blob: 412ee94007921f22eb95acbd5eb6c368b52cfc03 [file] [log] [blame]
/*---------------------------------------------------------------*/
/*--- begin guest_x86_defs.h ---*/
/*---------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2004-2013 OpenWorks LLP
info@open-works.net
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.
The GNU General Public License is contained in the file COPYING.
Neither the names of the U.S. Department of Energy nor the
University of California nor the names of its contributors may be
used to endorse or promote products derived from this software
without prior written permission.
*/
/* Only to be used within the guest-x86 directory. */
#ifndef __VEX_GUEST_X86_DEFS_H
#define __VEX_GUEST_X86_DEFS_H
#include "libvex_basictypes.h"
#include "libvex_guest_x86.h" // VexGuestX86State
#include "libvex_emnote.h" // VexEmNote
#include "guest_generic_bb_to_IR.h" // DisResult
/*---------------------------------------------------------*/
/*--- x86 to IR conversion ---*/
/*---------------------------------------------------------*/
/* Convert one x86 insn to IR. See the type DisOneInstrFn in
bb_to_IR.h. */
extern
DisResult disInstr_X86 ( IRSB* irbb,
Bool (*resteerOkFn) ( void*, Addr ),
Bool resteerCisOk,
void* callback_opaque,
const UChar* guest_code,
Long delta,
Addr guest_IP,
VexArch guest_arch,
const VexArchInfo* archinfo,
const VexAbiInfo* abiinfo,
VexEndness host_endness,
Bool sigill_diag );
/* Used by the optimiser to specialise calls to helpers. */
extern
IRExpr* guest_x86_spechelper ( const HChar* function_name,
IRExpr** args,
IRStmt** precedingStmts,
Int n_precedingStmts );
/* Describes to the optimiser which part of the guest state require
precise memory exceptions. This is logically part of the guest
state description. */
extern
Bool guest_x86_state_requires_precise_mem_exns ( Int, Int,
VexRegisterUpdates );
extern
VexGuestLayout x86guest_layout;
/*---------------------------------------------------------*/
/*--- x86 guest helpers ---*/
/*---------------------------------------------------------*/
/* --- CLEAN HELPERS --- */
extern UInt x86g_calculate_eflags_all (
UInt cc_op, UInt cc_dep1, UInt cc_dep2, UInt cc_ndep
);
VEX_REGPARM(3)
extern UInt x86g_calculate_eflags_c (
UInt cc_op, UInt cc_dep1, UInt cc_dep2, UInt cc_ndep
);
extern UInt x86g_calculate_condition (
UInt/*X86Condcode*/ cond,
UInt cc_op,
UInt cc_dep1, UInt cc_dep2, UInt cc_ndep
);
extern UInt x86g_calculate_FXAM ( UInt tag, ULong dbl );
extern ULong x86g_calculate_RCR (
UInt arg, UInt rot_amt, UInt eflags_in, UInt sz
);
extern ULong x86g_calculate_RCL (
UInt arg, UInt rot_amt, UInt eflags_in, UInt sz
);
extern UInt x86g_calculate_daa_das_aaa_aas ( UInt AX_and_flags, UInt opcode );
extern UInt x86g_calculate_aad_aam ( UInt AX_and_flags, UInt opcode );
extern ULong x86g_check_fldcw ( UInt fpucw );
extern UInt x86g_create_fpucw ( UInt fpround );
extern ULong x86g_check_ldmxcsr ( UInt mxcsr );
extern UInt x86g_create_mxcsr ( UInt sseround );
/* Translate a guest virtual_addr into a guest linear address by
consulting the supplied LDT/GDT structures. Their representation
must be as specified in pub/libvex_guest_x86.h. To indicate a
translation failure, 1<<32 is returned. On success, the lower 32
bits of the returned result indicate the linear address.
