blob: d208a538974e806018b7b61bce31df7b1f06d54c [file] [log] [blame]
/* -*- mode: C; c-basic-offset: 3; -*- */
/*--------------------------------------------------------------------*/
/*--- Cache-related stuff. m_cache.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2002-2013 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_core_basics.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_mallocfree.h"
#include "pub_core_machine.h"
#include "pub_core_debuglog.h"
#include "libvex.h"
#if defined(VGA_x86) || defined(VGA_amd64)
#include "pub_core_cpuid.h"
// All CPUID info taken from sandpile.org/ia32/cpuid.htm */
// Probably only works for Intel and AMD chips, and probably only for some of
// them.
static void
add_cache(VexCacheInfo *ci, VexCache cache)
{
static UInt num_allocated = 0;
if (ci->num_caches == num_allocated) {
num_allocated += 6;
ci->caches = VG_(realloc)("m_cache", ci->caches,
num_allocated * sizeof *ci->caches);
}
if (ci->num_levels < cache.level) ci->num_levels = cache.level;
ci->caches[ci->num_caches++] = cache;
}
/* Convenience macros */
#define add_icache(level, size, assoc, linesize) \
do { \
add_cache(ci, \
VEX_CACHE_INIT(INSN_CACHE, level, size, linesize, assoc)); \
} while (0)
#define add_dcache(level, size, assoc, linesize) \
do { \
add_cache(ci, \
VEX_CACHE_INIT(DATA_CACHE, level, size, linesize, assoc)); \
} while (0)
#define add_ucache(level, size, assoc, linesize) \
do { \
add_cache(ci, \
VEX_CACHE_INIT(UNIFIED_CACHE, level, size, linesize, assoc)); \
} while (0)
#define add_itcache(level, size, assoc) \
do { \
VexCache c = \
VEX_CACHE_INIT(INSN_CACHE, level, size, 0, assoc); \
c.is_trace_cache = True; \
add_cache(ci, c); \
} while (0)
#define add_I1(size, assoc, linesize) add_icache(1, size, assoc, linesize)
#define add_D1(size, assoc, linesize) add_dcache(1, size, assoc, linesize)
#define add_U1(size, assoc, linesize) add_ucache(1, size, assoc, linesize)
#define add_I2(size, assoc, linesize) add_icache(2, size, assoc, linesize)
#define add_D2(size, assoc, linesize) add_dcache(2, size, assoc, linesize)
#define add_U2(size, assoc, linesize) add_ucache(2, size, assoc, linesize)
#define add_I3(size, assoc, linesize) add_icache(3, size, assoc, linesize)
#define add_D3(size, assoc, linesize) add_dcache(3, size, assoc, linesize)
#define add_U3(size, assoc, linesize) add_ucache(3, size, assoc, linesize)
#define add_I1T(size, assoc) \
add_itcache(1, size, assoc)
/* Intel method is truly wretched. We have to do an insane indexing into an
* array of pre-defined configurations for various parts of the memory
* hierarchy.
* According to Intel Processor Identification, App Note 485.
*
* If a L3 cache is found, then data for it rather than the L2
* is returned via *LLc.
