
IRType laneTy = Ity_INVALID;
UInt laneNo = 16; /* invalid */
if (imm5 & 1) {
arTs = "b";
laneNo = (imm5 >> 1) & 15;
laneTy = Ity_I8;
assign(w0, unop(Iop_8Uto64, getQRegLane(nn, laneNo, laneTy)));
}
else if (imm5 & 2) {
arTs = "h";
laneNo = (imm5 >> 2) & 7;
laneTy = Ity_I16;
assign(w0, unop(Iop_16Uto64, getQRegLane(nn, laneNo, laneTy)));
}
else if (imm5 & 4) {
arTs = "s";
laneNo = (imm5 >> 3) & 3;
laneTy = Ity_I32;
assign(w0, unop(Iop_32Uto64, getQRegLane(nn, laneNo, laneTy)));
}
else if (imm5 & 8) {
arTs = "d";
laneNo = (imm5 >> 4) & 1;
laneTy = Ity_I64;
assign(w0, getQRegLane(nn, laneNo, laneTy));
}
else {
/* invalid; leave laneTy unchanged. */
}
/* */
if (laneTy != Ity_INVALID) {
vassert(laneNo < 16);
putQReg128(dd, binop(Iop_64HLtoV128, mkU64(0), mkexpr(w0)));
DIP("dup %s, %s.%s[%u]\n",
nameQRegLO(dd, laneTy), nameQReg128(nn), arTs, laneNo);
return True;
}
/* else fall through */
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_pairwise(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 16 11 9 4
01 u 11110 sz 11000 opcode 10 n d
Decode fields: u,sz,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,24) != BITS5(1,1,1,1,0)
|| INSN(21,17) != BITS5(1,1,0,0,0)
|| INSN(11,10) != BITS2(1,0)) {
return False;
}
UInt bitU = INSN(29,29);
UInt sz = INSN(23,22);
UInt opcode = INSN(16,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (bitU == 0 && sz == X11 && opcode == BITS5(1,1,0,1,1)) {
/* -------- 0,11,11011 ADDP d_2d -------- */
IRTemp xy = newTempV128();
IRTemp xx = newTempV128();
assign(xy, getQReg128(nn));
assign(xx, binop(Iop_InterleaveHI64x2, mkexpr(xy), mkexpr(xy)));
putQReg128(dd, unop(Iop_ZeroHI64ofV128,
binop(Iop_Add64x2, mkexpr(xy), mkexpr(xx))));
DIP("addp d%u, %s.2d\n", dd, nameQReg128(nn));
return True;
}
if (bitU == 1 && sz <= X01 && opcode == BITS5(0,1,1,0,1)) {
/* -------- 1,00,01101 ADDP s_2s -------- */
/* -------- 1,01,01101 ADDP d_2d -------- */
Bool isD = sz == X01;
IROp opZHI = mkVecZEROHIxxOFV128(isD ? 3 : 2);
IROp opADD = mkVecADDF(isD ? 3 : 2);
IRTemp src = newTempV128();
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
assign(src, getQReg128(nn));
assign(argL, unop(opZHI, mkexpr(src)));
assign(argR, unop(opZHI, triop(Iop_SliceV128, mkexpr(src), mkexpr(src),
mkU8(isD ? 8 : 4))));
putQReg128(dd, unop(opZHI,
triop(opADD, mkexpr(mk_get_IR_rounding_mode()),
mkexpr(argL), mkexpr(argR))));
DIP(isD ? "faddp d%u, v%u.2d\n" : "faddp s%u, v%u.2s\n", dd, nn);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_shift_by_imm(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 22 18 15 10 9 4
01 u 111110 immh immb opcode 1 n d
Decode fields: u,immh,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,23) != BITS6(1,1,1,1,1,0) || INSN(10,10) != 1) {
return False;
}
UInt bitU = INSN(29,29);
UInt immh = INSN(22,19);
UInt immb = INSN(18,16);
UInt opcode = INSN(15,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
UInt immhb = (immh << 3) | immb;
if ((immh & 8) == 8
&& (opcode == BITS5(0,0,0,0,0) || opcode == BITS5(0,0,0,1,0))) {
/* -------- 0,1xxx,00000 SSHR d_d_#imm -------- */
/* -------- 1,1xxx,00000 USHR d_d_#imm -------- */
/* -------- 0,1xxx,00010 SSRA d_d_#imm -------- */
/* -------- 1,1xxx,00010 USRA d_d_#imm -------- */
Bool isU = bitU == 1;
Bool isAcc = opcode == BITS5(0,0,0,1,0);
UInt sh = 128 - immhb;
vassert(sh >= 1 && sh <= 64);
IROp op = isU ? Iop_ShrN64x2 : Iop_SarN64x2;
IRExpr* src = getQReg128(nn);
IRTemp shf = newTempV128();
IRTemp res = newTempV128();
if (sh == 64 && isU) {
assign(shf, mkV128(0x0000));
} else {
UInt nudge = 0;
if (sh == 64) {
vassert(!isU);
nudge = 1;
}
assign(shf, binop(op, src, mkU8(sh - nudge)));
}
assign(res, isAcc ? binop(Iop_Add64x2, getQReg128(dd), mkexpr(shf))
: mkexpr(shf));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
const HChar* nm = isAcc ? (isU ? "usra" : "ssra")
: (isU ? "ushr" : "sshr");
DIP("%s d%u, d%u, #%u\n", nm, dd, nn, sh);
return True;
}
if ((immh & 8) == 8
&& (opcode == BITS5(0,0,1,0,0) || opcode == BITS5(0,0,1,1,0))) {
/* -------- 0,1xxx,00100 SRSHR d_d_#imm -------- */
/* -------- 1,1xxx,00100 URSHR d_d_#imm -------- */
/* -------- 0,1xxx,00110 SRSRA d_d_#imm -------- */
/* -------- 1,1xxx,00110 URSRA d_d_#imm -------- */
Bool isU = bitU == 1;
Bool isAcc = opcode == BITS5(0,0,1,1,0);
UInt sh = 128 - immhb;
vassert(sh >= 1 && sh <= 64);
IROp op = isU ? Iop_Rsh64Ux2 : Iop_Rsh64Sx2;
vassert(sh >= 1 && sh <= 64);
IRExpr* src = getQReg128(nn);
IRTemp imm8 = newTemp(Ity_I8);
assign(imm8, mkU8((UChar)(-sh)));
IRExpr* amt = mkexpr(math_DUP_TO_V128(imm8, Ity_I8));
IRTemp shf = newTempV128();
IRTemp res = newTempV128();
assign(shf, binop(op, src, amt));
assign(res, isAcc ? binop(Iop_Add64x2, getQReg128(dd), mkexpr(shf))
: mkexpr(shf));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
const HChar* nm = isAcc ? (isU ? "ursra" : "srsra")
: (isU ? "urshr" : "srshr");
DIP("%s d%u, d%u, #%u\n", nm, dd, nn, sh);
return True;
}
if (bitU == 1 && (immh & 8) == 8 && opcode == BITS5(0,1,0,0,0)) {
/* -------- 1,1xxx,01000 SRI d_d_#imm -------- */
UInt sh = 128 - immhb;
vassert(sh >= 1 && sh <= 64);
if (sh == 64) {
putQReg128(dd, unop(Iop_ZeroHI64ofV128, getQReg128(dd)));
} else {
/* sh is in range 1 .. 63 */
ULong nmask = (ULong)(((Long)0x8000000000000000ULL) >> (sh-1));
IRExpr* nmaskV = binop(Iop_64HLtoV128, mkU64(nmask), mkU64(nmask));
IRTemp res = newTempV128();
assign(res, binop(Iop_OrV128,
binop(Iop_AndV128, getQReg128(dd), nmaskV),
binop(Iop_ShrN64x2, getQReg128(nn), mkU8(sh))));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
}
DIP("sri d%u, d%u, #%u\n", dd, nn, sh);
return True;
}
if (bitU == 0 && (immh & 8) == 8 && opcode == BITS5(0,1,0,1,0)) {
/* -------- 0,1xxx,01010 SHL d_d_#imm -------- */
UInt sh = immhb - 64;
vassert(sh >= 0 && sh < 64);
putQReg128(dd,
unop(Iop_ZeroHI64ofV128,
sh == 0 ? getQReg128(nn)
: binop(Iop_ShlN64x2, getQReg128(nn), mkU8(sh))));
DIP("shl d%u, d%u, #%u\n", dd, nn, sh);
return True;
}
if (bitU == 1 && (immh & 8) == 8 && opcode == BITS5(0,1,0,1,0)) {
/* -------- 1,1xxx,01010 SLI d_d_#imm -------- */
UInt sh = immhb - 64;
vassert(sh >= 0 && sh < 64);
if (sh == 0) {
putQReg128(dd, unop(Iop_ZeroHI64ofV128, getQReg128(nn)));
} else {
/* sh is in range 1 .. 63 */
ULong nmask = (1ULL << sh) - 1;
IRExpr* nmaskV = binop(Iop_64HLtoV128, mkU64(nmask), mkU64(nmask));
IRTemp res = newTempV128();
assign(res, binop(Iop_OrV128,
binop(Iop_AndV128, getQReg128(dd), nmaskV),
binop(Iop_ShlN64x2, getQReg128(nn), mkU8(sh))));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
}
DIP("sli d%u, d%u, #%u\n", dd, nn, sh);
return True;
}
if (opcode == BITS5(0,1,1,1,0)
|| (bitU == 1 && opcode == BITS5(0,1,1,0,0))) {
/* -------- 0,01110 SQSHL #imm -------- */
/* -------- 1,01110 UQSHL #imm -------- */
/* -------- 1,01100 SQSHLU #imm -------- */
UInt size = 0;
UInt shift = 0;
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok) return False;
vassert(size >= 0 && size <= 3);
/* The shift encoding has opposite sign for the leftwards case.
Adjust shift to compensate. */
UInt lanebits = 8 << size;
shift = lanebits - shift;
vassert(shift >= 0 && shift < lanebits);
const HChar* nm = NULL;
/**/ if (bitU == 0 && opcode == BITS5(0,1,1,1,0)) nm = "sqshl";
else if (bitU == 1 && opcode == BITS5(0,1,1,1,0)) nm = "uqshl";
else if (bitU == 1 && opcode == BITS5(0,1,1,0,0)) nm = "sqshlu";
else vassert(0);
IRTemp qDiff1 = IRTemp_INVALID;
IRTemp qDiff2 = IRTemp_INVALID;
IRTemp res = IRTemp_INVALID;
IRTemp src = math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, getQReg128(nn));
/* This relies on the fact that the zeroed out lanes generate zeroed
result lanes and don't saturate, so there's no point in trimming
the resulting res, qDiff1 or qDiff2 values. */
math_QSHL_IMM(&res, &qDiff1, &qDiff2, src, size, shift, nm);
putQReg128(dd, mkexpr(res));
updateQCFLAGwithDifference(qDiff1, qDiff2);
const HChar arr = "bhsd"[size];
DIP("%s %c%u, %c%u, #%u\n", nm, arr, dd, arr, nn, shift);
return True;
}
if (opcode == BITS5(1,0,0,1,0) || opcode == BITS5(1,0,0,1,1)
|| (bitU == 1
&& (opcode == BITS5(1,0,0,0,0) || opcode == BITS5(1,0,0,0,1)))) {
/* -------- 0,10010 SQSHRN #imm -------- */
/* -------- 1,10010 UQSHRN #imm -------- */
/* -------- 0,10011 SQRSHRN #imm -------- */
/* -------- 1,10011 UQRSHRN #imm -------- */
/* -------- 1,10000 SQSHRUN #imm -------- */
/* -------- 1,10001 SQRSHRUN #imm -------- */
UInt size = 0;
UInt shift = 0;
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || size == X11) return False;
vassert(size >= X00 && size <= X10);
vassert(shift >= 1 && shift <= (8 << size));
const HChar* nm = "??";
IROp op = Iop_INVALID;
/* Decide on the name and the operation. */
/**/ if (bitU == 0 && opcode == BITS5(1,0,0,1,0)) {
nm = "sqshrn"; op = mkVecQANDqsarNNARROWSS(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,1,0)) {
nm = "uqshrn"; op = mkVecQANDqshrNNARROWUU(size);
}
else if (bitU == 0 && opcode == BITS5(1,0,0,1,1)) {
nm = "sqrshrn"; op = mkVecQANDqrsarNNARROWSS(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,1,1)) {
nm = "uqrshrn"; op = mkVecQANDqrshrNNARROWUU(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,0,0)) {
nm = "sqshrun"; op = mkVecQANDqsarNNARROWSU(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,0,1)) {
nm = "sqrshrun"; op = mkVecQANDqrsarNNARROWSU(size);
}
else vassert(0);
/* Compute the result (Q, shifted value) pair. */
IRTemp src128 = math_ZERO_ALL_EXCEPT_LOWEST_LANE(size+1, getQReg128(nn));
IRTemp pair = newTempV128();
assign(pair, binop(op, mkexpr(src128), mkU8(shift)));
/* Update the result reg */
IRTemp res64in128 = newTempV128();
assign(res64in128, unop(Iop_ZeroHI64ofV128, mkexpr(pair)));
putQReg128(dd, mkexpr(res64in128));
/* Update the Q flag. */
IRTemp q64q64 = newTempV128();
assign(q64q64, binop(Iop_InterleaveHI64x2, mkexpr(pair), mkexpr(pair)));
IRTemp z128 = newTempV128();
assign(z128, mkV128(0x0000));
updateQCFLAGwithDifference(q64q64, z128);
/* */
const HChar arrNarrow = "bhsd"[size];
const HChar arrWide = "bhsd"[size+1];
DIP("%s %c%u, %c%u, #%u\n", nm, arrNarrow, dd, arrWide, nn, shift);
return True;
}
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_three_different(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 29 28 23 21 20 15 11 9 4
01 U 11110 size 1 m opcode 00 n d
Decode fields: u,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,24) != BITS5(1,1,1,1,0)
|| INSN(21,21) != 1
|| INSN(11,10) != BITS2(0,0)) {
return False;
}
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt mm = INSN(20,16);
UInt opcode = INSN(15,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
if (bitU == 0
&& (opcode == BITS4(1,1,0,1)
|| opcode == BITS4(1,0,0,1) || opcode == BITS4(1,0,1,1))) {
/* -------- 0,1101 SQDMULL -------- */ // 0 (ks)
/* -------- 0,1001 SQDMLAL -------- */ // 1
/* -------- 0,1011 SQDMLSL -------- */ // 2
/* Widens, and size refers to the narrowed lanes. */
UInt ks = 3;
switch (opcode) {
case BITS4(1,1,0,1): ks = 0; break;
case BITS4(1,0,0,1): ks = 1; break;
case BITS4(1,0,1,1): ks = 2; break;
default: vassert(0);
}
vassert(ks >= 0 && ks <= 2);
if (size == X00 || size == X11) return False;
vassert(size <= 2);
IRTemp vecN, vecM, vecD, res, sat1q, sat1n, sat2q, sat2n;
vecN = vecM = vecD = res = sat1q = sat1n = sat2q = sat2n = IRTemp_INVALID;
newTempsV128_3(&vecN, &vecM, &vecD);
assign(vecN, getQReg128(nn));
assign(vecM, getQReg128(mm));
assign(vecD, getQReg128(dd));
math_SQDMULL_ACC(&res, &sat1q, &sat1n, &sat2q, &sat2n,
False/*!is2*/, size, "mas"[ks],
vecN, vecM, ks == 0 ? IRTemp_INVALID : vecD);
IROp opZHI = mkVecZEROHIxxOFV128(size+1);
putQReg128(dd, unop(opZHI, mkexpr(res)));
vassert(sat1q != IRTemp_INVALID && sat1n != IRTemp_INVALID);
updateQCFLAGwithDifferenceZHI(sat1q, sat1n, opZHI);
if (sat2q != IRTemp_INVALID || sat2n != IRTemp_INVALID) {
updateQCFLAGwithDifferenceZHI(sat2q, sat2n, opZHI);
}
const HChar* nm = ks == 0 ? "sqdmull"
: (ks == 1 ? "sqdmlal" : "sqdmlsl");
const HChar arrNarrow = "bhsd"[size];
const HChar arrWide = "bhsd"[size+1];
DIP("%s %c%d, %c%d, %c%d\n",
nm, arrWide, dd, arrNarrow, nn, arrNarrow, mm);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_three_same(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 29 28 23 21 20 15 10 9 4
01 U 11110 size 1 m opcode 1 n d
Decode fields: u,size,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,24) != BITS5(1,1,1,1,0)
|| INSN(21,21) != 1
|| INSN(10,10) != 1) {
return False;
}
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt mm = INSN(20,16);
UInt opcode = INSN(15,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
if (opcode == BITS5(0,0,0,0,1) || opcode == BITS5(0,0,1,0,1)) {
/* -------- 0,xx,00001 SQADD std4_std4_std4 -------- */
/* -------- 1,xx,00001 UQADD std4_std4_std4 -------- */
/* -------- 0,xx,00101 SQSUB std4_std4_std4 -------- */
/* -------- 1,xx,00101 UQSUB std4_std4_std4 -------- */
Bool isADD = opcode == BITS5(0,0,0,0,1);
Bool isU = bitU == 1;
IROp qop = Iop_INVALID;
IROp nop = Iop_INVALID;
if (isADD) {
qop = isU ? mkVecQADDU(size) : mkVecQADDS(size);
nop = mkVecADD(size);
} else {
qop = isU ? mkVecQSUBU(size) : mkVecQSUBS(size);
nop = mkVecSUB(size);
}
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
IRTemp qres = newTempV128();
IRTemp nres = newTempV128();
assign(argL, getQReg128(nn));
assign(argR, getQReg128(mm));
assign(qres, mkexpr(math_ZERO_ALL_EXCEPT_LOWEST_LANE(
size, binop(qop, mkexpr(argL), mkexpr(argR)))));
assign(nres, mkexpr(math_ZERO_ALL_EXCEPT_LOWEST_LANE(
size, binop(nop, mkexpr(argL), mkexpr(argR)))));
putQReg128(dd, mkexpr(qres));
updateQCFLAGwithDifference(qres, nres);
const HChar* nm = isADD ? (isU ? "uqadd" : "sqadd")
: (isU ? "uqsub" : "sqsub");
const HChar arr = "bhsd"[size];
DIP("%s %c%u, %c%u, %c%u\n", nm, arr, dd, arr, nn, arr, mm);
return True;
}
if (size == X11 && opcode == BITS5(0,0,1,1,0)) {
/* -------- 0,11,00110 CMGT d_d_d -------- */ // >s
/* -------- 1,11,00110 CMHI d_d_d -------- */ // >u
Bool isGT = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = getQReg128(mm);
IRTemp res = newTempV128();
assign(res,
isGT ? binop(Iop_CmpGT64Sx2, argL, argR)
: binop(Iop_CmpGT64Ux2, argL, argR));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
DIP("%s %s, %s, %s\n",isGT ? "cmgt" : "cmhi",
nameQRegLO(dd, Ity_I64),
nameQRegLO(nn, Ity_I64), nameQRegLO(mm, Ity_I64));
return True;
}
if (size == X11 && opcode == BITS5(0,0,1,1,1)) {
/* -------- 0,11,00111 CMGE d_d_d -------- */ // >=s
/* -------- 1,11,00111 CMHS d_d_d -------- */ // >=u
Bool isGE = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = getQReg128(mm);
IRTemp res = newTempV128();
assign(res,
isGE ? unop(Iop_NotV128, binop(Iop_CmpGT64Sx2, argR, argL))
: unop(Iop_NotV128, binop(Iop_CmpGT64Ux2, argR, argL)));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
DIP("%s %s, %s, %s\n", isGE ? "cmge" : "cmhs",
nameQRegLO(dd, Ity_I64),
nameQRegLO(nn, Ity_I64), nameQRegLO(mm, Ity_I64));
return True;
}
if (size == X11 && (opcode == BITS5(0,1,0,0,0)
|| opcode == BITS5(0,1,0,1,0))) {
/* -------- 0,xx,01000 SSHL d_d_d -------- */
/* -------- 0,xx,01010 SRSHL d_d_d -------- */
/* -------- 1,xx,01000 USHL d_d_d -------- */
/* -------- 1,xx,01010 URSHL d_d_d -------- */
Bool isU = bitU == 1;
Bool isR = opcode == BITS5(0,1,0,1,0);
IROp op = isR ? (isU ? mkVecRSHU(size) : mkVecRSHS(size))
: (isU ? mkVecSHU(size) : mkVecSHS(size));
IRTemp res = newTempV128();
assign(res, binop(op, getQReg128(nn), getQReg128(mm)));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
const HChar* nm = isR ? (isU ? "urshl" : "srshl")
: (isU ? "ushl" : "sshl");
DIP("%s %s, %s, %s\n", nm,
nameQRegLO(dd, Ity_I64),
nameQRegLO(nn, Ity_I64), nameQRegLO(mm, Ity_I64));
return True;
}
if (opcode == BITS5(0,1,0,0,1) || opcode == BITS5(0,1,0,1,1)) {
/* -------- 0,xx,01001 SQSHL std4_std4_std4 -------- */
/* -------- 0,xx,01011 SQRSHL std4_std4_std4 -------- */
/* -------- 1,xx,01001 UQSHL std4_std4_std4 -------- */
/* -------- 1,xx,01011 UQRSHL std4_std4_std4 -------- */
Bool isU = bitU == 1;
Bool isR = opcode == BITS5(0,1,0,1,1);
IROp op = isR ? (isU ? mkVecQANDUQRSH(size) : mkVecQANDSQRSH(size))
: (isU ? mkVecQANDUQSH(size) : mkVecQANDSQSH(size));
/* This is a bit tricky. Since we're only interested in the lowest
lane of the result, we zero out all the rest in the operands, so
as to ensure that other lanes don't pollute the returned Q value.