*/
extern
ULong x86g_use_seg_selector ( HWord ldt, HWord gdt,
UInt seg_selector, UInt virtual_addr );
extern ULong x86g_calculate_mmx_pmaddwd ( ULong, ULong );
extern ULong x86g_calculate_mmx_psadbw ( ULong, ULong );
/* --- DIRTY HELPERS --- */
extern ULong x86g_dirtyhelper_loadF80le ( Addr );
extern void x86g_dirtyhelper_storeF80le ( Addr, ULong );
extern void x86g_dirtyhelper_CPUID_sse0 ( VexGuestX86State* );
extern void x86g_dirtyhelper_CPUID_mmxext ( VexGuestX86State* );
extern void x86g_dirtyhelper_CPUID_sse1 ( VexGuestX86State* );
extern void x86g_dirtyhelper_CPUID_sse2 ( VexGuestX86State* );
extern void x86g_dirtyhelper_FINIT ( VexGuestX86State* );
extern void x86g_dirtyhelper_FXSAVE ( VexGuestX86State*, HWord );
extern void x86g_dirtyhelper_FSAVE ( VexGuestX86State*, HWord );
extern void x86g_dirtyhelper_FSTENV ( VexGuestX86State*, HWord );
extern ULong x86g_dirtyhelper_RDTSC ( void );
extern UInt x86g_dirtyhelper_IN ( UInt portno, UInt sz/*1,2 or 4*/ );
extern void x86g_dirtyhelper_OUT ( UInt portno, UInt data,
UInt sz/*1,2 or 4*/ );
extern void x86g_dirtyhelper_SxDT ( void* address,
UInt op /* 0 or 1 */ );
extern VexEmNote
x86g_dirtyhelper_FXRSTOR ( VexGuestX86State*, HWord );
extern VexEmNote
x86g_dirtyhelper_FRSTOR ( VexGuestX86State*, HWord );
extern VexEmNote
x86g_dirtyhelper_FLDENV ( VexGuestX86State*, HWord );
/*---------------------------------------------------------*/
/*--- Condition code stuff ---*/
/*---------------------------------------------------------*/
/* eflags masks */
#define X86G_CC_SHIFT_O 11
#define X86G_CC_SHIFT_S 7
#define X86G_CC_SHIFT_Z 6
#define X86G_CC_SHIFT_A 4
#define X86G_CC_SHIFT_C 0
#define X86G_CC_SHIFT_P 2
#define X86G_CC_MASK_O (1 << X86G_CC_SHIFT_O)
#define X86G_CC_MASK_S (1 << X86G_CC_SHIFT_S)
#define X86G_CC_MASK_Z (1 << X86G_CC_SHIFT_Z)
#define X86G_CC_MASK_A (1 << X86G_CC_SHIFT_A)
#define X86G_CC_MASK_C (1 << X86G_CC_SHIFT_C)
#define X86G_CC_MASK_P (1 << X86G_CC_SHIFT_P)
/* FPU flag masks */
#define X86G_FC_SHIFT_C3 14
#define X86G_FC_SHIFT_C2 10
#define X86G_FC_SHIFT_C1 9
#define X86G_FC_SHIFT_C0 8
#define X86G_FC_MASK_C3 (1 << X86G_FC_SHIFT_C3)
#define X86G_FC_MASK_C2 (1 << X86G_FC_SHIFT_C2)
#define X86G_FC_MASK_C1 (1 << X86G_FC_SHIFT_C1)
#define X86G_FC_MASK_C0 (1 << X86G_FC_SHIFT_C0)
/* %EFLAGS thunk descriptors. A four-word thunk is used to record
details of the most recent flag-setting operation, so the flags can
be computed later if needed. It is possible to do this a little
more efficiently using a 3-word thunk, but that makes it impossible
to describe the flag data dependencies sufficiently accurately for
Memcheck. Hence 4 words are used, with minimal loss of efficiency.
The four words are:
CC_OP, which describes the operation.
CC_DEP1 and CC_DEP2. These are arguments to the operation.