*/
static Int
Intel_cache_info(Int level, VexCacheInfo *ci)
{
UInt cpuid1_eax;
UInt cpuid1_ignore;
Int family;
Int model;
UChar info[16];
Int i, j, trials;
if (level < 2) {
VG_(debugLog)(1, "cache", "warning: CPUID level < 2 for Intel "
"processor (%d)\n", level);
return -1;
}
/* family/model needed to distinguish code reuse (currently 0x49) */
VG_(cpuid)(1, 0, &cpuid1_eax, &cpuid1_ignore,
&cpuid1_ignore, &cpuid1_ignore);
family = (((cpuid1_eax >> 20) & 0xff) << 4) + ((cpuid1_eax >> 8) & 0xf);
model = (((cpuid1_eax >> 16) & 0xf) << 4) + ((cpuid1_eax >> 4) & 0xf);
VG_(cpuid)(2, 0, (UInt*)&info[0], (UInt*)&info[4],
(UInt*)&info[8], (UInt*)&info[12]);
trials = info[0] - 1; /* AL register - bits 0..7 of %eax */
info[0] = 0x0; /* reset AL */
if (0 != trials) {
VG_(debugLog)(1, "cache", "warning: non-zero CPUID trials for Intel "
"processor (%d)\n", trials);
return -1;
}
ci->num_levels = 0;
ci->num_caches = 0;
ci->icaches_maintain_coherence = True;
ci->caches = NULL;
for (i = 0; i < 16; i++) {
switch (info[i]) {
case 0x0: /* ignore zeros */
break;
/* TLB info, ignore */
case 0x01: case 0x02: case 0x03: case 0x04: case 0x05:
case 0x0b:
case 0x4f: case 0x50: case 0x51: case 0x52: case 0x55:
case 0x56: case 0x57: case 0x59:
case 0x5a: case 0x5b: case 0x5c: case 0x5d:
case 0x76:
case 0xb0: case 0xb1: case 0xb2:
case 0xb3: case 0xb4: case 0xba: case 0xc0:
case 0xca:
break;
case 0x06: add_I1( 8, 4, 32); break;
case 0x08: add_I1(16, 4, 32); break;
case 0x09: add_I1(32, 4, 64); break;
case 0x30: add_I1(32, 8, 64); break;
case 0x0a: add_D1( 8, 2, 32); break;
case 0x0c: add_D1(16, 4, 32); break;
case 0x0d: add_D1(16, 4, 64); break;
case 0x0e: add_D1(24, 6, 64); break;
case 0x2c: add_D1(32, 8, 64); break;
/* IA-64 info -- panic! */
case 0x10: case 0x15: case 0x1a:
case 0x88: case 0x89: case 0x8a: case 0x8d:
case 0x90: case 0x96: case 0x9b:
VG_(core_panic)("IA-64 cache detected?!");
/* L3 cache info. */
case 0x22: add_U3(512, 4, 64); break;
case 0x23: add_U3(1024, 8, 64); break;
case 0x25: add_U3(2048, 8, 64); break;
case 0x29: add_U3(4096, 8, 64); break;
case 0x46: add_U3(4096, 4, 64); break;
case 0x47: add_U3(8192, 8, 64); break;
case 0x4a: add_U3(6144, 12, 64); break;
case 0x4b: add_U3(8192, 16, 64); break;
case 0x4c: add_U3(12288, 12, 64); break;
case 0x4d: add_U3(16384, 16, 64); break;
case 0xd0: add_U3(512, 4, 64); break;
case 0xd1: add_U3(1024, 4, 64); break;
case 0xd2: add_U3(2048, 4, 64); break;
case 0xd6: add_U3(1024, 8, 64); break;
case 0xd7: add_U3(2048, 8, 64); break;
case 0xd8: add_U3(4096, 8, 64); break;
case 0xdc: add_U3(1536, 12, 64); break;
case 0xdd: add_U3(3072, 12, 64); break;
case 0xde: add_U3(6144, 12, 64); break;
case 0xe2: add_U3(2048, 16, 64); break;
case 0xe3: add_U3(4096, 16, 64); break;
case 0xe4: add_U3(8192, 16, 64); break;
case 0xea: add_U3(12288, 24, 64); break;
case 0xeb: add_U3(18432, 24, 64); break;
case 0xec: add_U3(24576, 24, 64); break;
/* Described as "MLC" in Intel documentation */
case 0x21: add_U2(256, 8, 64); break;
/* These are sectored, whatever that means */
// FIXME: I did not find these in the Intel docs
case 0x39: add_U2(128, 4, 64); break;
case 0x3c: add_U2(256, 4, 64); break;
/* If a P6 core, this means "no L2 cache".