This works because it means, for the lanes we don't care about, we
are shifting zero by zero, which can never saturate. */
IRTemp res256 = newTemp(Ity_V256);
IRTemp resSH = newTempV128();
IRTemp resQ = newTempV128();
IRTemp zero = newTempV128();
assign(
res256,
binop(op,
mkexpr(math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, getQReg128(nn))),
mkexpr(math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, getQReg128(mm)))));
assign(resSH, unop(Iop_V256toV128_0, mkexpr(res256)));
assign(resQ, unop(Iop_V256toV128_1, mkexpr(res256)));
assign(zero, mkV128(0x0000));
putQReg128(dd, mkexpr(resSH));
updateQCFLAGwithDifference(resQ, zero);
const HChar* nm = isR ? (isU ? "uqrshl" : "sqrshl")
: (isU ? "uqshl" : "sqshl");
const HChar arr = "bhsd"[size];
DIP("%s %c%u, %c%u, %c%u\n", nm, arr, dd, arr, nn, arr, mm);
return True;
}
if (size == X11 && opcode == BITS5(1,0,0,0,0)) {
/* -------- 0,11,10000 ADD d_d_d -------- */
/* -------- 1,11,10000 SUB d_d_d -------- */
Bool isSUB = bitU == 1;
IRTemp res = newTemp(Ity_I64);
assign(res, binop(isSUB ? Iop_Sub64 : Iop_Add64,
getQRegLane(nn, 0, Ity_I64),
getQRegLane(mm, 0, Ity_I64)));
putQRegLane(dd, 0, mkexpr(res));
putQRegLane(dd, 1, mkU64(0));
DIP("%s %s, %s, %s\n", isSUB ? "sub" : "add",
nameQRegLO(dd, Ity_I64),
nameQRegLO(nn, Ity_I64), nameQRegLO(mm, Ity_I64));
return True;
}
if (size == X11 && opcode == BITS5(1,0,0,0,1)) {
/* -------- 0,11,10001 CMTST d_d_d -------- */ // &, != 0
/* -------- 1,11,10001 CMEQ d_d_d -------- */ // ==
Bool isEQ = bitU == 1;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = getQReg128(mm);
IRTemp res = newTempV128();
assign(res,
isEQ ? binop(Iop_CmpEQ64x2, argL, argR)
: unop(Iop_NotV128, binop(Iop_CmpEQ64x2,
binop(Iop_AndV128, argL, argR),
mkV128(0x0000))));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
DIP("%s %s, %s, %s\n", isEQ ? "cmeq" : "cmtst",
nameQRegLO(dd, Ity_I64),
nameQRegLO(nn, Ity_I64), nameQRegLO(mm, Ity_I64));
return True;
}
if (opcode == BITS5(1,0,1,1,0)) {
/* -------- 0,xx,10110 SQDMULH s and h variants only -------- */
/* -------- 1,xx,10110 SQRDMULH s and h variants only -------- */
if (size == X00 || size == X11) return False;
Bool isR = bitU == 1;
IRTemp res, sat1q, sat1n, vN, vM;
res = sat1q = sat1n = vN = vM = IRTemp_INVALID;
newTempsV128_2(&vN, &vM);
assign(vN, getQReg128(nn));
assign(vM, getQReg128(mm));
math_SQDMULH(&res, &sat1q, &sat1n, isR, size, vN, vM);
putQReg128(dd,
mkexpr(math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, mkexpr(res))));
updateQCFLAGwithDifference(
math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, mkexpr(sat1q)),
math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, mkexpr(sat1n)));
const HChar arr = "bhsd"[size];
const HChar* nm = isR ? "sqrdmulh" : "sqdmulh";
DIP("%s %c%d, %c%d, %c%d\n", nm, arr, dd, arr, nn, arr, mm);
return True;
}
if (bitU == 1 && size >= X10 && opcode == BITS5(1,1,0,1,0)) {
/* -------- 1,1x,11010 FABD d_d_d, s_s_s -------- */
IRType ity = size == X11 ? Ity_F64 : Ity_F32;
IRTemp res = newTemp(ity);
assign(res, unop(mkABSF(ity),
triop(mkSUBF(ity),
mkexpr(mk_get_IR_rounding_mode()),
getQRegLO(nn,ity), getQRegLO(mm,ity))));
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(res));
DIP("fabd %s, %s, %s\n",
nameQRegLO(dd, ity), nameQRegLO(nn, ity), nameQRegLO(mm, ity));
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_two_reg_misc(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 29 28 23 21 16 11 9 4
01 U 11110 size 10000 opcode 10 n d
Decode fields: u,size,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,24) != BITS5(1,1,1,1,0)
|| INSN(21,17) != BITS5(1,0,0,0,0)
|| INSN(11,10) != BITS2(1,0)) {
return False;
}
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt opcode = INSN(16,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
if (opcode == BITS5(0,0,0,1,1)) {
/* -------- 0,xx,00011: SUQADD std4_std4 -------- */
/* -------- 1,xx,00011: USQADD std4_std4 -------- */
/* These are a bit tricky (to say the least). See comments on
the vector variants (in dis_AdvSIMD_two_reg_misc) below for
details. */
Bool isUSQADD = bitU == 1;
IROp qop = isUSQADD ? mkVecQADDEXTSUSATUU(size)
: mkVecQADDEXTUSSATSS(size);
IROp nop = mkVecADD(size);
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
assign(argL, getQReg128(nn));
assign(argR, getQReg128(dd));
IRTemp qres = math_ZERO_ALL_EXCEPT_LOWEST_LANE(
size, binop(qop, mkexpr(argL), mkexpr(argR)));
IRTemp nres = math_ZERO_ALL_EXCEPT_LOWEST_LANE(
size, binop(nop, mkexpr(argL), mkexpr(argR)));
putQReg128(dd, mkexpr(qres));
updateQCFLAGwithDifference(qres, nres);
const HChar arr = "bhsd"[size];
DIP("%s %c%u, %c%u\n", isUSQADD ? "usqadd" : "suqadd", arr, dd, arr, nn);
return True;
}
if (opcode == BITS5(0,0,1,1,1)) {
/* -------- 0,xx,00111 SQABS std4_std4 -------- */
/* -------- 1,xx,00111 SQNEG std4_std4 -------- */
Bool isNEG = bitU == 1;
IRTemp qresFW = IRTemp_INVALID, nresFW = IRTemp_INVALID;
(isNEG ? math_SQNEG : math_SQABS)( &qresFW, &nresFW,
getQReg128(nn), size );
IRTemp qres = math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, mkexpr(qresFW));
IRTemp nres = math_ZERO_ALL_EXCEPT_LOWEST_LANE(size, mkexpr(nresFW));
putQReg128(dd, mkexpr(qres));
updateQCFLAGwithDifference(qres, nres);
const HChar arr = "bhsd"[size];
DIP("%s %c%u, %c%u\n", isNEG ? "sqneg" : "sqabs", arr, dd, arr, nn);
return True;
}
if (size == X11 && opcode == BITS5(0,1,0,0,0)) {
/* -------- 0,11,01000: CMGT d_d_#0 -------- */ // >s 0
/* -------- 1,11,01000: CMGE d_d_#0 -------- */ // >=s 0
Bool isGT = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = mkV128(0x0000);
IRTemp res = newTempV128();
assign(res, isGT ? binop(Iop_CmpGT64Sx2, argL, argR)
: unop(Iop_NotV128, binop(Iop_CmpGT64Sx2, argR, argL)));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
DIP("cm%s d%u, d%u, #0\n", isGT ? "gt" : "ge", dd, nn);
return True;
}
if (size == X11 && opcode == BITS5(0,1,0,0,1)) {
/* -------- 0,11,01001: CMEQ d_d_#0 -------- */ // == 0
/* -------- 1,11,01001: CMLE d_d_#0 -------- */ // <=s 0
Bool isEQ = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = mkV128(0x0000);
IRTemp res = newTempV128();
assign(res, isEQ ? binop(Iop_CmpEQ64x2, argL, argR)
: unop(Iop_NotV128,
binop(Iop_CmpGT64Sx2, argL, argR)));
putQReg128(dd, unop(Iop_ZeroHI64ofV128, mkexpr(res)));
DIP("cm%s d%u, d%u, #0\n", isEQ ? "eq" : "le", dd, nn);
return True;
}
if (bitU == 0 && size == X11 && opcode == BITS5(0,1,0,1,0)) {
/* -------- 0,11,01010: CMLT d_d_#0 -------- */ // <s 0
putQReg128(dd, unop(Iop_ZeroHI64ofV128,
binop(Iop_CmpGT64Sx2, mkV128(0x0000),
getQReg128(nn))));
DIP("cm%s d%u, d%u, #0\n", "lt", dd, nn);
return True;
}
if (bitU == 0 && size == X11 && opcode == BITS5(0,1,0,1,1)) {
/* -------- 0,11,01011 ABS d_d -------- */
putQReg128(dd, unop(Iop_ZeroHI64ofV128,
unop(Iop_Abs64x2, getQReg128(nn))));
DIP("abs d%u, d%u\n", dd, nn);
return True;
}
if (bitU == 1 && size == X11 && opcode == BITS5(0,1,0,1,1)) {
/* -------- 1,11,01011 NEG d_d -------- */
putQReg128(dd, unop(Iop_ZeroHI64ofV128,
binop(Iop_Sub64x2, mkV128(0x0000), getQReg128(nn))));
DIP("neg d%u, d%u\n", dd, nn);
return True;
}
if (opcode == BITS5(1,0,1,0,0)
|| (bitU == 1 && opcode == BITS5(1,0,0,1,0))) {
/* -------- 0,xx,10100: SQXTN -------- */
/* -------- 1,xx,10100: UQXTN -------- */
/* -------- 1,xx,10010: SQXTUN -------- */
if (size == X11) return False;
vassert(size < 3);
IROp opN = Iop_INVALID;
Bool zWiden = True;
const HChar* nm = "??";
/**/ if (bitU == 0 && opcode == BITS5(1,0,1,0,0)) {
opN = mkVecQNARROWUNSS(size); nm = "sqxtn"; zWiden = False;
}
else if (bitU == 1 && opcode == BITS5(1,0,1,0,0)) {
opN = mkVecQNARROWUNUU(size); nm = "uqxtn";
}
else if (bitU == 1 && opcode == BITS5(1,0,0,1,0)) {
opN = mkVecQNARROWUNSU(size); nm = "sqxtun";
}
else vassert(0);
IRTemp src = math_ZERO_ALL_EXCEPT_LOWEST_LANE(
size+1, getQReg128(nn));
IRTemp resN = math_ZERO_ALL_EXCEPT_LOWEST_LANE(
size, unop(Iop_64UtoV128, unop(opN, mkexpr(src))));
putQReg128(dd, mkexpr(resN));
/* This widens zero lanes to zero, and compares it against zero, so all
of the non-participating lanes make no contribution to the
Q flag state. */
IRTemp resW = math_WIDEN_LO_OR_HI_LANES(zWiden, False/*!fromUpperHalf*/,
size, mkexpr(resN));
updateQCFLAGwithDifference(src, resW);
const HChar arrNarrow = "bhsd"[size];
const HChar arrWide = "bhsd"[size+1];
DIP("%s %c%u, %c%u\n", nm, arrNarrow, dd, arrWide, nn);
return True;
}
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_scalar_x_indexed_element(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 19 15 11 9 4
01 U 11111 size L M m opcode H 0 n d
Decode fields are: u,size,opcode
M is really part of the mm register number. Individual
cases need to inspect L and H though.
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,30) != BITS2(0,1)
|| INSN(28,24) != BITS5(1,1,1,1,1) || INSN(10,10) !=0) {
return False;
}
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt bitL = INSN(21,21);
UInt bitM = INSN(20,20);
UInt mmLO4 = INSN(19,16);
UInt opcode = INSN(15,12);
UInt bitH = INSN(11,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
vassert(bitH < 2 && bitM < 2 && bitL < 2);
if (bitU == 0
&& (opcode == BITS4(1,0,1,1)
|| opcode == BITS4(0,0,1,1) || opcode == BITS4(0,1,1,1))) {
/* -------- 0,xx,1011 SQDMULL s/h variants only -------- */ // 0 (ks)
/* -------- 0,xx,0011 SQDMLAL s/h variants only -------- */ // 1
/* -------- 0,xx,0111 SQDMLSL s/h variants only -------- */ // 2
/* Widens, and size refers to the narrowed lanes. */
UInt ks = 3;
switch (opcode) {
case BITS4(1,0,1,1): ks = 0; break;
case BITS4(0,0,1,1): ks = 1; break;
case BITS4(0,1,1,1): ks = 2; break;
default: vassert(0);
}
vassert(ks >= 0 && ks <= 2);
UInt mm = 32; // invalid
UInt ix = 16; // invalid
switch (size) {
case X00:
return False; // h_b_b[] case is not allowed
case X01:
mm = mmLO4; ix = (bitH << 2) | (bitL << 1) | (bitM << 0); break;
case X10:
mm = (bitM << 4) | mmLO4; ix = (bitH << 1) | (bitL << 0); break;
case X11:
return False; // q_d_d[] case is not allowed
default:
vassert(0);
}
vassert(mm < 32 && ix < 16);
IRTemp vecN, vecD, res, sat1q, sat1n, sat2q, sat2n;
vecN = vecD = res = sat1q = sat1n = sat2q = sat2n = IRTemp_INVALID;
newTempsV128_2(&vecN, &vecD);
assign(vecN, getQReg128(nn));
IRTemp vecM = math_DUP_VEC_ELEM(getQReg128(mm), size, ix);
assign(vecD, getQReg128(dd));
math_SQDMULL_ACC(&res, &sat1q, &sat1n, &sat2q, &sat2n,
False/*!is2*/, size, "mas"[ks],
vecN, vecM, ks == 0 ? IRTemp_INVALID : vecD);
IROp opZHI = mkVecZEROHIxxOFV128(size+1);
putQReg128(dd, unop(opZHI, mkexpr(res)));
vassert(sat1q != IRTemp_INVALID && sat1n != IRTemp_INVALID);
updateQCFLAGwithDifferenceZHI(sat1q, sat1n, opZHI);
if (sat2q != IRTemp_INVALID || sat2n != IRTemp_INVALID) {
updateQCFLAGwithDifferenceZHI(sat2q, sat2n, opZHI);
}
const HChar* nm = ks == 0 ? "sqmull"
: (ks == 1 ? "sqdmlal" : "sqdmlsl");
const HChar arrNarrow = "bhsd"[size];
const HChar arrWide = "bhsd"[size+1];
DIP("%s %c%d, %c%d, v%d.%c[%u]\n",
nm, arrWide, dd, arrNarrow, nn, dd, arrNarrow, ix);
return True;
}
if (opcode == BITS4(1,1,0,0) || opcode == BITS4(1,1,0,1)) {
/* -------- 0,xx,1100 SQDMULH s and h variants only -------- */
/* -------- 0,xx,1101 SQRDMULH s and h variants only -------- */
UInt mm = 32; // invalid
UInt ix = 16; // invalid
switch (size) {
case X00:
return False; // b case is not allowed
case X01:
mm = mmLO4; ix = (bitH << 2) | (bitL << 1) | (bitM << 0); break;
case X10:
mm = (bitM << 4) | mmLO4; ix = (bitH << 1) | (bitL << 0); break;
case X11:
return False; // q case is not allowed
default:
vassert(0);
}
vassert(mm < 32 && ix < 16);
Bool isR = opcode == BITS4(1,1,0,1);
IRTemp res, sat1q, sat1n, vN, vM;
res = sat1q = sat1n = vN = vM = IRTemp_INVALID;
vN = newTempV128();
assign(vN, getQReg128(nn));
vM = math_DUP_VEC_ELEM(getQReg128(mm), size, ix);
math_SQDMULH(&res, &sat1q, &sat1n, isR, size, vN, vM);
IROp opZHI = mkVecZEROHIxxOFV128(size);
putQReg128(dd, unop(opZHI, mkexpr(res)));
updateQCFLAGwithDifferenceZHI(sat1q, sat1n, opZHI);
const HChar* nm = isR ? "sqrdmulh" : "sqdmulh";
HChar ch = size == X01 ? 'h' : 's';
DIP("%s %c%d, %c%d, v%d.%c[%u]\n", nm, ch, dd, ch, nn, ch, dd, ix);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_shift_by_immediate(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 22 18 15 10 9 4
0 q u 011110 immh immb opcode 1 n d
Decode fields: u,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,23) != BITS6(0,1,1,1,1,0) || INSN(10,10) != 1) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitU = INSN(29,29);
UInt immh = INSN(22,19);
UInt immb = INSN(18,16);
UInt opcode = INSN(15,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (opcode == BITS5(0,0,0,0,0) || opcode == BITS5(0,0,0,1,0)) {
/* -------- 0,00000 SSHR std7_std7_#imm -------- */
/* -------- 1,00000 USHR std7_std7_#imm -------- */
/* -------- 0,00010 SSRA std7_std7_#imm -------- */
/* -------- 1,00010 USRA std7_std7_#imm -------- */
/* laneTy, shift = case immh:immb of
0001:xxx -> B, SHR:8-xxx
001x:xxx -> H, SHR:16-xxxx
01xx:xxx -> S, SHR:32-xxxxx
1xxx:xxx -> D, SHR:64-xxxxxx
other -> invalid
*/
UInt size = 0;
UInt shift = 0;
Bool isQ = bitQ == 1;
Bool isU = bitU == 1;
Bool isAcc = opcode == BITS5(0,0,0,1,0);
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || (bitQ == 0 && size == X11)) return False;
vassert(size >= 0 && size <= 3);
UInt lanebits = 8 << size;
vassert(shift >= 1 && shift <= lanebits);
IROp op = isU ? mkVecSHRN(size) : mkVecSARN(size);
IRExpr* src = getQReg128(nn);
IRTemp shf = newTempV128();
IRTemp res = newTempV128();
if (shift == lanebits && isU) {
assign(shf, mkV128(0x0000));
} else {
UInt nudge = 0;
if (shift == lanebits) {
vassert(!isU);
nudge = 1;
}
assign(shf, binop(op, src, mkU8(shift - nudge)));
}
assign(res, isAcc ? binop(mkVecADD(size), getQReg128(dd), mkexpr(shf))
: mkexpr(shf));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
HChar laneCh = "bhsd"[size];
UInt nLanes = (isQ ? 128 : 64) / lanebits;
const HChar* nm = isAcc ? (isU ? "usra" : "ssra")
: (isU ? "ushr" : "sshr");
DIP("%s %s.%u%c, %s.%u%c, #%u\n", nm,
nameQReg128(dd), nLanes, laneCh,
nameQReg128(nn), nLanes, laneCh, shift);
return True;
}
if (opcode == BITS5(0,0,1,0,0) || opcode == BITS5(0,0,1,1,0)) {
/* -------- 0,00100 SRSHR std7_std7_#imm -------- */
/* -------- 1,00100 URSHR std7_std7_#imm -------- */
/* -------- 0,00110 SRSRA std7_std7_#imm -------- */
/* -------- 1,00110 URSRA std7_std7_#imm -------- */
/* laneTy, shift = case immh:immb of
0001:xxx -> B, SHR:8-xxx
001x:xxx -> H, SHR:16-xxxx
01xx:xxx -> S, SHR:32-xxxxx
1xxx:xxx -> D, SHR:64-xxxxxx
other -> invalid
*/
UInt size = 0;
UInt shift = 0;
Bool isQ = bitQ == 1;
Bool isU = bitU == 1;
Bool isAcc = opcode == BITS5(0,0,1,1,0);
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || (bitQ == 0 && size == X11)) return False;
vassert(size >= 0 && size <= 3);
UInt lanebits = 8 << size;
vassert(shift >= 1 && shift <= lanebits);
IROp op = isU ? mkVecRSHU(size) : mkVecRSHS(size);
IRExpr* src = getQReg128(nn);
IRTemp imm8 = newTemp(Ity_I8);
assign(imm8, mkU8((UChar)(-shift)));
IRExpr* amt = mkexpr(math_DUP_TO_V128(imm8, Ity_I8));
IRTemp shf = newTempV128();
IRTemp res = newTempV128();
assign(shf, binop(op, src, amt));
assign(res, isAcc ? binop(mkVecADD(size), getQReg128(dd), mkexpr(shf))
: mkexpr(shf));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
HChar laneCh = "bhsd"[size];
UInt nLanes = (isQ ? 128 : 64) / lanebits;
const HChar* nm = isAcc ? (isU ? "ursra" : "srsra")
: (isU ? "urshr" : "srshr");
DIP("%s %s.%u%c, %s.%u%c, #%u\n", nm,
nameQReg128(dd), nLanes, laneCh,
nameQReg128(nn), nLanes, laneCh, shift);
return True;
}
if (bitU == 1 && opcode == BITS5(0,1,0,0,0)) {
/* -------- 1,01000 SRI std7_std7_#imm -------- */
/* laneTy, shift = case immh:immb of
0001:xxx -> B, SHR:8-xxx
001x:xxx -> H, SHR:16-xxxx
01xx:xxx -> S, SHR:32-xxxxx
1xxx:xxx -> D, SHR:64-xxxxxx
other -> invalid
*/
UInt size = 0;
UInt shift = 0;
Bool isQ = bitQ == 1;
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || (bitQ == 0 && size == X11)) return False;
vassert(size >= 0 && size <= 3);
UInt lanebits = 8 << size;
vassert(shift >= 1 && shift <= lanebits);
IRExpr* src = getQReg128(nn);
IRTemp res = newTempV128();
if (shift == lanebits) {
assign(res, getQReg128(dd));
} else {
assign(res, binop(mkVecSHRN(size), src, mkU8(shift)));
IRExpr* nmask = binop(mkVecSHLN(size),
mkV128(0xFFFF), mkU8(lanebits - shift));
IRTemp tmp = newTempV128();
assign(tmp, binop(Iop_OrV128,
mkexpr(res),
binop(Iop_AndV128, getQReg128(dd), nmask)));
res = tmp;
}
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
HChar laneCh = "bhsd"[size];
UInt nLanes = (isQ ? 128 : 64) / lanebits;
DIP("%s %s.%u%c, %s.%u%c, #%u\n", "sri",
nameQReg128(dd), nLanes, laneCh,
nameQReg128(nn), nLanes, laneCh, shift);
return True;
}
if (opcode == BITS5(0,1,0,1,0)) {
/* -------- 0,01010 SHL std7_std7_#imm -------- */
/* -------- 1,01010 SLI std7_std7_#imm -------- */
/* laneTy, shift = case immh:immb of
0001:xxx -> B, xxx
001x:xxx -> H, xxxx
01xx:xxx -> S, xxxxx
1xxx:xxx -> D, xxxxxx
other -> invalid
*/
UInt size = 0;
UInt shift = 0;
Bool isSLI = bitU == 1;
Bool isQ = bitQ == 1;
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || (bitQ == 0 && size == X11)) return False;
vassert(size >= 0 && size <= 3);
/* The shift encoding has opposite sign for the leftwards case.
