blob: 2684acdaadd7691fc6cb5834086991c7db30bcc5 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Darwin-specific syscalls, etc. syswrap-darwin.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2005-2013 Apple Inc.
Greg Parker gparker@apple.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGO_darwin)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_xarray.h"
#include "pub_core_clientstate.h"
#include "pub_core_debuglog.h"
#include "pub_core_debuginfo.h" // VG_(di_notify_*)
#include "pub_core_transtab.h" // VG_(discard_translations)
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcfile.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_machine.h" // VG_(get_SP)
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_oset.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-darwin.h" /* for decls of darwin-ish wrappers */
#include "priv_syswrap-main.h"
/* --- !!! --- EXTERNAL HEADERS start --- !!! --- */
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <semaphore.h>
/* --- !!! --- EXTERNAL HEADERS end --- !!! --- */
#define msgh_request_port msgh_remote_port
#define msgh_reply_port msgh_local_port
#define BOOTSTRAP_MAX_NAME_LEN 128
typedef char name_t[BOOTSTRAP_MAX_NAME_LEN];
typedef uint64_t mig_addr_t;
// Saved ports
static mach_port_t vg_host_port = 0;
static mach_port_t vg_task_port = 0;
static mach_port_t vg_bootstrap_port = 0;
// Run a thread from beginning to end and return the thread's
// scheduler-return-code.
static VgSchedReturnCode thread_wrapper(Word /*ThreadId*/ tidW)
{
VgSchedReturnCode ret;
ThreadId tid = (ThreadId)tidW;
ThreadState* tst = VG_(get_ThreadState)(tid);
VG_(debugLog)(1, "syswrap-darwin",
"thread_wrapper(tid=%lld): entry\n",
(ULong)tidW);
vg_assert(tst->status == VgTs_Init);
/* make sure we get the CPU lock before doing anything significant */
VG_(acquire_BigLock)(tid, "thread_wrapper");
if (0)
VG_(printf)("thread tid %d started: stack = %p\n",
tid, &tid);
/* Make sure error reporting is enabled in the new thread. */
tst->err_disablement_level = 0;
VG_TRACK(pre_thread_first_insn, tid);
tst->os_state.lwpid = VG_(gettid)();
tst->os_state.threadgroup = VG_(getpid)();
/* Thread created with all signals blocked; scheduler will set the
appropriate mask */
ret = VG_(scheduler)(tid);
vg_assert(VG_(is_exiting)(tid));
vg_assert(tst->status == VgTs_Runnable);
vg_assert(VG_(is_running_thread)(tid));
VG_(debugLog)(1, "syswrap-darwin",
"thread_wrapper(tid=%lld): done\n",
(ULong)tidW);
/* Return to caller, still holding the lock. */
return ret;
}
/* Allocate a stack for this thread, if it doesn't already have one.
Returns the initial stack pointer value to use, or 0 if allocation
failed. */
Addr allocstack ( ThreadId tid )
{
ThreadState* tst = VG_(get_ThreadState)(tid);
VgStack* stack;
Addr initial_SP;
/* Either the stack_base and stack_init_SP are both zero (in which
case a stack hasn't been allocated) or they are both non-zero,
in which case it has. */
if (tst->os_state.valgrind_stack_base == 0)
vg_assert(tst->os_state.valgrind_stack_init_SP == 0);
if (tst->os_state.valgrind_stack_base != 0)
vg_assert(tst->os_state.valgrind_stack_init_SP != 0);
/* If no stack is present, allocate one. */
if (tst->os_state.valgrind_stack_base == 0) {
stack = VG_(am_alloc_VgStack)( &initial_SP );
if (stack) {
tst->os_state.valgrind_stack_base = (Addr)stack;
tst->os_state.valgrind_stack_init_SP = initial_SP;
}
}
VG_(debugLog)( 2, "syswrap-darwin", "stack for tid %d at %p; init_SP=%p\n",
tid,
(void*)tst->os_state.valgrind_stack_base,
(void*)tst->os_state.valgrind_stack_init_SP );
vg_assert(VG_IS_32_ALIGNED(tst->os_state.valgrind_stack_init_SP));
return tst->os_state.valgrind_stack_init_SP;
}
void find_stack_segment(ThreadId tid, Addr sp)
{
/* We don't really know where the client stack is, because it's
allocated by the client. The best we can do is look at the
memory mappings and try to derive some useful information. We
assume that esp starts near its highest possible value, and can
only go down to the start of the mmaped segment. */
ThreadState *tst = VG_(get_ThreadState)(tid);
const NSegment *seg = VG_(am_find_nsegment)(sp);
if (seg && seg->kind != SkResvn) {
tst->client_stack_highest_word = (Addr)VG_PGROUNDUP(sp);
tst->client_stack_szB = tst->client_stack_highest_word - seg->start;
if (1)
VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n",
tid, seg->start, VG_PGROUNDUP(sp));
} else {
VG_(printf)("couldn't find user stack\n");
VG_(message)(Vg_UserMsg, "!? New thread %d starts with SP(%#lx) unmapped\n",
tid, sp);
tst->client_stack_szB = 0;
}
}
/* Run a thread all the way to the end, then do appropriate exit actions
(this is the last-one-out-turn-off-the-lights bit).
*/
static void run_a_thread_NORETURN ( Word tidW )
{
Int c;
VgSchedReturnCode src;
ThreadId tid = (ThreadId)tidW;
ThreadState* tst;
VG_(debugLog)(1, "syswrap-darwin",
"run_a_thread_NORETURN(tid=%lld): pre-thread_wrapper\n",
(ULong)tidW);
tst = VG_(get_ThreadState)(tid);
vg_assert(tst);
/* Run the thread all the way through. */
src = thread_wrapper(tid);
VG_(debugLog)(1, "syswrap-darwin",
"run_a_thread_NORETURN(tid=%lld): post-thread_wrapper\n",
(ULong)tidW);
c = VG_(count_living_threads)();
vg_assert(c >= 1); /* stay sane */
// Tell the tool this thread is exiting
VG_TRACK( pre_thread_ll_exit, tid );
/* If the thread is exiting with errors disabled, complain loudly;
doing so is bad (does the user know this has happened?) Also,
in all cases, be paranoid and clear the flag anyway so that the
thread slot is safe in this respect if later reallocated. This
should be unnecessary since the flag should be cleared when the
slot is reallocated, in thread_wrapper(). */
if (tst->err_disablement_level > 0) {
VG_(umsg)(
"WARNING: exiting thread has error reporting disabled.\n"
"WARNING: possibly as a result of some mistake in the use\n"
"WARNING: of the VALGRIND_DISABLE_ERROR_REPORTING macros.\n"
);
VG_(debugLog)(
1, "syswrap-linux",
"run_a_thread_NORETURN(tid=%lld): "
"WARNING: exiting thread has err_disablement_level = %u\n",
(ULong)tidW, tst->err_disablement_level
);
}
tst->err_disablement_level = 0;
if (c == 1) {
VG_(debugLog)(1, "syswrap-darwin",
"run_a_thread_NORETURN(tid=%lld): "
"last one standing\n",
(ULong)tidW);
/* We are the last one standing. Keep hold of the lock and
carry on to show final tool results, then exit the entire system.
Use the continuation pointer set at startup in m_main. */
( * VG_(address_of_m_main_shutdown_actions_NORETURN) ) (tid, src);
} else {
mach_msg_header_t msg;
VG_(debugLog)(1, "syswrap-darwin",
"run_a_thread_NORETURN(tid=%lld): "
"not last one standing\n",
(ULong)tidW);
/* OK, thread is dead, but others still exist. Just exit. */
/* This releases the run lock */
VG_(exit_thread)(tid);
vg_assert(tst->status == VgTs_Zombie);
/* tid is now invalid. */
// GrP fixme exit race
msg.msgh_bits = MACH_MSGH_BITS(17, MACH_MSG_TYPE_MAKE_SEND_ONCE);
msg.msgh_request_port = VG_(gettid)();
msg.msgh_reply_port = 0;
msg.msgh_id = 3600; // thread_terminate
tst->status = VgTs_Empty;
// GrP fixme race here! new thread may claim this V thread stack
// before we get out here!
// GrP fixme use bsdthread_terminate for safe cleanup?
mach_msg(&msg, MACH_SEND_MSG|MACH_MSG_OPTION_NONE,
sizeof(msg), 0, 0, MACH_MSG_TIMEOUT_NONE, 0);
// DDD: This is reached sometimes on none/tests/manythreads, maybe
// because of the race above.
VG_(core_panic)("Thread exit failed?\n");
}
/*NOTREACHED*/
vg_assert(0);
}
/* Allocate a stack for the main thread, and run it all the way to the
end. Although we already have a working VgStack
(VG_(interim_stack)) it's better to allocate a new one, so that
overflow detection works uniformly for all threads.
*/
void VG_(main_thread_wrapper_NORETURN)(ThreadId tid)
{
Addr sp;
VG_(debugLog)(1, "syswrap-darwin",
"entering VG_(main_thread_wrapper_NORETURN)\n");
sp = allocstack(tid);
/* If we can't even allocate the first thread's stack, we're hosed.
Give up. */
vg_assert2(sp != 0, "Cannot allocate main thread's stack.");
/* shouldn't be any other threads around yet */
vg_assert( VG_(count_living_threads)() == 1 );
call_on_new_stack_0_1(
(Addr)sp, /* stack */
0, /*bogus return address*/
run_a_thread_NORETURN, /* fn to call */
(Word)tid /* arg to give it */
);
/*NOTREACHED*/
vg_assert(0);
}
void start_thread_NORETURN ( Word arg )
{
ThreadState* tst = (ThreadState*)arg;
ThreadId tid = tst->tid;
run_a_thread_NORETURN ( (Word)tid );
/*NOTREACHED*/
vg_assert(0);
}
void VG_(cleanup_thread) ( ThreadArchState* arch )
{
}
/* ---------------------------------------------------------------------
Mach port tracking (based on syswrap-generic's fd tracker)
------------------------------------------------------------------ */
/* One of these is allocated for each open port. */
typedef struct OpenPort
{
mach_port_t port;
mach_port_type_t type; /* right type(s) */
Int send_count; /* number of send rights */
Char *name; /* bootstrap name or NULL */
ExeContext *where; /* first allocation only */
struct OpenPort *next, *prev;
} OpenPort;
// strlen("0x12345678")
#define PORT_STRLEN (2+2*sizeof(mach_port_t))
/* List of allocated ports. */
static OpenPort *allocated_ports;
/* Count of open ports. */
static Int allocated_port_count = 0;
/* Create an entry for |port|, with no other info. Assumes it doesn't
already exist. */
static void port_create_vanilla(mach_port_t port)
{
OpenPort* op
= VG_(arena_calloc)(VG_AR_CORE, "syswrap-darwin.port_create_vanilla",
sizeof(OpenPort), 1);
op->port = port;
/* Add it to the list. */
op->next = allocated_ports;
if (allocated_ports) allocated_ports->prev = op;
allocated_ports = op;
allocated_port_count++;
}
__attribute__((unused))
static Bool port_exists(mach_port_t port)
{
OpenPort *i;
/* Check to see if this port is already open. */
i = allocated_ports;
while (i) {
if (i->port == port) {
return True;
}
i = i->next;
}
return False;
}
static OpenPort *info_for_port(mach_port_t port)
{
OpenPort *i;
if (!port) return NULL;
i = allocated_ports;
while (i) {
if (i->port == port) {
return i;
}
i = i->next;
}
return NULL;
}
// Give a port a name, without changing its refcount
// GrP fixme don't override name if it already has a specific one
__private_extern__ void assign_port_name(mach_port_t port, const char *name)
{
OpenPort *i;
if (!port) return;
vg_assert(name);
i = info_for_port(port);
vg_assert(i);
if (i->name) VG_(arena_free)(VG_AR_CORE, i->name);
i->name =
VG_(arena_malloc)(VG_AR_CORE, "syswrap-darwin.mach-port-name",
VG_(strlen)(name) + PORT_STRLEN + 1);
VG_(sprintf)(i->name, name, port);
}
// Return the name of the given port or "UNKNOWN 0x1234" if not known.
static const char *name_for_port(mach_port_t port)
{
static char buf[8 + PORT_STRLEN + 1];
OpenPort *i;
// hack
if (port == VG_(gettid)()) return "mach_thread_self()";
if (port == 0) return "NULL";
i = allocated_ports;
while (i) {
if (i->port == port) {
return i->name;
}
i = i->next;
}
VG_(sprintf)(buf, "NONPORT-%#x", port);
return buf;
}
/* Note the fact that a port was just deallocated. */
static
void record_port_mod_refs(mach_port_t port, mach_port_type_t right, Int delta)
{
OpenPort *i = allocated_ports;
if (!port) return;
while(i) {
if(i->port == port) {
vg_assert(right != MACH_PORT_TYPE_DEAD_NAME);
if (right & MACH_PORT_TYPE_SEND) {
// send rights are refcounted
if (delta == INT_MIN) delta = -i->send_count; // INT_MIN == destroy
i->send_count += delta;
if (i->send_count > 0) i->type |= MACH_PORT_TYPE_SEND;
else i->type &= ~MACH_PORT_TYPE_SEND;
}
right = right & ~MACH_PORT_TYPE_SEND;
if (right) {
// other rights are not refcounted
if (delta > 0) {
i->type |= right;
} else if (delta < 0) {
i->type &= ~right;
}
}
if (i->type != 0) return;
// Port has no rights left. Kill it.
// VG_(printf)("deleting port %p %s", i->port, i->name);
if(i->prev)
i->prev->next = i->next;
else
allocated_ports = i->next;
if(i->next)
i->next->prev = i->prev;
if(i->name)
VG_(arena_free) (VG_AR_CORE, i->name);
VG_(arena_free) (VG_AR_CORE, i);
allocated_port_count--;
return;
}
i = i->next;
}
VG_(printf)("UNKNOWN Mach port modified (port %#x delta %d)\n", port, delta);
}
static
void record_port_insert_rights(mach_port_t port, mach_msg_type_name_t type)
{
switch (type) {
case MACH_MSG_TYPE_PORT_NAME:
// this task has no rights for the name
break;
case MACH_MSG_TYPE_PORT_RECEIVE:
// this task gets receive rights
record_port_mod_refs(port, MACH_PORT_TYPE_RECEIVE, 1);
break;
case MACH_MSG_TYPE_PORT_SEND:
// this task gets a send right
record_port_mod_refs(port, MACH_PORT_TYPE_SEND, 1);
break;
case MACH_MSG_TYPE_PORT_SEND_ONCE:
// this task gets send-once rights
record_port_mod_refs(port, MACH_PORT_TYPE_SEND_ONCE, 1);
break;
default:
vg_assert(0);
break;
}
}
static
void record_port_dealloc(mach_port_t port)
{
// deletes 1 send or send-once right (port can't have both)
record_port_mod_refs(port, MACH_PORT_TYPE_SEND_RIGHTS, -1);
}
static
void record_port_destroy(mach_port_t port)
{
// deletes all rights to port
record_port_mod_refs(port, MACH_PORT_TYPE_ALL_RIGHTS, INT_MIN);
}
/* Note the fact that a Mach port was just allocated or transferred.
If the port is already known, increment its reference count. */
void record_named_port(ThreadId tid, mach_port_t port,
mach_port_right_t right, const char *name)
{
OpenPort *i;
if (!port) return;
/* Check to see if this port is already open. */
i = allocated_ports;
while (i) {
if (i->port == port) {
if (right != -1) record_port_mod_refs(port, MACH_PORT_TYPE(right), 1);
return;
}
i = i->next;
}
/* Not already one: allocate an OpenPort */
if (i == NULL) {
i = VG_(arena_malloc)(VG_AR_CORE, "syswrap-darwin.mach-port",
sizeof(OpenPort));
i->prev = NULL;
i->next = allocated_ports;
if(allocated_ports) allocated_ports->prev = i;
allocated_ports = i;
allocated_port_count++;
i->port = port;
i->where = (tid == -1) ? NULL : VG_(record_ExeContext)(tid, 0);
i->name = NULL;
if (right != -1) {
i->type = MACH_PORT_TYPE(right);
i->send_count = (right == MACH_PORT_RIGHT_SEND) ? 1 : 0;
} else {
i->type = 0;
i->send_count = 0;
}
assign_port_name(port, name);
}
}
// Record opening of a nameless port.
static void record_unnamed_port(ThreadId tid, mach_port_t port, mach_port_right_t right)
{
record_named_port(tid, port, right, "unnamed-%p");
}
/* Dump summary of open Mach ports, like VG_(show_open_fds) */
void VG_(show_open_ports)(void)
{
OpenPort *i;
VG_(message)(Vg_UserMsg,
"MACH PORTS: %d open at exit.", allocated_port_count);
for (i = allocated_ports; i; i = i->next) {
if (i->name) {
VG_(message)(Vg_UserMsg, "Open Mach port 0x%x: %s", i->port, i->name);
} else {
VG_(message)(Vg_UserMsg, "Open Mach port 0x%x", i->port);
}
if (i->where) {
VG_(pp_ExeContext)(i->where);
VG_(message)(Vg_UserMsg, "");
}
}
VG_(message)(Vg_UserMsg, "");
}
/* ---------------------------------------------------------------------
sync_mappings
------------------------------------------------------------------ */
void ML_(sync_mappings)(const HChar *when, const HChar *where, Int num)
{
// Usually the number of segments added/removed in a single calls is very
// small e.g. 1. But it sometimes gets up to at least 100 or so (eg. for
// Quicktime). So we use a repeat-with-bigger-buffers-until-success model,
// because we can't do dynamic allocation within VG_(get_changed_segments),
// because it's in m_aspacemgr.
ChangedSeg* css = NULL;
Int css_size;
Int css_used;
Int i;
Bool ok;
if (VG_(clo_trace_syscalls)) {
VG_(debugLog)(0, "syswrap-darwin",
"sync_mappings(\"%s\", \"%s\", %d)\n",
when, where, num);
}
// 16 is enough for most cases, but small enough that overflow happens
// occasionally and thus the overflow path gets some test coverage.
css_size = 16;
ok = False;
while (!ok) {
VG_(free)(css); // css is NULL on first iteration; that's ok.
css = VG_(calloc)("sys_wrap.sync_mappings", css_size, sizeof(ChangedSeg));
ok = VG_(get_changed_segments)(when, where, css, css_size, &css_used);
css_size *= 2;
}
// Now add/remove them.
for (i = 0; i < css_used; i++) {
ChangedSeg* cs = &css[i];
if (cs->is_added) {
ML_(notify_core_and_tool_of_mmap)(
cs->start, cs->end - cs->start + 1,
cs->prot, VKI_MAP_PRIVATE, 0, cs->offset);
// should this call VG_(di_notify_mmap) also?