If a P4 core, this means "no L3 cache".
We don't know what core it is, so don't issue a warning. To detect
a missing L2 cache, we use 'L2_found'. */
case 0x40:
break;
case 0x41: add_U2( 128, 4, 32); break;
case 0x42: add_U2( 256, 4, 32); break;
case 0x43: add_U2( 512, 4, 32); break;
case 0x44: add_U2( 1024, 4, 32); break;
case 0x45: add_U2( 2048, 4, 32); break;
case 0x48: add_U2( 3072, 12, 64); break;
case 0x4e: add_U2( 6144, 24, 64); break;
case 0x49:
if (family == 15 && model == 6) {
/* On Xeon MP (family F, model 6), this is for L3 */
add_U3(4096, 16, 64);
} else {
add_U2(4096, 16, 64);
}
break;
/* These are sectored, whatever that means */
case 0x60: add_D1(16, 8, 64); break; /* sectored */
case 0x66: add_D1( 8, 4, 64); break; /* sectored */
case 0x67: add_D1(16, 4, 64); break; /* sectored */
case 0x68: add_D1(32, 4, 64); break; /* sectored */
/* HACK ALERT: Instruction trace cache -- capacity is micro-ops based.
* conversion to byte size is a total guess; treat the 12K and 16K
* cases the same since the cache byte size must be a power of two for
* everything to work!. Also guessing 32 bytes for the line size...
*/
case 0x70: /* 12K micro-ops, 8-way */
add_I1T(12, 8);
break;
case 0x71: /* 16K micro-ops, 8-way */
add_I1T(16, 8);
break;
case 0x72: /* 32K micro-ops, 8-way */
add_I1T(32, 8);
break;
/* not sectored, whatever that might mean */
case 0x78: add_U2(1024, 4, 64); break;
/* These are sectored, whatever that means */
case 0x79: add_U2( 128, 8, 64); break;
case 0x7a: add_U2( 256, 8, 64); break;
case 0x7b: add_U2( 512, 8, 64); break;
case 0x7c: add_U2(1024, 8, 64); break;
case 0x7d: add_U2(2048, 8, 64); break;
case 0x7e: add_U2( 256, 8, 128); break;
case 0x7f: add_U2( 512, 2, 64); break;
case 0x80: add_U2( 512, 8, 64); break;
case 0x81: add_U2( 128, 8, 32); break;
case 0x82: add_U2( 256, 8, 32); break;
case 0x83: add_U2( 512, 8, 32); break;
case 0x84: add_U2(1024, 8, 32); break;
case 0x85: add_U2(2048, 8, 32); break;
case 0x86: add_U2( 512, 4, 64); break;
case 0x87: add_U2(1024, 8, 64); break;
/* Ignore prefetch information */
case 0xf0: case 0xf1:
break;
case 0xff:
j = 0;
VG_(cpuid)(4, j++, (UInt*)&info[0], (UInt*)&info[4],
(UInt*)&info[8], (UInt*)&info[12]);
while ((info[0] & 0x1f) != 0) {
UInt assoc = ((*(UInt *)&info[4] >> 22) & 0x3ff) + 1;
UInt parts = ((*(UInt *)&info[4] >> 12) & 0x3ff) + 1;
UInt line_size = (*(UInt *)&info[4] & 0x7ff) + 1;
UInt sets = *(UInt *)&info[8] + 1;
UInt size = assoc * parts * line_size * sets / 1024;
switch ((info[0] & 0xe0) >> 5)
{
case 1:
switch (info[0] & 0x1f)
{
case 1: add_D1(size, assoc, line_size); break;
case 2: add_I1(size, assoc, line_size); break;
case 3: add_U1(size, assoc, line_size); break;
default:
VG_(debugLog)(1, "cache",
"warning: L1 cache of unknown type ignored\n");
break;
}
break;
case 2:
switch (info[0] & 0x1f)
{
case 1: add_D2(size, assoc, line_size); break;
case 2: add_I2(size, assoc, line_size); break;