Adjust shift to compensate. */
UInt lanebits = 8 << size;
shift = lanebits - shift;
vassert(shift >= 0 && shift < lanebits);
IROp op = mkVecSHLN(size);
IRExpr* src = getQReg128(nn);
IRTemp res = newTempV128();
if (shift == 0) {
assign(res, src);
} else {
assign(res, binop(op, src, mkU8(shift)));
if (isSLI) {
IRExpr* nmask = binop(mkVecSHRN(size),
mkV128(0xFFFF), mkU8(lanebits - shift));
IRTemp tmp = newTempV128();
assign(tmp, binop(Iop_OrV128,
mkexpr(res),
binop(Iop_AndV128, getQReg128(dd), nmask)));
res = tmp;
}
}
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
HChar laneCh = "bhsd"[size];
UInt nLanes = (isQ ? 128 : 64) / lanebits;
const HChar* nm = isSLI ? "sli" : "shl";
DIP("%s %s.%u%c, %s.%u%c, #%u\n", nm,
nameQReg128(dd), nLanes, laneCh,
nameQReg128(nn), nLanes, laneCh, shift);
return True;
}
if (opcode == BITS5(0,1,1,1,0)
|| (bitU == 1 && opcode == BITS5(0,1,1,0,0))) {
/* -------- 0,01110 SQSHL std7_std7_#imm -------- */
/* -------- 1,01110 UQSHL std7_std7_#imm -------- */
/* -------- 1,01100 SQSHLU std7_std7_#imm -------- */
UInt size = 0;
UInt shift = 0;
Bool isQ = bitQ == 1;
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || (bitQ == 0 && size == X11)) return False;
vassert(size >= 0 && size <= 3);
/* The shift encoding has opposite sign for the leftwards case.
Adjust shift to compensate. */
UInt lanebits = 8 << size;
shift = lanebits - shift;
vassert(shift >= 0 && shift < lanebits);
const HChar* nm = NULL;
/**/ if (bitU == 0 && opcode == BITS5(0,1,1,1,0)) nm = "sqshl";
else if (bitU == 1 && opcode == BITS5(0,1,1,1,0)) nm = "uqshl";
else if (bitU == 1 && opcode == BITS5(0,1,1,0,0)) nm = "sqshlu";
else vassert(0);
IRTemp qDiff1 = IRTemp_INVALID;
IRTemp qDiff2 = IRTemp_INVALID;
IRTemp res = IRTemp_INVALID;
IRTemp src = newTempV128();
assign(src, getQReg128(nn));
math_QSHL_IMM(&res, &qDiff1, &qDiff2, src, size, shift, nm);
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
updateQCFLAGwithDifferenceZHI(qDiff1, qDiff2,
isQ ? Iop_INVALID : Iop_ZeroHI64ofV128);
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, #%u\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, shift);
return True;
}
if (bitU == 0
&& (opcode == BITS5(1,0,0,0,0) || opcode == BITS5(1,0,0,0,1))) {
/* -------- 0,10000 SHRN{,2} #imm -------- */
/* -------- 0,10001 RSHRN{,2} #imm -------- */
/* Narrows, and size is the narrow size. */
UInt size = 0;
UInt shift = 0;
Bool is2 = bitQ == 1;
Bool isR = opcode == BITS5(1,0,0,0,1);
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || size == X11) return False;
vassert(shift >= 1);
IRTemp t1 = newTempV128();
IRTemp t2 = newTempV128();
IRTemp t3 = newTempV128();
assign(t1, getQReg128(nn));
assign(t2, isR ? binop(mkVecADD(size+1),
mkexpr(t1),
mkexpr(math_VEC_DUP_IMM(size+1, 1ULL<<(shift-1))))
: mkexpr(t1));
assign(t3, binop(mkVecSHRN(size+1), mkexpr(t2), mkU8(shift)));
IRTemp t4 = math_NARROW_LANES(t3, t3, size);
putLO64andZUorPutHI64(is2, dd, t4);
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
DIP("%s %s.%s, %s.%s, #%u\n", isR ? "rshrn" : "shrn",
nameQReg128(dd), arrNarrow, nameQReg128(nn), arrWide, shift);
return True;
}
if (opcode == BITS5(1,0,0,1,0) || opcode == BITS5(1,0,0,1,1)
|| (bitU == 1
&& (opcode == BITS5(1,0,0,0,0) || opcode == BITS5(1,0,0,0,1)))) {
/* -------- 0,10010 SQSHRN{,2} #imm -------- */
/* -------- 1,10010 UQSHRN{,2} #imm -------- */
/* -------- 0,10011 SQRSHRN{,2} #imm -------- */
/* -------- 1,10011 UQRSHRN{,2} #imm -------- */
/* -------- 1,10000 SQSHRUN{,2} #imm -------- */
/* -------- 1,10001 SQRSHRUN{,2} #imm -------- */
UInt size = 0;
UInt shift = 0;
Bool is2 = bitQ == 1;
Bool ok = getLaneInfo_IMMH_IMMB(&shift, &size, immh, immb);
if (!ok || size == X11) return False;
vassert(shift >= 1 && shift <= (8 << size));
const HChar* nm = "??";
IROp op = Iop_INVALID;
/* Decide on the name and the operation. */
/**/ if (bitU == 0 && opcode == BITS5(1,0,0,1,0)) {
nm = "sqshrn"; op = mkVecQANDqsarNNARROWSS(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,1,0)) {
nm = "uqshrn"; op = mkVecQANDqshrNNARROWUU(size);
}
else if (bitU == 0 && opcode == BITS5(1,0,0,1,1)) {
nm = "sqrshrn"; op = mkVecQANDqrsarNNARROWSS(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,1,1)) {
nm = "uqrshrn"; op = mkVecQANDqrshrNNARROWUU(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,0,0)) {
nm = "sqshrun"; op = mkVecQANDqsarNNARROWSU(size);
}
else if (bitU == 1 && opcode == BITS5(1,0,0,0,1)) {
nm = "sqrshrun"; op = mkVecQANDqrsarNNARROWSU(size);
}
else vassert(0);
/* Compute the result (Q, shifted value) pair. */
IRTemp src128 = newTempV128();
assign(src128, getQReg128(nn));
IRTemp pair = newTempV128();
assign(pair, binop(op, mkexpr(src128), mkU8(shift)));
/* Update the result reg */
IRTemp res64in128 = newTempV128();
assign(res64in128, unop(Iop_ZeroHI64ofV128, mkexpr(pair)));
putLO64andZUorPutHI64(is2, dd, res64in128);
/* Update the Q flag. */
IRTemp q64q64 = newTempV128();
assign(q64q64, binop(Iop_InterleaveHI64x2, mkexpr(pair), mkexpr(pair)));
IRTemp z128 = newTempV128();
assign(z128, mkV128(0x0000));
updateQCFLAGwithDifference(q64q64, z128);
/* */
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
DIP("%s %s.%s, %s.%s, #%u\n", nm,
nameQReg128(dd), arrNarrow, nameQReg128(nn), arrWide, shift);
return True;
}
if (opcode == BITS5(1,0,1,0,0)) {
/* -------- 0,10100 SSHLL{,2} #imm -------- */
/* -------- 1,10100 USHLL{,2} #imm -------- */
/* 31 28 22 18 15 9 4
0q0 011110 immh immb 101001 n d SSHLL Vd.Ta, Vn.Tb, #sh
0q1 011110 immh immb 101001 n d USHLL Vd.Ta, Vn.Tb, #sh
where Ta,Tb,sh
= case immh of 1xxx -> invalid
01xx -> 2d, 2s(q0)/4s(q1), immh:immb - 32 (0..31)
001x -> 4s, 4h(q0)/8h(q1), immh:immb - 16 (0..15)
0001 -> 8h, 8b(q0)/16b(q1), immh:immb - 8 (0..7)
0000 -> AdvSIMD modified immediate (???)
*/
Bool isQ = bitQ == 1;
Bool isU = bitU == 1;
UInt immhb = (immh << 3) | immb;
IRTemp src = newTempV128();
IRTemp zero = newTempV128();
IRExpr* res = NULL;
UInt sh = 0;
const HChar* ta = "??";
const HChar* tb = "??";
assign(src, getQReg128(nn));
assign(zero, mkV128(0x0000));
if (immh & 8) {
/* invalid; don't assign to res */
}
else if (immh & 4) {
sh = immhb - 32;
vassert(sh < 32); /* so 32-sh is 1..32 */
ta = "2d";
tb = isQ ? "4s" : "2s";
IRExpr* tmp = isQ ? mk_InterleaveHI32x4(src, zero)
: mk_InterleaveLO32x4(src, zero);
res = binop(isU ? Iop_ShrN64x2 : Iop_SarN64x2, tmp, mkU8(32-sh));
}
else if (immh & 2) {
sh = immhb - 16;
vassert(sh < 16); /* so 16-sh is 1..16 */
ta = "4s";
tb = isQ ? "8h" : "4h";
IRExpr* tmp = isQ ? mk_InterleaveHI16x8(src, zero)
: mk_InterleaveLO16x8(src, zero);
res = binop(isU ? Iop_ShrN32x4 : Iop_SarN32x4, tmp, mkU8(16-sh));
}
else if (immh & 1) {
sh = immhb - 8;
vassert(sh < 8); /* so 8-sh is 1..8 */
ta = "8h";
tb = isQ ? "16b" : "8b";
IRExpr* tmp = isQ ? mk_InterleaveHI8x16(src, zero)
: mk_InterleaveLO8x16(src, zero);
res = binop(isU ? Iop_ShrN16x8 : Iop_SarN16x8, tmp, mkU8(8-sh));
} else {
vassert(immh == 0);
/* invalid; don't assign to res */
}
/* */
if (res) {
putQReg128(dd, res);
DIP("%cshll%s %s.%s, %s.%s, #%d\n",
isU ? 'u' : 's', isQ ? "2" : "",
nameQReg128(dd), ta, nameQReg128(nn), tb, sh);
return True;
}
return False;
}
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_three_different(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 30 29 28 23 21 20 15 11 9 4
0 Q U 01110 size 1 m opcode 00 n d
Decode fields: u,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,24) != BITS5(0,1,1,1,0)
|| INSN(21,21) != 1
|| INSN(11,10) != BITS2(0,0)) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt mm = INSN(20,16);
UInt opcode = INSN(15,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
Bool is2 = bitQ == 1;
if (opcode == BITS4(0,0,0,0) || opcode == BITS4(0,0,1,0)) {
/* -------- 0,0000 SADDL{2} -------- */
/* -------- 1,0000 UADDL{2} -------- */
/* -------- 0,0010 SSUBL{2} -------- */
/* -------- 1,0010 USUBL{2} -------- */
/* Widens, and size refers to the narrowed lanes. */
if (size == X11) return False;
vassert(size <= 2);
Bool isU = bitU == 1;
Bool isADD = opcode == BITS4(0,0,0,0);
IRTemp argL = math_WIDEN_LO_OR_HI_LANES(isU, is2, size, getQReg128(nn));
IRTemp argR = math_WIDEN_LO_OR_HI_LANES(isU, is2, size, getQReg128(mm));
IRTemp res = newTempV128();
assign(res, binop(isADD ? mkVecADD(size+1) : mkVecSUB(size+1),
mkexpr(argL), mkexpr(argR)));
putQReg128(dd, mkexpr(res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
const HChar* nm = isADD ? (isU ? "uaddl" : "saddl")
: (isU ? "usubl" : "ssubl");
DIP("%s%s %s.%s, %s.%s, %s.%s\n", nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrNarrow, nameQReg128(mm), arrNarrow);
return True;
}
if (opcode == BITS4(0,0,0,1) || opcode == BITS4(0,0,1,1)) {
/* -------- 0,0001 SADDW{2} -------- */
/* -------- 1,0001 UADDW{2} -------- */
/* -------- 0,0011 SSUBW{2} -------- */
/* -------- 1,0011 USUBW{2} -------- */
/* Widens, and size refers to the narrowed lanes. */
if (size == X11) return False;
vassert(size <= 2);
Bool isU = bitU == 1;
Bool isADD = opcode == BITS4(0,0,0,1);
IRTemp argR = math_WIDEN_LO_OR_HI_LANES(isU, is2, size, getQReg128(mm));
IRTemp res = newTempV128();
assign(res, binop(isADD ? mkVecADD(size+1) : mkVecSUB(size+1),
getQReg128(nn), mkexpr(argR)));
putQReg128(dd, mkexpr(res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
const HChar* nm = isADD ? (isU ? "uaddw" : "saddw")
: (isU ? "usubw" : "ssubw");
DIP("%s%s %s.%s, %s.%s, %s.%s\n", nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrWide, nameQReg128(mm), arrNarrow);
return True;
}
if (opcode == BITS4(0,1,0,0) || opcode == BITS4(0,1,1,0)) {
/* -------- 0,0100 ADDHN{2} -------- */
/* -------- 1,0100 RADDHN{2} -------- */
/* -------- 0,0110 SUBHN{2} -------- */
/* -------- 1,0110 RSUBHN{2} -------- */
/* Narrows, and size refers to the narrowed lanes. */
if (size == X11) return False;
vassert(size <= 2);
const UInt shift[3] = { 8, 16, 32 };
Bool isADD = opcode == BITS4(0,1,0,0);
Bool isR = bitU == 1;
/* Combined elements in wide lanes */
IRTemp wide = newTempV128();
IRExpr* wideE = binop(isADD ? mkVecADD(size+1) : mkVecSUB(size+1),
getQReg128(nn), getQReg128(mm));
if (isR) {
wideE = binop(mkVecADD(size+1),
wideE,
mkexpr(math_VEC_DUP_IMM(size+1,
1ULL << (shift[size]-1))));
}
assign(wide, wideE);
/* Top halves of elements, still in wide lanes */
IRTemp shrd = newTempV128();
assign(shrd, binop(mkVecSHRN(size+1), mkexpr(wide), mkU8(shift[size])));
/* Elements now compacted into lower 64 bits */
IRTemp new64 = newTempV128();
assign(new64, binop(mkVecCATEVENLANES(size), mkexpr(shrd), mkexpr(shrd)));
putLO64andZUorPutHI64(is2, dd, new64);
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
const HChar* nm = isADD ? (isR ? "raddhn" : "addhn")
: (isR ? "rsubhn" : "subhn");
DIP("%s%s %s.%s, %s.%s, %s.%s\n", nm, is2 ? "2" : "",
nameQReg128(dd), arrNarrow,
nameQReg128(nn), arrWide, nameQReg128(mm), arrWide);
return True;
}
if (opcode == BITS4(0,1,0,1) || opcode == BITS4(0,1,1,1)) {
/* -------- 0,0101 SABAL{2} -------- */
/* -------- 1,0101 UABAL{2} -------- */
/* -------- 0,0111 SABDL{2} -------- */
/* -------- 1,0111 UABDL{2} -------- */
/* Widens, and size refers to the narrowed lanes. */
if (size == X11) return False;
vassert(size <= 2);
Bool isU = bitU == 1;
Bool isACC = opcode == BITS4(0,1,0,1);
IRTemp argL = math_WIDEN_LO_OR_HI_LANES(isU, is2, size, getQReg128(nn));
IRTemp argR = math_WIDEN_LO_OR_HI_LANES(isU, is2, size, getQReg128(mm));
IRTemp abd = math_ABD(isU, size+1, mkexpr(argL), mkexpr(argR));
IRTemp res = newTempV128();
assign(res, isACC ? binop(mkVecADD(size+1), mkexpr(abd), getQReg128(dd))
: mkexpr(abd));
putQReg128(dd, mkexpr(res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
const HChar* nm = isACC ? (isU ? "uabal" : "sabal")
: (isU ? "uabdl" : "sabdl");
DIP("%s%s %s.%s, %s.%s, %s.%s\n", nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrNarrow, nameQReg128(mm), arrNarrow);
return True;
}
if (opcode == BITS4(1,1,0,0)
|| opcode == BITS4(1,0,0,0) || opcode == BITS4(1,0,1,0)) {
/* -------- 0,1100 SMULL{2} -------- */ // 0 (ks)
/* -------- 1,1100 UMULL{2} -------- */ // 0
/* -------- 0,1000 SMLAL{2} -------- */ // 1
/* -------- 1,1000 UMLAL{2} -------- */ // 1
/* -------- 0,1010 SMLSL{2} -------- */ // 2
/* -------- 1,1010 UMLSL{2} -------- */ // 2
/* Widens, and size refers to the narrowed lanes. */
UInt ks = 3;
switch (opcode) {
case BITS4(1,1,0,0): ks = 0; break;
case BITS4(1,0,0,0): ks = 1; break;
case BITS4(1,0,1,0): ks = 2; break;
default: vassert(0);
}
vassert(ks >= 0 && ks <= 2);
if (size == X11) return False;
vassert(size <= 2);
Bool isU = bitU == 1;
IRTemp vecN = newTempV128();
IRTemp vecM = newTempV128();
IRTemp vecD = newTempV128();
assign(vecN, getQReg128(nn));
assign(vecM, getQReg128(mm));
assign(vecD, getQReg128(dd));
IRTemp res = IRTemp_INVALID;
math_MULL_ACC(&res, is2, isU, size, "mas"[ks],
vecN, vecM, ks == 0 ? IRTemp_INVALID : vecD);
putQReg128(dd, mkexpr(res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
const HChar* nm = ks == 0 ? "mull" : (ks == 1 ? "mlal" : "mlsl");
DIP("%c%s%s %s.%s, %s.%s, %s.%s\n", isU ? 'u' : 's', nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrNarrow, nameQReg128(mm), arrNarrow);
return True;
}
if (bitU == 0
&& (opcode == BITS4(1,1,0,1)
|| opcode == BITS4(1,0,0,1) || opcode == BITS4(1,0,1,1))) {
/* -------- 0,1101 SQDMULL{2} -------- */ // 0 (ks)
/* -------- 0,1001 SQDMLAL{2} -------- */ // 1
/* -------- 0,1011 SQDMLSL{2} -------- */ // 2
/* Widens, and size refers to the narrowed lanes. */
UInt ks = 3;
switch (opcode) {
case BITS4(1,1,0,1): ks = 0; break;
case BITS4(1,0,0,1): ks = 1; break;
case BITS4(1,0,1,1): ks = 2; break;
default: vassert(0);
}
vassert(ks >= 0 && ks <= 2);
if (size == X00 || size == X11) return False;
vassert(size <= 2);
IRTemp vecN, vecM, vecD, res, sat1q, sat1n, sat2q, sat2n;
vecN = vecM = vecD = res = sat1q = sat1n = sat2q = sat2n = IRTemp_INVALID;
newTempsV128_3(&vecN, &vecM, &vecD);
assign(vecN, getQReg128(nn));
assign(vecM, getQReg128(mm));
assign(vecD, getQReg128(dd));
math_SQDMULL_ACC(&res, &sat1q, &sat1n, &sat2q, &sat2n,
is2, size, "mas"[ks],
vecN, vecM, ks == 0 ? IRTemp_INVALID : vecD);
putQReg128(dd, mkexpr(res));
vassert(sat1q != IRTemp_INVALID && sat1n != IRTemp_INVALID);
updateQCFLAGwithDifference(sat1q, sat1n);
if (sat2q != IRTemp_INVALID || sat2n != IRTemp_INVALID) {
updateQCFLAGwithDifference(sat2q, sat2n);
}
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
const HChar* nm = ks == 0 ? "sqdmull"
: (ks == 1 ? "sqdmlal" : "sqdmlsl");
DIP("%s%s %s.%s, %s.%s, %s.%s\n", nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrNarrow, nameQReg128(mm), arrNarrow);
return True;
}
if (bitU == 0 && opcode == BITS4(1,1,1,0)) {
/* -------- 0,1110 PMULL{2} -------- */
/* Widens, and size refers to the narrowed lanes. */
if (size != X00) return False;
IRTemp res
= math_BINARY_WIDENING_V128(is2, Iop_PolynomialMull8x8,
getQReg128(nn), getQReg128(mm));
putQReg128(dd, mkexpr(res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
DIP("%s%s %s.%s, %s.%s, %s.%s\n", "pmull", is2 ? "2" : "",
nameQReg128(dd), arrNarrow,
nameQReg128(nn), arrWide, nameQReg128(mm), arrWide);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_three_same(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 30 29 28 23 21 20 15 10 9 4
0 Q U 01110 size 1 m opcode 1 n d
Decode fields: u,size,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,24) != BITS5(0,1,1,1,0)
|| INSN(21,21) != 1
|| INSN(10,10) != 1) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt mm = INSN(20,16);
UInt opcode = INSN(15,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
if (opcode == BITS5(0,0,0,0,0) || opcode == BITS5(0,0,1,0,0)) {
/* -------- 0,xx,00000 SHADD std6_std6_std6 -------- */
/* -------- 1,xx,00000 UHADD std6_std6_std6 -------- */
/* -------- 0,xx,00100 SHSUB std6_std6_std6 -------- */
/* -------- 1,xx,00100 UHSUB std6_std6_std6 -------- */
if (size == X11) return False;
Bool isADD = opcode == BITS5(0,0,0,0,0);
Bool isU = bitU == 1;
/* Widen both args out, do the math, narrow to final result. */
IRTemp argL = newTempV128();
IRTemp argLhi = IRTemp_INVALID;
IRTemp argLlo = IRTemp_INVALID;
IRTemp argR = newTempV128();
IRTemp argRhi = IRTemp_INVALID;
IRTemp argRlo = IRTemp_INVALID;
IRTemp resHi = newTempV128();
IRTemp resLo = newTempV128();
IRTemp res = IRTemp_INVALID;
assign(argL, getQReg128(nn));