} else {
ML_(notify_core_and_tool_of_munmap)(
cs->start, cs->end - cs->start + 1);
}
if (VG_(clo_trace_syscalls)) {
if (cs->is_added) {
VG_(debugLog)(0, "syswrap-darwin",
" added region 0x%010lx..0x%010lx prot %u at %s (%s)\n",
cs->start, cs->end + 1, (UInt)cs->prot, where, when);
} else {
VG_(debugLog)(0, "syswrap-darwin",
" removed region 0x%010lx..0x%010lx at %s (%s)\n",
cs->start, cs->end + 1, where, when);
}
}
}
VG_(free)(css);
}
/* ---------------------------------------------------------------------
wrappers
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(darwin, name)
#define POST(name) DEFN_POST_TEMPLATE(darwin, name)
#define PRE_FN(name) vgSysWrap_darwin_##name##_before
#define POST_FN(name) vgSysWrap_darwin_##name##_after
#define CALL_PRE(name) PRE_FN(name)(tid, layout, arrghs, status, flags)
#define CALL_POST(name) POST_FN(name)(tid, arrghs, status)
#if VG_WORDSIZE == 4
// Combine two 32-bit values into a 64-bit value
// Always use with low-numbered arg first (e.g. LOHI64(ARG1,ARG2) )
# if defined(VGA_x86)
# define LOHI64(lo,hi) ( (lo) | ((ULong)(hi) << 32) )
# else
# error unknown architecture
# endif
#endif
// Retrieve the current Mach thread
#define MACH_THREAD ((Addr)VG_(get_ThreadState)(tid)->os_state.lwpid)
// Set the POST handler for a mach_msg derivative
#define AFTER VG_(get_ThreadState)(tid)->os_state.post_mach_trap_fn
// Set or get values saved from Mach messages
#define MACH_ARG(x) VG_(get_ThreadState)(tid)->os_state.mach_args.x
#define MACH_REMOTE VG_(get_ThreadState)(tid)->os_state.remote_port
#define MACH_MSGH_ID VG_(get_ThreadState)(tid)->os_state.msgh_id
/* ---------------------------------------------------------------------
darwin ioctl wrapper
------------------------------------------------------------------ */
PRE(ioctl)
{
*flags |= SfMayBlock;
/* Handle ioctls that don't take an arg first */
switch (ARG2 /* request */) {
case VKI_TIOCSCTTY:
case VKI_TIOCEXCL:
case VKI_TIOCPTYGRANT:
case VKI_TIOCPTYUNLK:
case VKI_DTRACEHIOC_REMOVE:
PRINT("ioctl ( %ld, 0x%lx )",ARG1,ARG2);
PRE_REG_READ2(long, "ioctl",
unsigned int, fd, unsigned int, request);
return;
default:
PRINT("ioctl ( %ld, 0x%lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "ioctl",
unsigned int, fd, unsigned int, request, unsigned long, arg);
}
switch (ARG2 /* request */) {
case VKI_TIOCGWINSZ:
PRE_MEM_WRITE( "ioctl(TIOCGWINSZ)", ARG3, sizeof(struct vki_winsize) );
break;
case VKI_TIOCSWINSZ:
PRE_MEM_READ( "ioctl(TIOCSWINSZ)", ARG3, sizeof(struct vki_winsize) );
break;
case VKI_TIOCMBIS:
PRE_MEM_READ( "ioctl(TIOCMBIS)", ARG3, sizeof(unsigned int) );
break;
case VKI_TIOCMBIC:
PRE_MEM_READ( "ioctl(TIOCMBIC)", ARG3, sizeof(unsigned int) );
break;
case VKI_TIOCMSET:
PRE_MEM_READ( "ioctl(TIOCMSET)", ARG3, sizeof(unsigned int) );
break;
case VKI_TIOCMGET:
PRE_MEM_WRITE( "ioctl(TIOCMGET)", ARG3, sizeof(unsigned int) );
break;
case VKI_TIOCGPGRP:
/* Get process group ID for foreground processing group. */
PRE_MEM_WRITE( "ioctl(TIOCGPGRP)", ARG3, sizeof(vki_pid_t) );
break;
case VKI_TIOCSPGRP:
/* Set a process group ID? */
PRE_MEM_WRITE( "ioctl(TIOCGPGRP)", ARG3, sizeof(vki_pid_t) );
break;
case VKI_FIONBIO:
PRE_MEM_READ( "ioctl(FIONBIO)", ARG3, sizeof(int) );
break;
case VKI_FIOASYNC:
PRE_MEM_READ( "ioctl(FIOASYNC)", ARG3, sizeof(int) );
break;
case VKI_FIONREAD: /* identical to SIOCINQ */
PRE_MEM_WRITE( "ioctl(FIONREAD)", ARG3, sizeof(int) );
break;
/* These all use struct ifreq AFAIK */
/* GrP fixme is sizeof(struct vki_if_req) correct if it's using a sockaddr? */
case VKI_SIOCGIFFLAGS: /* get flags */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFFLAGS)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFFLAGS)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFMTU: /* get MTU size */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFMTU)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFMTU)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFADDR: /* get PA address */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFADDR)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFADDR)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFNETMASK: /* get network PA mask */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFNETMASK)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFNETMASK)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFMETRIC: /* get metric */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFMETRIC)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFMETRIC)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFDSTADDR: /* get remote PA address */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFDSTADDR)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFDSTADDR)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFBRDADDR: /* get broadcast PA address */
PRE_MEM_RASCIIZ( "ioctl(SIOCGIFBRDADDR)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_WRITE( "ioctl(SIOCGIFBRDADDR)", ARG3, sizeof(struct vki_ifreq));
break;
case VKI_SIOCGIFCONF: /* get iface list */
/* WAS:
PRE_MEM_WRITE( "ioctl(SIOCGIFCONF)", ARG3, sizeof(struct ifconf));
KERNEL_DO_SYSCALL(tid,RES);
if (!VG_(is_kerror)(RES) && RES == 0)
POST_MEM_WRITE(ARG3, sizeof(struct ifconf));
*/
PRE_MEM_READ( "ioctl(SIOCGIFCONF)",
(Addr)&((struct vki_ifconf *)ARG3)->ifc_len,
sizeof(((struct vki_ifconf *)ARG3)->ifc_len));
PRE_MEM_READ( "ioctl(SIOCGIFCONF)",
(Addr)&((struct vki_ifconf *)ARG3)->vki_ifc_buf,
sizeof(((struct vki_ifconf *)ARG3)->vki_ifc_buf));
if ( ARG3 ) {
// TODO len must be readable and writable
// buf pointer only needs to be readable
struct vki_ifconf *ifc = (struct vki_ifconf *) ARG3;
PRE_MEM_WRITE( "ioctl(SIOCGIFCONF).ifc_buf",
(Addr)(ifc->vki_ifc_buf), ifc->ifc_len );
}
break;
case VKI_SIOCSIFFLAGS: /* set flags */
PRE_MEM_RASCIIZ( "ioctl(SIOCSIFFLAGS)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_READ( "ioctl(SIOCSIFFLAGS)",
(Addr)&((struct vki_ifreq *)ARG3)->vki_ifr_flags,
sizeof(((struct vki_ifreq *)ARG3)->vki_ifr_flags) );
break;
case VKI_SIOCSIFADDR: /* set PA address */
case VKI_SIOCSIFDSTADDR: /* set remote PA address */
case VKI_SIOCSIFBRDADDR: /* set broadcast PA address */
case VKI_SIOCSIFNETMASK: /* set network PA mask */
PRE_MEM_RASCIIZ( "ioctl(SIOCSIF*ADDR)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_READ( "ioctl(SIOCSIF*ADDR)",
(Addr)&((struct vki_ifreq *)ARG3)->ifr_addr,
sizeof(((struct vki_ifreq *)ARG3)->ifr_addr) );
break;
case VKI_SIOCSIFMETRIC: /* set metric */
PRE_MEM_RASCIIZ( "ioctl(SIOCSIFMETRIC)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_READ( "ioctl(SIOCSIFMETRIC)",
(Addr)&((struct vki_ifreq *)ARG3)->vki_ifr_metric,
sizeof(((struct vki_ifreq *)ARG3)->vki_ifr_metric) );
break;
case VKI_SIOCSIFMTU: /* set MTU size */
PRE_MEM_RASCIIZ( "ioctl(SIOCSIFMTU)",
(Addr)((struct vki_ifreq *)ARG3)->vki_ifr_name );
PRE_MEM_READ( "ioctl(SIOCSIFMTU)",
(Addr)&((struct vki_ifreq *)ARG3)->vki_ifr_mtu,
sizeof(((struct vki_ifreq *)ARG3)->vki_ifr_mtu) );
break;
/* Routing table calls. */
#ifdef VKI_SIOCADDRT
case VKI_SIOCADDRT: /* add routing table entry */
case VKI_SIOCDELRT: /* delete routing table entry */
PRE_MEM_READ( "ioctl(SIOCADDRT/DELRT)", ARG3,
sizeof(struct vki_rtentry));
break;
#endif
case VKI_SIOCGPGRP:
PRE_MEM_WRITE( "ioctl(SIOCGPGRP)", ARG3, sizeof(int) );
break;
case VKI_SIOCSPGRP:
PRE_MEM_READ( "ioctl(SIOCSPGRP)", ARG3, sizeof(int) );
//tst->sys_flags &= ~SfMayBlock;
break;
case VKI_FIODTYPE:
PRE_MEM_WRITE( "ioctl(FIONREAD)", ARG3, sizeof(int) );
break;
case VKI_DTRACEHIOC_ADDDOF:
break;
// ttycom.h
case VKI_TIOCGETA:
PRE_MEM_WRITE( "ioctl(TIOCGETA)", ARG3, sizeof(struct vki_termios) );
break;
case VKI_TIOCSETA:
PRE_MEM_READ( "ioctl(TIOCSETA)", ARG3, sizeof(struct vki_termios) );
break;
case VKI_TIOCGETD:
PRE_MEM_WRITE( "ioctl(TIOCGETD)", ARG3, sizeof(int) );
break;
case VKI_TIOCSETD:
PRE_MEM_READ( "ioctl(TIOCSETD)", ARG3, sizeof(int) );
break;
case VKI_TIOCPTYGNAME:
PRE_MEM_WRITE( "ioctl(TIOCPTYGNAME)", ARG3, 128 );
break;
default:
ML_(PRE_unknown_ioctl)(tid, ARG2, ARG3);
break;
}
}
POST(ioctl)
{
vg_assert(SUCCESS);
switch (ARG2 /* request */) {
case VKI_TIOCGWINSZ:
POST_MEM_WRITE( ARG3, sizeof(struct vki_winsize) );
break;
case VKI_TIOCSWINSZ:
case VKI_TIOCMBIS:
case VKI_TIOCMBIC:
case VKI_TIOCMSET:
break;
case VKI_TIOCMGET:
POST_MEM_WRITE( ARG3, sizeof(unsigned int) );
break;
case VKI_TIOCGPGRP:
/* Get process group ID for foreground processing group. */
POST_MEM_WRITE( ARG3, sizeof(vki_pid_t) );
break;
case VKI_TIOCSPGRP:
/* Set a process group ID? */
POST_MEM_WRITE( ARG3, sizeof(vki_pid_t) );
break;
case VKI_TIOCSCTTY:
break;
case VKI_FIONBIO:
break;
case VKI_FIOASYNC:
break;
case VKI_FIONREAD: /* identical to SIOCINQ */
POST_MEM_WRITE( ARG3, sizeof(int) );
break;
/* These all use struct ifreq AFAIK */
case VKI_SIOCGIFFLAGS: /* get flags */
POST_MEM_WRITE( (Addr)&((struct vki_ifreq *)ARG3)->vki_ifr_flags,
sizeof(((struct vki_ifreq *)ARG3)->vki_ifr_flags) );
break;
case VKI_SIOCGIFMTU: /* get MTU size */
POST_MEM_WRITE( (Addr)&((struct vki_ifreq *)ARG3)->vki_ifr_mtu,
sizeof(((struct vki_ifreq *)ARG3)->vki_ifr_mtu) );
break;
case VKI_SIOCGIFADDR: /* get PA address */
case VKI_SIOCGIFDSTADDR: /* get remote PA address */
case VKI_SIOCGIFBRDADDR: /* get broadcast PA address */
case VKI_SIOCGIFNETMASK: /* get network PA mask */
POST_MEM_WRITE(
(Addr)&((struct vki_ifreq *)ARG3)->ifr_addr,
sizeof(((struct vki_ifreq *)ARG3)->ifr_addr) );
break;
case VKI_SIOCGIFMETRIC: /* get metric */
POST_MEM_WRITE(
(Addr)&((struct vki_ifreq *)ARG3)->vki_ifr_metric,
sizeof(((struct vki_ifreq *)ARG3)->vki_ifr_metric) );
break;
case VKI_SIOCGIFCONF: /* get iface list */
/* WAS:
PRE_MEM_WRITE("ioctl(SIOCGIFCONF)", ARG3, sizeof(struct ifconf));
KERNEL_DO_SYSCALL(tid,RES);
if (!VG_(is_kerror)(RES) && RES == 0)
POST_MEM_WRITE(ARG3, sizeof(struct ifconf));
*/
if (RES == 0 && ARG3 ) {
struct vki_ifconf *ifc = (struct vki_ifconf *) ARG3;
if (ifc->vki_ifc_buf != NULL)
POST_MEM_WRITE( (Addr)(ifc->vki_ifc_buf), ifc->ifc_len );
}
break;
case VKI_SIOCSIFFLAGS: /* set flags */
case VKI_SIOCSIFDSTADDR: /* set remote PA address */
case VKI_SIOCSIFBRDADDR: /* set broadcast PA address */
case VKI_SIOCSIFNETMASK: /* set network PA mask */
case VKI_SIOCSIFMETRIC: /* set metric */
case VKI_SIOCSIFADDR: /* set PA address */
case VKI_SIOCSIFMTU: /* set MTU size */
break;
#ifdef VKI_SIOCADDRT
/* Routing table calls. */
case VKI_SIOCADDRT: /* add routing table entry */
case VKI_SIOCDELRT: /* delete routing table entry */
break;
#endif
case VKI_SIOCGPGRP:
POST_MEM_WRITE(ARG3, sizeof(int));
break;
case VKI_SIOCSPGRP:
break;
case VKI_FIODTYPE:
POST_MEM_WRITE( ARG3, sizeof(int) );
break;
case VKI_DTRACEHIOC_REMOVE:
case VKI_DTRACEHIOC_ADDDOF:
break;
// ttycom.h
case VKI_TIOCGETA:
POST_MEM_WRITE( ARG3, sizeof(struct vki_termios));
break;
case VKI_TIOCSETA:
break;
case VKI_TIOCGETD:
POST_MEM_WRITE( ARG3, sizeof(int) );
break;
case VKI_TIOCSETD:
break;
case VKI_TIOCPTYGNAME:
POST_MEM_WRITE( ARG3, 128);
break;
case VKI_TIOCPTYGRANT:
case VKI_TIOCPTYUNLK:
break;
default:
break;
}
}
/* ---------------------------------------------------------------------
darwin fcntl wrapper
------------------------------------------------------------------ */
static const char *name_for_fcntl(UWord cmd) {
#define F(n) case VKI_##n: return #n
switch (cmd) {
F(F_CHKCLEAN);
F(F_RDAHEAD);
F(F_NOCACHE);
F(F_FULLFSYNC);
F(F_FREEZE_FS);
F(F_THAW_FS);
F(F_GLOBAL_NOCACHE);
F(F_PREALLOCATE);
F(F_SETSIZE);
F(F_RDADVISE);
F(F_READBOOTSTRAP);
F(F_WRITEBOOTSTRAP);
F(F_LOG2PHYS);
F(F_GETPATH);
F(F_PATHPKG_CHECK);
F(F_ADDSIGS);
default:
return "UNKNOWN";
}
#undef F
}
PRE(fcntl)
{
switch (ARG2) {
// These ones ignore ARG3.
case VKI_F_GETFD:
case VKI_F_GETFL:
case VKI_F_GETOWN:
PRINT("fcntl ( %ld, %ld )", ARG1,ARG2);
PRE_REG_READ2(long, "fcntl", unsigned int, fd, unsigned int, cmd);
break;
// These ones use ARG3 as "arg".
case VKI_F_DUPFD:
case VKI_F_SETFD:
case VKI_F_SETFL:
case VKI_F_SETOWN:
PRINT("fcntl[ARG3=='arg'] ( %ld, %ld, %ld )", ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd, unsigned long, arg);
break;
// These ones use ARG3 as "lock".