case 3: add_U2(size, assoc, line_size); break;
default:
VG_(debugLog)(1, "cache",
"warning: L2 cache of unknown type ignored\n");
break;
}
break;
case 3:
switch (info[0] & 0x1f)
{
case 1: add_D3(size, assoc, line_size); break;
case 2: add_I3(size, assoc, line_size); break;
case 3: add_U3(size, assoc, line_size); break;
default:
VG_(debugLog)(1, "cache",
"warning: L3 cache of unknown type ignored\n");
break;
}
break;
default:
VG_(debugLog)(1, "cache", "warning: L%u cache ignored\n",
(info[0] & 0xe0) >> 5);
break;
}
VG_(cpuid)(4, j++, (UInt*)&info[0], (UInt*)&info[4],
(UInt*)&info[8], (UInt*)&info[12]);
}
break;
default:
VG_(debugLog)(1, "cache",
"warning: Unknown Intel cache config value (0x%x), "
"ignoring\n", info[i]);
break;
}
}
return 0;
}
/* AMD method is straightforward, just extract appropriate bits from the
* result registers.
*
* Bits, for D1 and I1:
* 31..24 data L1 cache size in KBs
* 23..16 data L1 cache associativity (FFh=full)
* 15.. 8 data L1 cache lines per tag
* 7.. 0 data L1 cache line size in bytes
*
* Bits, for L2:
* 31..16 unified L2 cache size in KBs
* 15..12 unified L2 cache associativity (0=off, FFh=full)
* 11.. 8 unified L2 cache lines per tag
* 7.. 0 unified L2 cache line size in bytes
*
* #3 The AMD K7 processor's L2 cache must be configured prior to relying
* upon this information. (Whatever that means -- njn)
*
* Also, according to Cyrille Chepelov, Duron stepping A0 processors (model
* 0x630) have a bug and misreport their L2 size as 1KB (it's really 64KB),
* so we detect that.
*
* Returns 0 on success, non-zero on failure. As with the Intel code
* above, if a L3 cache is found, then data for it rather than the L2
* is returned via *LLc.
*/
/* A small helper */
static Int
decode_AMD_cache_L2_L3_assoc ( Int bits_15_12 )
{
/* Decode a L2/L3 associativity indication. It is encoded
differently from the I1/D1 associativity. Returns 1
(direct-map) as a safe but suboptimal result for unknown
encodings. */
switch (bits_15_12 & 0xF) {
case 1: return 1; case 2: return 2;
case 4: return 4; case 6: return 8;
case 8: return 16; case 0xA: return 32;
case 0xB: return 48; case 0xC: return 64;
case 0xD: return 96; case 0xE: return 128;
case 0xF: /* fully associative */
case 0: /* L2/L3 cache or TLB is disabled */
default:
return 1;
}
}
static Int
AMD_cache_info(VexCacheInfo *ci)
{
UInt ext_level;
UInt dummy, model;
UInt I1i, D1i, L2i, L3i;
UInt size, line_size, assoc;
VG_(cpuid)(0x80000000, 0, &ext_level, &dummy, &dummy, &dummy);
if (0 == (ext_level & 0x80000000) || ext_level < 0x80000006) {
VG_(debugLog)(1, "cache", "warning: ext_level < 0x80000006 for AMD "
"processor (0x%x)\n", ext_level);
return -1;
}
VG_(cpuid)(0x80000005, 0, &dummy, &dummy, &D1i, &I1i);
VG_(cpuid)(0x80000006, 0, &dummy, &dummy, &L2i, &L3i);
VG_(cpuid)(0x1, 0, &model, &dummy, &dummy, &dummy);
/* Check for Duron bug */
if (model == 0x630) {
VG_(debugLog)(1, "cache", "warning: Buggy Duron stepping A0. "