argLlo = math_WIDEN_LO_OR_HI_LANES(isU, False, size, mkexpr(argL));
argLhi = math_WIDEN_LO_OR_HI_LANES(isU, True, size, mkexpr(argL));
assign(argR, getQReg128(mm));
argRlo = math_WIDEN_LO_OR_HI_LANES(isU, False, size, mkexpr(argR));
argRhi = math_WIDEN_LO_OR_HI_LANES(isU, True, size, mkexpr(argR));
IROp opADDSUB = isADD ? mkVecADD(size+1) : mkVecSUB(size+1);
IROp opSxR = isU ? mkVecSHRN(size+1) : mkVecSARN(size+1);
assign(resHi, binop(opSxR,
binop(opADDSUB, mkexpr(argLhi), mkexpr(argRhi)),
mkU8(1)));
assign(resLo, binop(opSxR,
binop(opADDSUB, mkexpr(argLlo), mkexpr(argRlo)),
mkU8(1)));
res = math_NARROW_LANES ( resHi, resLo, size );
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isADD ? (isU ? "uhadd" : "shadd")
: (isU ? "uhsub" : "shsub");
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,0,0,1,0)) {
/* -------- 0,xx,00010 SRHADD std7_std7_std7 -------- */
/* -------- 1,xx,00010 URHADD std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isU = bitU == 1;
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
assign(argL, getQReg128(nn));
assign(argR, getQReg128(mm));
IRTemp res = math_RHADD(size, isU, argL, argR);
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", isU ? "urhadd" : "srhadd",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,0,0,0,1) || opcode == BITS5(0,0,1,0,1)) {
/* -------- 0,xx,00001 SQADD std7_std7_std7 -------- */
/* -------- 1,xx,00001 UQADD std7_std7_std7 -------- */
/* -------- 0,xx,00101 SQSUB std7_std7_std7 -------- */
/* -------- 1,xx,00101 UQSUB std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isADD = opcode == BITS5(0,0,0,0,1);
Bool isU = bitU == 1;
IROp qop = Iop_INVALID;
IROp nop = Iop_INVALID;
if (isADD) {
qop = isU ? mkVecQADDU(size) : mkVecQADDS(size);
nop = mkVecADD(size);
} else {
qop = isU ? mkVecQSUBU(size) : mkVecQSUBS(size);
nop = mkVecSUB(size);
}
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
IRTemp qres = newTempV128();
IRTemp nres = newTempV128();
assign(argL, getQReg128(nn));
assign(argR, getQReg128(mm));
assign(qres, math_MAYBE_ZERO_HI64_fromE(
bitQ, binop(qop, mkexpr(argL), mkexpr(argR))));
assign(nres, math_MAYBE_ZERO_HI64_fromE(
bitQ, binop(nop, mkexpr(argL), mkexpr(argR))));
putQReg128(dd, mkexpr(qres));
updateQCFLAGwithDifference(qres, nres);
const HChar* nm = isADD ? (isU ? "uqadd" : "sqadd")
: (isU ? "uqsub" : "sqsub");
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(0,0,0,1,1)) {
/* -------- 0,00,00011 AND 16b_16b_16b, 8b_8b_8b -------- */
/* -------- 0,01,00011 BIC 16b_16b_16b, 8b_8b_8b -------- */
/* -------- 0,10,00011 ORR 16b_16b_16b, 8b_8b_8b -------- */
/* -------- 0,10,00011 ORN 16b_16b_16b, 8b_8b_8b -------- */
Bool isORx = (size & 2) == 2;
Bool invert = (size & 1) == 1;
IRTemp res = newTempV128();
assign(res, binop(isORx ? Iop_OrV128 : Iop_AndV128,
getQReg128(nn),
invert ? unop(Iop_NotV128, getQReg128(mm))
: getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* names[4] = { "and", "bic", "orr", "orn" };
const HChar* ar = bitQ == 1 ? "16b" : "8b";
DIP("%s %s.%s, %s.%s, %s.%s\n", names[INSN(23,22)],
nameQReg128(dd), ar, nameQReg128(nn), ar, nameQReg128(mm), ar);
return True;
}
if (bitU == 1 && opcode == BITS5(0,0,0,1,1)) {
/* -------- 1,00,00011 EOR 16b_16b_16b, 8b_8b_8b -------- */
/* -------- 1,01,00011 BSL 16b_16b_16b, 8b_8b_8b -------- */
/* -------- 1,10,00011 BIT 16b_16b_16b, 8b_8b_8b -------- */
/* -------- 1,10,00011 BIF 16b_16b_16b, 8b_8b_8b -------- */
IRTemp argD = newTempV128();
IRTemp argN = newTempV128();
IRTemp argM = newTempV128();
assign(argD, getQReg128(dd));
assign(argN, getQReg128(nn));
assign(argM, getQReg128(mm));
const IROp opXOR = Iop_XorV128;
const IROp opAND = Iop_AndV128;
const IROp opNOT = Iop_NotV128;
IRTemp res = newTempV128();
switch (size) {
case BITS2(0,0): /* EOR */
assign(res, binop(opXOR, mkexpr(argM), mkexpr(argN)));
break;
case BITS2(0,1): /* BSL */
assign(res, binop(opXOR, mkexpr(argM),
binop(opAND,
binop(opXOR, mkexpr(argM), mkexpr(argN)),
mkexpr(argD))));
break;
case BITS2(1,0): /* BIT */
assign(res, binop(opXOR, mkexpr(argD),
binop(opAND,
binop(opXOR, mkexpr(argD), mkexpr(argN)),
mkexpr(argM))));
break;
case BITS2(1,1): /* BIF */
assign(res, binop(opXOR, mkexpr(argD),
binop(opAND,
binop(opXOR, mkexpr(argD), mkexpr(argN)),
unop(opNOT, mkexpr(argM)))));
break;
default:
vassert(0);
}
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nms[4] = { "eor", "bsl", "bit", "bif" };
const HChar* arr = bitQ == 1 ? "16b" : "8b";
DIP("%s %s.%s, %s.%s, %s.%s\n", nms[size],
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,0,1,1,0)) {
/* -------- 0,xx,00110 CMGT std7_std7_std7 -------- */ // >s
/* -------- 1,xx,00110 CMHI std7_std7_std7 -------- */ // >u
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isGT = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = getQReg128(mm);
IRTemp res = newTempV128();
assign(res,
isGT ? binop(mkVecCMPGTS(size), argL, argR)
: binop(mkVecCMPGTU(size), argL, argR));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isGT ? "cmgt" : "cmhi";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,0,1,1,1)) {
/* -------- 0,xx,00111 CMGE std7_std7_std7 -------- */ // >=s
/* -------- 1,xx,00111 CMHS std7_std7_std7 -------- */ // >=u
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isGE = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = getQReg128(mm);
IRTemp res = newTempV128();
assign(res,
isGE ? unop(Iop_NotV128, binop(mkVecCMPGTS(size), argR, argL))
: unop(Iop_NotV128, binop(mkVecCMPGTU(size), argR, argL)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isGE ? "cmge" : "cmhs";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,1,0,0,0) || opcode == BITS5(0,1,0,1,0)) {
/* -------- 0,xx,01000 SSHL std7_std7_std7 -------- */
/* -------- 0,xx,01010 SRSHL std7_std7_std7 -------- */
/* -------- 1,xx,01000 USHL std7_std7_std7 -------- */
/* -------- 1,xx,01010 URSHL std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isU = bitU == 1;
Bool isR = opcode == BITS5(0,1,0,1,0);
IROp op = isR ? (isU ? mkVecRSHU(size) : mkVecRSHS(size))
: (isU ? mkVecSHU(size) : mkVecSHS(size));
IRTemp res = newTempV128();
assign(res, binop(op, getQReg128(nn), getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isR ? (isU ? "urshl" : "srshl")
: (isU ? "ushl" : "sshl");
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,1,0,0,1) || opcode == BITS5(0,1,0,1,1)) {
/* -------- 0,xx,01001 SQSHL std7_std7_std7 -------- */
/* -------- 0,xx,01011 SQRSHL std7_std7_std7 -------- */
/* -------- 1,xx,01001 UQSHL std7_std7_std7 -------- */
/* -------- 1,xx,01011 UQRSHL std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isU = bitU == 1;
Bool isR = opcode == BITS5(0,1,0,1,1);
IROp op = isR ? (isU ? mkVecQANDUQRSH(size) : mkVecQANDSQRSH(size))
: (isU ? mkVecQANDUQSH(size) : mkVecQANDSQSH(size));
/* This is a bit tricky. If we're only interested in the lowest 64 bits
of the result (viz, bitQ == 0), then we must adjust the operands to
ensure that the upper part of the result, that we don't care about,
doesn't pollute the returned Q value. To do this, zero out the upper
operand halves beforehand. This works because it means, for the
lanes we don't care about, we are shifting zero by zero, which can
never saturate. */
IRTemp res256 = newTemp(Ity_V256);
IRTemp resSH = newTempV128();
IRTemp resQ = newTempV128();
IRTemp zero = newTempV128();
assign(res256, binop(op,
math_MAYBE_ZERO_HI64_fromE(bitQ, getQReg128(nn)),
math_MAYBE_ZERO_HI64_fromE(bitQ, getQReg128(mm))));
assign(resSH, unop(Iop_V256toV128_0, mkexpr(res256)));
assign(resQ, unop(Iop_V256toV128_1, mkexpr(res256)));
assign(zero, mkV128(0x0000));
putQReg128(dd, mkexpr(resSH));
updateQCFLAGwithDifference(resQ, zero);
const HChar* nm = isR ? (isU ? "uqrshl" : "sqrshl")
: (isU ? "uqshl" : "sqshl");
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,1,1,0,0) || opcode == BITS5(0,1,1,0,1)) {
/* -------- 0,xx,01100 SMAX std7_std7_std7 -------- */
/* -------- 1,xx,01100 UMAX std7_std7_std7 -------- */
/* -------- 0,xx,01101 SMIN std7_std7_std7 -------- */
/* -------- 1,xx,01101 UMIN std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isU = bitU == 1;
Bool isMAX = (opcode & 1) == 0;
IROp op = isMAX ? (isU ? mkVecMAXU(size) : mkVecMAXS(size))
: (isU ? mkVecMINU(size) : mkVecMINS(size));
IRTemp t = newTempV128();
assign(t, binop(op, getQReg128(nn), getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t));
const HChar* nm = isMAX ? (isU ? "umax" : "smax")
: (isU ? "umin" : "smin");
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(0,1,1,1,0) || opcode == BITS5(0,1,1,1,1)) {
/* -------- 0,xx,01110 SABD std6_std6_std6 -------- */
/* -------- 1,xx,01110 UABD std6_std6_std6 -------- */
/* -------- 0,xx,01111 SABA std6_std6_std6 -------- */
/* -------- 1,xx,01111 UABA std6_std6_std6 -------- */
if (size == X11) return False; // 1d/2d cases not allowed
Bool isU = bitU == 1;
Bool isACC = opcode == BITS5(0,1,1,1,1);
vassert(size <= 2);
IRTemp t1 = math_ABD(isU, size, getQReg128(nn), getQReg128(mm));
IRTemp t2 = newTempV128();
assign(t2, isACC ? binop(mkVecADD(size), mkexpr(t1), getQReg128(dd))
: mkexpr(t1));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t2));
const HChar* nm = isACC ? (isU ? "uaba" : "saba")
: (isU ? "uabd" : "sabd");
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(1,0,0,0,0)) {
/* -------- 0,xx,10000 ADD std7_std7_std7 -------- */
/* -------- 1,xx,10000 SUB std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isSUB = bitU == 1;
IROp op = isSUB ? mkVecSUB(size) : mkVecADD(size);
IRTemp t = newTempV128();
assign(t, binop(op, getQReg128(nn), getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t));
const HChar* nm = isSUB ? "sub" : "add";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(1,0,0,0,1)) {
/* -------- 0,xx,10001 CMTST std7_std7_std7 -------- */ // &, != 0
/* -------- 1,xx,10001 CMEQ std7_std7_std7 -------- */ // ==
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isEQ = bitU == 1;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = getQReg128(mm);
IRTemp res = newTempV128();
assign(res,
isEQ ? binop(mkVecCMPEQ(size), argL, argR)
: unop(Iop_NotV128, binop(mkVecCMPEQ(size),
binop(Iop_AndV128, argL, argR),
mkV128(0x0000))));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isEQ ? "cmeq" : "cmtst";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(1,0,0,1,0)) {
/* -------- 0,xx,10010 MLA std7_std7_std7 -------- */
/* -------- 1,xx,10010 MLS std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isMLS = bitU == 1;
IROp opMUL = mkVecMUL(size);
IROp opADDSUB = isMLS ? mkVecSUB(size) : mkVecADD(size);
IRTemp res = newTempV128();
if (opMUL != Iop_INVALID && opADDSUB != Iop_INVALID) {
assign(res, binop(opADDSUB,
getQReg128(dd),
binop(opMUL, getQReg128(nn), getQReg128(mm))));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", isMLS ? "mls" : "mla",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
return False;
}
if (opcode == BITS5(1,0,0,1,1)) {
/* -------- 0,xx,10011 MUL std7_std7_std7 -------- */
/* -------- 1,xx,10011 PMUL 16b_16b_16b, 8b_8b_8b -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isPMUL = bitU == 1;
const IROp opsPMUL[4]
= { Iop_PolynomialMul8x16, Iop_INVALID, Iop_INVALID, Iop_INVALID };
IROp opMUL = isPMUL ? opsPMUL[size] : mkVecMUL(size);
IRTemp res = newTempV128();
if (opMUL != Iop_INVALID) {
assign(res, binop(opMUL, getQReg128(nn), getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%s\n", isPMUL ? "pmul" : "mul",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
return False;
}
if (opcode == BITS5(1,0,1,0,0) || opcode == BITS5(1,0,1,0,1)) {
/* -------- 0,xx,10100 SMAXP std6_std6_std6 -------- */
/* -------- 1,xx,10100 UMAXP std6_std6_std6 -------- */
/* -------- 0,xx,10101 SMINP std6_std6_std6 -------- */
/* -------- 1,xx,10101 UMINP std6_std6_std6 -------- */
if (size == X11) return False;
Bool isU = bitU == 1;
Bool isMAX = opcode == BITS5(1,0,1,0,0);
IRTemp vN = newTempV128();
IRTemp vM = newTempV128();
IROp op = isMAX ? (isU ? mkVecMAXU(size) : mkVecMAXS(size))
: (isU ? mkVecMINU(size) : mkVecMINS(size));
assign(vN, getQReg128(nn));
assign(vM, getQReg128(mm));
IRTemp res128 = newTempV128();
assign(res128,
binop(op,
binop(mkVecCATEVENLANES(size), mkexpr(vM), mkexpr(vN)),
binop(mkVecCATODDLANES(size), mkexpr(vM), mkexpr(vN))));
/* In the half-width case, use CatEL32x4 to extract the half-width
result from the full-width result. */
IRExpr* res
= bitQ == 0 ? unop(Iop_ZeroHI64ofV128,
binop(Iop_CatEvenLanes32x4, mkexpr(res128),
mkexpr(res128)))
: mkexpr(res128);
putQReg128(dd, res);
const HChar* arr = nameArr_Q_SZ(bitQ, size);
const HChar* nm = isMAX ? (isU ? "umaxp" : "smaxp")
: (isU ? "uminp" : "sminp");
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (opcode == BITS5(1,0,1,1,0)) {
/* -------- 0,xx,10110 SQDMULH s and h variants only -------- */
/* -------- 1,xx,10110 SQRDMULH s and h variants only -------- */
if (size == X00 || size == X11) return False;
Bool isR = bitU == 1;
IRTemp res, sat1q, sat1n, vN, vM;
res = sat1q = sat1n = vN = vM = IRTemp_INVALID;
newTempsV128_2(&vN, &vM);
assign(vN, getQReg128(nn));
assign(vM, getQReg128(mm));
math_SQDMULH(&res, &sat1q, &sat1n, isR, size, vN, vM);
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
IROp opZHI = bitQ == 0 ? Iop_ZeroHI64ofV128 : Iop_INVALID;
updateQCFLAGwithDifferenceZHI(sat1q, sat1n, opZHI);
const HChar* arr = nameArr_Q_SZ(bitQ, size);
const HChar* nm = isR ? "sqrdmulh" : "sqdmulh";
DIP("%s %s.%s, %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(1,0,1,1,1)) {
/* -------- 0,xx,10111 ADDP std7_std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
IRTemp vN = newTempV128();
IRTemp vM = newTempV128();
assign(vN, getQReg128(nn));
assign(vM, getQReg128(mm));
IRTemp res128 = newTempV128();
assign(res128,
binop(mkVecADD(size),
binop(mkVecCATEVENLANES(size), mkexpr(vM), mkexpr(vN)),
binop(mkVecCATODDLANES(size), mkexpr(vM), mkexpr(vN))));
/* In the half-width case, use CatEL32x4 to extract the half-width
result from the full-width result. */
IRExpr* res
= bitQ == 0 ? unop(Iop_ZeroHI64ofV128,
binop(Iop_CatEvenLanes32x4, mkexpr(res128),
mkexpr(res128)))
: mkexpr(res128);
putQReg128(dd, res);
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("addp %s.%s, %s.%s, %s.%s\n",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(1,1,0,0,1)) {
/* -------- 0,0x,11001 FMLA 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
/* -------- 0,1x,11001 FMLS 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
Bool isSUB = (size & 2) == 2;
if (bitQ == 0 && isD) return False; // implied 1d case
IROp opADD = isD ? Iop_Add64Fx2 : Iop_Add32Fx4;
IROp opSUB = isD ? Iop_Sub64Fx2 : Iop_Sub32Fx4;
IROp opMUL = isD ? Iop_Mul64Fx2 : Iop_Mul32Fx4;
IRTemp rm = mk_get_IR_rounding_mode();
IRTemp t1 = newTempV128();
IRTemp t2 = newTempV128();
// FIXME: double rounding; use FMA primops instead
assign(t1, triop(opMUL,
mkexpr(rm), getQReg128(nn), getQReg128(mm)));
assign(t2, triop(isSUB ? opSUB : opADD,
mkexpr(rm), getQReg128(dd), mkexpr(t1)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t2));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", isSUB ? "fmls" : "fmla",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(1,1,0,1,0)) {
/* -------- 0,0x,11010 FADD 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
/* -------- 0,1x,11010 FSUB 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
Bool isSUB = (size & 2) == 2;
if (bitQ == 0 && isD) return False; // implied 1d case
const IROp ops[4]
= { Iop_Add32Fx4, Iop_Add64Fx2, Iop_Sub32Fx4, Iop_Sub64Fx2 };
IROp op = ops[size];
IRTemp rm = mk_get_IR_rounding_mode();
IRTemp t1 = newTempV128();
IRTemp t2 = newTempV128();
assign(t1, triop(op, mkexpr(rm), getQReg128(nn), getQReg128(mm)));
assign(t2, math_MAYBE_ZERO_HI64(bitQ, t1));
putQReg128(dd, mkexpr(t2));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", isSUB ? "fsub" : "fadd",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 1 && size >= X10 && opcode == BITS5(1,1,0,1,0)) {
/* -------- 1,1x,11010 FABD 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
if (bitQ == 0 && isD) return False; // implied 1d case
IROp opSUB = isD ? Iop_Sub64Fx2 : Iop_Sub32Fx4;
IROp opABS = isD ? Iop_Abs64Fx2 : Iop_Abs32Fx4;
IRTemp rm = mk_get_IR_rounding_mode();
IRTemp t1 = newTempV128();
IRTemp t2 = newTempV128();
// FIXME: use Abd primop instead?