case VKI_F_GETLK:
case VKI_F_SETLK:
case VKI_F_SETLKW:
PRINT("fcntl[ARG3=='lock'] ( %ld, %ld, %#lx )", ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
struct flock64 *, lock);
// GrP fixme mem read sizeof(flock64)
if (ARG2 == VKI_F_SETLKW)
*flags |= SfMayBlock;
break;
// none
case VKI_F_CHKCLEAN:
case VKI_F_RDAHEAD:
case VKI_F_NOCACHE:
case VKI_F_FULLFSYNC:
case VKI_F_FREEZE_FS:
case VKI_F_THAW_FS:
case VKI_F_GLOBAL_NOCACHE:
PRINT("fcntl ( %ld, %s )", ARG1, name_for_fcntl(ARG1));
PRE_REG_READ2(long, "fcntl", unsigned int, fd, unsigned int, cmd);
break;
// struct fstore
case VKI_F_PREALLOCATE:
PRINT("fcntl ( %ld, %s, %#lx )", ARG1, name_for_fcntl(ARG2), ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
struct fstore *, fstore);
{
struct vki_fstore *fstore = (struct vki_fstore *)ARG3;
PRE_FIELD_READ( "fcntl(F_PREALLOCATE, fstore->fst_flags)",
fstore->fst_flags );
PRE_FIELD_READ( "fcntl(F_PREALLOCATE, fstore->fst_flags)",
fstore->fst_posmode );
PRE_FIELD_READ( "fcntl(F_PREALLOCATE, fstore->fst_flags)",
fstore->fst_offset );
PRE_FIELD_READ( "fcntl(F_PREALLOCATE, fstore->fst_flags)",
fstore->fst_length );
PRE_FIELD_WRITE( "fcntl(F_PREALLOCATE, fstore->fst_bytesalloc)",
fstore->fst_bytesalloc);
}
break;
// off_t
case VKI_F_SETSIZE:
PRINT("fcntl ( %ld, %s, %#lx )", ARG1, name_for_fcntl(ARG2), ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
vki_off_t *, offset);
break;
// struct radvisory
case VKI_F_RDADVISE:
PRINT("fcntl ( %ld, %s, %#lx )", ARG1, name_for_fcntl(ARG2), ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
struct vki_radvisory *, radvisory);
{
struct vki_radvisory *radvisory = (struct vki_radvisory *)ARG3;
PRE_FIELD_READ( "fcntl(F_PREALLOCATE, radvisory->ra_offset)",
radvisory->ra_offset );
PRE_FIELD_READ( "fcntl(F_PREALLOCATE, radvisory->ra_count)",
radvisory->ra_count );
}
break;
// struct fbootstraptransfer
case VKI_F_READBOOTSTRAP:
case VKI_F_WRITEBOOTSTRAP:
PRINT("fcntl ( %ld, %s, %#lx )", ARG1, name_for_fcntl(ARG2), ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
struct fbootstraptransfer *, bootstrap);
PRE_MEM_READ( "fcntl(F_READ/WRITEBOOTSTRAP, bootstrap)",
ARG3, sizeof(struct vki_fbootstraptransfer) );
break;
// struct log2phys (out)
case VKI_F_LOG2PHYS:
PRINT("fcntl ( %ld, %s, %#lx )", ARG1, name_for_fcntl(ARG2), ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
struct log2phys *, l2p);
PRE_MEM_WRITE( "fcntl(F_LOG2PHYS, l2p)",
ARG3, sizeof(struct vki_log2phys) );
break;
// char[maxpathlen] (out)
case VKI_F_GETPATH:
PRINT("fcntl ( %ld, %s, %#lx )", ARG1, name_for_fcntl(ARG2), ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
char *, pathbuf);
PRE_MEM_WRITE( "fcntl(F_GETPATH, pathbuf)",
ARG3, VKI_MAXPATHLEN );
break;
// char[maxpathlen] (in)
case VKI_F_PATHPKG_CHECK:
PRINT("fcntl ( %ld, %s, %#lx '%s')", ARG1, name_for_fcntl(ARG2), ARG3,
(char *)ARG3);
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
char *, pathbuf);
PRE_MEM_RASCIIZ( "fcntl(F_PATHPKG_CHECK, pathbuf)", ARG3);
break;
case VKI_F_ADDSIGS: /* Add detached signatures (for code signing) */
PRINT("fcntl ( %ld, %s )", ARG1, name_for_fcntl(ARG2));
PRE_REG_READ3(long, "fcntl",
unsigned int, fd, unsigned int, cmd,
vki_fsignatures_t *, sigs);
{
vki_fsignatures_t *fsigs = (vki_fsignatures_t*)ARG3;
PRE_FIELD_READ( "fcntl(F_ADDSIGS, fsigs->fs_blob_start)",
fsigs->fs_blob_start);
PRE_FIELD_READ( "fcntl(F_ADDSIGS, fsigs->fs_blob_size)",
fsigs->fs_blob_size);
if (fsigs->fs_blob_start)
PRE_MEM_READ( "fcntl(F_ADDSIGS, fsigs->fs_blob_start)",
(Addr)fsigs->fs_blob_start, fsigs->fs_blob_size);
}
break;
default:
PRINT("fcntl ( %ld, %ld [??] )", ARG1, ARG2);
VG_(printf)("UNKNOWN fcntl %ld!", ARG2);
break;
}
}
POST(fcntl)
{
vg_assert(SUCCESS);
switch (ARG2) {
case VKI_F_DUPFD:
if (!ML_(fd_allowed)(RES, "fcntl(DUPFD)", tid, True)) {
VG_(close)(RES);
SET_STATUS_Failure( VKI_EMFILE );
} else {
if (VG_(clo_track_fds))
ML_(record_fd_open_named)(tid, RES);
}
break;
case VKI_F_GETFD:
case VKI_F_GETFL:
case VKI_F_GETOWN:
case VKI_F_SETFD:
case VKI_F_SETFL:
case VKI_F_SETOWN:
case VKI_F_GETLK:
case VKI_F_SETLK:
case VKI_F_SETLKW:
break;
case VKI_F_PREALLOCATE:
{
struct vki_fstore *fstore = (struct vki_fstore *)ARG3;
POST_FIELD_WRITE( fstore->fst_bytesalloc );
}
break;
case VKI_F_LOG2PHYS:
POST_MEM_WRITE( ARG3, sizeof(struct vki_log2phys) );
break;
case VKI_F_GETPATH:
POST_MEM_WRITE( ARG3, 1+VG_(strlen)((char *)ARG3) );
PRINT("\"%s\"", (char*)ARG3);
break;
default:
// DDD: ugh, missing lots of cases here, not nice
break;
}
}
/* ---------------------------------------------------------------------
unix syscalls
------------------------------------------------------------------ */
PRE(futimes)
{
PRINT("futimes ( %ld, %#lx )", ARG1,ARG2);
PRE_REG_READ2(long, "futimes", int, fd, struct timeval *, tvp);
if (!ML_(fd_allowed)(ARG1, "futimes", tid, False)) {
SET_STATUS_Failure( VKI_EBADF );
} else if (ARG2 != 0) {
PRE_timeval_READ( "futimes(tvp[0])", ARG2 );
PRE_timeval_READ( "futimes(tvp[1])", ARG2+sizeof(struct vki_timeval) );
}
}
PRE(semget)
{
PRINT("semget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg);
}
PRE(semop)
{
*flags |= SfMayBlock;
PRINT("semop ( %ld, %#lx, %lu )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semop",
int, semid, struct sembuf *, sops, vki_size_t, nsoops);
ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3);
}
PRE(semctl)
{
switch (ARG3) {
case VKI_IPC_STAT:
case VKI_IPC_SET:
PRINT("semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct semid_ds *, arg);
break;
case VKI_GETALL:
case VKI_SETALL:
PRINT("semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, unsigned short *, arg);
break;
case VKI_SETVAL:
PRINT("semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, int, arg);
break;
default:
PRINT("semctl ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semctl",
int, semid, int, semnum, int, cmd);
break;
}
ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(semctl)
{
ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3,ARG4);
}
PRE(sem_open)
{
if (ARG2 & VKI_O_CREAT) {
// 4-arg version
PRINT("sem_open ( %#lx(%s), %ld, %ld, %ld )",
ARG1,(char*)ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(vki_sem_t *, "sem_open",
const char *, name, int, oflag, vki_mode_t, mode,
unsigned int, value);
} else {
// 2-arg version
PRINT("sem_open ( %#lx(%s), %ld )",ARG1,(char*)ARG1,ARG2);
PRE_REG_READ2(vki_sem_t *, "sem_open",
const char *, name, int, oflag);
}
PRE_MEM_RASCIIZ( "sem_open(name)", ARG1 );
/* Otherwise handle normally */
*flags |= SfMayBlock;
}
PRE(sem_close)
{
PRINT("sem_close( %#lx )", ARG1);
PRE_REG_READ1(int, "sem_close", vki_sem_t *, sem);
}
PRE(sem_unlink)
{
PRINT("sem_unlink( %#lx(%s) )", ARG1,(char*)ARG1);
PRE_REG_READ1(int, "sem_unlink", const char *, name);
PRE_MEM_RASCIIZ( "sem_unlink(name)", ARG1 );
}
PRE(sem_post)
{
PRINT("sem_post( %#lx )", ARG1);
PRE_REG_READ1(int, "sem_post", vki_sem_t *, sem);
*flags |= SfMayBlock;
}
PRE(sem_destroy)
{
PRINT("sem_destroy( %#lx )", ARG1);
PRE_REG_READ1(int, "sem_destroy", vki_sem_t *, sem);
PRE_MEM_READ("sem_destroy(sem)", ARG1, sizeof(vki_sem_t));
}
PRE(sem_init)
{
PRINT("sem_init( %#lx, %ld, %ld )", ARG1, ARG2, ARG3);
PRE_REG_READ3(int, "sem_init", vki_sem_t *, sem,
int, pshared, unsigned int, value);
PRE_MEM_WRITE("sem_init(sem)", ARG1, sizeof(vki_sem_t));
}
POST(sem_init)
{
POST_MEM_WRITE(ARG1, sizeof(vki_sem_t));
}
PRE(sem_wait)
{
PRINT("sem_wait( %#lx )", ARG1);
PRE_REG_READ1(int, "sem_wait", vki_sem_t *, sem);
*flags |= SfMayBlock;
}
PRE(sem_trywait)
{
PRINT("sem_trywait( %#lx )", ARG1);
PRE_REG_READ1(int, "sem_trywait", vki_sem_t *, sem);
*flags |= SfMayBlock;
}
PRE(kqueue)
{
PRINT("kqueue()");
}
POST(kqueue)
{
if (!ML_(fd_allowed)(RES, "kqueue", tid, True)) {
VG_(close)(RES);
SET_STATUS_Failure( VKI_EMFILE );
} else {
if (VG_(clo_track_fds)) {
ML_(record_fd_open_with_given_name)(tid, RES, NULL);
}
}
}
PRE(kevent)
{
PRINT("kevent( %ld, %#lx, %ld, %#lx, %ld, %#lx )",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
PRE_REG_READ6(int,"kevent", int,kq,
const struct vki_kevent *,changelist, int,nchanges,
struct vki_kevent *,eventlist, int,nevents,
const struct vki_timespec *,timeout);
if (ARG3) PRE_MEM_READ ("kevent(changelist)",
ARG2, ARG3 * sizeof(struct vki_kevent));
if (ARG5) PRE_MEM_WRITE("kevent(eventlist)",
ARG4, ARG5 * sizeof(struct vki_kevent));
if (ARG6) PRE_MEM_READ ("kevent(timeout)",
ARG6, sizeof(struct vki_timespec));
*flags |= SfMayBlock;
}
POST(kevent)
{
PRINT("kevent ret %ld dst %#lx (%zu)", RES, ARG4, sizeof(struct vki_kevent));
if (RES > 0) POST_MEM_WRITE(ARG4, RES * sizeof(struct vki_kevent));
}
Addr pthread_starter = 0;
Addr wqthread_starter = 0;
SizeT pthread_structsize = 0;
PRE(bsdthread_register)
{
PRINT("bsdthread_register( %#lx, %#lx, %lu )", ARG1, ARG2, ARG3);
PRE_REG_READ3(int,"__bsdthread_register", void *,"threadstart",
void *,"wqthread", size_t,"pthsize");
pthread_starter = ARG1;
wqthread_starter = ARG2;
pthread_structsize = ARG3;
ARG1 = (Word)&pthread_hijack_asm;
ARG2 = (Word)&wqthread_hijack_asm;
}
PRE(workq_open)
{
PRINT("workq_open()");
PRE_REG_READ0(int, "workq_open");
// This creates lots of threads and thread stacks under the covers,
// but we ignore them all until some work item starts running on it.
}
static const char *workqop_name(int op)
{
switch (op) {
case VKI_WQOPS_QUEUE_ADD: return "QUEUE_ADD";
case VKI_WQOPS_QUEUE_REMOVE: return "QUEUE_REMOVE";
case VKI_WQOPS_THREAD_RETURN: return "THREAD_RETURN";
case VKI_WQOPS_THREAD_SETCONC: return "THREAD_SETCONC";
case VKI_WQOPS_QUEUE_NEWSPISUPP: return "QUEUE_NEWSPISUPP";
case VKI_WQOPS_QUEUE_REQTHREADS: return "QUEUE_REQTHREADS";
default: return "?";
}
}
PRE(workq_ops)
{
PRINT("workq_ops( %ld(%s), %#lx, %ld )", ARG1, workqop_name(ARG1), ARG2,
ARG3);
PRE_REG_READ3(int,"workq_ops", int,"options", void *,"item",
int,"priority");
switch (ARG1) {
case VKI_WQOPS_QUEUE_ADD:
case VKI_WQOPS_QUEUE_REMOVE:
// GrP fixme need anything here?
// GrP fixme may block?
break;
case VKI_WQOPS_QUEUE_NEWSPISUPP:
// JRS don't think we need to do anything here -- this just checks
// whether some newer functionality is supported
break;
case VKI_WQOPS_QUEUE_REQTHREADS:
// JRS uh, looks like it queues up a bunch of threads, or some such?
*flags |= SfMayBlock; // the kernel sources take a spinlock, so play safe
break;
case VKI_WQOPS_THREAD_RETURN: {
// The interesting case. The kernel will do one of two things:
// 1. Return normally. We continue; libc proceeds to stop the thread.
// V does nothing special here.
// 2. Jump to wqthread_hijack. This wipes the stack and runs a
// new work item, and never returns from workq_ops.
// V handles this by longjmp() from wqthread_hijack back to the
// scheduler, which continues at the new client SP/IP/state.
// This works something like V's signal handling.
// To the tool, this looks like workq_ops() sometimes returns
// to a strange address.
ThreadState *tst = VG_(get_ThreadState)(tid);
tst->os_state.wq_jmpbuf_valid = True;
*flags |= SfMayBlock; // GrP fixme true?
break;
}
default:
VG_(printf)("UNKNOWN workq_ops option %ld\n", ARG1);
break;
}
}
POST(workq_ops)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
tst->os_state.wq_jmpbuf_valid = False;
}
PRE(__mac_syscall)
{
PRINT("__mac_syscall( %#lx, %ld, %#lx )", ARG1, ARG2, ARG3);
PRE_REG_READ3(int,"__mac_syscall", char *,"policy",
int,"call", void *,"arg");
// GrP fixme check call's arg?
// GrP fixme check policy?
}
/* Not like syswrap-generic's sys_exit, which exits only one thread.
More like syswrap-generic's sys_exit_group. */
PRE(exit)
{
ThreadId t;
ThreadState* tst;
PRINT("darwin exit( %ld )", ARG1);
PRE_REG_READ1(void, "exit", int, status);
tst = VG_(get_ThreadState)(tid);
/* A little complex; find all the threads with the same threadgroup
as this one (including this one), and mark them to exit */
for (t = 1; t < VG_N_THREADS; t++) {
if ( /* not alive */
VG_(threads)[t].status == VgTs_Empty
/* GrP fixme zombie? */
)
continue;
VG_(threads)[t].exitreason = VgSrc_ExitProcess;
VG_(threads)[t].os_state.exitcode = ARG1;
if (t != tid)
VG_(get_thread_out_of_syscall)(t); /* unblock it, if blocked */
}
/* We have to claim the syscall already succeeded. */
SET_STATUS_Success(0);
}
PRE(sigaction)
{
PRINT("sigaction ( %ld, %#lx, %#lx )", ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "sigaction",
int, signum, vki_sigaction_toK_t *, act,
vki_sigaction_fromK_t *, oldact);
if (ARG2 != 0) {
vki_sigaction_toK_t *sa = (vki_sigaction_toK_t *)ARG2;
PRE_MEM_READ( "sigaction(act->sa_handler)",
(Addr)&sa->ksa_handler, sizeof(sa->ksa_handler));
PRE_MEM_READ( "sigaction(act->sa_mask)",
(Addr)&sa->sa_mask, sizeof(sa->sa_mask));
PRE_MEM_READ( "sigaction(act->sa_flags)",
(Addr)&sa->sa_flags, sizeof(sa->sa_flags));
}
if (ARG3 != 0)
PRE_MEM_WRITE( "sigaction(oldact)",
ARG3, sizeof(vki_sigaction_fromK_t));
SET_STATUS_from_SysRes(
VG_(do_sys_sigaction)(ARG1, (const vki_sigaction_toK_t *)ARG2,
(vki_sigaction_fromK_t *)ARG3)
);
}
POST(sigaction)
{
vg_assert(SUCCESS);
if (RES == 0 && ARG3 != 0)
POST_MEM_WRITE( ARG3, sizeof(vki_sigaction_fromK_t));
}
PRE(__pthread_kill)
{
PRINT("__pthread_kill ( %ld, %ld )", ARG1, ARG2);
PRE_REG_READ2(long, "__pthread_kill", vki_pthread_t*, thread, int, sig);
}
PRE(__pthread_sigmask)
{
// GrP fixme
// JRS: arguments are identical to sigprocmask
// (how, sigset_t*, sigset_t*). Perhaps behave identically?
static Bool warned;
if (!warned) {
VG_(printf)("UNKNOWN __pthread_sigmask is unsupported. "
"This warning will not be repeated.\n");
warned = True;
}
SET_STATUS_Success( 0 );
}
PRE(__pthread_canceled)
{
*flags |= SfMayBlock; /* might kill this thread??? */
/* I don't think so -- I think it just changes the cancellation
state. But taking no chances. */
PRINT("__pthread_canceled ( %ld )", ARG1);
PRE_REG_READ1(long, "__pthread_canceled", void*, arg1);
}
PRE(__pthread_markcancel)
{
*flags |= SfMayBlock; /* might kill this thread??? */
PRINT("__pthread_markcancel ( %#lx )", ARG1);
PRE_REG_READ1(long, "__pthread_markcancel", void*, arg1);
/* Just let it go through. No idea if this is correct. */
}
PRE(__disable_threadsignal)
{
vki_sigset_t set;
PRINT("__disable_threadsignal(%ld, %ld, %ld)", ARG1, ARG2, ARG3);
/* I don't think this really looks at its arguments. So don't
bother to check them. */
VG_(sigfillset)( &set );
SET_STATUS_from_SysRes(
VG_(do_sys_sigprocmask) ( tid, VKI_SIG_BLOCK, &set, NULL )
);
/* We don't expect that blocking all signals for this thread could
cause any more to be delivered (how could it?), but just in case
.. */
if (SUCCESS)
*flags |= SfPollAfter;
}
PRE(kdebug_trace)
{
PRINT("kdebug_trace(%ld, %ld, %ld, %ld, %ld, %ld)",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
/*
Don't check anything - some clients pass fewer arguments.