"Assuming L2 size=65536 bytes\n");
L2i = (64 << 16) | (L2i & 0xffff);
}
ci->num_levels = 2;
ci->num_caches = 3;
ci->icaches_maintain_coherence = True;
/* Check for L3 cache */
if (((L3i >> 18) & 0x3fff) > 0) {
ci->num_levels = 3;
ci->num_caches = 4;
}
ci->caches = VG_(malloc)("m_cache", ci->num_caches * sizeof *ci->caches);
// D1
size = (D1i >> 24) & 0xff;
assoc = (D1i >> 16) & 0xff;
line_size = (D1i >> 0) & 0xff;
ci->caches[0] = VEX_CACHE_INIT(DATA_CACHE, 1, size, line_size, assoc);
// I1
size = (I1i >> 24) & 0xff;
assoc = (I1i >> 16) & 0xff;
line_size = (I1i >> 0) & 0xff;
ci->caches[1] = VEX_CACHE_INIT(INSN_CACHE, 1, size, line_size, assoc);
// L2 Nb: different bits used for L2
size = (L2i >> 16) & 0xffff;
assoc = decode_AMD_cache_L2_L3_assoc((L2i >> 12) & 0xf);
line_size = (L2i >> 0) & 0xff;
ci->caches[2] = VEX_CACHE_INIT(UNIFIED_CACHE, 2, size, line_size, assoc);
// L3, if any
if (((L3i >> 18) & 0x3fff) > 0) {
/* There's an L3 cache. */
/* NB: the test in the if is "if L3 size > 0 ". I don't know if
this is the right way to test presence-vs-absence of L3. I
can't see any guidance on this in the AMD documentation. */
size = ((L3i >> 18) & 0x3fff) * 512;
assoc = decode_AMD_cache_L2_L3_assoc((L3i >> 12) & 0xf);
line_size = (L3i >> 0) & 0xff;
ci->caches[3] = VEX_CACHE_INIT(UNIFIED_CACHE, 3, size, line_size, assoc);
}
return 0;
}
static Int
get_caches_from_CPUID(VexCacheInfo *ci)
{
Int ret, i;
UInt level;
HChar vendor_id[13];
vg_assert(VG_(has_cpuid)());
VG_(cpuid)(0, 0, &level, (UInt*)&vendor_id[0],
(UInt*)&vendor_id[8], (UInt*)&vendor_id[4]);
vendor_id[12] = '\0';
if (0 == level) { // CPUID level is 0, early Pentium?
return -1;
}
/* Only handling Intel and AMD chips... no Cyrix, Transmeta, etc */
if (0 == VG_(strcmp)(vendor_id, "GenuineIntel")) {
ret = Intel_cache_info(level, ci);
} else if (0 == VG_(strcmp)(vendor_id, "AuthenticAMD")) {
ret = AMD_cache_info(ci);
} else if (0 == VG_(strcmp)(vendor_id, "CentaurHauls")) {
/* Total kludge. Pretend to be a VIA Nehemiah. */
ci->num_levels = 2;
ci->num_caches = 3;
ci->icaches_maintain_coherence = True;
ci->caches = VG_(malloc)("m_cache", ci->num_caches * sizeof *ci->caches);
ci->caches[0] = VEX_CACHE_INIT(DATA_CACHE, 1, 64, 16, 16);
ci->caches[1] = VEX_CACHE_INIT(INSN_CACHE, 1, 64, 16, 4);
ci->caches[2] = VEX_CACHE_INIT(UNIFIED_CACHE, 2, 64, 16, 16);
ret = 0;
} else {
VG_(debugLog)(1, "cache", "CPU vendor ID not recognised (%s)\n",
vendor_id);
return -1;
}
/* Successful! Convert sizes from KB to bytes */
for (i = 0; i < ci->num_caches; ++i) {
ci->caches[i].sizeB *= 1024;
}
return ret;
}
static Bool
get_cache_info(VexArchInfo *vai)
{
Int ret = get_caches_from_CPUID(&vai->hwcache_info);
return ret == 0 ? True : False;
}
#elif defined(VGA_arm) || defined(VGA_ppc32) || \
defined(VGA_ppc64be) || defined(VGA_ppc64le) || \
defined(VGA_mips32) || defined(VGA_mips64) || defined(VGA_arm64)
static Bool
get_cache_info(VexArchInfo *vai)
{