assign(t1, triop(opSUB, mkexpr(rm), getQReg128(nn), getQReg128(mm)));
assign(t2, unop(opABS, mkexpr(t1)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t2));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("fabd %s.%s, %s.%s, %s.%s\n",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 1 && size <= X01 && opcode == BITS5(1,1,0,1,1)) {
/* -------- 1,0x,11011 FMUL 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
if (bitQ == 0 && isD) return False; // implied 1d case
IRTemp rm = mk_get_IR_rounding_mode();
IRTemp t1 = newTempV128();
assign(t1, triop(isD ? Iop_Mul64Fx2 : Iop_Mul32Fx4,
mkexpr(rm), getQReg128(nn), getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t1));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("fmul %s.%s, %s.%s, %s.%s\n",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (size <= X01 && opcode == BITS5(1,1,1,0,0)) {
/* -------- 0,0x,11100 FCMEQ 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
/* -------- 1,0x,11100 FCMGE 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
if (bitQ == 0 && isD) return False; // implied 1d case
Bool isGE = bitU == 1;
IROp opCMP = isGE ? (isD ? Iop_CmpLE64Fx2 : Iop_CmpLE32Fx4)
: (isD ? Iop_CmpEQ64Fx2 : Iop_CmpEQ32Fx4);
IRTemp t1 = newTempV128();
assign(t1, isGE ? binop(opCMP, getQReg128(mm), getQReg128(nn)) // swapd
: binop(opCMP, getQReg128(nn), getQReg128(mm)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t1));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", isGE ? "fcmge" : "fcmeq",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 1 && size >= X10 && opcode == BITS5(1,1,1,0,0)) {
/* -------- 1,1x,11100 FCMGT 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
if (bitQ == 0 && isD) return False; // implied 1d case
IROp opCMP = isD ? Iop_CmpLT64Fx2 : Iop_CmpLT32Fx4;
IRTemp t1 = newTempV128();
assign(t1, binop(opCMP, getQReg128(mm), getQReg128(nn))); // swapd
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t1));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", "fcmgt",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 1 && opcode == BITS5(1,1,1,0,1)) {
/* -------- 1,0x,11101 FACGE 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
/* -------- 1,1x,11101 FACGT 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
Bool isGT = (size & 2) == 2;
if (bitQ == 0 && isD) return False; // implied 1d case
IROp opCMP = isGT ? (isD ? Iop_CmpLT64Fx2 : Iop_CmpLT32Fx4)
: (isD ? Iop_CmpLE64Fx2 : Iop_CmpLE32Fx4);
IROp opABS = isD ? Iop_Abs64Fx2 : Iop_Abs32Fx4;
IRTemp t1 = newTempV128();
assign(t1, binop(opCMP, unop(opABS, getQReg128(mm)),
unop(opABS, getQReg128(nn)))); // swapd
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t1));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", isGT ? "facgt" : "facge",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 1 && size <= X01 && opcode == BITS5(1,1,0,1,0)) {
/* -------- 1,0x,11010 FADDP 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = size == X01;
if (bitQ == 0 && isD) return False; // implied 1d case
IRTemp srcN = newTempV128();
IRTemp srcM = newTempV128();
IRTemp preL = IRTemp_INVALID;
IRTemp preR = IRTemp_INVALID;
assign(srcN, getQReg128(nn));
assign(srcM, getQReg128(mm));
math_REARRANGE_FOR_FLOATING_PAIRWISE(&preL, &preR,
srcM, srcN, isD, bitQ);
putQReg128(
dd, math_MAYBE_ZERO_HI64_fromE(
bitQ,
triop(mkVecADDF(isD ? 3 : 2),
mkexpr(mk_get_IR_rounding_mode()),
mkexpr(preL), mkexpr(preR))));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", "faddp",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
if (bitU == 1 && size <= X01 && opcode == BITS5(1,1,1,1,1)) {
/* -------- 1,0x,11111 FDIV 2d_2d_2d, 4s_4s_4s, 2s_2s_2s -------- */
Bool isD = (size & 1) == 1;
if (bitQ == 0 && isD) return False; // implied 1d case
vassert(size <= 1);
const IROp ops[2] = { Iop_Div32Fx4, Iop_Div64Fx2 };
IROp op = ops[size];
IRTemp rm = mk_get_IR_rounding_mode();
IRTemp t1 = newTempV128();
IRTemp t2 = newTempV128();
assign(t1, triop(op, mkexpr(rm), getQReg128(nn), getQReg128(mm)));
assign(t2, math_MAYBE_ZERO_HI64(bitQ, t1));
putQReg128(dd, mkexpr(t2));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%s\n", "fdiv",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm), arr);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_two_reg_misc(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 30 29 28 23 21 16 11 9 4
0 Q U 01110 size 10000 opcode 10 n d
Decode fields: U,size,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,24) != BITS5(0,1,1,1,0)
|| INSN(21,17) != BITS5(1,0,0,0,0)
|| INSN(11,10) != BITS2(1,0)) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt opcode = INSN(16,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
if (bitU == 0 && size <= X10 && opcode == BITS5(0,0,0,0,0)) {
/* -------- 0,00,00000: REV64 16b_16b, 8b_8b -------- */
/* -------- 0,01,00000: REV64 8h_8h, 4h_4h -------- */
/* -------- 0,10,00000: REV64 4s_4s, 2s_2s -------- */
const IROp iops[3] = { Iop_Reverse8sIn64_x2,
Iop_Reverse16sIn64_x2, Iop_Reverse32sIn64_x2 };
vassert(size <= 2);
IRTemp res = newTempV128();
assign(res, unop(iops[size], getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", "rev64",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 1 && size <= X01 && opcode == BITS5(0,0,0,0,0)) {
/* -------- 1,00,00000: REV32 16b_16b, 8b_8b -------- */
/* -------- 1,01,00000: REV32 8h_8h, 4h_4h -------- */
Bool isH = size == X01;
IRTemp res = newTempV128();
IROp iop = isH ? Iop_Reverse16sIn32_x4 : Iop_Reverse8sIn32_x4;
assign(res, unop(iop, getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", "rev32",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 0 && size == X00 && opcode == BITS5(0,0,0,0,1)) {
/* -------- 0,00,00001: REV16 16b_16b, 8b_8b -------- */
IRTemp res = newTempV128();
assign(res, unop(Iop_Reverse8sIn16_x8, getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", "rev16",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (opcode == BITS5(0,0,0,1,0) || opcode == BITS5(0,0,1,1,0)) {
/* -------- 0,xx,00010: SADDLP std6_std6 -------- */
/* -------- 1,xx,00010: UADDLP std6_std6 -------- */
/* -------- 0,xx,00110: SADALP std6_std6 -------- */
/* -------- 1,xx,00110: UADALP std6_std6 -------- */
/* Widens, and size refers to the narrow size. */
if (size == X11) return False; // no 1d or 2d cases
Bool isU = bitU == 1;
Bool isACC = opcode == BITS5(0,0,1,1,0);
IRTemp src = newTempV128();
IRTemp sum = newTempV128();
IRTemp res = newTempV128();
assign(src, getQReg128(nn));
assign(sum,
binop(mkVecADD(size+1),
mkexpr(math_WIDEN_EVEN_OR_ODD_LANES(
isU, True/*fromOdd*/, size, mkexpr(src))),
mkexpr(math_WIDEN_EVEN_OR_ODD_LANES(
isU, False/*!fromOdd*/, size, mkexpr(src)))));
assign(res, isACC ? binop(mkVecADD(size+1), mkexpr(sum), getQReg128(dd))
: mkexpr(sum));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(bitQ, size+1);
DIP("%s %s.%s, %s.%s\n", isACC ? (isU ? "uadalp" : "sadalp")
: (isU ? "uaddlp" : "saddlp"),
nameQReg128(dd), arrWide, nameQReg128(nn), arrNarrow);
return True;
}
if (opcode == BITS5(0,0,0,1,1)) {
/* -------- 0,xx,00011: SUQADD std7_std7 -------- */
/* -------- 1,xx,00011: USQADD std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isUSQADD = bitU == 1;
/* This is switched (in the US vs SU sense) deliberately.
SUQADD corresponds to the ExtUSsatSS variants and
USQADD corresponds to the ExtSUsatUU variants.
See libvex_ir for more details. */
IROp qop = isUSQADD ? mkVecQADDEXTSUSATUU(size)
: mkVecQADDEXTUSSATSS(size);
IROp nop = mkVecADD(size);
IRTemp argL = newTempV128();
IRTemp argR = newTempV128();
IRTemp qres = newTempV128();
IRTemp nres = newTempV128();
/* Because the two arguments to the addition are implicitly
extended differently (one signedly, the other unsignedly) it is
important to present them to the primop in the correct order. */
assign(argL, getQReg128(nn));
assign(argR, getQReg128(dd));
assign(qres, math_MAYBE_ZERO_HI64_fromE(
bitQ, binop(qop, mkexpr(argL), mkexpr(argR))));
assign(nres, math_MAYBE_ZERO_HI64_fromE(
bitQ, binop(nop, mkexpr(argL), mkexpr(argR))));
putQReg128(dd, mkexpr(qres));
updateQCFLAGwithDifference(qres, nres);
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", isUSQADD ? "usqadd" : "suqadd",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (opcode == BITS5(0,0,1,0,0)) {
/* -------- 0,xx,00100: CLS std6_std6 -------- */
/* -------- 1,xx,00100: CLZ std6_std6 -------- */
if (size == X11) return False; // no 1d or 2d cases
const IROp opsCLS[3] = { Iop_Cls8x16, Iop_Cls16x8, Iop_Cls32x4 };
const IROp opsCLZ[3] = { Iop_Clz8x16, Iop_Clz16x8, Iop_Clz32x4 };
Bool isCLZ = bitU == 1;
IRTemp res = newTempV128();
vassert(size <= 2);
assign(res, unop(isCLZ ? opsCLZ[size] : opsCLS[size], getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", isCLZ ? "clz" : "cls",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (size == X00 && opcode == BITS5(0,0,1,0,1)) {
/* -------- 0,00,00101: CNT 16b_16b, 8b_8b -------- */
/* -------- 1,00,00101: NOT 16b_16b, 8b_8b -------- */
IRTemp res = newTempV128();
assign(res, unop(bitU == 0 ? Iop_Cnt8x16 : Iop_NotV128, getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, 0);
DIP("%s %s.%s, %s.%s\n", bitU == 0 ? "cnt" : "not",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 1 && size == X01 && opcode == BITS5(0,0,1,0,1)) {
/* -------- 1,01,00101 RBIT 16b_16b, 8b_8b -------- */
IRTemp res = newTempV128();
assign(res, unop(Iop_Reverse1sIn8_x16, getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, 0);
DIP("%s %s.%s, %s.%s\n", "rbit",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (opcode == BITS5(0,0,1,1,1)) {
/* -------- 0,xx,00111 SQABS std7_std7 -------- */
/* -------- 1,xx,00111 SQNEG std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isNEG = bitU == 1;
IRTemp qresFW = IRTemp_INVALID, nresFW = IRTemp_INVALID;
(isNEG ? math_SQNEG : math_SQABS)( &qresFW, &nresFW,
getQReg128(nn), size );
IRTemp qres = newTempV128(), nres = newTempV128();
assign(qres, math_MAYBE_ZERO_HI64(bitQ, qresFW));
assign(nres, math_MAYBE_ZERO_HI64(bitQ, nresFW));
putQReg128(dd, mkexpr(qres));
updateQCFLAGwithDifference(qres, nres);
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", isNEG ? "sqneg" : "sqabs",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (opcode == BITS5(0,1,0,0,0)) {
/* -------- 0,xx,01000: CMGT std7_std7_#0 -------- */ // >s 0
/* -------- 1,xx,01000: CMGE std7_std7_#0 -------- */ // >=s 0
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isGT = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = mkV128(0x0000);
IRTemp res = newTempV128();
IROp opGTS = mkVecCMPGTS(size);
assign(res, isGT ? binop(opGTS, argL, argR)
: unop(Iop_NotV128, binop(opGTS, argR, argL)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("cm%s %s.%s, %s.%s, #0\n", isGT ? "gt" : "ge",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (opcode == BITS5(0,1,0,0,1)) {
/* -------- 0,xx,01001: CMEQ std7_std7_#0 -------- */ // == 0
/* -------- 1,xx,01001: CMLE std7_std7_#0 -------- */ // <=s 0
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isEQ = bitU == 0;
IRExpr* argL = getQReg128(nn);
IRExpr* argR = mkV128(0x0000);
IRTemp res = newTempV128();
assign(res, isEQ ? binop(mkVecCMPEQ(size), argL, argR)
: unop(Iop_NotV128,
binop(mkVecCMPGTS(size), argL, argR)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("cm%s %s.%s, %s.%s, #0\n", isEQ ? "eq" : "le",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(0,1,0,1,0)) {
/* -------- 0,xx,01010: CMLT std7_std7_#0 -------- */ // <s 0
if (bitQ == 0 && size == X11) return False; // implied 1d case
IRExpr* argL = getQReg128(nn);
IRExpr* argR = mkV128(0x0000);
IRTemp res = newTempV128();
assign(res, binop(mkVecCMPGTS(size), argR, argL));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("cm%s %s.%s, %s.%s, #0\n", "lt",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(0,1,0,1,1)) {
/* -------- 0,xx,01011: ABS std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
IRTemp res = newTempV128();
assign(res, unop(mkVecABS(size), getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("abs %s.%s, %s.%s\n", nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 1 && opcode == BITS5(0,1,0,1,1)) {
/* -------- 1,xx,01011: NEG std7_std7 -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
IRTemp res = newTempV128();
assign(res, binop(mkVecSUB(size), mkV128(0x0000), getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("neg %s.%s, %s.%s\n", nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (size >= X10 && opcode == BITS5(0,1,1,1,1)) {
/* -------- 0,1x,01111: FABS 2d_2d, 4s_4s, 2s_2s -------- */
/* -------- 1,1x,01111: FNEG 2d_2d, 4s_4s, 2s_2s -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isFNEG = bitU == 1;
IROp op = isFNEG ? (size == X10 ? Iop_Neg32Fx4 : Iop_Neg64Fx2)
: (size == X10 ? Iop_Abs32Fx4 : Iop_Abs64Fx2);
IRTemp res = newTempV128();
assign(res, unop(op, getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = bitQ == 0 ? "2s" : (size == X11 ? "2d" : "4s");
DIP("%s %s.%s, %s.%s\n", isFNEG ? "fneg" : "fabs",
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (bitU == 0 && opcode == BITS5(1,0,0,1,0)) {
/* -------- 0,xx,10010: XTN{,2} -------- */
if (size == X11) return False;
vassert(size < 3);
Bool is2 = bitQ == 1;
IROp opN = mkVecNARROWUN(size);
IRTemp resN = newTempV128();
assign(resN, unop(Iop_64UtoV128, unop(opN, getQReg128(nn))));
putLO64andZUorPutHI64(is2, dd, resN);
const HChar* nm = "xtn";
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
DIP("%s%s %s.%s, %s.%s\n", is2 ? "2" : "", nm,
nameQReg128(dd), arrNarrow, nameQReg128(nn), arrWide);
return True;
}
if (opcode == BITS5(1,0,1,0,0)
|| (bitU == 1 && opcode == BITS5(1,0,0,1,0))) {
/* -------- 0,xx,10100: SQXTN{,2} -------- */
/* -------- 1,xx,10100: UQXTN{,2} -------- */
/* -------- 1,xx,10010: SQXTUN{,2} -------- */
if (size == X11) return False;
vassert(size < 3);
Bool is2 = bitQ == 1;
IROp opN = Iop_INVALID;
Bool zWiden = True;
const HChar* nm = "??";
/**/ if (bitU == 0 && opcode == BITS5(1,0,1,0,0)) {
opN = mkVecQNARROWUNSS(size); nm = "sqxtn"; zWiden = False;
}
else if (bitU == 1 && opcode == BITS5(1,0,1,0,0)) {
opN = mkVecQNARROWUNUU(size); nm = "uqxtn";
}
else if (bitU == 1 && opcode == BITS5(1,0,0,1,0)) {
opN = mkVecQNARROWUNSU(size); nm = "sqxtun";
}
else vassert(0);
IRTemp src = newTempV128();
assign(src, getQReg128(nn));
IRTemp resN = newTempV128();
assign(resN, unop(Iop_64UtoV128, unop(opN, mkexpr(src))));
putLO64andZUorPutHI64(is2, dd, resN);
IRTemp resW = math_WIDEN_LO_OR_HI_LANES(zWiden, False/*!fromUpperHalf*/,
size, mkexpr(resN));
updateQCFLAGwithDifference(src, resW);
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
DIP("%s%s %s.%s, %s.%s\n", is2 ? "2" : "", nm,
nameQReg128(dd), arrNarrow, nameQReg128(nn), arrWide);
return True;
}
if (bitU == 1 && opcode == BITS5(1,0,0,1,1)) {
/* -------- 1,xx,10011 SHLL{2} #lane-width -------- */
/* Widens, and size is the narrow size. */
if (size == X11) return False;
Bool is2 = bitQ == 1;
IROp opINT = is2 ? mkVecINTERLEAVEHI(size) : mkVecINTERLEAVELO(size);
IROp opSHL = mkVecSHLN(size+1);
IRTemp src = newTempV128();
IRTemp res = newTempV128();
assign(src, getQReg128(nn));
assign(res, binop(opSHL, binop(opINT, mkexpr(src), mkexpr(src)),
mkU8(8 << size)));
putQReg128(dd, mkexpr(res));
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
DIP("shll%s %s.%s, %s.%s, #%u\n", is2 ? "2" : "",
nameQReg128(dd), arrWide, nameQReg128(nn), arrNarrow, 8 << size);
return True;
}
if (bitU == 0 && size == X01 && opcode == BITS5(1,0,1,1,0)) {
/* -------- 0,01,10110: FCVTN 2s/4s_2d -------- */
IRTemp rm = mk_get_IR_rounding_mode();
IRExpr* srcLo = getQRegLane(nn, 0, Ity_F64);
IRExpr* srcHi = getQRegLane(nn, 1, Ity_F64);
putQRegLane(dd, 2 * bitQ + 0, binop(Iop_F64toF32, mkexpr(rm), srcLo));
putQRegLane(dd, 2 * bitQ + 1, binop(Iop_F64toF32, mkexpr(rm), srcHi));
if (bitQ == 0) {
putQRegLane(dd, 1, mkU64(0));
}
DIP("fcvtn%s %s.%s, %s.2d\n", bitQ ? "2" : "",
nameQReg128(dd), bitQ ? "4s" : "2s", nameQReg128(nn));
return True;
}
if (size == X10 && opcode == BITS5(1,1,1,0,0)) {
/* -------- 0,10,11100: URECPE 4s_4s, 2s_2s -------- */
/* -------- 1,10,11100: URSQRTE 4s_4s, 2s_2s -------- */
Bool isREC = bitU == 0;
IROp op = isREC ? Iop_RecipEst32Ux4 : Iop_RSqrtEst32Ux4;
IRTemp res = newTempV128();
assign(res, unop(op, getQReg128(nn)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* nm = isREC ? "urecpe" : "ursqrte";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr);
return True;
}
if (size <= X01 && opcode == BITS5(1,1,1,0,1)) {
/* -------- 0,0x,11101: SCVTF -------- */
/* -------- 1,0x,11101: UCVTF -------- */
/* 31 28 22 21 15 9 4
0q0 01110 0 sz 1 00001 110110 n d SCVTF Vd, Vn
0q1 01110 0 sz 1 00001 110110 n d UCVTF Vd, Vn
with laneage:
case sz:Q of 00 -> 2S, zero upper, 01 -> 4S, 10 -> illegal, 11 -> 2D
*/
Bool isQ = bitQ == 1;
Bool isU = bitU == 1;
Bool isF64 = (size & 1) == 1;
if (isQ || !isF64) {
IRType tyF = Ity_INVALID, tyI = Ity_INVALID;
UInt nLanes = 0;
Bool zeroHI = False;
const HChar* arrSpec = NULL;
Bool ok = getLaneInfo_Q_SZ(&tyI, &tyF, &nLanes, &zeroHI, &arrSpec,
isQ, isF64 );
IROp iop = isU ? (isF64 ? Iop_I64UtoF64 : Iop_I32UtoF32)
: (isF64 ? Iop_I64StoF64 : Iop_I32StoF32);
IRTemp rm = mk_get_IR_rounding_mode();
UInt i;
vassert(ok); /* the 'if' above should ensure this */
for (i = 0; i < nLanes; i++) {
putQRegLane(dd, i,
binop(iop, mkexpr(rm), getQRegLane(nn, i, tyI)));
}
if (zeroHI) {
putQRegLane(dd, 1, mkU64(0));
}
DIP("%ccvtf %s.%s, %s.%s\n", isU ? 'u' : 's',
nameQReg128(dd), arrSpec, nameQReg128(nn), arrSpec);
return True;
}
/* else fall through */
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_vector_x_indexed_elem(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 19 15 11 9 4
0 Q U 01111 size L M m opcode H 0 n d
Decode fields are: u,size,opcode
M is really part of the mm register number. Individual
cases need to inspect L and H though.