PRE_REG_READ6(long, "kdebug_trace",
int,"code", int,"arg1", int,"arg2",
int,"arg3", int,"arg4", int,"arg5");
*/
}
PRE(seteuid)
{
PRINT("seteuid(%ld)", ARG1);
PRE_REG_READ1(long, "seteuid", vki_uid_t, "uid");
}
PRE(setegid)
{
PRINT("setegid(%ld)", ARG1);
PRE_REG_READ1(long, "setegid", vki_uid_t, "uid");
}
PRE(settid)
{
PRINT("settid(%ld, %ld)", ARG1, ARG2);
PRE_REG_READ2(long, "settid", vki_uid_t, "uid", vki_gid_t, "gid");
}
PRE(gettid)
{
PRINT("gettid()");
PRE_REG_READ0(long, gettid);
}
/* XXX need to check whether we need POST operations for
* waitevent, watchevent, modwatch -- jpeach
*/
PRE(watchevent)
{
PRINT("watchevent(%#lx, %#lx)", ARG1, ARG2);
PRE_REG_READ2(long, "watchevent",
vki_eventreq *, "event", unsigned int, "eventmask");
PRE_MEM_READ("watchevent(event)", ARG1, sizeof(vki_eventreq));
PRE_MEM_READ("watchevent(eventmask)", ARG2, sizeof(unsigned int));
*flags |= SfMayBlock;
}
#define WAITEVENT_FAST_POLL ((Addr)(struct timeval *)-1)
PRE(waitevent)
{
PRINT("waitevent(%#lx, %#lx)", ARG1, ARG2);
PRE_REG_READ2(long, "waitevent",
vki_eventreq *, "event", struct timeval *, "timeout");
PRE_MEM_WRITE("waitevent(event)", ARG1, sizeof(vki_eventreq));
if (ARG2 && ARG2 != WAITEVENT_FAST_POLL) {
PRE_timeval_READ("waitevent(timeout)", ARG2);
}
/* XXX ((timeval*)-1) is valid for ARG2 -- jpeach */
*flags |= SfMayBlock;
}
POST(waitevent)
{
POST_MEM_WRITE(ARG1, sizeof(vki_eventreq));
}
PRE(modwatch)
{
PRINT("modwatch(%#lx, %#lx)", ARG1, ARG2);
PRE_REG_READ2(long, "modwatch",
vki_eventreq *, "event", unsigned int, "eventmask");
PRE_MEM_READ("modwatch(event)", ARG1, sizeof(vki_eventreq));
PRE_MEM_READ("modwatch(eventmask)", ARG2, sizeof(unsigned int));
}
PRE(getxattr)
{
PRINT("getxattr(%#lx(%s), %#lx(%s), %#lx, %lu, %lu, %ld)",
ARG1, (char *)ARG1, ARG2, (char *)ARG2, ARG3, ARG4, ARG5, ARG6);
PRE_REG_READ6(vki_ssize_t, "getxattr",
const char *, path, char *, name, void *, value,
vki_size_t, size, uint32_t, position, int, options);
PRE_MEM_RASCIIZ("getxattr(path)", ARG1);
PRE_MEM_RASCIIZ("getxattr(name)", ARG2);
PRE_MEM_WRITE( "getxattr(value)", ARG3, ARG4);
}
POST(getxattr)
{
vg_assert((vki_ssize_t)RES >= 0);
POST_MEM_WRITE(ARG3, (vki_ssize_t)RES);
}
PRE(fgetxattr)
{
PRINT("fgetxattr(%ld, %#lx(%s), %#lx, %lu, %lu, %ld)",
ARG1, ARG2, (char *)ARG2, ARG3, ARG4, ARG5, ARG6);
PRE_REG_READ6(vki_ssize_t, "fgetxattr",
int, fd, char *, name, void *, value,
vki_size_t, size, uint32_t, position, int, options);
PRE_MEM_RASCIIZ("getxattr(name)", ARG2);
PRE_MEM_WRITE( "getxattr(value)", ARG3, ARG4);
}
POST(fgetxattr)
{
vg_assert((vki_ssize_t)RES >= 0);
POST_MEM_WRITE(ARG3, (vki_ssize_t)RES);
}
PRE(setxattr)
{
PRINT("setxattr ( %#lx(%s), %#lx(%s), %#lx, %lu, %lu, %ld )",
ARG1, (char *)ARG1, ARG2, (char*)ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(int, "setxattr",
const char *,"path", char *,"name", void *,"value",
vki_size_t,"size", uint32_t,"position", int,"options" );
PRE_MEM_RASCIIZ( "setxattr(path)", ARG1 );
PRE_MEM_RASCIIZ( "setxattr(name)", ARG2 );
PRE_MEM_READ( "setxattr(value)", ARG3, ARG4 );
}
PRE(fsetxattr)
{
PRINT( "fsetxattr ( %ld, %#lx(%s), %#lx, %lu, %lu, %ld )",
ARG1, ARG2, (char*)ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(int, "fsetxattr",
int,"fd", char *,"name", void *,"value",
vki_size_t,"size", uint32_t,"position", int,"options" );
PRE_MEM_RASCIIZ( "fsetxattr(name)", ARG2 );
PRE_MEM_READ( "fsetxattr(value)", ARG3, ARG4 );
}
PRE(removexattr)
{
PRINT( "removexattr ( %#lx(%s), %#lx(%s), %ld )",
ARG1, (HChar*)ARG1, ARG2, (HChar*)ARG2, ARG3 );
PRE_REG_READ3(int, "removexattr",
const char*, "path", char*, "attrname", int, "options");
PRE_MEM_RASCIIZ( "removexattr(path)", ARG1 );
PRE_MEM_RASCIIZ( "removexattr(attrname)", ARG2 );
}
PRE(fremovexattr)
{
PRINT( "fremovexattr ( %ld, %#lx(%s), %ld )",
ARG1, ARG2, (HChar*)ARG2, ARG3 );
PRE_REG_READ3(int, "fremovexattr",
int, "fd", char*, "attrname", int, "options");
PRE_MEM_RASCIIZ( "removexattr(attrname)", ARG2 );
}
PRE(listxattr)
{
PRINT( "listxattr ( %#lx(%s), %#lx, %lu, %ld )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4 );
PRE_REG_READ4 (long, "listxattr",
const char *,"path", char *,"namebuf",
vki_size_t,"size", int,"options" );
PRE_MEM_RASCIIZ( "listxattr(path)", ARG1 );
PRE_MEM_WRITE( "listxattr(namebuf)", ARG2, ARG3 );
*flags |= SfMayBlock;
}
POST(listxattr)
{
vg_assert(SUCCESS);
vg_assert((vki_ssize_t)RES >= 0);
POST_MEM_WRITE( ARG2, (vki_ssize_t)RES );
}
PRE(flistxattr)
{
PRINT( "flistxattr ( %ld, %#lx, %lu, %ld )",
ARG1, ARG2, ARG3, ARG4 );
PRE_REG_READ4 (long, "flistxattr",
int, "fd", char *,"namebuf",
vki_size_t,"size", int,"options" );
PRE_MEM_WRITE( "flistxattr(namebuf)", ARG2, ARG3 );
*flags |= SfMayBlock;
}
POST(flistxattr)
{
vg_assert(SUCCESS);
vg_assert((vki_ssize_t)RES >= 0);
POST_MEM_WRITE( ARG2, (vki_ssize_t)RES );
}
PRE(shmat)
{
UWord arg2tmp;
PRINT("shmat ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmat",
int, shmid, const void *, shmaddr, int, shmflg);
arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3);
if (arg2tmp == 0)
SET_STATUS_Failure( VKI_EINVAL );
else
ARG2 = arg2tmp; // used in POST
}
POST(shmat)
{
ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(shmctl)
{
PRINT("shmctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmctl",
int, shmid, int, cmd, struct vki_shmid_ds *, buf);
ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2,ARG3);
}
POST(shmctl)
{
ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(shmdt)
{
PRINT("shmdt ( %#lx )",ARG1);
PRE_REG_READ1(long, "shmdt", const void *, shmaddr);
if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1))
SET_STATUS_Failure( VKI_EINVAL );
}
POST(shmdt)
{
ML_(generic_POST_sys_shmdt)(tid, RES,ARG1);
}
PRE(shmget)
{
PRINT("shmget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg);
}
PRE(shm_open)
{
PRINT("shm_open(%#lx(%s), %ld, %ld)", ARG1, (char *)ARG1, ARG2, ARG3);
PRE_REG_READ3(long, "shm_open",
const char *,"name", int,"flags", vki_mode_t,"mode");
PRE_MEM_RASCIIZ( "shm_open(filename)", ARG1 );
*flags |= SfMayBlock;
}
POST(shm_open)
{
vg_assert(SUCCESS);
if (!ML_(fd_allowed)(RES, "shm_open", tid, True)) {
VG_(close)(RES);
SET_STATUS_Failure( VKI_EMFILE );
} else {
if (VG_(clo_track_fds))
ML_(record_fd_open_with_given_name)(tid, RES, (Char*)ARG1);
}
}
PRE(shm_unlink)
{
*flags |= SfMayBlock;
PRINT("shm_unlink ( %#lx(%s) )", ARG1,(char*)ARG1);
PRE_REG_READ1(long, "shm_unlink", const char *, pathname);
PRE_MEM_RASCIIZ( "shm_unlink(pathname)", ARG1 );
}
POST(shm_unlink)
{
/* My reading of the man page suggests that a call may cause memory
mappings to change: "if no references exist at the time of the
call to shm_unlink(), the resources are reclaimed immediately".
So we need to resync here, sigh. */
ML_(sync_mappings)("after", "shm_unlink", 0);
}
PRE(stat_extended)
{
PRINT("stat_extended( %#lx(%s), %#lx, %#lx, %#lx )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "stat_extended", char *, file_name, struct stat *, buf,
void *, fsacl, vki_size_t *, fsacl_size);
PRE_MEM_RASCIIZ( "stat_extended(file_name)", ARG1 );
PRE_MEM_WRITE( "stat_extended(buf)", ARG2, sizeof(struct vki_stat) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
PRE_MEM_WRITE("stat_extended(fsacl)", ARG3, *(vki_size_t *)ARG4 );
PRE_MEM_READ( "stat_extended(fsacl_size)", ARG4, sizeof(vki_size_t) );
}
POST(stat_extended)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
POST_MEM_WRITE( ARG3, *(vki_size_t *)ARG4 );
POST_MEM_WRITE( ARG4, sizeof(vki_size_t) );
}
PRE(lstat_extended)
{
PRINT("lstat_extended( %#lx(%s), %#lx, %#lx, %#lx )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "lstat_extended", char *, file_name, struct stat *, buf,
void *, fsacl, vki_size_t *, fsacl_size);
PRE_MEM_RASCIIZ( "lstat_extended(file_name)", ARG1 );
PRE_MEM_WRITE( "lstat_extended(buf)", ARG2, sizeof(struct vki_stat) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
PRE_MEM_WRITE("lstat_extended(fsacl)", ARG3, *(vki_size_t *)ARG4 );
PRE_MEM_READ( "lstat_extended(fsacl_size)", ARG4, sizeof(vki_size_t) );
}
POST(lstat_extended)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
POST_MEM_WRITE( ARG3, *(vki_size_t *)ARG4 );
POST_MEM_WRITE( ARG4, sizeof(vki_size_t) );
}
PRE(fstat_extended)
{
PRINT("fstat_extended( %ld, %#lx, %#lx, %#lx )",
ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "fstat_extended", int, fd, struct stat *, buf,
void *, fsacl, vki_size_t *, fsacl_size);
PRE_MEM_WRITE( "fstat_extended(buf)", ARG2, sizeof(struct vki_stat) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
PRE_MEM_WRITE("fstat_extended(fsacl)", ARG3, *(vki_size_t *)ARG4 );
PRE_MEM_READ( "fstat_extended(fsacl_size)", ARG4, sizeof(vki_size_t) );
}
POST(fstat_extended)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
POST_MEM_WRITE( ARG3, *(vki_size_t *)ARG4 );
POST_MEM_WRITE( ARG4, sizeof(vki_size_t) );
}
PRE(stat64_extended)
{
PRINT("stat64_extended( %#lx(%s), %#lx, %#lx, %#lx )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "stat64_extended", char *, file_name, struct stat64 *, buf,
void *, fsacl, vki_size_t *, fsacl_size);
PRE_MEM_RASCIIZ( "stat64_extended(file_name)", ARG1 );
PRE_MEM_WRITE( "stat64_extended(buf)", ARG2, sizeof(struct vki_stat64) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
PRE_MEM_WRITE("stat64_extended(fsacl)", ARG3, *(vki_size_t *)ARG4 );
PRE_MEM_READ( "stat64_extended(fsacl_size)", ARG4, sizeof(vki_size_t) );
}
POST(stat64_extended)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
POST_MEM_WRITE( ARG3, *(vki_size_t *)ARG4 );
POST_MEM_WRITE( ARG4, sizeof(vki_size_t) );
}
PRE(lstat64_extended)
{
PRINT("lstat64_extended( %#lx(%s), %#lx, %#lx, %#lx )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "lstat64_extended", char *, file_name, struct stat64 *, buf,
void *, fsacl, vki_size_t *, fsacl_size);
PRE_MEM_RASCIIZ( "lstat64_extended(file_name)", ARG1 );
PRE_MEM_WRITE( "lstat64_extended(buf)", ARG2, sizeof(struct vki_stat64) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
PRE_MEM_WRITE( "lstat64_extended(fsacl)", ARG3, *(vki_size_t *)ARG4 );
PRE_MEM_READ( "lstat64_extended(fsacl_size)", ARG4, sizeof(vki_size_t) );
}
POST(lstat64_extended)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
POST_MEM_WRITE( ARG3, *(vki_size_t *)ARG4 );
POST_MEM_WRITE( ARG4, sizeof(vki_size_t) );
}
PRE(fstat64_extended)
{
PRINT("fstat64_extended( %ld, %#lx, %#lx, %#lx )",
ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "fstat64_extended", int, fd, struct stat64 *, buf,
void *, fsacl, vki_size_t *, fsacl_size);
PRE_MEM_WRITE( "fstat64_extended(buf)", ARG2, sizeof(struct vki_stat64) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
PRE_MEM_WRITE("fstat64_extended(fsacl)", ARG3, *(vki_size_t *)ARG4 );
PRE_MEM_READ( "fstat64_extended(fsacl_size)", ARG4, sizeof(vki_size_t) );
}
POST(fstat64_extended)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
if (ML_(safe_to_deref)( (void*)ARG4, sizeof(vki_size_t) ))
POST_MEM_WRITE( ARG3, *(vki_size_t *)ARG4 );
POST_MEM_WRITE( ARG4, sizeof(vki_size_t) );
}
PRE(fchmod_extended)
{
/* DDD: Note: this is not really correct. Handling of
chmod_extended is broken in the same way. */
PRINT("fchmod_extended ( %ld, %ld, %ld, %ld, %#lx )",
ARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(long, "fchmod_extended",
unsigned int, fildes,
uid_t, uid,
gid_t, gid,
vki_mode_t, mode,
void* /*really,user_addr_t*/, xsecurity);
/* DDD: relative to the xnu sources (kauth_copyinfilesec), this
is just way wrong. [The trouble is with the size, which depends on a
non-trival kernel computation] */
if (ARG5) {
PRE_MEM_READ( "fchmod_extended(xsecurity)", ARG5,
sizeof(struct vki_kauth_filesec) );
}
}
PRE(chmod_extended)
{
/* DDD: Note: this is not really correct. Handling of
fchmod_extended is broken in the same way. */
PRINT("chmod_extended ( %#lx(%s), %ld, %ld, %ld, %#lx )",
ARG1, ARG1 ? (HChar*)ARG1 : "(null)", ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(long, "chmod_extended",
unsigned int, fildes,
uid_t, uid,
gid_t, gid,
vki_mode_t, mode,
void* /*really,user_addr_t*/, xsecurity);
PRE_MEM_RASCIIZ("chmod_extended(path)", ARG1);
/* DDD: relative to the xnu sources (kauth_copyinfilesec), this
is just way wrong. [The trouble is with the size, which depends on a
non-trival kernel computation] */
if (ARG5) {
PRE_MEM_READ( "chmod_extended(xsecurity)", ARG5,
sizeof(struct vki_kauth_filesec) );
}
}
PRE(open_extended)
{
/* DDD: Note: this is not really correct. Handling of
{,f}chmod_extended is broken in the same way. */
PRINT("open_extended ( %#lx(%s), 0x%lx, %ld, %ld, %ld, %#lx )",
ARG1, ARG1 ? (HChar*)ARG1 : "(null)",
ARG2, ARG3, ARG4, ARG5, ARG6);
PRE_REG_READ6(long, "open_extended",
char*, path,
int, flags,
uid_t, uid,
gid_t, gid,
vki_mode_t, mode,
void* /*really,user_addr_t*/, xsecurity);
PRE_MEM_RASCIIZ("open_extended(path)", ARG1);
/* DDD: relative to the xnu sources (kauth_copyinfilesec), this
is just way wrong. [The trouble is with the size, which depends on a
non-trival kernel computation] */
if (ARG6)
PRE_MEM_READ( "open_extended(xsecurity)", ARG6,
sizeof(struct vki_kauth_filesec) );
}
// This is a ridiculous syscall. Specifically, the 'entries' argument points
// to a buffer that contains one or more 'accessx_descriptor' structs followed
// by one or more strings. Each accessx_descriptor contains a field,
// 'ad_name_offset', which points to one of the strings (or it can contain
// zero which means "reuse the string from the previous accessx_descriptor").
//
// What's really ridiculous is that we are only given the size of the overall
// buffer, not the number of accessx_descriptors, nor the number of strings.
// The kernel determines the number of accessx_descriptors by walking through
// them one by one, checking that the ad_name_offset points within the buffer,
// past the current point (or that it's a zero, unless its the first
// descriptor); if so, we assume that this really is an accessx_descriptor,
// if not, we assume we've hit the strings section. Gah.
//
// This affects us here because number of entries in the 'results' buffer is
// determined by the number of accessx_descriptors. So we have to know that
// number in order to do PRE_MEM_WRITE/POST_MEM_WRITE of 'results'. In
// practice, we skip the PRE_MEM_WRITE step because it's easier to do the
// computation after the syscall has succeeded, because the kernel will have
// checked for all the zillion different ways this syscall can fail, and we'll
// know we have a well-formed 'entries' buffer. This means we might miss some
// uses of unaddressable memory but oh well.
//
PRE(access_extended)
{
PRINT("access_extended( %#lx(%s), %lu, %#lx, %lu )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4);
// XXX: the accessx_descriptor struct contains padding, so this can cause
// unnecessary undefined value errors. But you arguably shouldn't be
// passing undefined values to the kernel anyway...
PRE_REG_READ4(int, "access_extended", void *, entries, vki_size_t, size,
vki_errno_t *, results, vki_uid_t *, uid);
PRE_MEM_READ("access_extended(entries)", ARG1, ARG2 );
// XXX: as mentioned above, this check is too hard to do before the
// syscall.
//PRE_MEM_WRITE("access_extended(results)", ARG3, ??? );
}
POST(access_extended)
{
// 'n_descs' is the number of descriptors we think are in the buffer. We
// start with the maximum possible value, which occurs if we have the
// shortest possible string section. The shortest string section allowed
// consists of a single one-char string (plus the NUL char). Hence the
// '2'.
struct vki_accessx_descriptor* entries = (struct vki_accessx_descriptor*)ARG1;
SizeT size = ARG2;
Int n_descs = (size - 2) / sizeof(struct accessx_descriptor);
Int i; // Current position in the descriptors section array.