We want Memcheck to believe that the resulting flags are
data-dependent on both CC_DEP1 and CC_DEP2, hence the
name DEP.
CC_NDEP. This is a 3rd argument to the operation which is
sometimes needed. We arrange things so that Memcheck does
not believe the resulting flags are data-dependent on CC_NDEP
("not dependent").
To make Memcheck believe that (the definedness of) the encoded
flags depends only on (the definedness of) CC_DEP1 and CC_DEP2
requires two things:
(1) In the guest state layout info (x86guest_layout), CC_OP and
CC_NDEP are marked as always defined.
(2) When passing the thunk components to an evaluation function
(calculate_condition, calculate_eflags, calculate_eflags_c) the
IRCallee's mcx_mask must be set so as to exclude from
consideration all passed args except CC_DEP1 and CC_DEP2.
Strictly speaking only (2) is necessary for correctness. However,
(1) helps efficiency in that since (2) means we never ask about the
definedness of CC_OP or CC_NDEP, we may as well not even bother to
track their definedness.
When building the thunk, it is always necessary to write words into
CC_DEP1 and CC_DEP2, even if those args are not used given the
CC_OP field (eg, CC_DEP2 is not used if CC_OP is CC_LOGIC1/2/4).
This is important because otherwise Memcheck could give false
positives as it does not understand the relationship between the
CC_OP field and CC_DEP1 and CC_DEP2, and so believes that the
definedness of the stored flags always depends on both CC_DEP1 and
CC_DEP2.
However, it is only necessary to set CC_NDEP when the CC_OP value
requires it, because Memcheck ignores CC_NDEP, and the evaluation
functions do understand the CC_OP fields and will only examine
CC_NDEP for suitable values of CC_OP.
A summary of the field usages is:
Operation DEP1 DEP2 NDEP
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
add/sub/mul first arg second arg unused
adc/sbb first arg (second arg)
XOR old_carry old_carry
and/or/xor result zero unused
inc/dec result zero old_carry
shl/shr/sar result subshifted- unused
result
rol/ror result zero old_flags
copy old_flags zero unused.
Therefore Memcheck will believe the following:
* add/sub/mul -- definedness of result flags depends on definedness
of both args.
* adc/sbb -- definedness of result flags depends on definedness of
both args and definedness of the old C flag. Because only two
DEP fields are available, the old C flag is XOR'd into the second
arg so that Memcheck sees the data dependency on it. That means
the NDEP field must contain a second copy of the old C flag
so that the evaluation functions can correctly recover the second
arg.
* and/or/xor are straightforward -- definedness of result flags
depends on definedness of result value.
* inc/dec -- definedness of result flags depends only on
definedness of result. This isn't really true -- it also depends
on the old C flag. However, we don't want Memcheck to see that,
and so the old C flag must be passed in NDEP and not in DEP2.
It's inconceivable that a compiler would generate code that puts
the C flag in an undefined state, then does an inc/dec, which
leaves C unchanged, and then makes a conditional jump/move based
on C. So our fiction seems a good approximation.
* shl/shr/sar -- straightforward, again, definedness of result
flags depends on definedness of result value. The subshifted
value (value shifted one less) is also needed, but its
definedness is the same as the definedness of the shifted value.
* rol/ror -- these only set O and C, and leave A Z C P alone.
However it seems prudent (as per inc/dec) to say the definedness
of all resulting flags depends on the definedness of the result,
hence the old flags must go in as NDEP and not DEP2.
* rcl/rcr are too difficult to do in-line, and so are done by a
helper function. They are not part of this scheme. The helper
function takes the value to be rotated, the rotate amount and the
old flags, and returns the new flags and the rotated value.
Since the helper's mcx_mask does not have any set bits, Memcheck
will lazily propagate undefinedness from any of the 3 args into
both results (flags and actual value).