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,31) != 0
|| INSN(28,24) != BITS5(0,1,1,1,1) || INSN(10,10) !=0) {
return False;
}
UInt bitQ = INSN(30,30);
UInt bitU = INSN(29,29);
UInt size = INSN(23,22);
UInt bitL = INSN(21,21);
UInt bitM = INSN(20,20);
UInt mmLO4 = INSN(19,16);
UInt opcode = INSN(15,12);
UInt bitH = INSN(11,11);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(size < 4);
vassert(bitH < 2 && bitM < 2 && bitL < 2);
if (bitU == 0 && size >= X10
&& (opcode == BITS4(0,0,0,1) || opcode == BITS4(0,1,0,1))) {
/* -------- 0,1x,0001 FMLA 2d_2d_d[], 4s_4s_s[], 2s_2s_s[] -------- */
/* -------- 0,1x,0101 FMLS 2d_2d_d[], 4s_4s_s[], 2s_2s_s[] -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isD = (size & 1) == 1;
Bool isSUB = opcode == BITS4(0,1,0,1);
UInt index;
if (!isD) index = (bitH << 1) | bitL;
else if (isD && bitL == 0) index = bitH;
else return False; // sz:L == x11 => unallocated encoding
vassert(index < (isD ? 2 : 4));
IRType ity = isD ? Ity_F64 : Ity_F32;
IRTemp elem = newTemp(ity);
UInt mm = (bitM << 4) | mmLO4;
assign(elem, getQRegLane(mm, index, ity));
IRTemp dupd = math_DUP_TO_V128(elem, ity);
IROp opADD = isD ? Iop_Add64Fx2 : Iop_Add32Fx4;
IROp opSUB = isD ? Iop_Sub64Fx2 : Iop_Sub32Fx4;
IROp opMUL = isD ? Iop_Mul64Fx2 : Iop_Mul32Fx4;
IRTemp rm = mk_get_IR_rounding_mode();
IRTemp t1 = newTempV128();
IRTemp t2 = newTempV128();
// FIXME: double rounding; use FMA primops instead
assign(t1, triop(opMUL, mkexpr(rm), getQReg128(nn), mkexpr(dupd)));
assign(t2, triop(isSUB ? opSUB : opADD,
mkexpr(rm), getQReg128(dd), mkexpr(t1)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, t2));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("%s %s.%s, %s.%s, %s.%c[%u]\n", isSUB ? "fmls" : "fmla",
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(mm),
isD ? 'd' : 's', index);
return True;
}
if (bitU == 0 && size >= X10 && opcode == BITS4(1,0,0,1)) {
/* -------- 0,1x,1001 FMUL 2d_2d_d[], 4s_4s_s[], 2s_2s_s[] -------- */
if (bitQ == 0 && size == X11) return False; // implied 1d case
Bool isD = (size & 1) == 1;
UInt index;
if (!isD) index = (bitH << 1) | bitL;
else if (isD && bitL == 0) index = bitH;
else return False; // sz:L == x11 => unallocated encoding
vassert(index < (isD ? 2 : 4));
IRType ity = isD ? Ity_F64 : Ity_F32;
IRTemp elem = newTemp(ity);
UInt mm = (bitM << 4) | mmLO4;
assign(elem, getQRegLane(mm, index, ity));
IRTemp dupd = math_DUP_TO_V128(elem, ity);
IRTemp res = newTempV128();
assign(res, triop(isD ? Iop_Mul64Fx2 : Iop_Mul32Fx4,
mkexpr(mk_get_IR_rounding_mode()),
getQReg128(nn), mkexpr(dupd)));
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = bitQ == 0 ? "2s" : (isD ? "2d" : "4s");
DIP("fmul %s.%s, %s.%s, %s.%c[%u]\n", nameQReg128(dd), arr,
nameQReg128(nn), arr, nameQReg128(mm), isD ? 'd' : 's', index);
return True;
}
if ((bitU == 1 && (opcode == BITS4(0,0,0,0) || opcode == BITS4(0,1,0,0)))
|| (bitU == 0 && opcode == BITS4(1,0,0,0))) {
/* -------- 1,xx,0000 MLA s/h variants only -------- */
/* -------- 1,xx,0100 MLS s/h variants only -------- */
/* -------- 0,xx,1000 MUL s/h variants only -------- */
Bool isMLA = opcode == BITS4(0,0,0,0);
Bool isMLS = opcode == BITS4(0,1,0,0);
UInt mm = 32; // invalid
UInt ix = 16; // invalid
switch (size) {
case X00:
return False; // b case is not allowed
case X01:
mm = mmLO4; ix = (bitH << 2) | (bitL << 1) | (bitM << 0); break;
case X10:
mm = (bitM << 4) | mmLO4; ix = (bitH << 1) | (bitL << 0); break;
case X11:
return False; // d case is not allowed
default:
vassert(0);
}
vassert(mm < 32 && ix < 16);
IROp opMUL = mkVecMUL(size);
IROp opADD = mkVecADD(size);
IROp opSUB = mkVecSUB(size);
HChar ch = size == X01 ? 'h' : 's';
IRTemp vecM = math_DUP_VEC_ELEM(getQReg128(mm), size, ix);
IRTemp vecD = newTempV128();
IRTemp vecN = newTempV128();
IRTemp res = newTempV128();
assign(vecD, getQReg128(dd));
assign(vecN, getQReg128(nn));
IRExpr* prod = binop(opMUL, mkexpr(vecN), mkexpr(vecM));
if (isMLA || isMLS) {
assign(res, binop(isMLA ? opADD : opSUB, mkexpr(vecD), prod));
} else {
assign(res, prod);
}
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
const HChar* arr = nameArr_Q_SZ(bitQ, size);
DIP("%s %s.%s, %s.%s, %s.%c[%u]\n", isMLA ? "mla"
: (isMLS ? "mls" : "mul"),
nameQReg128(dd), arr,
nameQReg128(nn), arr, nameQReg128(dd), ch, ix);
return True;
}
if (opcode == BITS4(1,0,1,0)
|| opcode == BITS4(0,0,1,0) || opcode == BITS4(0,1,1,0)) {
/* -------- 0,xx,1010 SMULL s/h variants only -------- */ // 0 (ks)
/* -------- 1,xx,1010 UMULL s/h variants only -------- */ // 0
/* -------- 0,xx,0010 SMLAL s/h variants only -------- */ // 1
/* -------- 1,xx,0010 UMLAL s/h variants only -------- */ // 1
/* -------- 0,xx,0110 SMLSL s/h variants only -------- */ // 2
/* -------- 1,xx,0110 SMLSL s/h variants only -------- */ // 2
/* Widens, and size refers to the narrowed lanes. */
UInt ks = 3;
switch (opcode) {
case BITS4(1,0,1,0): ks = 0; break;
case BITS4(0,0,1,0): ks = 1; break;
case BITS4(0,1,1,0): ks = 2; break;
default: vassert(0);
}
vassert(ks >= 0 && ks <= 2);
Bool isU = bitU == 1;
Bool is2 = bitQ == 1;
UInt mm = 32; // invalid
UInt ix = 16; // invalid
switch (size) {
case X00:
return False; // h_b_b[] case is not allowed
case X01:
mm = mmLO4; ix = (bitH << 2) | (bitL << 1) | (bitM << 0); break;
case X10:
mm = (bitM << 4) | mmLO4; ix = (bitH << 1) | (bitL << 0); break;
case X11:
return False; // q_d_d[] case is not allowed
default:
vassert(0);
}
vassert(mm < 32 && ix < 16);
IRTemp vecN = newTempV128();
IRTemp vecM = math_DUP_VEC_ELEM(getQReg128(mm), size, ix);
IRTemp vecD = newTempV128();
assign(vecN, getQReg128(nn));
assign(vecD, getQReg128(dd));
IRTemp res = IRTemp_INVALID;
math_MULL_ACC(&res, is2, isU, size, "mas"[ks],
vecN, vecM, ks == 0 ? IRTemp_INVALID : vecD);
putQReg128(dd, mkexpr(res));
const HChar* nm = ks == 0 ? "mull" : (ks == 1 ? "mlal" : "mlsl");
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
HChar ch = size == X01 ? 'h' : 's';
DIP("%c%s%s %s.%s, %s.%s, %s.%c[%u]\n",
isU ? 'u' : 's', nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrNarrow, nameQReg128(dd), ch, ix);
return True;
}
if (bitU == 0
&& (opcode == BITS4(1,0,1,1)
|| opcode == BITS4(0,0,1,1) || opcode == BITS4(0,1,1,1))) {
/* -------- 0,xx,1011 SQDMULL s/h variants only -------- */ // 0 (ks)
/* -------- 0,xx,0011 SQDMLAL s/h variants only -------- */ // 1
/* -------- 0,xx,0111 SQDMLSL s/h variants only -------- */ // 2
/* Widens, and size refers to the narrowed lanes. */
UInt ks = 3;
switch (opcode) {
case BITS4(1,0,1,1): ks = 0; break;
case BITS4(0,0,1,1): ks = 1; break;
case BITS4(0,1,1,1): ks = 2; break;
default: vassert(0);
}
vassert(ks >= 0 && ks <= 2);
Bool is2 = bitQ == 1;
UInt mm = 32; // invalid
UInt ix = 16; // invalid
switch (size) {
case X00:
return False; // h_b_b[] case is not allowed
case X01:
mm = mmLO4; ix = (bitH << 2) | (bitL << 1) | (bitM << 0); break;
case X10:
mm = (bitM << 4) | mmLO4; ix = (bitH << 1) | (bitL << 0); break;
case X11:
return False; // q_d_d[] case is not allowed
default:
vassert(0);
}
vassert(mm < 32 && ix < 16);
IRTemp vecN, vecD, res, sat1q, sat1n, sat2q, sat2n;
vecN = vecD = res = sat1q = sat1n = sat2q = sat2n = IRTemp_INVALID;
newTempsV128_2(&vecN, &vecD);
assign(vecN, getQReg128(nn));
IRTemp vecM = math_DUP_VEC_ELEM(getQReg128(mm), size, ix);
assign(vecD, getQReg128(dd));
math_SQDMULL_ACC(&res, &sat1q, &sat1n, &sat2q, &sat2n,
is2, size, "mas"[ks],
vecN, vecM, ks == 0 ? IRTemp_INVALID : vecD);
putQReg128(dd, mkexpr(res));
vassert(sat1q != IRTemp_INVALID && sat1n != IRTemp_INVALID);
updateQCFLAGwithDifference(sat1q, sat1n);
if (sat2q != IRTemp_INVALID || sat2n != IRTemp_INVALID) {
updateQCFLAGwithDifference(sat2q, sat2n);
}
const HChar* nm = ks == 0 ? "sqdmull"
: (ks == 1 ? "sqdmlal" : "sqdmlsl");
const HChar* arrNarrow = nameArr_Q_SZ(bitQ, size);
const HChar* arrWide = nameArr_Q_SZ(1, size+1);
HChar ch = size == X01 ? 'h' : 's';
DIP("%s%s %s.%s, %s.%s, %s.%c[%u]\n",
nm, is2 ? "2" : "",
nameQReg128(dd), arrWide,
nameQReg128(nn), arrNarrow, nameQReg128(dd), ch, ix);
return True;
}
if (opcode == BITS4(1,1,0,0) || opcode == BITS4(1,1,0,1)) {
/* -------- 0,xx,1100 SQDMULH s and h variants only -------- */
/* -------- 0,xx,1101 SQRDMULH s and h variants only -------- */
UInt mm = 32; // invalid
UInt ix = 16; // invalid
switch (size) {
case X00:
return False; // b case is not allowed
case X01:
mm = mmLO4; ix = (bitH << 2) | (bitL << 1) | (bitM << 0); break;
case X10:
mm = (bitM << 4) | mmLO4; ix = (bitH << 1) | (bitL << 0); break;
case X11:
return False; // q case is not allowed
default:
vassert(0);
}
vassert(mm < 32 && ix < 16);
Bool isR = opcode == BITS4(1,1,0,1);
IRTemp res, sat1q, sat1n, vN, vM;
res = sat1q = sat1n = vN = vM = IRTemp_INVALID;
vN = newTempV128();
assign(vN, getQReg128(nn));
vM = math_DUP_VEC_ELEM(getQReg128(mm), size, ix);
math_SQDMULH(&res, &sat1q, &sat1n, isR, size, vN, vM);
putQReg128(dd, math_MAYBE_ZERO_HI64(bitQ, res));
IROp opZHI = bitQ == 0 ? Iop_ZeroHI64ofV128 : Iop_INVALID;
updateQCFLAGwithDifferenceZHI(sat1q, sat1n, opZHI);
const HChar* nm = isR ? "sqrdmulh" : "sqdmulh";
const HChar* arr = nameArr_Q_SZ(bitQ, size);
HChar ch = size == X01 ? 'h' : 's';
DIP("%s %s.%s, %s.%s, %s.%c[%u]\n", nm,
nameQReg128(dd), arr, nameQReg128(nn), arr, nameQReg128(dd), ch, ix);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_crypto_aes(/*MB_OUT*/DisResult* dres, UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_crypto_three_reg_sha(/*MB_OUT*/DisResult* dres, UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_crypto_two_reg_sha(/*MB_OUT*/DisResult* dres, UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_compare(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 15 13 9 4
000 11110 ty 1 m op 1000 n opcode2
The first 3 bits are really "M 0 S", but M and S are always zero.
Decode fields are: ty,op,opcode2
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,24) != BITS8(0,0,0,1,1,1,1,0)
|| INSN(21,21) != 1 || INSN(13,10) != BITS4(1,0,0,0)) {
return False;
}
UInt ty = INSN(23,22);
UInt mm = INSN(20,16);
UInt op = INSN(15,14);
UInt nn = INSN(9,5);
UInt opcode2 = INSN(4,0);
vassert(ty < 4);
if (ty <= X01 && op == X00
&& (opcode2 & BITS5(0,0,1,1,1)) == BITS5(0,0,0,0,0)) {
/* -------- 0x,00,00000 FCMP d_d, s_s -------- */
/* -------- 0x,00,01000 FCMP d_#0, s_#0 -------- */
/* -------- 0x,00,10000 FCMPE d_d, s_s -------- */
/* -------- 0x,00,11000 FCMPE d_#0, s_#0 -------- */
/* 31 23 20 15 9 4
000 11110 01 1 m 00 1000 n 10 000 FCMPE Dn, Dm
000 11110 01 1 00000 00 1000 n 11 000 FCMPE Dn, #0.0
000 11110 01 1 m 00 1000 n 00 000 FCMP Dn, Dm
000 11110 01 1 00000 00 1000 n 01 000 FCMP Dn, #0.0
000 11110 00 1 m 00 1000 n 10 000 FCMPE Sn, Sm
000 11110 00 1 00000 00 1000 n 11 000 FCMPE Sn, #0.0
000 11110 00 1 m 00 1000 n 00 000 FCMP Sn, Sm
000 11110 00 1 00000 00 1000 n 01 000 FCMP Sn, #0.0
FCMPE generates Invalid Operation exn if either arg is any kind
of NaN. FCMP generates Invalid Operation exn if either arg is a
signalling NaN. We ignore this detail here and produce the same
IR for both.
*/
Bool isD = (ty & 1) == 1;
Bool isCMPE = (opcode2 & 16) == 16;
Bool cmpZero = (opcode2 & 8) == 8;
IRType ity = isD ? Ity_F64 : Ity_F32;
Bool valid = True;
if (cmpZero && mm != 0) valid = False;
if (valid) {
IRTemp argL = newTemp(ity);
IRTemp argR = newTemp(ity);
IRTemp irRes = newTemp(Ity_I32);
assign(argL, getQRegLO(nn, ity));
assign(argR,
cmpZero
? (IRExpr_Const(isD ? IRConst_F64i(0) : IRConst_F32i(0)))
: getQRegLO(mm, ity));
assign(irRes, binop(isD ? Iop_CmpF64 : Iop_CmpF32,
mkexpr(argL), mkexpr(argR)));
IRTemp nzcv = mk_convert_IRCmpF64Result_to_NZCV(irRes);
IRTemp nzcv_28x0 = newTemp(Ity_I64);
assign(nzcv_28x0, binop(Iop_Shl64, mkexpr(nzcv), mkU8(28)));
setFlags_COPY(nzcv_28x0);
DIP("fcmp%s %s, %s\n", isCMPE ? "e" : "", nameQRegLO(nn, ity),
cmpZero ? "#0.0" : nameQRegLO(mm, ity));
return True;
}
return False;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_conditional_compare(/*MB_OUT*/DisResult* dres, UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_conditional_select(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 23 21 20 15 11 9 5
000 11110 ty 1 m cond 11 n d
The first 3 bits are really "M 0 S", but M and S are always zero.
Decode fields: ty
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,24) != BITS8(0,0,0,1,1,1,1,0) || INSN(21,21) != 1
|| INSN(11,10) != BITS2(1,1)) {
return False;
}
UInt ty = INSN(23,22);
UInt mm = INSN(20,16);
UInt cond = INSN(15,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (ty <= X01) {
/* -------- 00: FCSEL s_s -------- */
/* -------- 00: FCSEL d_d -------- */
IRType ity = ty == X01 ? Ity_F64 : Ity_F32;
IRTemp srcT = newTemp(ity);
IRTemp srcF = newTemp(ity);
IRTemp res = newTemp(ity);
assign(srcT, getQRegLO(nn, ity));
assign(srcF, getQRegLO(mm, ity));
assign(res, IRExpr_ITE(
unop(Iop_64to1, mk_arm64g_calculate_condition(cond)),
mkexpr(srcT), mkexpr(srcF)));
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(res));
DIP("fcsel %s, %s, %s, %s\n",
nameQRegLO(dd, ity), nameQRegLO(nn, ity), nameQRegLO(mm, ity),
nameCC(cond));
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_data_proc_1_source(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 14 9 4
000 11110 ty 1 opcode 10000 n d
The first 3 bits are really "M 0 S", but M and S are always zero.