Int u; // Upper bound on the length of the descriptors array
// (recomputed each time around the loop)
vg_assert(n_descs > 0);
// Step through the descriptors, lowering 'n_descs' until we know we've
// reached the string section.
for (i = 0; True; i++) {
// If we're past our estimate, we must be one past the end of the
// descriptors section (ie. at the start of the string section). Stop.
if (i >= n_descs)
break;
// Get the array index for the string, but pretend momentarily that it
// is actually another accessx_descriptor. That gives us an upper bound
// on the length of the descriptors section. (Unless the index is zero,
// in which case we have no new info.)
u = entries[i].ad_name_offset / sizeof(struct vki_accessx_descriptor);
if (u == 0) {
vg_assert(i != 0);
continue;
}
// If the upper bound is below our current estimate, revise that
// estimate downwards.
if (u < n_descs)
n_descs = u;
}
// Sanity check.
vg_assert(n_descs <= VKI_ACCESSX_MAX_DESCRIPTORS);
POST_MEM_WRITE( ARG3, n_descs * sizeof(vki_errno_t) );
}
PRE(chflags)
{
PRINT("chflags ( %#lx(%s), %lu )", ARG1, (char *)ARG1, ARG2);
PRE_REG_READ2(int, "chflags", const char *,path, unsigned int,flags);
PRE_MEM_RASCIIZ("chflags(path)", ARG1);
// GrP fixme sanity-check flags value?
}
PRE(fchflags)
{
PRINT("fchflags ( %ld, %lu )", ARG1, ARG2);
PRE_REG_READ2(int, "fchflags", int,fd, unsigned int,flags);
// GrP fixme sanity-check flags value?
}
PRE(stat64)
{
PRINT("stat64 ( %#lx(%s), %#lx )", ARG1, (char *)ARG1, ARG2);
PRE_REG_READ2(long, "stat", const char *,path, struct stat64 *,buf);
PRE_MEM_RASCIIZ("stat64(path)", ARG1);
PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(stat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
PRE(lstat64)
{
PRINT("lstat64 ( %#lx(%s), %#lx )", ARG1, (char *)ARG1, ARG2);
PRE_REG_READ2(long, "stat", const char *,path, struct stat64 *,buf);
PRE_MEM_RASCIIZ("lstat64(path)", ARG1);
PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(lstat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
PRE(fstat64)
{
PRINT("fstat64 ( %ld, %#lx )", ARG1,ARG2);
PRE_REG_READ2(long, "fstat", unsigned int, fd, struct stat64 *, buf);
PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(fstat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
PRE(getfsstat)
{
PRINT("getfsstat(%#lx, %ld, %ld)", ARG1, ARG2, ARG3);
PRE_REG_READ3(int, "getfsstat",
struct vki_statfs *, buf, int, bufsize, int, flags);
if (ARG1) {
// ARG2 is a BYTE SIZE
PRE_MEM_WRITE("getfsstat(buf)", ARG1, ARG2);
}
}
POST(getfsstat)
{
if (ARG1) {
// RES is a STRUCT COUNT
POST_MEM_WRITE(ARG1, RES * sizeof(struct vki_statfs));
}
}
PRE(getfsstat64)
{
PRINT("getfsstat64(%#lx, %ld, %ld)", ARG1, ARG2, ARG3);
PRE_REG_READ3(int, "getfsstat64",
struct vki_statfs64 *, buf, int, bufsize, int, flags);
if (ARG1) {
// ARG2 is a BYTE SIZE
PRE_MEM_WRITE("getfsstat64(buf)", ARG1, ARG2);
}
}
POST(getfsstat64)
{
if (ARG1) {
// RES is a STRUCT COUNT
POST_MEM_WRITE(ARG1, RES * sizeof(struct vki_statfs64));
}
}
PRE(mount)
{
// Nb: depending on 'flags', the 'type' and 'data' args may be ignored.
// We are conservative and check everything, except the memory pointed to
// by 'data'.
*flags |= SfMayBlock;
PRINT("sys_mount( %#lx(%s), %#lx(%s), %#lx, %#lx )",
ARG1,(Char*)ARG1, ARG2,(Char*)ARG2, ARG3, ARG4);
PRE_REG_READ4(long, "mount",
const char *, type, const char *, dir,
int, flags, void *, data);
PRE_MEM_RASCIIZ( "mount(type)", ARG1);
PRE_MEM_RASCIIZ( "mount(dir)", ARG2);
}
static void scan_attrlist(ThreadId tid, struct vki_attrlist *attrList,
void *attrBuf, SizeT attrBufSize,
void (*fn)(ThreadId, void *attrData, SizeT size)
)
{
typedef struct {
uint32_t attrBit;
int32_t attrSize;
} attrspec;
static const attrspec commonattr[] = {
// This order is important.
#if DARWIN_VERS >= DARWIN_10_6
{ ATTR_CMN_RETURNED_ATTRS, sizeof(attribute_set_t) },
#endif
{ ATTR_CMN_NAME, -1 },
{ ATTR_CMN_DEVID, sizeof(dev_t) },
{ ATTR_CMN_FSID, sizeof(fsid_t) },
{ ATTR_CMN_OBJTYPE, sizeof(fsobj_type_t) },
{ ATTR_CMN_OBJTAG, sizeof(fsobj_tag_t) },
{ ATTR_CMN_OBJID, sizeof(fsobj_id_t) },
{ ATTR_CMN_OBJPERMANENTID, sizeof(fsobj_id_t) },
{ ATTR_CMN_PAROBJID, sizeof(fsobj_id_t) },
{ ATTR_CMN_SCRIPT, sizeof(text_encoding_t) },
{ ATTR_CMN_CRTIME, sizeof(struct timespec) },
{ ATTR_CMN_MODTIME, sizeof(struct timespec) },
{ ATTR_CMN_CHGTIME, sizeof(struct timespec) },
{ ATTR_CMN_ACCTIME, sizeof(struct timespec) },
{ ATTR_CMN_BKUPTIME, sizeof(struct timespec) },
{ ATTR_CMN_FNDRINFO, 32 /*FileInfo+ExtendedFileInfo, or FolderInfo+ExtendedFolderInfo*/ },
{ ATTR_CMN_OWNERID, sizeof(uid_t) },
{ ATTR_CMN_GRPID, sizeof(gid_t) },
{ ATTR_CMN_ACCESSMASK, sizeof(uint32_t) },
{ ATTR_CMN_NAMEDATTRCOUNT, sizeof(uint32_t) },
{ ATTR_CMN_NAMEDATTRLIST, -1 },
{ ATTR_CMN_FLAGS, sizeof(uint32_t) },
{ ATTR_CMN_USERACCESS, sizeof(uint32_t) },
{ ATTR_CMN_EXTENDED_SECURITY, -1 },
{ ATTR_CMN_UUID, sizeof(guid_t) },
{ ATTR_CMN_GRPUUID, sizeof(guid_t) },
{ ATTR_CMN_FILEID, sizeof(uint64_t) },
{ ATTR_CMN_PARENTID, sizeof(uint64_t) },
#if DARWIN_VERS >= DARWIN_10_6
{ ATTR_CMN_FULLPATH, -1 },
#endif
{ 0, 0 }
};
static const attrspec volattr[] = {
// This order is important.
{ ATTR_VOL_INFO, 0 },
{ ATTR_VOL_FSTYPE, sizeof(uint32_t) },
{ ATTR_VOL_SIGNATURE, sizeof(uint32_t) },
{ ATTR_VOL_SIZE, sizeof(off_t) },
{ ATTR_VOL_SPACEFREE, sizeof(off_t) },
{ ATTR_VOL_SPACEAVAIL, sizeof(off_t) },
{ ATTR_VOL_MINALLOCATION, sizeof(off_t) },
{ ATTR_VOL_ALLOCATIONCLUMP, sizeof(off_t) },
{ ATTR_VOL_IOBLOCKSIZE, sizeof(uint32_t) },
{ ATTR_VOL_OBJCOUNT, sizeof(uint32_t) },
{ ATTR_VOL_FILECOUNT, sizeof(uint32_t) },
{ ATTR_VOL_DIRCOUNT, sizeof(uint32_t) },
{ ATTR_VOL_MAXOBJCOUNT, sizeof(uint32_t) },
{ ATTR_VOL_MOUNTPOINT, -1 },
{ ATTR_VOL_NAME, -1 },
{ ATTR_VOL_MOUNTFLAGS, sizeof(uint32_t) },
{ ATTR_VOL_MOUNTEDDEVICE, -1 },
{ ATTR_VOL_ENCODINGSUSED, sizeof(uint64_t) },
{ ATTR_VOL_CAPABILITIES, sizeof(vol_capabilities_attr_t) },
#if DARWIN_VERS >= DARWIN_10_6
{ ATTR_VOL_UUID, sizeof(uuid_t) },
#endif
{ ATTR_VOL_ATTRIBUTES, sizeof(vol_attributes_attr_t) },
{ 0, 0 }
};
static const attrspec dirattr[] = {
// This order is important.
{ ATTR_DIR_LINKCOUNT, sizeof(uint32_t) },
{ ATTR_DIR_ENTRYCOUNT, sizeof(uint32_t) },
{ ATTR_DIR_MOUNTSTATUS, sizeof(uint32_t) },
{ 0, 0 }
};
static const attrspec fileattr[] = {
// This order is important.
{ ATTR_FILE_LINKCOUNT, sizeof(uint32_t) },
{ ATTR_FILE_TOTALSIZE, sizeof(off_t) },
{ ATTR_FILE_ALLOCSIZE, sizeof(off_t) },
{ ATTR_FILE_IOBLOCKSIZE, sizeof(uint32_t) },
{ ATTR_FILE_CLUMPSIZE, sizeof(uint32_t) },
{ ATTR_FILE_DEVTYPE, sizeof(uint32_t) },
{ ATTR_FILE_FILETYPE, sizeof(uint32_t) },
{ ATTR_FILE_FORKCOUNT, sizeof(uint32_t) },
{ ATTR_FILE_FORKLIST, -1 },
{ ATTR_FILE_DATALENGTH, sizeof(off_t) },
{ ATTR_FILE_DATAALLOCSIZE, sizeof(off_t) },
{ ATTR_FILE_DATAEXTENTS, sizeof(extentrecord) },
{ ATTR_FILE_RSRCLENGTH, sizeof(off_t) },
{ ATTR_FILE_RSRCALLOCSIZE, sizeof(off_t) },
{ ATTR_FILE_RSRCEXTENTS, sizeof(extentrecord) },
{ 0, 0 }
};
static const attrspec forkattr[] = {
// This order is important.
{ ATTR_FORK_TOTALSIZE, sizeof(off_t) },
{ ATTR_FORK_ALLOCSIZE, sizeof(off_t) },
{ 0, 0 }
};
static const attrspec *attrdefs[5] = {
commonattr, volattr, dirattr, fileattr, forkattr
};
attrgroup_t a[5];
uint8_t *d, *dend;
int g, i;
vg_assert(attrList->bitmapcount == 5);
VG_(memcpy)(a, &attrList->commonattr, sizeof(a));
d = attrBuf;
dend = d + attrBufSize;
#if DARWIN_VERS >= DARWIN_10_6
// ATTR_CMN_RETURNED_ATTRS tells us what's really here, if set
if (a[0] & ATTR_CMN_RETURNED_ATTRS) {
// fixme range check this?
a[0] &= ~ATTR_CMN_RETURNED_ATTRS;
fn(tid, d, sizeof(attribute_set_t));
VG_(memcpy)(a, d, sizeof(a));
}
#endif
for (g = 0; g < 5; g++) {
for (i = 0; attrdefs[g][i].attrBit; i++) {
uint32_t bit = attrdefs[g][i].attrBit;
int32_t size = attrdefs[g][i].attrSize;
if (a[g] & bit) {
a[g] &= ~bit; // clear bit for error check later
if (size == -1) {
attrreference_t *ref = (attrreference_t *)d;
size = MIN(sizeof(attrreference_t), dend - d);
fn(tid, d, size);
if (size >= sizeof(attrreference_t) &&
d + ref->attr_dataoffset < dend)
{
fn(tid, d + ref->attr_dataoffset,
MIN(ref->attr_length, dend - (d + ref->attr_dataoffset)));
}
d += size;
}
else {
size = MIN(size, dend - d);
fn(tid, d, size);
d += size;
}
if ((uintptr_t)d % 4) d += 4 - ((uintptr_t)d % 4);
if (d > dend) d = dend;
}
}
// Known bits are cleared. Die if any bits are left.
if (a[g] != 0) {
VG_(message)(Vg_UserMsg, "UNKNOWN attrlist flags %d:0x%x\n", g, a[g]);
}
}
}
static void get1attr(ThreadId tid, void *attrData, SizeT attrDataSize)
{
POST_MEM_WRITE((Addr)attrData, attrDataSize);
}
static void set1attr(ThreadId tid, void *attrData, SizeT attrDataSize)
{
PRE_MEM_READ("setattrlist(attrBuf value)", (Addr)attrData, attrDataSize);
}
PRE(getattrlist)
{
PRINT("getattrlist(%#lx(%s), %#lx, %#lx, %lu, %lu)",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(int, "getattrlist",
const char *,path, struct vki_attrlist *,attrList,
void *,attrBuf, vki_size_t,attrBufSize, unsigned int,options);
PRE_MEM_RASCIIZ("getattrlist(path)", ARG1);
PRE_MEM_READ("getattrlist(attrList)", ARG2, sizeof(struct vki_attrlist));
PRE_MEM_WRITE("getattrlist(attrBuf)", ARG3, ARG4);
}
POST(getattrlist)
{
if (ARG4 > sizeof(vki_uint32_t)) {
// attrBuf is uint32_t size followed by attr data
vki_uint32_t *sizep = (vki_uint32_t *)ARG3;
POST_MEM_WRITE(ARG3, sizeof(vki_uint32_t));
if (ARG5 & FSOPT_REPORT_FULLSIZE) {
// *sizep is bytes required for return value, including *sizep
} else {
// *sizep is actual bytes returned, including *sizep
}
scan_attrlist(tid, (struct vki_attrlist *)ARG2, sizep+1, MIN(*sizep, ARG4), &get1attr);
}
}
PRE(setattrlist)
{
PRINT("setattrlist(%#lx(%s), %#lx, %#lx, %lu, %lu)",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(int, "setattrlist",
const char *,path, struct vki_attrlist *,attrList,
void *,attrBuf, vki_size_t,attrBufSize, unsigned int,options);
PRE_MEM_RASCIIZ("setattrlist(path)", ARG1);
PRE_MEM_READ("setattrlist(attrList)", ARG2, sizeof(struct vki_attrlist));
scan_attrlist(tid, (struct vki_attrlist *)ARG2, (void*)ARG3, ARG4, &set1attr);
}
PRE(getdirentriesattr)
{
PRINT("getdirentriesattr(%ld, %#lx, %#lx, %ld, %#lx, %#lx, %#lx, %ld)",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8);
PRE_REG_READ8(int, "getdirentriesattr",
int,fd, struct vki_attrlist *,attrList,
void *,attrBuf, size_t,attrBufSize,
unsigned int *,count, unsigned int *,basep,
unsigned int *,newState, unsigned int,options);
PRE_MEM_READ("getdirentriesattr(attrList)",
ARG2, sizeof(struct vki_attrlist));
PRE_MEM_WRITE("getdirentriesattr(attrBuf)", ARG3, ARG4);
PRE_MEM_READ("getdirentriesattr(count)", ARG5, sizeof(unsigned int));
PRE_MEM_WRITE("getdirentriesattr(count)", ARG5, sizeof(unsigned int));
PRE_MEM_WRITE("getdirentriesattr(basep)", ARG6, sizeof(unsigned int));
PRE_MEM_WRITE("getdirentriesattr(newState)", ARG7, sizeof(unsigned int));
}
POST(getdirentriesattr)
{
char *p, *end;
unsigned int count;
unsigned int i;
POST_MEM_WRITE(ARG5, sizeof(unsigned int));
POST_MEM_WRITE(ARG6, sizeof(unsigned int));
POST_MEM_WRITE(ARG7, sizeof(unsigned int));
// return buffer is concatenation of variable-size structs
count = *(unsigned int *)ARG5;
p = (char *)ARG3;
end = (char *)ARG3 + ARG4;
for (i = 0; i < count; i++) {
vg_assert(p < end); // failure is kernel bug or Valgrind bug
p += *(unsigned int *)p;
}
POST_MEM_WRITE(ARG3, p - (char *)ARG3);
PRINT("got %d records, %ld/%lu bytes\n",
count, (Addr)p-(Addr)ARG3, ARG4);
}
PRE(fsgetpath)
{
#if VG_WORDSIZE == 4
PRINT("fsgetpath(%#lx, %ld, %#lx {%u,%u}, %llu)",
ARG1, ARG2, ARG3,
((unsigned int *)ARG3)[0], ((unsigned int *)ARG3)[1],
LOHI64(ARG4, ARG5));
PRE_REG_READ5(ssize_t, "fsgetpath",
void*,"buf", size_t,"bufsize",
fsid_t *,"fsid",
vki_uint32_t, "objid_low32", vki_uint32_t, "objid_high32");
#else
PRINT("fsgetpath(%#lx, %ld, %#lx {%u,%u}, %lu)",
ARG1, ARG2, ARG3,
((unsigned int *)ARG3)[0],
((unsigned int *)ARG3)[1], ARG4);
PRE_REG_READ4(ssize_t, "fsgetpath",
void*,"buf", size_t,"bufsize",
fsid_t *,"fsid", uint64_t,"objid");
#endif
PRE_MEM_READ("fsgetpath(fsid)", ARG3, sizeof(fsid_t));
PRE_MEM_WRITE("fsgetpath(buf)", ARG1, ARG2);
}
POST(fsgetpath)
{
POST_MEM_WRITE(ARG1, RES);
}
PRE(audit_session_self)
{
PRINT("audit_session_self()");
}
POST(audit_session_self)
{
record_named_port(tid, RES, MACH_PORT_RIGHT_SEND, "audit-session-%p");
PRINT("audit-session %#lx", RES);
}
PRE(exchangedata)
{
PRINT("exchangedata(%#lx(%s), %#lx(%s), %lu)",
ARG1, (char*)ARG1, ARG2, (char*)ARG2, ARG3);
PRE_REG_READ3(int, "exchangedata",
char *, path1, char *, path2, unsigned long, options);
PRE_MEM_RASCIIZ( "exchangedata(path1)", ARG1 );
PRE_MEM_RASCIIZ( "exchangedata(path2)", ARG2 );
}
PRE(fsctl)
{
PRINT("fsctl ( %#lx(%s), %ld, %#lx, %ld )",
ARG1, (char *)ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4( long, "fsctl",
char *,"path", unsigned int,"request",
void *,"data", unsigned int,"options");
PRE_MEM_RASCIIZ( "fsctl(path)", ARG1 );
switch (ARG2) {
case VKI_afpfsByteRangeLock2FSCTL: {
struct vki_ByteRangeLockPB2 *pb = (struct vki_ByteRangeLockPB2 *)ARG3;
PRE_FIELD_READ("fsctl(afpfsByteRangeLock2, pb->offset)",
pb->offset);
PRE_FIELD_READ("fsctl(afpfsByteRangeLock2, pb->length)",
pb->length);
PRE_FIELD_READ("fsctl(afpfsByteRangeLock2, pb->unLockFlag)",
pb->unLockFlag);
PRE_FIELD_READ("fsctl(afpfsByteRangeLock2, pb->startEndFlag)",
pb->startEndFlag);
PRE_FIELD_READ("fsctl(afpfsByteRangeLock2, pb->fd)",
pb->fd);
PRE_FIELD_WRITE("fsctl(afpfsByteRangeLock2, pb->retRangeStart)",
pb->retRangeStart);
// GrP fixme check fd
break;
}
case VKI_FSIOC_SYNC_VOLUME:
PRE_MEM_READ( "fsctl(FSIOC_SYNC_VOLUME)", ARG3, sizeof(int) );
break;
default:
// fsctl requests use ioctl encoding
ML_(PRE_unknown_ioctl)(tid, ARG2, ARG3);
break;
}
}
POST(fsctl)
{
switch (ARG2) {
case VKI_afpfsByteRangeLock2FSCTL: {
struct vki_ByteRangeLockPB2 *pb = (struct vki_ByteRangeLockPB2 *)ARG3;
POST_FIELD_WRITE(pb->retRangeStart);
break;
}
case VKI_FSIOC_SYNC_VOLUME:
break;
default:
// fsctl requests use ioctl encoding
ML_(POST_unknown_ioctl)(tid, RES, ARG2, ARG3);
break;
}
}
PRE(initgroups)
{
PRINT("initgroups(%s, %#lx, %lu)", (char *)ARG1, ARG2, ARG3);
PRE_REG_READ3(long, "initgroups",
int, setlen, vki_gid_t *, gidset, vki_uid_t, gmuid);
PRE_MEM_READ("gidset", ARG2, ARG1 * sizeof(vki_gid_t));
}
//--------- posix_spawn ---------//
/* Largely copied from PRE(sys_execve) in syswrap-generic.c, and from
the simpler AIX equivalent (syswrap-aix5.c). */
// Pre_read a char** argument.