vai->hwcache_info.icaches_maintain_coherence = False;
return False; // not yet
}
#elif defined(VGA_s390x)
static ULong
ecag(UInt ai, UInt li, UInt ti)
{
register ULong result asm("2") = 0;
register ULong input asm("3") = (ai << 4) | (li << 1) | ti;
asm volatile(".short 0xeb20\n\t"
".long 0x3000004c\n\t"
: "=d" (result) : "d" (input));
return result;
}
static UInt
get_cache_info_for_level(ULong topology, UInt level)
{
return (topology >> (56 - level * 8)) & 0xff;
}
static ULong
get_line_size(UInt level, Bool is_insn_cache)
{
return ecag(1, level, is_insn_cache);
}
static ULong
get_total_size(UInt level, Bool is_insn_cache)
{
return ecag(2, level, is_insn_cache);
}
static ULong
get_associativity(UInt level, Bool is_insn_cache)
{
return ecag(3, level, is_insn_cache);
}
static VexCache
get_cache(UInt level, VexCacheKind kind)
{
Bool is_insn_cache = kind == INSN_CACHE;
UInt size = get_total_size(level, is_insn_cache);
UInt line_size = get_line_size(level, is_insn_cache);
UInt assoc = get_associativity(level, is_insn_cache);
return VEX_CACHE_INIT(kind, level + 1, size, line_size, assoc);
}
static Bool
get_cache_info(VexArchInfo *vai)
{
VexCacheInfo *ci = &vai->hwcache_info;
ci->icaches_maintain_coherence = True;
if (! (vai->hwcaps & VEX_HWCAPS_S390X_GIE)) {
// ECAG is not available
return False;
}
UInt level, cache_kind, info, i;
ULong topology = ecag(0, 0, 0); // get summary
/* ECAG supports at most 8 levels of cache. Find out how many levels
of cache and how many caches there are. */
ci->num_levels = 0;
ci->num_caches = 0;
for (level = 0; level < 8; level++) {
info = get_cache_info_for_level(topology, level);
if ((info & 0xc) == 0) break; // cache does not exist at this level
++ci->num_levels;
cache_kind = info & 0x3;
switch (cache_kind) {
case 0: ci->num_caches += 2; break; /* separate data and insn cache */
case 1: ci->num_caches += 1; break; /* only insn cache */
case 2: ci->num_caches += 1; break; /* only data cache */
case 3: ci->num_caches += 1; break; /* unified data and insn cache */
}
}
ci->caches = VG_(malloc)("m_cache", ci->num_caches * sizeof *ci->caches);
i = 0;
for (level = 0; level < ci->num_levels; level++) {
info = get_cache_info_for_level(topology, level);
cache_kind = info & 0x3;
switch (cache_kind) {
case 0: /* separate data and insn cache */
ci->caches[i++] = get_cache(level, INSN_CACHE);
ci->caches[i++] = get_cache(level, DATA_CACHE);
break;
case 1: /* only insn cache */
ci->caches[i++] = get_cache(level, INSN_CACHE);
break;
case 2: /* only data cache */
ci->caches[i++] = get_cache(level, DATA_CACHE);
break;
case 3: /* unified data and insn cache */
ci->caches[i++] = get_cache(level, UNIFIED_CACHE);
break;
}
}
return True;
}
#else
#error "Unknown arch"
#endif
/* Debug information */
static void
write_cache_info(const VexCacheInfo *ci)
{
UInt i;
VG_(debugLog)(1, "cache", "Cache info:\n");
VG_(debugLog)(1, "cache", " #levels = %u\n", ci->num_levels);
VG_(debugLog)(1, "cache", " #caches = %u\n", ci->num_caches);