Decode fields: ty,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,24) != BITS8(0,0,0,1,1,1,1,0)
|| INSN(21,21) != 1 || INSN(14,10) != BITS5(1,0,0,0,0)) {
return False;
}
UInt ty = INSN(23,22);
UInt opcode = INSN(20,15);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (ty <= X01 && opcode <= BITS6(0,0,0,0,1,1)) {
/* -------- 0x,000000: FMOV d_d, s_s -------- */
/* -------- 0x,000001: FABS d_d, s_s -------- */
/* -------- 0x,000010: FNEG d_d, s_s -------- */
/* -------- 0x,000011: FSQRT d_d, s_s -------- */
IRType ity = ty == X01 ? Ity_F64 : Ity_F32;
IRTemp src = newTemp(ity);
IRTemp res = newTemp(ity);
const HChar* nm = "??";
assign(src, getQRegLO(nn, ity));
switch (opcode) {
case BITS6(0,0,0,0,0,0):
nm = "fmov"; assign(res, mkexpr(src)); break;
case BITS6(0,0,0,0,0,1):
nm = "fabs"; assign(res, unop(mkABSF(ity), mkexpr(src))); break;
case BITS6(0,0,0,0,1,0):
nm = "fabs"; assign(res, unop(mkNEGF(ity), mkexpr(src))); break;
case BITS6(0,0,0,0,1,1):
nm = "fsqrt";
assign(res, binop(mkSQRTF(ity),
mkexpr(mk_get_IR_rounding_mode()),
mkexpr(src))); break;
default:
vassert(0);
}
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(res));
DIP("%s %s, %s\n", nm, nameQRegLO(dd, ity), nameQRegLO(nn, ity));
return True;
}
if ( (ty == X11 && (opcode == BITS6(0,0,0,1,0,0)
|| opcode == BITS6(0,0,0,1,0,1)))
|| (ty == X00 && (opcode == BITS6(0,0,0,1,1,1)
|| opcode == BITS6(0,0,0,1,0,1)))
|| (ty == X01 && (opcode == BITS6(0,0,0,1,1,1)
|| opcode == BITS6(0,0,0,1,0,0)))) {
/* -------- 11,000100: FCVT s_h -------- */
/* -------- 11,000101: FCVT d_h -------- */
/* -------- 00,000111: FCVT h_s -------- */
/* -------- 00,000101: FCVT d_s -------- */
/* -------- 01,000111: FCVT h_d -------- */
/* -------- 01,000100: FCVT s_d -------- */
/* 31 23 21 16 14 9 4
000 11110 11 10001 00 10000 n d FCVT Sd, Hn (unimp)
--------- 11 ----- 01 --------- FCVT Dd, Hn (unimp)
--------- 00 ----- 11 --------- FCVT Hd, Sn (unimp)
--------- 00 ----- 01 --------- FCVT Dd, Sn
--------- 01 ----- 11 --------- FCVT Hd, Dn (unimp)
--------- 01 ----- 00 --------- FCVT Sd, Dn
Rounding, when dst is smaller than src, is per the FPCR.
*/
UInt b2322 = ty;
UInt b1615 = opcode & BITS2(1,1);
if (b2322 == BITS2(0,0) && b1615 == BITS2(0,1)) {
/* Convert S to D */
IRTemp res = newTemp(Ity_F64);
assign(res, unop(Iop_F32toF64, getQRegLO(nn, Ity_F32)));
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(res));
DIP("fcvt %s, %s\n",
nameQRegLO(dd, Ity_F64), nameQRegLO(nn, Ity_F32));
return True;
}
if (b2322 == BITS2(0,1) && b1615 == BITS2(0,0)) {
/* Convert D to S */
IRTemp res = newTemp(Ity_F32);
assign(res, binop(Iop_F64toF32, mkexpr(mk_get_IR_rounding_mode()),
getQRegLO(nn, Ity_F64)));
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(res));
DIP("fcvt %s, %s\n",
nameQRegLO(dd, Ity_F32), nameQRegLO(nn, Ity_F64));
return True;
}
/* else unhandled */
return False;
}
if (ty <= X01
&& opcode >= BITS6(0,0,1,0,0,0) && opcode <= BITS6(0,0,1,1,1,1)
&& opcode != BITS6(0,0,1,1,0,1)) {
/* -------- 0x,001000 FRINTN d_d, s_s -------- */
/* -------- 0x,001001 FRINTP d_d, s_s -------- */
/* -------- 0x,001010 FRINTM d_d, s_s -------- */
/* -------- 0x,001011 FRINTZ d_d, s_s -------- */
/* -------- 0x,001100 FRINTA d_d, s_s -------- */
/* -------- 0x,001110 FRINTX d_d, s_s -------- */
/* -------- 0x,001111 FRINTI d_d, s_s -------- */
/* 31 23 21 17 14 9 4
000 11110 0x 1001 111 10000 n d FRINTI Fd, Fm (round per FPCR)
rm
x==0 => S-registers, x==1 => D-registers
rm (17:15) encodings:
111 per FPCR (FRINTI)
001 +inf (FRINTP)
010 -inf (FRINTM)
011 zero (FRINTZ)
000 tieeven
100 tieaway (FRINTA) -- !! FIXME KLUDGED !!
110 per FPCR + "exact = TRUE" (FRINTX)
101 unallocated
*/
Bool isD = (ty & 1) == 1;
UInt rm = opcode & BITS6(0,0,0,1,1,1);
IRType ity = isD ? Ity_F64 : Ity_F32;
IRExpr* irrmE = NULL;
UChar ch = '?';
switch (rm) {
case BITS3(0,1,1): ch = 'z'; irrmE = mkU32(Irrm_ZERO); break;
case BITS3(0,1,0): ch = 'm'; irrmE = mkU32(Irrm_NegINF); break;
case BITS3(0,0,1): ch = 'p'; irrmE = mkU32(Irrm_PosINF); break;
// The following is a kludge. Should be: Irrm_NEAREST_TIE_AWAY_0
case BITS3(1,0,0): ch = 'a'; irrmE = mkU32(Irrm_NEAREST); break;
// I am unsure about the following, due to the "integral exact"
// description in the manual. What does it mean? (frintx, that is)
case BITS3(1,1,0):
ch = 'x'; irrmE = mkexpr(mk_get_IR_rounding_mode()); break;
case BITS3(1,1,1):
ch = 'i'; irrmE = mkexpr(mk_get_IR_rounding_mode()); break;
default: break;
}
if (irrmE) {
IRTemp src = newTemp(ity);
IRTemp dst = newTemp(ity);
assign(src, getQRegLO(nn, ity));
assign(dst, binop(isD ? Iop_RoundF64toInt : Iop_RoundF32toInt,
irrmE, mkexpr(src)));
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(dst));
DIP("frint%c %s, %s\n",
ch, nameQRegLO(dd, ity), nameQRegLO(nn, ity));
return True;
}
return False;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_data_proc_2_source(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 15 11 9 4
000 11110 ty 1 m opcode 10 n d
The first 3 bits are really "M 0 S", but M and S are always zero.
Decode fields: ty, opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,24) != BITS8(0,0,0,1,1,1,1,0)
|| INSN(21,21) != 1 || INSN(11,10) != BITS2(1,0)) {
return False;
}
UInt ty = INSN(23,22);
UInt mm = INSN(20,16);
UInt opcode = INSN(15,12);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
if (ty <= X01 && opcode <= BITS4(0,1,1,1)) {
/* ------- 0x,0000: FMUL d_d, s_s ------- */
/* ------- 0x,0001: FDIV d_d, s_s ------- */
/* ------- 0x,0010: FADD d_d, s_s ------- */
/* ------- 0x,0011: FSUB d_d, s_s ------- */
/* ------- 0x,0100: FMAX d_d, s_s ------- */
/* ------- 0x,0101: FMIN d_d, s_s ------- */
/* ------- 0x,0110: FMAXNM d_d, s_s ------- (FIXME KLUDGED) */
/* ------- 0x,0111: FMINNM d_d, s_s ------- (FIXME KLUDGED) */
IRType ity = ty == X00 ? Ity_F32 : Ity_F64;
IROp iop = Iop_INVALID;
const HChar* nm = "???";
switch (opcode) {
case BITS4(0,0,0,0): nm = "fmul"; iop = mkMULF(ity); break;
case BITS4(0,0,0,1): nm = "fdiv"; iop = mkDIVF(ity); break;
case BITS4(0,0,1,0): nm = "fadd"; iop = mkADDF(ity); break;
case BITS4(0,0,1,1): nm = "fsub"; iop = mkSUBF(ity); break;
case BITS4(0,1,0,0): nm = "fmax"; iop = mkVecMAXF(ty+2); break;
case BITS4(0,1,0,1): nm = "fmin"; iop = mkVecMINF(ty+2); break;
case BITS4(0,1,1,0): nm = "fmaxnm"; iop = mkVecMAXF(ty+2); break; //!!
case BITS4(0,1,1,1): nm = "fminnm"; iop = mkVecMINF(ty+2); break; //!!
default: vassert(0);
}
if (opcode <= BITS4(0,0,1,1)) {
// This is really not good code. TODO: avoid width-changing
IRTemp res = newTemp(ity);
assign(res, triop(iop, mkexpr(mk_get_IR_rounding_mode()),
getQRegLO(nn, ity), getQRegLO(mm, ity)));
putQReg128(dd, mkV128(0));
putQRegLO(dd, mkexpr(res));
} else {
putQReg128(dd, unop(mkVecZEROHIxxOFV128(ty+2),
binop(iop, getQReg128(nn), getQReg128(mm))));
}
DIP("%s %s, %s, %s\n",
nm, nameQRegLO(dd, ity), nameQRegLO(nn, ity), nameQRegLO(mm, ity));
return True;
}
if (ty <= X01 && opcode == BITS4(1,0,0,0)) {
/* ------- 0x,1000: FNMUL d_d, s_s ------- */
IRType ity = ty == X00 ? Ity_F32 : Ity_F64;
IROp iop = mkMULF(ity);
IROp iopn = mkNEGF(ity);
const HChar* nm = "fnmul";
IRExpr* resE = unop(iopn,
triop(iop, mkexpr(mk_get_IR_rounding_mode()),
getQRegLO(nn, ity), getQRegLO(mm, ity)));
IRTemp res = newTemp(ity);
assign(res, resE);
putQReg128(dd, mkV128(0));
putQRegLO(dd, mkexpr(res));
DIP("%s %s, %s, %s\n",
nm, nameQRegLO(dd, ity), nameQRegLO(nn, ity), nameQRegLO(mm, ity));
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_data_proc_3_source(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 15 14 9 4
000 11111 ty o1 m o0 a n d
The first 3 bits are really "M 0 S", but M and S are always zero.
Decode fields: ty,o1,o0
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,24) != BITS8(0,0,0,1,1,1,1,1)) {
return False;
}
UInt ty = INSN(23,22);
UInt bitO1 = INSN(21,21);
UInt mm = INSN(20,16);
UInt bitO0 = INSN(15,15);
UInt aa = INSN(14,10);
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
vassert(ty < 4);
if (ty <= X01) {
/* -------- 0x,0,0 FMADD d_d_d_d, s_s_s_s -------- */
/* -------- 0x,0,1 FMSUB d_d_d_d, s_s_s_s -------- */
/* -------- 0x,1,0 FNMADD d_d_d_d, s_s_s_s -------- */
/* -------- 0x,1,1 FNMSUB d_d_d_d, s_s_s_s -------- */
/* -------------------- F{N}M{ADD,SUB} -------------------- */
/* 31 22 20 15 14 9 4 ix
000 11111 0 sz 0 m 0 a n d 0 FMADD Fd,Fn,Fm,Fa
000 11111 0 sz 0 m 1 a n d 1 FMSUB Fd,Fn,Fm,Fa
000 11111 0 sz 1 m 0 a n d 2 FNMADD Fd,Fn,Fm,Fa
000 11111 0 sz 1 m 1 a n d 3 FNMSUB Fd,Fn,Fm,Fa
where Fx=Dx when sz=1, Fx=Sx when sz=0
-----SPEC------ ----IMPL----
fmadd a + n * m a + n * m
fmsub a + (-n) * m a - n * m
fnmadd (-a) + (-n) * m -(a + n * m)
fnmsub (-a) + n * m -(a - n * m)
*/
Bool isD = (ty & 1) == 1;
UInt ix = (bitO1 << 1) | bitO0;
IRType ity = isD ? Ity_F64 : Ity_F32;
IROp opADD = mkADDF(ity);
IROp opSUB = mkSUBF(ity);
IROp opMUL = mkMULF(ity);
IROp opNEG = mkNEGF(ity);
IRTemp res = newTemp(ity);
IRExpr* eA = getQRegLO(aa, ity);
IRExpr* eN = getQRegLO(nn, ity);
IRExpr* eM = getQRegLO(mm, ity);
IRExpr* rm = mkexpr(mk_get_IR_rounding_mode());
IRExpr* eNxM = triop(opMUL, rm, eN, eM);
switch (ix) {
case 0: assign(res, triop(opADD, rm, eA, eNxM)); break;
case 1: assign(res, triop(opSUB, rm, eA, eNxM)); break;
case 2: assign(res, unop(opNEG, triop(opADD, rm, eA, eNxM))); break;
case 3: assign(res, unop(opNEG, triop(opSUB, rm, eA, eNxM))); break;
default: vassert(0);
}
putQReg128(dd, mkV128(0x0000));
putQRegLO(dd, mkexpr(res));
const HChar* names[4] = { "fmadd", "fmsub", "fnmadd", "fnmsub" };
DIP("%s %s, %s, %s, %s\n",
names[ix], nameQRegLO(dd, ity), nameQRegLO(nn, ity),
nameQRegLO(mm, ity), nameQRegLO(aa, ity));
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_immediate(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 28 23 21 20 12 9 4
000 11110 ty 1 imm8 100 imm5 d
The first 3 bits are really "M 0 S", but M and S are always zero.
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(31,24) != BITS8(0,0,0,1,1,1,1,0)
|| INSN(21,21) != 1 || INSN(12,10) != BITS3(1,0,0)) {
return False;
}
UInt ty = INSN(23,22);
UInt imm8 = INSN(20,13);
UInt imm5 = INSN(9,5);
UInt dd = INSN(4,0);
/* ------- 00,00000: FMOV s_imm ------- */
/* ------- 01,00000: FMOV d_imm ------- */
if (ty <= X01 && imm5 == BITS5(0,0,0,0,0)) {
Bool isD = (ty & 1) == 1;
ULong imm = VFPExpandImm(imm8, isD ? 64 : 32);
if (!isD) {
vassert(0 == (imm & 0xFFFFFFFF00000000ULL));
}
putQReg128(dd, mkV128(0));
putQRegLO(dd, isD ? mkU64(imm) : mkU32(imm & 0xFFFFFFFFULL));
DIP("fmov %s, #0x%llx\n",
nameQRegLO(dd, isD ? Ity_F64 : Ity_F32), imm);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_to_from_fixedp_conv(/*MB_OUT*/DisResult* dres, UInt insn)
{
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
/* 31 30 29 28 23 21 20 18 15 9 4
sf 0 0 11110 type 0 rmode opcode scale n d
The first 3 bits are really "sf 0 S", but S is always zero.
Decode fields: sf,type,rmode,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(30,29) != BITS2(0,0)
|| INSN(28,24) != BITS5(1,1,1,1,0)
|| INSN(21,21) != 0) {
return False;
}
UInt bitSF = INSN(31,31);
UInt ty = INSN(23,22); // type
UInt rm = INSN(20,19); // rmode
UInt op = INSN(18,16); // opcode
UInt sc = INSN(15,10); // scale
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
// op = 010, 011
/* -------------- {S,U}CVTF (scalar, fixedpt) -------------- */
/* (ix) sf S 28 ty rm op 15 9 4
0 0 0 0 11110 00 0 00 010 scale n d SCVTF Sd, Wn, #fbits
1 0 0 0 11110 01 0 00 010 scale n d SCVTF Dd, Wn, #fbits
2 1 0 0 11110 00 0 00 010 scale n d SCVTF Sd, Xn, #fbits
3 1 0 0 11110 01 0 00 010 scale n d SCVTF Dd, Xn, #fbits
4 0 0 0 11110 00 0 00 011 scale n d UCVTF Sd, Wn, #fbits
5 0 0 0 11110 01 0 00 011 scale n d UCVTF Dd, Wn, #fbits
6 1 0 0 11110 00 0 00 011 scale n d UCVTF Sd, Xn, #fbits
7 1 0 0 11110 01 0 00 011 scale n d UCVTF Dd, Xn, #fbits
These are signed/unsigned conversion from integer registers to
FP registers, all 4 32/64-bit combinations, rounded per FPCR,
scaled per |scale|.
*/
if (ty <= X01 && rm == X00
&& (op == BITS3(0,1,0) || op == BITS3(0,1,1))
&& (bitSF == 1 || ((sc >> 5) & 1) == 1)) {
Bool isI64 = bitSF == 1;
Bool isF64 = (ty & 1) == 1;
Bool isU = (op & 1) == 1;
UInt ix = (isU ? 4 : 0) | (isI64 ? 2 : 0) | (isF64 ? 1 : 0);
Int fbits = 64 - sc;
vassert(fbits >= 1 && fbits <= (isI64 ? 64 : 32));
Double scale = two_to_the_minus(fbits);
IRExpr* scaleE = isF64 ? IRExpr_Const(IRConst_F64(scale))
: IRExpr_Const(IRConst_F32( (Float)scale ));
IROp opMUL = isF64 ? Iop_MulF64 : Iop_MulF32;
const IROp ops[8]
= { Iop_I32StoF32, Iop_I32StoF64, Iop_I64StoF32, Iop_I64StoF64,
Iop_I32UtoF32, Iop_I32UtoF64, Iop_I64UtoF32, Iop_I64UtoF64 };
IRExpr* src = getIRegOrZR(isI64, nn);
IRExpr* res = (isF64 && !isI64)
? unop(ops[ix], src)
: binop(ops[ix],
mkexpr(mk_get_IR_rounding_mode()), src);
putQReg128(dd, mkV128(0));
putQRegLO(dd, triop(opMUL, mkU32(Irrm_NEAREST), res, scaleE));
DIP("%ccvtf %s, %s, #%d\n",
isU ? 'u' : 's', nameQRegLO(dd, isF64 ? Ity_F64 : Ity_F32),
nameIRegOrZR(isI64, nn), fbits);
return True;
}
return False;
# undef INSN
}
static
Bool dis_AdvSIMD_fp_to_from_int_conv(/*MB_OUT*/DisResult* dres, UInt insn)
{
/* 31 30 29 28 23 21 20 18 15 9 4
sf 0 0 11110 type 1 rmode opcode 000000 n d
The first 3 bits are really "sf 0 S", but S is always zero.