static void pre_argv_envp(Addr a, ThreadId tid, const Char* s1, const Char* s2)
{
while (True) {
Addr a_deref;
Addr* a_p = (Addr*)a;
PRE_MEM_READ( s1, (Addr)a_p, sizeof(Addr) );
a_deref = *a_p;
if (0 == a_deref)
break;
PRE_MEM_RASCIIZ( s2, a_deref );
a += sizeof(char*);
}
}
static SysRes simple_pre_exec_check ( const HChar* exe_name,
Bool trace_this_child )
{
Int fd, ret;
SysRes res;
Bool setuid_allowed;
// Check it's readable
res = VG_(open)(exe_name, VKI_O_RDONLY, 0);
if (sr_isError(res)) {
return res;
}
fd = sr_Res(res);
VG_(close)(fd);
// Check we have execute permissions. We allow setuid executables
// to be run only in the case when we are not simulating them, that
// is, they to be run natively.
setuid_allowed = trace_this_child ? False : True;
ret = VG_(check_executable)(NULL/*&is_setuid*/,
(HChar*)exe_name, setuid_allowed);
if (0 != ret) {
return VG_(mk_SysRes_Error)(ret);
}
return VG_(mk_SysRes_Success)(0);
}
PRE(posix_spawn)
{
Char* path = NULL; /* path to executable */
HChar** envp = NULL;
HChar** argv = NULL;
HChar** arg2copy;
Char* launcher_basename = NULL;
Int i, j, tot_args;
SysRes res;
Bool trace_this_child;
/* args: pid_t* pid
char* path
posix_spawn_file_actions_t* file_actions
char** argv
char** envp
*/
PRINT("posix_spawn( %#lx, %#lx(%s), %#lx, %#lx, %#lx )",
ARG1, ARG2, ARG2 ? (HChar*)ARG2 : "(null)", ARG3, ARG4, ARG5 );
/* Standard pre-syscall checks */
PRE_REG_READ5(int, "posix_spawn", vki_pid_t*, pid, char*, path,
void*, file_actions, char**, argv, char**, envp );
PRE_MEM_WRITE("posix_spawn(pid)", ARG1, sizeof(vki_pid_t) );
PRE_MEM_RASCIIZ("posix_spawn(path)", ARG2);
// DDD: check file_actions
if (ARG4 != 0)
pre_argv_envp( ARG4, tid, "posix_spawn(argv)",
"posix_spawn(argv[i])" );
if (ARG5 != 0)
pre_argv_envp( ARG5, tid, "posix_spawn(envp)",
"posix_spawn(envp[i])" );
if (0)
VG_(printf)("posix_spawn( %#lx, %#lx(%s), %#lx, %#lx, %#lx )\n",
ARG1, ARG2, ARG2 ? (HChar*)ARG2 : "(null)", ARG3, ARG4, ARG5 );
/* Now follows a bunch of logic copied from PRE(sys_execve) in
syswrap-generic.c. */
/* Check that the name at least begins in client-accessible storage. */
if (ARG2 == 0 /* obviously bogus */
|| !VG_(am_is_valid_for_client)( ARG2, 1, VKI_PROT_READ )) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
// Decide whether or not we want to follow along
{ // Make 'child_argv' be a pointer to the child's arg vector
// (skipping the exe name)
HChar** child_argv = (HChar**)ARG4;
if (child_argv && child_argv[0] == NULL)
child_argv = NULL;
trace_this_child = VG_(should_we_trace_this_child)( (HChar*)ARG2, child_argv );
}
// Do the important checks: it is a file, is executable, permissions are
// ok, etc. We allow setuid executables to run only in the case when
// we are not simulating them, that is, they to be run natively.
res = simple_pre_exec_check( (const HChar*)ARG2, trace_this_child );
if (sr_isError(res)) {
SET_STATUS_Failure( sr_Err(res) );
return;
}
/* If we're tracing the child, and the launcher name looks bogus
(possibly because launcher.c couldn't figure it out, see
comments therein) then we have no option but to fail. */
if (trace_this_child
&& (VG_(name_of_launcher) == NULL
|| VG_(name_of_launcher)[0] != '/')) {
SET_STATUS_Failure( VKI_ECHILD ); /* "No child processes" */
return;
}
/* Ok. So let's give it a try. */
VG_(debugLog)(1, "syswrap", "Posix_spawn of %s\n", (Char*)ARG2);
/* posix_spawn on Darwin is combining the fork and exec in one syscall.
So, we should not terminate gdbserver : this is still the parent
running, which will terminate its gdbserver when exiting.
If the child process is traced, it will start a fresh gdbserver
after posix_spawn. */
// Set up the child's exe path.
//
if (trace_this_child) {
// We want to exec the launcher. Get its pre-remembered path.
path = VG_(name_of_launcher);
// VG_(name_of_launcher) should have been acquired by m_main at
// startup. The following two assertions should be assured by
// the "If we're tracking the child .." test just above here.
vg_assert(path);
vg_assert(path[0] == '/');
launcher_basename = path;
} else {
path = (Char*)ARG2;
}
// Set up the child's environment.
//
// Remove the valgrind-specific stuff from the environment so the
// child doesn't get vgpreload_core.so, vgpreload_<tool>.so, etc.
// This is done unconditionally, since if we are tracing the child,
// the child valgrind will set up the appropriate client environment.
// Nb: we make a copy of the environment before trying to mangle it
// as it might be in read-only memory (this was bug #101881).
//
// Then, if tracing the child, set VALGRIND_LIB for it.
//
if (ARG5 == 0) {
envp = NULL;
} else {
envp = VG_(env_clone)( (HChar**)ARG5 );
vg_assert(envp);
VG_(env_remove_valgrind_env_stuff)( envp );
}
if (trace_this_child) {
// Set VALGRIND_LIB in ARG5 (the environment)
VG_(env_setenv)( &envp, VALGRIND_LIB, VG_(libdir));
}
// Set up the child's args. If not tracing it, they are
// simply ARG4. Otherwise, they are
//
// [launcher_basename] ++ VG_(args_for_valgrind) ++ [ARG2] ++ ARG4[1..]
//
// except that the first VG_(args_for_valgrind_noexecpass) args
// are omitted.
//
if (!trace_this_child) {
argv = (HChar**)ARG4;
} else {
vg_assert( VG_(args_for_valgrind) );
vg_assert( VG_(args_for_valgrind_noexecpass) >= 0 );
vg_assert( VG_(args_for_valgrind_noexecpass)
<= VG_(sizeXA)( VG_(args_for_valgrind) ) );
/* how many args in total will there be? */
// launcher basename
tot_args = 1;
// V's args
tot_args += VG_(sizeXA)( VG_(args_for_valgrind) );
tot_args -= VG_(args_for_valgrind_noexecpass);
// name of client exe
tot_args++;
// args for client exe, skipping [0]
arg2copy = (HChar**)ARG4;
if (arg2copy && arg2copy[0]) {
for (i = 1; arg2copy[i]; i++)
tot_args++;
}
// allocate
argv = VG_(malloc)( "di.syswrap.pre_sys_execve.1",
(tot_args+1) * sizeof(HChar*) );
vg_assert(argv);
// copy
j = 0;
argv[j++] = launcher_basename;
for (i = 0; i < VG_(sizeXA)( VG_(args_for_valgrind) ); i++) {
if (i < VG_(args_for_valgrind_noexecpass))
continue;
argv[j++] = * (HChar**) VG_(indexXA)( VG_(args_for_valgrind), i );
}
argv[j++] = (Char*)ARG2;
if (arg2copy && arg2copy[0])
for (i = 1; arg2copy[i]; i++)
argv[j++] = arg2copy[i];
argv[j++] = NULL;
// check
vg_assert(j == tot_args+1);
}
/* DDD: sort out the signal state. What signal
state does the child inherit from the parent? */
if (0) {
HChar **cpp;
VG_(printf)("posix_spawn: %s\n", path);
for (cpp = argv; cpp && *cpp; cpp++)
VG_(printf)("argv: %s\n", *cpp);
if (1)
for (cpp = envp; cpp && *cpp; cpp++)
VG_(printf)("env: %s\n", *cpp);
}
/* Let the call go through as usual. However, we have to poke
the altered arguments back into the argument slots. */
ARG2 = (UWord)path;
ARG4 = (UWord)argv;
ARG5 = (UWord)envp;
/* not to mention .. */
*flags |= SfMayBlock;
}
POST(posix_spawn)
{
vg_assert(SUCCESS);
if (ARG1 != 0) {
POST_MEM_WRITE( ARG1, sizeof(vki_pid_t) );
}
}
PRE(socket)
{
PRINT("socket ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol);
}
POST(socket)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES));
SET_STATUS_from_SysRes(r);
}
PRE(setsockopt)
{
PRINT("setsockopt ( %ld, %ld, %ld, %#lx, %ld )",
ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "setsockopt",
int, s, int, level, int, optname,
const void *, optval, vki_socklen_t, optlen);
ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(getsockopt)
{
Addr optval_p = ARG4;
Addr optlen_p = ARG5;
PRINT("getsockopt ( %ld, %ld, %ld, %#lx, %#lx )",
ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "getsockopt",
int, s, int, level, int, optname,
void *, optval, vki_socklen_t *, optlen);
/* int getsockopt(int socket, int level, int option_name,
void *restrict option_value,
socklen_t *restrict option_len); */
/* vg_assert(sizeof(socklen_t) == sizeof(UInt)); */
if (optval_p != (Addr)NULL) {
ML_(buf_and_len_pre_check) ( tid, optval_p, optlen_p,
"socketcall.getsockopt(optval)",
"socketcall.getsockopt(optlen)" );
}
// DDD: #warning GrP fixme darwin-specific sockopts
}
POST(getsockopt)
{
Addr optval_p = ARG4;
Addr optlen_p = ARG5;
vg_assert(SUCCESS);
if (optval_p != (Addr)NULL) {
ML_(buf_and_len_post_check) ( tid, VG_(mk_SysRes_Success)(RES),
optval_p, optlen_p,
"socketcall.getsockopt(optlen_out)" );
// DDD: #warning GrP fixme darwin-specific sockopts
}
}
PRE(connect)
{
*flags |= SfMayBlock;
PRINT("connect ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "connect",
int, sockfd, struct sockaddr *, serv_addr, int, addrlen);
ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3);
}
PRE(accept)
{
*flags |= SfMayBlock;
PRINT("accept ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "accept",
int, s, struct sockaddr *, addr, int, *addrlen);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(accept)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sendto)
{
*flags |= SfMayBlock;
PRINT("sendto ( %ld, %s, %ld, %lu, %#lx, %ld )",
ARG1,(char *)ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "sendto",
int, s, const void *, msg, int, len,
unsigned int, flags,
const struct sockaddr *, to, int, tolen);
ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sendfile)
{
#if VG_WORDSIZE == 4
PRINT("sendfile(%ld, %ld, %llu, %#lx, %#lx, %ld)",
ARG1, ARG2, LOHI64(ARG3, ARG4), ARG5, ARG6, ARG7);
PRE_REG_READ7(long, "sendfile",
int, fromfd, int, tofd,
vki_uint32_t, offset_low32, vki_uint32_t, offset_high32,
vki_uint64_t *, nwritten, struct sf_hdtr *, sf_header, int, flags);
PRE_MEM_WRITE("sendfile(nwritten)", ARG5, sizeof(vki_uint64_t));
if (ARG6) PRE_MEM_WRITE("sendfile(sf_header)", ARG6, sizeof(struct sf_hdtr));
#else
PRINT("sendfile(%ld, %ld, %ld, %#lx, %#lx, %ld)",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
PRE_REG_READ6(long, "sendfile",
int, fromfd, int, tofd,
vki_uint64_t, offset,
vki_uint64_t *, nwritten, struct sf_hdtr *, sf_header, int, flags);
PRE_MEM_WRITE("sendfile(nwritten)", ARG4, sizeof(vki_uint64_t));
if (ARG5) PRE_MEM_WRITE("sendfile(sf_header)", ARG5, sizeof(struct sf_hdtr));
#endif
*flags |= SfMayBlock;
}
POST(sendfile)
{
#if VG_WORDSIZE == 4
POST_MEM_WRITE(ARG5, sizeof(vki_uint64_t));
if (ARG6) POST_MEM_WRITE(ARG6, sizeof(struct sf_hdtr));
#else
POST_MEM_WRITE(ARG4, sizeof(vki_uint64_t));
if (ARG5) POST_MEM_WRITE(ARG5, sizeof(struct sf_hdtr));
#endif
}
PRE(recvfrom)
{
*flags |= SfMayBlock;
PRINT("recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )",
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "recvfrom",
int, s, void *, buf, int, len, unsigned int, flags,
struct sockaddr *, from, int *, fromlen);
ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
POST(recvfrom)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sendmsg)
{
*flags |= SfMayBlock;
PRINT("sendmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "sendmsg",
int, s, const struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_sendmsg)(tid, "msg", (struct vki_msghdr *)ARG2);
}
PRE(recvmsg)
{
*flags |= SfMayBlock;
PRINT("recvmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2);
}
POST(recvmsg)
{
ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES);
}
PRE(shutdown)
{
*flags |= SfMayBlock;
PRINT("shutdown ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(int, "shutdown", int, s, int, how);
}
PRE(bind)
{
PRINT("bind ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "bind",
int, sockfd, struct sockaddr *, my_addr, int, addrlen);
ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3);
}
PRE(listen)
{
PRINT("listen ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(long, "listen", int, s, int, backlog);
}
PRE(getsockname)
{
PRINT("getsockname ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getsockname",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3);
}
POST(getsockname)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(getpeername)
{
PRINT("getpeername ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getpeername",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3);
}
POST(getpeername)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(socketpair)
{
PRINT("socketpair ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "socketpair",
int, d, int, type, int, protocol, int *, sv);
ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(socketpair)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4);
}
PRE(gethostuuid)
{
PRINT("gethostuuid ( %#lx, %#lx )", ARG1, ARG2);
PRE_REG_READ2(int,"gethostuuid",
char *,"uuid_buf",
const struct vki_timespec *,"timeout");
PRE_MEM_WRITE("uuid_buf", ARG1, 16);
PRE_MEM_READ("timeout", ARG2, sizeof(struct vki_timespec));
*flags |= SfMayBlock;
}
POST(gethostuuid)
{
POST_MEM_WRITE(ARG1, 16);
}
/* Darwin pipe() returns the two descriptors in two registers. */
PRE(pipe)
{
PRINT("pipe ( )");
PRE_REG_READ0(int, "pipe");
}
POST(pipe)
{
Int p0, p1;
vg_assert(SUCCESS);
p0 = RES;
p1 = RESHI;
if (!ML_(fd_allowed)(p0, "pipe", tid, True) ||
!ML_(fd_allowed)(p1, "pipe", tid, True)) {
VG_(close)(p0);
VG_(close)(p1);
SET_STATUS_Failure( VKI_EMFILE );
} else {
if (VG_(clo_track_fds)) {
ML_(record_fd_open_nameless)(tid, p0);
ML_(record_fd_open_nameless)(tid, p1);
}
}
}
PRE(getlogin)
{
PRINT("getlogin ( %#lx, %ld )", ARG1, ARG2);
PRE_REG_READ2(long, "getlogin",
char *,"namebuf", unsigned int,"namelen");
PRE_MEM_WRITE("getlogin(namebuf)", ARG1, ARG2);
}
POST(getlogin)
{
POST_MEM_WRITE(ARG1, ARG2);
}
PRE(ptrace)
{
PRINT("ptrace ( %ld, %ld, %#lx, %ld )", ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(long, "ptrace",
int,"request", vki_pid_t,"pid",
vki_caddr_t,"addr", int,"data");
// Note: some code uses ptrace(random, 0, 0, 0) as a profiling mechanism.