*/
enum {
X86G_CC_OP_COPY=0, /* DEP1 = current flags, DEP2 = 0, NDEP = unused */
/* just copy DEP1 to output */
X86G_CC_OP_ADDB, /* 1 */
X86G_CC_OP_ADDW, /* 2 DEP1 = argL, DEP2 = argR, NDEP = unused */
X86G_CC_OP_ADDL, /* 3 */
X86G_CC_OP_SUBB, /* 4 */
X86G_CC_OP_SUBW, /* 5 DEP1 = argL, DEP2 = argR, NDEP = unused */
X86G_CC_OP_SUBL, /* 6 */
X86G_CC_OP_ADCB, /* 7 */
X86G_CC_OP_ADCW, /* 8 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
X86G_CC_OP_ADCL, /* 9 */
X86G_CC_OP_SBBB, /* 10 */
X86G_CC_OP_SBBW, /* 11 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
X86G_CC_OP_SBBL, /* 12 */
X86G_CC_OP_LOGICB, /* 13 */
X86G_CC_OP_LOGICW, /* 14 DEP1 = result, DEP2 = 0, NDEP = unused */
X86G_CC_OP_LOGICL, /* 15 */
X86G_CC_OP_INCB, /* 16 */
X86G_CC_OP_INCW, /* 17 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
X86G_CC_OP_INCL, /* 18 */
X86G_CC_OP_DECB, /* 19 */
X86G_CC_OP_DECW, /* 20 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
X86G_CC_OP_DECL, /* 21 */
X86G_CC_OP_SHLB, /* 22 DEP1 = res, DEP2 = res', NDEP = unused */
X86G_CC_OP_SHLW, /* 23 where res' is like res but shifted one bit less */
X86G_CC_OP_SHLL, /* 24 */
X86G_CC_OP_SHRB, /* 25 DEP1 = res, DEP2 = res', NDEP = unused */
X86G_CC_OP_SHRW, /* 26 where res' is like res but shifted one bit less */
X86G_CC_OP_SHRL, /* 27 */
X86G_CC_OP_ROLB, /* 28 */
X86G_CC_OP_ROLW, /* 29 DEP1 = res, DEP2 = 0, NDEP = old flags */
X86G_CC_OP_ROLL, /* 30 */
X86G_CC_OP_RORB, /* 31 */
X86G_CC_OP_RORW, /* 32 DEP1 = res, DEP2 = 0, NDEP = old flags */
X86G_CC_OP_RORL, /* 33 */
X86G_CC_OP_UMULB, /* 34 */
X86G_CC_OP_UMULW, /* 35 DEP1 = argL, DEP2 = argR, NDEP = unused */
X86G_CC_OP_UMULL, /* 36 */
X86G_CC_OP_SMULB, /* 37 */
X86G_CC_OP_SMULW, /* 38 DEP1 = argL, DEP2 = argR, NDEP = unused */
X86G_CC_OP_SMULL, /* 39 */
X86G_CC_OP_NUMBER
};
typedef
enum {
X86CondO = 0, /* overflow */
X86CondNO = 1, /* no overflow */
X86CondB = 2, /* below */
X86CondNB = 3, /* not below */
X86CondZ = 4, /* zero */
X86CondNZ = 5, /* not zero */
X86CondBE = 6, /* below or equal */
X86CondNBE = 7, /* not below or equal */
X86CondS = 8, /* negative */
X86CondNS = 9, /* not negative */
X86CondP = 10, /* parity even */
X86CondNP = 11, /* not parity even */
X86CondL = 12, /* jump less */
X86CondNL = 13, /* not less */
X86CondLE = 14, /* less or equal */
X86CondNLE = 15, /* not less or equal */
X86CondAlways = 16 /* HACK */
}
X86Condcode;
#endif /* ndef __VEX_GUEST_X86_DEFS_H */
/*---------------------------------------------------------------*/
/*--- end guest_x86_defs.h ---*/
/*---------------------------------------------------------------*/