for (i = 0; i < ci->num_caches; ++i) {
VexCache *c = ci->caches + i;
const HChar *kind;
VG_(debugLog)(1, "cache", " cache #%u:\n", i);
switch (c->kind) {
case INSN_CACHE: kind = "insn"; break;
case DATA_CACHE: kind = "data"; break;
case UNIFIED_CACHE: kind = "unified"; break;
default: kind = "unknown"; break;
}
VG_(debugLog)(1, "cache", " kind = %s\n", kind);
VG_(debugLog)(1, "cache", " level = %u\n", c->level);
VG_(debugLog)(1, "cache", " size = %u bytes\n", c->sizeB);
VG_(debugLog)(1, "cache", " linesize = %u bytes\n", c->line_sizeB);
VG_(debugLog)(1, "cache", " assoc = %u\n", c->assoc);
}
}
static Bool
cache_info_is_sensible(const VexCacheInfo *ci)
{
UInt level, i;
Bool sensible = True;
/* There must be at most one cache of a given kind at the same level.
If there is a unified cache at a given level, no other cache may
exist at that level. */
for (level = 1; level <= ci->num_levels; ++level) {
UInt num_icache, num_dcache, num_ucache;
num_icache = num_dcache = num_ucache = 0;
for (i = 0; i < ci->num_caches; ++i) {
if (ci->caches[i].level == level) {
switch (ci->caches[i].kind) {
case INSN_CACHE: ++num_icache; break;
case DATA_CACHE: ++num_dcache; break;
case UNIFIED_CACHE: ++num_ucache; break;
}
}
}
if (num_icache == 0 && num_dcache == 0 && num_ucache == 0) {
VG_(debugLog)(1, "cache", "warning: No caches at level %u\n", level);
sensible = False;
}
if (num_icache > 1 || num_dcache > 1 || num_ucache > 1) {
VG_(debugLog)(1, "cache", "warning: More than one cache of a given "
"kind at level %u\n", level);
sensible = False;
}
if (num_ucache != 0 && (num_icache > 0 || num_dcache > 0)) {
VG_(debugLog)(1, "cache", "warning: Unified cache and I/D cache "
"at level %u\n", level);
sensible = False;
}
}
/* If there is a cache at level N > 1 there must be a cache at level N-1 */
for (level = 2; level <= ci->num_levels; ++level) {
Bool found = False;
for (i = 0; i < ci->num_caches; ++i) {
if (ci->caches[i].level == level - 1) {
found = True;
break;
}
}
if (! found) {
VG_(debugLog)(1, "cache", "warning: Cache at level %u but no cache "
"at level %u\n", level, level - 1);
sensible = False;
}
}
return sensible;
}
/* Autodetect the cache information for this host and stuff it into
VexArchInfo::hwcache_info. Return True if successful. */
Bool
VG_(machine_get_cache_info)(VexArchInfo *vai)
{
Bool ok = get_cache_info(vai);
VexCacheInfo *ci = &vai->hwcache_info;
if (! ok) {
VG_(debugLog)(1, "cache", "Could not autodetect cache info\n");
} else {
ok = cache_info_is_sensible(ci);
if (! ok) {
VG_(debugLog)(1, "cache",
"Autodetected cache info is not sensible\n");
} else {
VG_(debugLog)(1, "cache",
"Autodetected cache info is sensible\n");
}
write_cache_info(ci); /* write out for debugging */
}
if (! ok ) {
/* Reset cache info */
ci->num_levels = 0;
ci->num_caches = 0;
VG_(free)(ci->caches);
ci->caches = NULL;
}
return ok;
}
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/