// GrP fixme anything needed?
}
PRE(issetugid)
{
PRINT("issetugid ( )");
PRE_REG_READ0(long, "issetugid");
}
PRE(getdtablesize)
{
PRINT("getdtablesize ( )");
PRE_REG_READ0(long, "getdtablesize");
}
POST(getdtablesize)
{
// Subtract Valgrind's fd range from client's dtable
if (RES > VG_(fd_hard_limit)) SET_STATUS_Success(VG_(fd_hard_limit));
}
PRE(lseek)
{
PRINT("lseek ( %ld, %ld, %ld )", ARG1,ARG2,ARG3);
PRE_REG_READ4(vki_off_t, "lseek",
unsigned int,fd, int,offset_hi, int,offset_lo,
unsigned int,whence);
}
PRE(pathconf)
{
PRINT("pathconf(%#lx(%s), %ld)", ARG1,(char *)ARG1,ARG2);
PRE_REG_READ2(long,"pathconf", const char *,"path", int,"name");
PRE_MEM_RASCIIZ("pathconf(path)", ARG1);
}
PRE(fpathconf)
{
PRINT("fpathconf(%ld, %ld)", ARG1,ARG2);
PRE_REG_READ2(long,"fpathconf", int,"fd", int,"name");
if (!ML_(fd_allowed)(ARG1, "fpathconf", tid, False))
SET_STATUS_Failure( VKI_EBADF );
}
PRE(getdirentries)
{
PRINT("getdirentries(%ld, %#lx, %ld, %#lx)", ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "getdirentries",
int, fd, char *, buf, int, nbytes, long *, basep);
PRE_MEM_WRITE("getdirentries(basep)", ARG4, sizeof(long));
PRE_MEM_WRITE("getdirentries(buf)", ARG2, ARG3);
}
POST(getdirentries)
{
POST_MEM_WRITE(ARG4, sizeof(long));
// GrP fixme be specific about d_name?
POST_MEM_WRITE(ARG2, RES);
}
PRE(getdirentries64)
{
PRINT("getdirentries64(%ld, %#lx, %lu, %#lx)", ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(vki_ssize_t, "getdirentries",
int,fd, char *,buf, vki_size_t,nbytes, vki_off_t *,basep);
PRE_MEM_WRITE("getdirentries(position)", ARG4, sizeof(vki_off_t));
PRE_MEM_WRITE("getdirentries(buf)", ARG2, ARG3);
}
POST(getdirentries64)
{
POST_MEM_WRITE(ARG4, sizeof(vki_off_t));
// GrP fixme be specific about d_name? (fixme copied from 32 bit version)
POST_MEM_WRITE(ARG2, RES);
}
PRE(statfs64)
{
PRINT("statfs64 ( %#lx(%s), %#lx )",ARG1,(char *)ARG1,ARG2);
PRE_REG_READ2(long, "statfs64", const char *, path, struct statfs64 *, buf);
PRE_MEM_RASCIIZ( "statfs64(path)", ARG1 );
PRE_MEM_WRITE( "statfs64(buf)", ARG2, sizeof(struct vki_statfs64) );
}
POST(statfs64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_statfs64) );
}
PRE(fstatfs64)
{
PRINT("fstatfs64 ( %ld, %#lx )",ARG1,ARG2);
PRE_REG_READ2(long, "fstatfs64",
unsigned int, fd, struct statfs *, buf);
PRE_MEM_WRITE( "fstatfs64(buf)", ARG2, sizeof(struct vki_statfs64) );
}
POST(fstatfs64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_statfs64) );
}
PRE(csops)
{
PRINT("csops ( %ld, %#lx, %#lx, %lu )", ARG1, ARG2, ARG3, ARG4);
PRE_REG_READ4(int, "csops",
vki_pid_t, pid, uint32_t, ops,
void *, useraddr, vki_size_t, usersize);
PRE_MEM_WRITE( "csops(useraddr)", ARG3, ARG4 );
// If the pid is ours, don't mark the program as KILL or HARD
// Maybe we should keep track of this for later calls to STATUS
if (!ARG1 || VG_(getpid)() == ARG1) {
switch (ARG2) {
case VKI_CS_OPS_MARKINVALID:
case VKI_CS_OPS_MARKHARD:
case VKI_CS_OPS_MARKKILL:
SET_STATUS_Success(0);
}
}
}
POST(csops)
{
POST_MEM_WRITE( ARG3, ARG4 );
}
PRE(auditon)
{
PRINT("auditon ( %ld, %#lx, %ld )", ARG1, ARG2, ARG3);
PRE_REG_READ3(int,"auditon",
int,"cmd", void*,"data", unsigned int,"length");
switch (ARG1) {
case VKI_A_SETPOLICY:
case VKI_A_SETKMASK:
case VKI_A_SETQCTRL:
case VKI_A_SETCOND:
case VKI_A_SETCLASS:
case VKI_A_SETPMASK:
case VKI_A_SETFSIZE:
#if DARWIN_VERS >= DARWIN_10_6
case VKI_A_SENDTRIGGER:
#endif
// kernel reads data..data+length
PRE_MEM_READ("auditon(data)", ARG2, ARG3);
break;
case VKI_A_GETKMASK:
case VKI_A_GETPOLICY:
case VKI_A_GETQCTRL:
case VKI_A_GETFSIZE:
case VKI_A_GETCOND:
// kernel writes data..data+length
// GrP fixme be precise about what gets written
PRE_MEM_WRITE("auditon(data)", ARG2, ARG3);
break;
case VKI_A_GETCLASS:
case VKI_A_GETPINFO:
case VKI_A_GETPINFO_ADDR:
#if DARWIN_VERS >= DARWIN_10_6
case VKI_A_GETSINFO_ADDR:
#endif
// kernel reads and writes data..data+length
// GrP fixme be precise about what gets read and written
PRE_MEM_READ("auditon(data)", ARG2, ARG3);
PRE_MEM_WRITE("auditon(data)", ARG2, ARG3);
break;
case VKI_A_SETKAUDIT:
case VKI_A_SETSTAT:
case VKI_A_SETUMASK:
case VKI_A_SETSMASK:
case VKI_A_GETKAUDIT:
case VKI_A_GETCWD:
case VKI_A_GETCAR:
case VKI_A_GETSTAT:
// unimplemented on darwin
break;
default:
VG_(message)(Vg_UserMsg, "UNKNOWN auditon cmd %ld", ARG1);
break;
}
}
POST(auditon)
{
switch (ARG1) {
case VKI_A_SETPOLICY:
case VKI_A_SETKMASK:
case VKI_A_SETQCTRL:
case VKI_A_SETCOND:
case VKI_A_SETCLASS:
case VKI_A_SETPMASK:
case VKI_A_SETFSIZE:
#if DARWIN_VERS >= DARWIN_10_6
case VKI_A_SENDTRIGGER:
#endif
// kernel reads data..data+length
break;
case VKI_A_GETKMASK:
case VKI_A_GETPOLICY:
case VKI_A_GETQCTRL:
case VKI_A_GETFSIZE:
case VKI_A_GETCOND:
// kernel writes data..data+length
// GrP fixme be precise about what gets written
POST_MEM_WRITE(ARG2, ARG3);
break;
case VKI_A_GETCLASS:
case VKI_A_GETPINFO:
case VKI_A_GETPINFO_ADDR:
#if DARWIN_VERS >= DARWIN_10_6
case VKI_A_GETSINFO_ADDR:
#endif
// kernel reads and writes data..data+length
// GrP fixme be precise about what gets read and written
POST_MEM_WRITE(ARG2, ARG3);
break;
case VKI_A_SETKAUDIT:
case VKI_A_SETSTAT:
case VKI_A_SETUMASK:
case VKI_A_SETSMASK:
case VKI_A_GETKAUDIT:
case VKI_A_GETCWD:
case VKI_A_GETCAR:
case VKI_A_GETSTAT:
// unimplemented on darwin
break;
default:
break;
}
}
PRE(mmap)
{
// SysRes r;
if (0) VG_(am_do_sync_check)("(PRE_MMAP)",__FILE__,__LINE__);
#if VG_WORDSIZE == 4
PRINT("mmap ( %#lx, %lu, %ld, %ld, %ld, %lld )",
ARG1, ARG2, ARG3, ARG4, ARG5, LOHI64(ARG6, ARG7) );
PRE_REG_READ7(Addr, "mmap",
Addr,start, vki_size_t,length, int,prot, int,flags, int,fd,
unsigned long,offset_hi, unsigned long,offset_lo);
// GrP fixme V mmap and kernel mach_msg collided once - don't use
// V's mechanism for now
// r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5,
// (Off64T)LOHI64(ARG6, ARG7) );
#else
PRINT("mmap ( %#lx, %lu, %ld, %ld, %ld, %ld )",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(long, "mmap",
Addr,start, vki_size_t,length, int,prot, int,flags, int,fd,
Off64T,offset);
// r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
#endif
// SET_STATUS_from_SysRes(r);
}
POST(mmap)
{
if (RES != -1) {
ML_(notify_core_and_tool_of_mmap)(RES, ARG2, ARG3, ARG4, ARG5, ARG6);
// Try to load symbols from the region
VG_(di_notify_mmap)( (Addr)RES, False/*allow_SkFileV*/,
-1/*don't use_fd*/ );
}
}
PRE(__sysctl)
{
PRINT( "__sysctl ( %#lx, %ld, %#lx, %#lx, %#lx, %ld )",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(int, "__sysctl", int*, name, unsigned int, namelen,
void*, oldp, vki_size_t *, oldlenp,
void*, newp, vki_size_t *, newlenp);
PRE_MEM_READ("sysctl(name)", ARG1, ARG2); // reads name[0..namelen-1]
if (ARG4) {
// writes *ARG4
PRE_MEM_WRITE("sysctl(oldlenp)", ARG4, sizeof(size_t));
if (ARG3) {
// also reads *ARG4, and writes as much as ARG3[0..ARG4-1]
PRE_MEM_READ("sysctl(oldlenp)", ARG4, sizeof(size_t));
PRE_MEM_WRITE("sysctl(oldp)", ARG3, *(size_t *)ARG4);
}
}
if (ARG5) {
PRE_MEM_READ("sysctl(newp)", ARG5, ARG6);
}
if (VG_(clo_trace_syscalls)) {
unsigned int i;
int *name = (int *)ARG1;
VG_(printf)(" mib: [ ");
for (i = 0; i < ARG2; i++) {
VG_(printf)("%d ", name[i]);
}
VG_(printf)("]");
}
// GrP fixme intercept KERN_PROCARGS and KERN_PROC_PID for our pid
// (executable path and arguments and environment
{
// Intercept sysctl(kern.usrstack). The kernel's reply would be
// Valgrind's stack, not the client's stack.
// GrP fixme kern_usrstack64
if (ARG1 && ARG2 == 2 &&
((int *)ARG1)[0] == VKI_CTL_KERN &&
#if VG_WORDSIZE == 4
((int *)ARG1)[1] == VKI_KERN_USRSTACK32
#else
((int *)ARG1)[1] == VKI_KERN_USRSTACK64
#endif
)
{
if (ARG5/*newp*/ || ARG6/*newlen*/) {
SET_STATUS_Failure(VKI_EPERM); // USRSTACK is read-only
} else {
Addr *oldp = (Addr *)ARG3;
size_t *oldlenp = (size_t *)ARG4;
if (oldlenp) {
Addr stack_end = VG_(clstk_end)+1;
size_t oldlen = *oldlenp;
// always return actual size
*oldlenp = sizeof(Addr);
if (oldp && oldlen >= sizeof(Addr)) {
// oldp is big enough
// copy value and return 0
*oldp = stack_end;
SET_STATUS_Success(0);
} else {
// oldp isn't big enough
// copy as much as possible and return ENOMEM
if (oldp) VG_(memcpy)(oldp, &stack_end, oldlen);
SET_STATUS_Failure(VKI_ENOMEM);
}
}
}
}
}
if (!SUCCESS && !FAILURE) {
// Don't set SfPostOnFail if we've already handled it locally.
*flags |= SfPostOnFail;
}
}
POST(__sysctl)
{
if (SUCCESS || ERR == VKI_ENOMEM) {
// sysctl can write truncated data and return VKI_ENOMEM
if (ARG4) {
POST_MEM_WRITE(ARG4, sizeof(size_t));
}
if (ARG3 && ARG4) {
POST_MEM_WRITE(ARG3, *(size_t *)ARG4);
}
}
}
PRE(sigpending)
{
PRINT( "sigpending ( %#lx )", ARG1 );
PRE_REG_READ1(long, "sigpending", vki_sigset_t *, set);
PRE_MEM_WRITE( "sigpending(set)", ARG1, sizeof(vki_sigset_t));
}
POST(sigpending)
{
POST_MEM_WRITE( ARG1, sizeof(vki_sigset_t) ) ;
}
PRE(sigprocmask)
{
UWord arg1;
PRINT("sigprocmask ( %ld, %#lx, %#lx )", ARG1, ARG2, ARG3);
PRE_REG_READ3(long, "sigprocmask",
int, how, vki_sigset_t *, set, vki_sigset_t *, oldset);
if (ARG2 != 0)
PRE_MEM_READ( "sigprocmask(set)", ARG2, sizeof(vki_sigset_t));
if (ARG3 != 0)
PRE_MEM_WRITE( "sigprocmask(oldset)", ARG3, sizeof(vki_sigset_t));
/* Massage ARG1 ('how'). If ARG2 (the new mask) is NULL then the
value of 'how' is irrelevant, and it appears that Darwin's libc
passes zero, which is not equal to any of
SIG_{BLOCK,UNBLOCK,SETMASK}. This causes
VG_(do_sys_sigprocmask) to complain, since it checks the 'how'
value independently of the other args. Solution: in this case,
simply pass a valid (but irrelevant) value for 'how'. */
/* Also, in this case the new set is passed to the kernel by
reference, not value, as in some other sigmask related Darwin
syscalls. */
arg1 = ARG1;
if (ARG2 == 0 /* the new-set is NULL */
&& ARG1 != VKI_SIG_BLOCK
&& ARG1 != VKI_SIG_UNBLOCK && ARG1 != VKI_SIG_SETMASK) {
arg1 = VKI_SIG_SETMASK;
}
SET_STATUS_from_SysRes(
VG_(do_sys_sigprocmask) ( tid, arg1, (vki_sigset_t*)ARG2,
(vki_sigset_t*)ARG3 )
);
if (SUCCESS)
*flags |= SfPollAfter;
}
POST(sigprocmask)
{
vg_assert(SUCCESS);
if (RES == 0 && ARG3 != 0)
POST_MEM_WRITE( ARG3, sizeof(vki_sigset_t));
}
PRE(sigsuspend)
{
/* Just hand this off to the kernel. Is that really correct? And
shouldn't we at least set SfPollAfter? These questions apply to
all the Linux versions too. */
/* I think the first arg is the 32-bit signal mask (by value), and
the other two args are ignored. */
*flags |= SfMayBlock;
PRINT("sigsuspend ( mask=0x%08lx )", ARG1 );
PRE_REG_READ1(int, "sigsuspend", int, sigmask);
}
/* Be careful about the 4th arg, since that is a uint64_t. Hence 64-
and 32-bit wrappers are different.
ARG5 and ARG6 (buffer, buffersize) specify a buffer start and
length in the usual way. I have seen values NULL, 0 passed in some
cases. I left the calls to PRE_MEM_WRITE/READ unconditional on the
basis that they don't do anything if the length is zero, so it's OK
for the buffer pointer to be NULL in that case (meaning they don't
complain).
int proc_info(int32_t callnum, int32_t pid,
uint32_t flavor, uint64_t arg,
user_addr_t buffer, int32_t buffersize)
*/
#if DARWIN_VERS >= DARWIN_10_6
PRE(proc_info)
{
#if VG_WORDSIZE == 4
PRINT("proc_info(%d, %d, %u, %llu, %#lx, %d)",
(Int)ARG1, (Int)ARG2, (UInt)ARG3, LOHI64(ARG4,ARG5), ARG6, (Int)ARG7);
PRE_REG_READ7(int, "proc_info",
int, callnum, int, pid, unsigned int, flavor,
vki_uint32_t, arg_low32,
vki_uint32_t, arg_high32,
void*, buffer, int, buffersize);
PRE_MEM_WRITE("proc_info(buffer)", ARG6, ARG7);
#else
PRINT("proc_info(%d, %d, %u, %llu, %#lx, %d)",
(Int)ARG1, (Int)ARG2, (UInt)ARG3, (ULong)ARG4, ARG5, (Int)ARG6);
PRE_REG_READ6(int, "proc_info",
int, callnum, int, pid, unsigned int, flavor,
unsigned long long int, arg,
void*, buffer, int, buffersize);
PRE_MEM_WRITE("proc_info(buffer)", ARG5, ARG6);
#endif
}
POST(proc_info)
{
#if VG_WORDSIZE == 4
vg_assert(SUCCESS);
POST_MEM_WRITE(ARG6, ARG7);
#else
vg_assert(SUCCESS);
POST_MEM_WRITE(ARG5, ARG6);
#endif
}
#endif /* DARWIN_VERS >= DARWIN_10_6 */
/* ---------------------------------------------------------------------
aio_*
------------------------------------------------------------------ */
// We must record the aiocbp for each aio_read() in a table so that when
// aio_return() is called we can mark the memory written asynchronously by
// aio_read() as having been written. We don't have to do this for
// aio_write(). See bug 197227 for more details.
static OSet* aiocbp_table = NULL;
static Bool aio_init_done = False;
static void aio_init(void)
{
aiocbp_table = VG_(OSetWord_Create)(VG_(malloc), "syswrap.aio", VG_(free));
aio_init_done = True;
}
static Bool was_a_successful_aio_read = False;
PRE(aio_return)
{
struct vki_aiocb* aiocbp = (struct vki_aiocb*)ARG1;
// This assumes that the kernel looks at the struct pointer, but not the
// contents of the struct.
PRINT( "aio_return ( %#lx )", ARG1 );
PRE_REG_READ1(long, "aio_return", struct vki_aiocb*, aiocbp);
if (!aio_init_done) aio_init();
was_a_successful_aio_read = VG_(OSetWord_Remove)(aiocbp_table, (UWord)aiocbp);
}
POST(aio_return)
{
// If we found the aiocbp in our own table it must have been an aio_read(),
// so mark the buffer as written. If we didn't find it, it must have been
// an aio_write() or a bogus aio_return() (eg. a second one on the same
// aiocbp). Either way, the buffer won't have been written so we don't
// have to mark the buffer as written.
if (was_a_successful_aio_read) {
struct vki_aiocb* aiocbp = (struct vki_aiocb*)ARG1;
POST_MEM_WRITE((Addr)aiocbp->aio_buf, aiocbp->aio_nbytes);
was_a_successful_aio_read = False;
}
}
PRE(aio_suspend)
{
// This assumes that the kernel looks at the struct pointers in the list,
// but not the contents of the structs.