Decode fields: sf,type,rmode,opcode
*/
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
if (INSN(30,29) != BITS2(0,0)
|| INSN(28,24) != BITS5(1,1,1,1,0)
|| INSN(21,21) != 1
|| INSN(15,10) != BITS6(0,0,0,0,0,0)) {
return False;
}
UInt bitSF = INSN(31,31);
UInt ty = INSN(23,22); // type
UInt rm = INSN(20,19); // rmode
UInt op = INSN(18,16); // opcode
UInt nn = INSN(9,5);
UInt dd = INSN(4,0);
// op = 000, 001
/* -------- FCVT{N,P,M,Z,A}{S,U} (scalar, integer) -------- */
/* 30 23 20 18 15 9 4
sf 00 11110 0x 1 00 000 000000 n d FCVTNS Rd, Fn (round to
sf 00 11110 0x 1 00 001 000000 n d FCVTNU Rd, Fn nearest)
---------------- 01 -------------- FCVTP-------- (round to +inf)
---------------- 10 -------------- FCVTM-------- (round to -inf)
---------------- 11 -------------- FCVTZ-------- (round to zero)
---------------- 00 100 ---------- FCVTAS------- (nearest, ties away)
---------------- 00 101 ---------- FCVTAU------- (nearest, ties away)
Rd is Xd when sf==1, Wd when sf==0
Fn is Dn when x==1, Sn when x==0
20:19 carry the rounding mode, using the same encoding as FPCR
*/
if (ty <= X01
&& ( ((op == BITS3(0,0,0) || op == BITS3(0,0,1)) && True)
|| ((op == BITS3(1,0,0) || op == BITS3(1,0,1)) && rm == BITS2(0,0))
)
) {
Bool isI64 = bitSF == 1;
Bool isF64 = (ty & 1) == 1;
Bool isU = (op & 1) == 1;
/* Decide on the IR rounding mode to use. */
IRRoundingMode irrm = 8; /*impossible*/
HChar ch = '?';
if (op == BITS3(0,0,0) || op == BITS3(0,0,1)) {
switch (rm) {
case BITS2(0,0): ch = 'n'; irrm = Irrm_NEAREST; break;
case BITS2(0,1): ch = 'p'; irrm = Irrm_PosINF; break;
case BITS2(1,0): ch = 'm'; irrm = Irrm_NegINF; break;
case BITS2(1,1): ch = 'z'; irrm = Irrm_ZERO; break;
default: vassert(0);
}
} else {
vassert(op == BITS3(1,0,0) || op == BITS3(1,0,1));
switch (rm) {
case BITS2(0,0): ch = 'a'; irrm = Irrm_NEAREST; break;
default: vassert(0);
}
}
vassert(irrm != 8);
/* Decide on the conversion primop, based on the source size,
dest size and signedness (8 possibilities). Case coding:
F32 ->s I32 0
F32 ->u I32 1
F32 ->s I64 2
F32 ->u I64 3
F64 ->s I32 4
F64 ->u I32 5
F64 ->s I64 6
F64 ->u I64 7
*/
UInt ix = (isF64 ? 4 : 0) | (isI64 ? 2 : 0) | (isU ? 1 : 0);
vassert(ix < 8);
const IROp iops[8]
= { Iop_F32toI32S, Iop_F32toI32U, Iop_F32toI64S, Iop_F32toI64U,
Iop_F64toI32S, Iop_F64toI32U, Iop_F64toI64S, Iop_F64toI64U };
IROp iop = iops[ix];
// A bit of ATCery: bounce all cases we haven't seen an example of.
if (/* F32toI32S */
(iop == Iop_F32toI32S && irrm == Irrm_ZERO) /* FCVTZS Wd,Sn */
|| (iop == Iop_F32toI32S && irrm == Irrm_NegINF) /* FCVTMS Wd,Sn */
|| (iop == Iop_F32toI32S && irrm == Irrm_PosINF) /* FCVTPS Wd,Sn */
|| (iop == Iop_F32toI32S && irrm == Irrm_NEAREST)/* FCVT{A,N}S W,S */
/* F32toI32U */
|| (iop == Iop_F32toI32U && irrm == Irrm_ZERO) /* FCVTZU Wd,Sn */
|| (iop == Iop_F32toI32U && irrm == Irrm_NegINF) /* FCVTMU Wd,Sn */
|| (iop == Iop_F32toI32U && irrm == Irrm_PosINF) /* FCVTPU Wd,Sn */
|| (iop == Iop_F32toI32U && irrm == Irrm_NEAREST)/* FCVT{A,N}U W,S */
/* F32toI64S */
|| (iop == Iop_F32toI64S && irrm == Irrm_ZERO) /* FCVTZS Xd,Sn */
|| (iop == Iop_F32toI64S && irrm == Irrm_NEAREST)/* FCVT{A,N}S X,S */
/* F32toI64U */
|| (iop == Iop_F32toI64U && irrm == Irrm_ZERO) /* FCVTZU Xd,Sn */
|| (iop == Iop_F32toI64U && irrm == Irrm_PosINF) /* FCVTPU Xd,Sn */
/* F64toI32S */
|| (iop == Iop_F64toI32S && irrm == Irrm_ZERO) /* FCVTZS Wd,Dn */
|| (iop == Iop_F64toI32S && irrm == Irrm_NegINF) /* FCVTMS Wd,Dn */
|| (iop == Iop_F64toI32S && irrm == Irrm_PosINF) /* FCVTPS Wd,Dn */
|| (iop == Iop_F64toI32S && irrm == Irrm_NEAREST)/* FCVT{A,N}S W,D */
/* F64toI32U */
|| (iop == Iop_F64toI32U && irrm == Irrm_ZERO) /* FCVTZU Wd,Dn */
|| (iop == Iop_F64toI32U && irrm == Irrm_NegINF) /* FCVTMU Wd,Dn */
|| (iop == Iop_F64toI32U && irrm == Irrm_PosINF) /* FCVTPU Wd,Dn */
/* F64toI64S */
|| (iop == Iop_F64toI64S && irrm == Irrm_ZERO) /* FCVTZS Xd,Dn */
|| (iop == Iop_F64toI64S && irrm == Irrm_NegINF) /* FCVTMS Xd,Dn */
|| (iop == Iop_F64toI64S && irrm == Irrm_PosINF) /* FCVTPS Xd,Dn */
|| (iop == Iop_F64toI64S && irrm == Irrm_NEAREST)/* FCVT{A,N}S X,D */
/* F64toI64U */
|| (iop == Iop_F64toI64U && irrm == Irrm_ZERO) /* FCVTZU Xd,Dn */
|| (iop == Iop_F64toI64U && irrm == Irrm_NegINF) /* FCVTMU Xd,Dn */
|| (iop == Iop_F64toI64U && irrm == Irrm_PosINF) /* FCVTPU Xd,Dn */
) {
/* validated */
} else {
return False;
}
IRType srcTy = isF64 ? Ity_F64 : Ity_F32;
IRType dstTy = isI64 ? Ity_I64 : Ity_I32;
IRTemp src = newTemp(srcTy);
IRTemp dst = newTemp(dstTy);
assign(src, getQRegLO(nn, srcTy));
assign(dst, binop(iop, mkU32(irrm), mkexpr(src)));
putIRegOrZR(isI64, dd, mkexpr(dst));
DIP("fcvt%c%c %s, %s\n", ch, isU ? 'u' : 's',
nameIRegOrZR(isI64, dd), nameQRegLO(nn, srcTy));
return True;
}
// op = 010, 011
/* -------------- {S,U}CVTF (scalar, integer) -------------- */
/* (ix) sf S 28 ty rm op 15 9 4
0 0 0 0 11110 00 1 00 010 000000 n d SCVTF Sd, Wn
1 0 0 0 11110 01 1 00 010 000000 n d SCVTF Dd, Wn
2 1 0 0 11110 00 1 00 010 000000 n d SCVTF Sd, Xn
3 1 0 0 11110 01 1 00 010 000000 n d SCVTF Dd, Xn
4 0 0 0 11110 00 1 00 011 000000 n d UCVTF Sd, Wn
5 0 0 0 11110 01 1 00 011 000000 n d UCVTF Dd, Wn
6 1 0 0 11110 00 1 00 011 000000 n d UCVTF Sd, Xn
7 1 0 0 11110 01 1 00 011 000000 n d UCVTF Dd, Xn
These are signed/unsigned conversion from integer registers to
FP registers, all 4 32/64-bit combinations, rounded per FPCR.
*/
if (ty <= X01 && rm == X00 && (op == BITS3(0,1,0) || op == BITS3(0,1,1))) {
Bool isI64 = bitSF == 1;
Bool isF64 = (ty & 1) == 1;
Bool isU = (op & 1) == 1;
UInt ix = (isU ? 4 : 0) | (isI64 ? 2 : 0) | (isF64 ? 1 : 0);
const IROp ops[8]
= { Iop_I32StoF32, Iop_I32StoF64, Iop_I64StoF32, Iop_I64StoF64,
Iop_I32UtoF32, Iop_I32UtoF64, Iop_I64UtoF32, Iop_I64UtoF64 };
IRExpr* src = getIRegOrZR(isI64, nn);
IRExpr* res = (isF64 && !isI64)
? unop(ops[ix], src)
: binop(ops[ix],
mkexpr(mk_get_IR_rounding_mode()), src);
putQReg128(dd, mkV128(0));
putQRegLO(dd, res);
DIP("%ccvtf %s, %s\n",
isU ? 'u' : 's', nameQRegLO(dd, isF64 ? Ity_F64 : Ity_F32),
nameIRegOrZR(isI64, nn));
return True;
}
// op = 110, 111
/* -------- FMOV (general) -------- */
/* case sf S ty rm op 15 9 4
(1) 0 0 0 11110 00 1 00 111 000000 n d FMOV Sd, Wn
(2) 1 0 0 11110 01 1 00 111 000000 n d FMOV Dd, Xn
(3) 1 0 0 11110 10 1 01 111 000000 n d FMOV Vd.D[1], Xn
(4) 0 0 0 11110 00 1 00 110 000000 n d FMOV Wd, Sn
(5) 1 0 0 11110 01 1 00 110 000000 n d FMOV Xd, Dn
(6) 1 0 0 11110 10 1 01 110 000000 n d FMOV Xd, Vn.D[1]
*/
if (1) {
UInt ix = 0; // case
if (bitSF == 0) {
if (ty == BITS2(0,0) && rm == BITS2(0,0) && op == BITS3(1,1,1))
ix = 1;
else
if (ty == BITS2(0,0) && rm == BITS2(0,0) && op == BITS3(1,1,0))
ix = 4;
} else {
vassert(bitSF == 1);
if (ty == BITS2(0,1) && rm == BITS2(0,0) && op == BITS3(1,1,1))
ix = 2;
else
if (ty == BITS2(0,1) && rm == BITS2(0,0) && op == BITS3(1,1,0))
ix = 5;
else
if (ty == BITS2(1,0) && rm == BITS2(0,1) && op == BITS3(1,1,1))
ix = 3;
else
if (ty == BITS2(1,0) && rm == BITS2(0,1) && op == BITS3(1,1,0))
ix = 6;
}
if (ix > 0) {
switch (ix) {
case 1:
putQReg128(dd, mkV128(0));
putQRegLO(dd, getIReg32orZR(nn));
DIP("fmov s%u, w%u\n", dd, nn);
break;
case 2:
putQReg128(dd, mkV128(0));
putQRegLO(dd, getIReg64orZR(nn));
DIP("fmov d%u, x%u\n", dd, nn);
break;
case 3:
putQRegHI64(dd, getIReg64orZR(nn));
DIP("fmov v%u.d[1], x%u\n", dd, nn);
break;
case 4:
putIReg32orZR(dd, getQRegLO(nn, Ity_I32));
DIP("fmov w%u, s%u\n", dd, nn);
break;
case 5:
putIReg64orZR(dd, getQRegLO(nn, Ity_I64));
DIP("fmov x%u, d%u\n", dd, nn);
break;
case 6:
putIReg64orZR(dd, getQRegHI64(nn));
DIP("fmov x%u, v%u.d[1]\n", dd, nn);
break;
default:
vassert(0);
}
return True;
}
/* undecodable; fall through */
}
return False;
# undef INSN
}
static
Bool dis_ARM64_simd_and_fp(/*MB_OUT*/DisResult* dres, UInt insn)
{
Bool ok;
ok = dis_AdvSIMD_EXT(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_TBL_TBX(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_ZIP_UZP_TRN(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_across_lanes(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_copy(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_modified_immediate(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_copy(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_pairwise(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_shift_by_imm(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_three_different(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_three_same(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_two_reg_misc(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_scalar_x_indexed_element(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_shift_by_immediate(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_three_different(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_three_same(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_two_reg_misc(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_vector_x_indexed_elem(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_crypto_aes(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_crypto_three_reg_sha(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_crypto_two_reg_sha(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_compare(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_conditional_compare(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_conditional_select(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_data_proc_1_source(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_data_proc_2_source(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_data_proc_3_source(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_immediate(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_to_from_fixedp_conv(dres, insn);
if (UNLIKELY(ok)) return True;
ok = dis_AdvSIMD_fp_to_from_int_conv(dres, insn);
if (UNLIKELY(ok)) return True;
return False;
}
/*------------------------------------------------------------*/
/*--- Disassemble a single ARM64 instruction ---*/
/*------------------------------------------------------------*/
/* Disassemble a single ARM64 instruction into IR. The instruction
has is located at |guest_instr| and has guest IP of
|guest_PC_curr_instr|, which will have been set before the call
here. Returns True iff the instruction was decoded, in which case
*dres will be set accordingly, or False, in which case *dres should
be ignored by the caller. */
static
Bool disInstr_ARM64_WRK (
/*MB_OUT*/DisResult* dres,
Bool (*resteerOkFn) ( /*opaque*/void*, Addr ),
Bool resteerCisOk,
void* callback_opaque,
const UChar* guest_instr,
const VexArchInfo* archinfo,
const VexAbiInfo* abiinfo
)
{
// A macro to fish bits out of 'insn'.
# define INSN(_bMax,_bMin) SLICE_UInt(insn, (_bMax), (_bMin))
//ZZ DisResult dres;
//ZZ UInt insn;
//ZZ //Bool allow_VFP = False;
//ZZ //UInt hwcaps = archinfo->hwcaps;
//ZZ IRTemp condT; /* :: Ity_I32 */
//ZZ UInt summary;
//ZZ HChar dis_buf[128]; // big enough to hold LDMIA etc text
//ZZ
//ZZ /* What insn variants are we supporting today? */
//ZZ //allow_VFP = (0 != (hwcaps & VEX_HWCAPS_ARM_VFP));
//ZZ // etc etc
/* Set result defaults. */
dres->whatNext = Dis_Continue;
dres->len = 4;
dres->continueAt = 0;
dres->jk_StopHere = Ijk_INVALID;
/* At least this is simple on ARM64: insns are all 4 bytes long, and
4-aligned. So just fish the whole thing out of memory right now
and have done. */
UInt insn = getUIntLittleEndianly( guest_instr );
if (0) vex_printf("insn: 0x%x\n", insn);
DIP("\t(arm64) 0x%llx: ", (ULong)guest_PC_curr_instr);
vassert(0 == (guest_PC_curr_instr & 3ULL));
/* ----------------------------------------------------------- */
/* Spot "Special" instructions (see comment at top of file). */
{
const UChar* code = guest_instr;
/* Spot the 16-byte preamble:
93CC0D8C ror x12, x12, #3
93CC358C ror x12, x12, #13
93CCCD8C ror x12, x12, #51
93CCF58C ror x12, x12, #61
*/
UInt word1 = 0x93CC0D8C;
UInt word2 = 0x93CC358C;
UInt word3 = 0x93CCCD8C;
UInt word4 = 0x93CCF58C;
if (getUIntLittleEndianly(code+ 0) == word1 &&
getUIntLittleEndianly(code+ 4) == word2 &&
getUIntLittleEndianly(code+ 8) == word3 &&
getUIntLittleEndianly(code+12) == word4) {
/* Got a "Special" instruction preamble. Which one is it? */
if (getUIntLittleEndianly(code+16) == 0xAA0A014A
/* orr x10,x10,x10 */) {
/* X3 = client_request ( X4 ) */
DIP("x3 = client_request ( x4 )\n");
putPC(mkU64( guest_PC_curr_instr + 20 ));
dres->jk_StopHere = Ijk_ClientReq;
dres->whatNext = Dis_StopHere;
return True;
}
else
if (getUIntLittleEndianly(code+16) == 0xAA0B016B
/* orr x11,x11,x11 */) {
/* X3 = guest_NRADDR */
DIP("x3 = guest_NRADDR\n");
dres->len = 20;
putIReg64orZR(3, IRExpr_Get( OFFB_NRADDR, Ity_I64 ));
return True;
}
else
if (getUIntLittleEndianly(code+16) == 0xAA0C018C
/* orr x12,x12,x12 */) {
/* branch-and-link-to-noredir X8 */
DIP("branch-and-link-to-noredir x8\n");
putIReg64orZR(30, mkU64(guest_PC_curr_instr + 20));
putPC(getIReg64orZR(8));
dres->jk_StopHere = Ijk_NoRedir;
dres->whatNext = Dis_StopHere;
return True;
}
else
if (getUIntLittleEndianly(code+16) == 0xAA090129
/* orr x9,x9,x9 */) {
/* IR injection */
DIP("IR injection\n");
vex_inject_ir(irsb, Iend_LE);
// Invalidate the current insn. The reason is that the IRop we're
// injecting here can change. In which case the translation has to
// be redone. For ease of handling, we simply invalidate all the
// time.
stmt(IRStmt_Put(OFFB_CMSTART, mkU64(guest_PC_curr_instr)));
stmt(IRStmt_Put(OFFB_CMLEN, mkU64(20)));
putPC(mkU64( guest_PC_curr_instr + 20 ));
dres->whatNext = Dis_StopHere;
dres->jk_StopHere = Ijk_InvalICache;
return True;
}
/* We don't know what it is. */
return False;
/*NOTREACHED*/
}
}
/* ----------------------------------------------------------- */
/* Main ARM64 instruction decoder starts here. */
Bool ok = False;
/* insn[28:25] determines the top-level grouping, so let's start
off with that.
For all of these dis_ARM64_ functions, we pass *dres with the
normal default results "insn OK, 4 bytes long, keep decoding" so
they don't need to change it. However, decodes of control-flow
insns may cause *dres to change.
*/
switch (INSN(28,25)) {
case BITS4(1,0,0,0): case BITS4(1,0,0,1):
// Data processing - immediate
ok = dis_ARM64_data_processing_immediate(dres, insn);
break;
case BITS4(1,0,1,0): case BITS4(1,0,1,1):
// Branch, exception generation and system instructions
ok = dis_ARM64_branch_etc(dres, insn, archinfo);
break;
case BITS4(0,1,0,0): case BITS4(0,1,1,0):
case BITS4(1,1,0,0): case BITS4(1,1,1,0):
// Loads and stores
ok = dis_ARM64_load_store(dres, insn);
break;
case BITS4(0,1,0,1): case BITS4(1,1,0,1):
// Data processing - register
ok = dis_ARM64_data_processing_register(dres, insn);
break;
case BITS4(0,1,1,1): case BITS4(1,1,1,1):
// Data processing - SIMD and floating point
ok = dis_ARM64_simd_and_fp(dres, insn);
break;
case BITS4(0,0,0,0): case BITS4(0,0,0,1):
case BITS4(0,0,1,0): case BITS4(0,0,1,1):
// UNALLOCATED
break;
default:
vassert(0); /* Can't happen */
}
/* If the next-level down decoders failed, make sure |dres| didn't
get changed. */
if (!ok) {
vassert(dres->whatNext == Dis_Continue);
vassert(dres->len == 4);
vassert(dres->continueAt == 0);
vassert(dres->jk_StopHere == Ijk_INVALID);
}
return ok;
# undef INSN
}
/*------------------------------------------------------------*/
/*--- Top-level fn ---*/
/*------------------------------------------------------------*/
/* Disassemble a single instruction into IR. The instruction
is located in host memory at &guest_code[delta]. */
DisResult disInstr_ARM64 ( IRSB* irsb_IN,
Bool (*resteerOkFn) ( void*, Addr ),
Bool resteerCisOk,
void* callback_opaque,
const UChar* guest_code_IN,
Long delta_IN,
Addr guest_IP,
VexArch guest_arch,
const VexArchInfo* archinfo,
const VexAbiInfo* abiinfo,
VexEndness host_endness_IN,
Bool sigill_diag_IN )
{
DisResult dres;
vex_bzero(&dres, sizeof(dres));
/* Set globals (see top of this file) */
vassert(guest_arch == VexArchARM64);
irsb = irsb_IN;
host_endness = host_endness_IN;
guest_PC_curr_instr = (Addr64)guest_IP;
/* Sanity checks */
/* (x::UInt - 2) <= 15 === x >= 2 && x <= 17 (I hope) */
vassert((archinfo->arm64_dMinLine_lg2_szB - 2) <= 15);
vassert((archinfo->arm64_iMinLine_lg2_szB - 2) <= 15);
/* Try to decode */
Bool ok = disInstr_ARM64_WRK( &dres,
resteerOkFn, resteerCisOk, callback_opaque,
&guest_code_IN[delta_IN],
archinfo, abiinfo );
if (ok) {
/* All decode successes end up here. */
vassert(dres.len == 4 || dres.len == 20);
switch (dres.whatNext) {
case Dis_Continue:
putPC( mkU64(dres.len + guest_PC_curr_instr) );
break;
case Dis_ResteerU:
case Dis_ResteerC:
putPC(mkU64(dres.continueAt));
break;
case Dis_StopHere:
break;
default:
vassert(0);
}
DIP("\n");
} else {
/* All decode failures end up here. */
if (sigill_diag_IN) {
Int i, j;
UChar buf[64];
UInt insn
= getUIntLittleEndianly( &guest_code_IN[delta_IN] );
vex_bzero(buf, sizeof(buf));
for (i = j = 0; i < 32; i++) {
if (i > 0) {
if ((i & 7) == 0) buf[j++] = ' ';
else if ((i & 3) == 0) buf[j++] = '\'';
}
buf[j++] = (insn & (1<<(31-i))) ? '1' : '0';
}
vex_printf("disInstr(arm64): unhandled instruction 0x%08x\n", insn);
vex_printf("disInstr(arm64): %s\n", buf);
}
/* Tell the dispatcher that this insn cannot be decoded, and so
has not been executed, and (is currently) the next to be
executed. PC should be up-to-date since it is made so at the
start of each insn, but nevertheless be paranoid and update
it again right now. */
putPC( mkU64(guest_PC_curr_instr) );
dres.len = 0;
dres.whatNext = Dis_StopHere;
dres.jk_StopHere = Ijk_NoDecode;
dres.continueAt = 0;
}
return dres;
}
/*--------------------------------------------------------------------*/
/*--- end guest_arm64_toIR.c ---*/
/*--------------------------------------------------------------------*/