PRINT( "aio_suspend ( %#lx )", ARG1 );
PRE_REG_READ3(long, "aio_suspend",
const struct vki_aiocb *, aiocbp, int, nent,
const struct vki_timespec *, timeout);
if (ARG2 > 0)
PRE_MEM_READ("aio_suspend(list)", ARG1, ARG2 * sizeof(struct vki_aiocb *));
if (ARG3)
PRE_MEM_READ ("aio_suspend(timeout)", ARG3, sizeof(struct vki_timespec));
}
PRE(aio_error)
{
// This assumes that the kernel looks at the struct pointer, but not the
// contents of the struct.
PRINT( "aio_error ( %#lx )", ARG1 );
PRE_REG_READ1(long, "aio_error", struct vki_aiocb*, aiocbp);
}
PRE(aio_read)
{
struct vki_aiocb* aiocbp = (struct vki_aiocb*)ARG1;
PRINT( "aio_read ( %#lx )", ARG1 );
PRE_REG_READ1(long, "aio_read", struct vki_aiocb*, aiocbp);
PRE_MEM_READ( "aio_read(aiocbp)", ARG1, sizeof(struct vki_aiocb));
if (ML_(safe_to_deref)(aiocbp, sizeof(struct vki_aiocb))) {
if (ML_(fd_allowed)(aiocbp->aio_fildes, "aio_read", tid, /*isNewFd*/False)) {
PRE_MEM_WRITE("aio_read(aiocbp->aio_buf)",
(Addr)aiocbp->aio_buf, aiocbp->aio_nbytes);
} else {
SET_STATUS_Failure( VKI_EBADF );
}
} else {
SET_STATUS_Failure( VKI_EINVAL );
}
}
POST(aio_read)
{
// We have to record the fact that there is an asynchronous read request
// pending. When a successful aio_return() occurs for this aiocb, then we
// will mark the memory as having been defined.
struct vki_aiocb* aiocbp = (struct vki_aiocb*)ARG1;
if (!aio_init_done) aio_init();
// aiocbp shouldn't already be in the table -- if it was a dup, the kernel
// should have caused the aio_read() to fail and we shouldn't have reached
// here.
VG_(OSetWord_Insert)(aiocbp_table, (UWord)aiocbp);
}
PRE(aio_write)
{
struct vki_aiocb* aiocbp = (struct vki_aiocb*)ARG1;
PRINT( "aio_write ( %#lx )", ARG1 );
PRE_REG_READ1(long, "aio_write", struct vki_aiocb*, aiocbp);
PRE_MEM_READ( "aio_write(aiocbp)", ARG1, sizeof(struct vki_aiocb));
if (ML_(safe_to_deref)(aiocbp, sizeof(struct vki_aiocb))) {
if (ML_(fd_allowed)(aiocbp->aio_fildes, "aio_write", tid, /*isNewFd*/False)) {
PRE_MEM_READ("aio_write(aiocbp->aio_buf)",
(Addr)aiocbp->aio_buf, aiocbp->aio_nbytes);
} else {
SET_STATUS_Failure( VKI_EBADF );
}
} else {
SET_STATUS_Failure( VKI_EINVAL );
}
}
/* ---------------------------------------------------------------------
mach_msg: formatted messages
------------------------------------------------------------------ */
static size_t desc_size(mach_msg_descriptor_t *desc)
{
switch (desc->type.type) {
case MACH_MSG_PORT_DESCRIPTOR: return sizeof(desc->port);
case MACH_MSG_OOL_DESCRIPTOR: return sizeof(desc->out_of_line);
case MACH_MSG_OOL_VOLATILE_DESCRIPTOR: return sizeof(desc->out_of_line);
case MACH_MSG_OOL_PORTS_DESCRIPTOR: return sizeof(desc->ool_ports);
default:
VG_(printf)("UNKNOWN mach message descriptor %d\n", desc->type.type);
return sizeof(desc->type); // guess
}
}
static void assign_port_names(mach_msg_ool_ports_descriptor_t *desc,
const char *name)
{
mach_msg_size_t i;
mach_port_t *ports = (mach_port_t *)desc->address;
for (i = 0; i < desc->count; i++) {
assign_port_name(ports[i], name);
}
}
static void import_complex_message(ThreadId tid, mach_msg_header_t *mh)
{
mach_msg_body_t *body;
mach_msg_size_t count, i;
uint8_t *p;
mach_msg_descriptor_t *desc;
vg_assert(mh->msgh_bits & MACH_MSGH_BITS_COMPLEX);
body = (mach_msg_body_t *)(mh+1);
count = body->msgh_descriptor_count;
p = (uint8_t *)(body+1);
for (i = 0; i < count; i++) {
desc = (mach_msg_descriptor_t *)p;
p += desc_size(desc);
switch (desc->type.type) {
case MACH_MSG_PORT_DESCRIPTOR:
// single port
record_unnamed_port(tid, desc->port.name, -1);
record_port_insert_rights(desc->port.name, desc->port.disposition);
PRINT("got port %s;\n", name_for_port(desc->port.name));
break;
case MACH_MSG_OOL_DESCRIPTOR:
case MACH_MSG_OOL_VOLATILE_DESCRIPTOR:
// out-of-line memory - map it
// GrP fixme how is VOLATILE different? do we care?
// GrP fixme do other flags tell us anything? assume shared for now
// GrP fixme more SF_ flags marking mach_msg memory might be nice
// GrP fixme protection
if (desc->out_of_line.size > 0) {
Addr start = VG_PGROUNDDN((Addr)desc->out_of_line.address);
Addr end = VG_PGROUNDUP((Addr)desc->out_of_line.address +
(Addr)desc->out_of_line.size);
PRINT("got ool mem %p..%#lx;\n", desc->out_of_line.address,
(Addr)desc->out_of_line.address+desc->out_of_line.size);
ML_(notify_core_and_tool_of_mmap)(
start, end - start, VKI_PROT_READ|VKI_PROT_WRITE,
VKI_MAP_PRIVATE, -1, 0);
}
// GrP fixme mark only un-rounded part as initialized
break;
case MACH_MSG_OOL_PORTS_DESCRIPTOR:
// out-of-line array of ports - map it
// GrP fixme see fixmes above
PRINT("got %d ool ports %p..%#lx", desc->ool_ports.count, desc->ool_ports.address, (Addr)desc->ool_ports.address+desc->ool_ports.count*sizeof(mach_port_t));
if (desc->ool_ports.count > 0) {
Addr start = VG_PGROUNDDN((Addr)desc->ool_ports.address);
Addr end = VG_PGROUNDUP((Addr)desc->ool_ports.address + desc->ool_ports.count * sizeof(mach_port_t));
mach_port_t *ports = (mach_port_t *)desc->ool_ports.address;
ML_(notify_core_and_tool_of_mmap)(
start, end - start, VKI_PROT_READ|VKI_PROT_WRITE,
VKI_MAP_PRIVATE, -1, 0);
PRINT(":");
for (i = 0; i < desc->ool_ports.count; i++) {
record_unnamed_port(tid, ports[i], -1);
record_port_insert_rights(ports[i], desc->port.disposition);
PRINT(" %s", name_for_port(ports[i]));
}
}
PRINT(";\n");
break;
default:
VG_(printf)("UNKNOWN Mach descriptor type %u!\n", desc->type.type);
break;
}
}
}
static void pre_port_desc_read(ThreadId tid, mach_msg_port_descriptor_t *desc2)
{
#pragma pack(4)
struct {
mach_port_t name;
mach_msg_size_t pad1;
uint16_t pad2;
uint8_t disposition;
uint8_t type;
} *desc = (void*)desc2;
#pragma pack()
PRE_FIELD_READ("msg->desc.port.name", desc->name);
PRE_FIELD_READ("msg->desc.port.disposition", desc->disposition);
PRE_FIELD_READ("msg->desc.port.type", desc->type);
}
static void pre_ool_desc_read(ThreadId tid, mach_msg_ool_descriptor_t *desc2)
{
#pragma pack(4)
struct {
Addr address;
#if VG_WORDSIZE != 8
mach_msg_size_t size;
#endif
uint8_t deallocate;
uint8_t copy;
uint8_t pad1;
uint8_t type;
#if VG_WORDSIZE == 8
mach_msg_size_t size;
#endif
} *desc = (void*)desc2;
#pragma pack()
PRE_FIELD_READ("msg->desc.out_of_line.address", desc->address);
PRE_FIELD_READ("msg->desc.out_of_line.size", desc->size);
PRE_FIELD_READ("msg->desc.out_of_line.deallocate", desc->deallocate);
PRE_FIELD_READ("msg->desc.out_of_line.copy", desc->copy);
PRE_FIELD_READ("msg->desc.out_of_line.type", desc->type);
}
static void pre_oolports_desc_read(ThreadId tid,
mach_msg_ool_ports_descriptor_t *desc2)
{
#pragma pack(4)
struct {
Addr address;
#if VG_WORDSIZE != 8
mach_msg_size_t size;
#endif
uint8_t deallocate;
uint8_t copy;
uint8_t disposition;
uint8_t type;
#if VG_WORDSIZE == 8
mach_msg_size_t size;
#endif
} *desc = (void*)desc2;
#pragma pack()
PRE_FIELD_READ("msg->desc.ool_ports.address", desc->address);
PRE_FIELD_READ("msg->desc.ool_ports.size", desc->size);
PRE_FIELD_READ("msg->desc.ool_ports.deallocate", desc->deallocate);
PRE_FIELD_READ("msg->desc.ool_ports.copy", desc->copy);
PRE_FIELD_READ("msg->desc.ool_ports.disposition", desc->disposition);
PRE_FIELD_READ("msg->desc.ool_ports.type", desc->type);
}
// Returns the size of the descriptor area
// (mach_msg_body_t + any mach_msg_descriptor_t)
static size_t export_complex_message(ThreadId tid, mach_msg_header_t *mh)
{
mach_msg_body_t *body;
mach_msg_size_t count, i;
uint8_t *p;
mach_msg_descriptor_t *desc;
vg_assert(mh->msgh_bits & MACH_MSGH_BITS_COMPLEX);
body = (mach_msg_body_t *)(mh+1);
PRE_MEM_READ("msg->msgh_descriptor_count)", (Addr)body, sizeof(*body));
count = body->msgh_descriptor_count;
p = (uint8_t *)(body+1);
for (i = 0; i < count; i++) {
desc = (mach_msg_descriptor_t *)p;
p += desc_size(desc);
switch (desc->type.type) {
case MACH_MSG_PORT_DESCRIPTOR:
// single port; no memory map effects
pre_port_desc_read(tid, &desc->port);
break;
case MACH_MSG_OOL_DESCRIPTOR:
case MACH_MSG_OOL_VOLATILE_DESCRIPTOR:
// out-of-line memory - unmap it if it's marked dealloc
// GrP fixme need to remap if message fails?
// GrP fixme how is VOLATILE different? do we care?
// GrP fixme struct is different for lp64
pre_ool_desc_read(tid, &desc->out_of_line);
if (desc->out_of_line.deallocate && desc->out_of_line.size > 0) {
vm_size_t size = desc->out_of_line.size;
Addr start = VG_PGROUNDDN((Addr)desc->out_of_line.address);
Addr end = VG_PGROUNDUP((Addr)desc->out_of_line.address + size);
PRINT("kill ool mem %p..%#lx; ", desc->out_of_line.address,
(Addr)desc->out_of_line.address + size);
ML_(notify_core_and_tool_of_munmap)(start, end - start);
}
break;
case MACH_MSG_OOL_PORTS_DESCRIPTOR:
// out-of-line array of ports - unmap it if it's marked dealloc
// GrP fixme need to remap if message fails?
// GrP fixme struct different for lp64
pre_oolports_desc_read(tid, &desc->ool_ports);
if (desc->ool_ports.deallocate && desc->ool_ports.count > 0) {
vm_size_t size = desc->ool_ports.count * sizeof(mach_port_t);
Addr start = VG_PGROUNDDN((Addr)desc->ool_ports.address);
Addr end = VG_PGROUNDUP((Addr)desc->ool_ports.address + size);
PRINT("kill ool port array %p..%#lx; ", desc->ool_ports.address,
(Addr)desc->ool_ports.address + size);
ML_(notify_core_and_tool_of_munmap)(start, end - start);
}
break;
default:
VG_(printf)("UNKNOWN Mach descriptor type %u!\n", desc->type.type);
break;
}
}
return (size_t)((Addr)p - (Addr)body);
}
/* ---------------------------------------------------------------------
mach_msg: host-related messages
------------------------------------------------------------------ */
POST(host_info)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_type_number_t host_info_outCnt;
integer_t host_info_out[14];
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (reply->RetCode) PRINT("mig return %d", reply->RetCode);
}
PRE(host_info)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
host_flavor_t flavor;
mach_msg_type_number_t host_info_outCnt;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("host_info(mach_host_self(), flavor %d)", req->flavor);
AFTER = POST_FN(host_info);
}
POST(host_page_size)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
vm_size_t out_page_size;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
PRINT("page size %llu", (ULong)reply->out_page_size);
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(host_page_size)
{
PRINT("host_page_size(mach_host_self(), ...)");
AFTER = POST_FN(host_page_size);
}
POST(host_get_io_master)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t io_master;
/* end of the kernel processed data */
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
assign_port_name(reply->io_master.name, "io_master-%p");
PRINT("%s", name_for_port(reply->io_master.name));
}
PRE(host_get_io_master)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
} Request;
#pragma pack()
// Request *req = (Request *)ARG1;
PRINT("host_get_io_master(mach_host_self())");
AFTER = POST_FN(host_get_io_master);
}
POST(host_get_clock_service)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t clock_serv;
/* end of the kernel processed data */
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
assign_port_name(reply->clock_serv.name, "clock-%p");
PRINT("%s", name_for_port(reply->clock_serv.name));
}
PRE(host_get_clock_service)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
clock_id_t clock_id;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("host_get_clock_service(mach_host_self(), %d)", req->clock_id);
AFTER = POST_FN(host_get_clock_service);
}
PRE(host_request_notification)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t notify_port;
/* end of the kernel processed data */
NDR_record_t NDR;
host_flavor_t notify_type;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
if (MACH_REMOTE == mach_task_self()) {
if (req->notify_type == 0) {
PRINT("host_request_notification(mach_host_self(), %s, %s)",
"HOST_NOTIFY_CALENDAR_CHANGE",
name_for_port(req->notify_port.name));
} else {
PRINT("host_request_notification(mach_host_self(), %d, %s)",
req->notify_type,
name_for_port(req->notify_port.name));
}
} else {
PRINT("host_request_notification(%s, %d, %s)",
name_for_port(MACH_REMOTE),
req->notify_type,
name_for_port(req->notify_port.name));
}
// GrP fixme only do this on success
assign_port_name(req->notify_port.name, "host_notify-%p");
}
/* ---------------------------------------------------------------------
mach_msg: messages to a task
------------------------------------------------------------------ */
// JRS 2011-Aug-25: just guessing here. I have no clear idea how
// these structs are derived. They obviously relate to the various
// .def files in the xnu sources, and can also be found in some
// form in /usr/include/mach/*.h, but not sure how these all
// relate to each other.
PRE(mach_port_set_context)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_vm_address_t context;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_set_context(%s, %s, 0x%llx)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->context);
AFTER = POST_FN(mach_port_set_context);
}
POST(mach_port_set_context)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
} Reply;
#pragma pack()
}
// JRS 2011-Aug-25 FIXME completely bogus
PRE(task_get_exception_ports)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
exception_mask_t exception_mask;
} Request;
#pragma pack()
PRINT("task_get_exception_ports(BOGUS)");
AFTER = POST_FN(task_get_exception_ports);
}
POST(task_get_exception_ports)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t old_handlers[32];
/* end of the kernel processed data */
NDR_record_t NDR;
mach_msg_type_number_t masksCnt;
exception_mask_t masks[32];
exception_behavior_t old_behaviors[32];
thread_state_flavor_t old_flavors[32];
} Reply;
#pragma pack()
}
///////////////////////////////////////////////////
PRE(mach_port_type)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_type(%s, %s, ...)",
name_for_port(MACH_REMOTE), name_for_port(req->name));
AFTER = POST_FN(mach_port_type);
}
POST(mach_port_type)
{
}
PRE(mach_port_extract_member)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_port_name_t pset;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_extract_member(%s, 0x%x, 0x%x)",
name_for_port(MACH_REMOTE),
req->name, req->pset);
AFTER = POST_FN(mach_port_extract_member);
// GrP fixme port tracker?
}
POST(mach_port_extract_member)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (reply->RetCode) PRINT("mig return %d", reply->RetCode);
}
PRE(mach_port_allocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_right_t right;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_allocate(mach_task_self(), %d, ...)", req->right);
MACH_ARG(mach_port_allocate.right) = req->right;
AFTER = POST_FN(mach_port_allocate);
}
POST(mach_port_allocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_port_name_t name;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// GrP fixme port tracking is too imprecise
// vg_assert(!port_exists(reply->name));
record_unnamed_port(tid, reply->name, MACH_ARG(mach_port_allocate.right));
PRINT("got port 0x%x", reply->name);
} else {
VG_(printf)("UNKNOWN inserted port 0x%x into remote task\n", reply->name);
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_port_deallocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_deallocate(%s, %s)",
name_for_port(MACH_REMOTE),
name_for_port(req->name));
MACH_ARG(mach_port.port) = req->name;
AFTER = POST_FN(mach_port_deallocate);
// Must block to prevent race (other thread allocates and
// notifies after we deallocate but before we notify)
*flags &= ~SfMayBlock;
}
POST(mach_port_deallocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// Must have cleared SfMayBlock in PRE to prevent race
record_port_dealloc(MACH_ARG(mach_port.port));
} else {
VG_(printf)("UNKNOWN remote port dealloc\n");
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_port_get_refs)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_port_right_t right;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_get_refs(%s, %s, 0x%x)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->right);
MACH_ARG(mach_port_mod_refs.port) = req->name;
MACH_ARG(mach_port_mod_refs.right) = req->right;
AFTER = POST_FN(mach_port_get_refs);
}
POST(mach_port_get_refs)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_port_urefs_t refs;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
PRINT("got refs=%d", reply->refs);
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_port_mod_refs)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_port_right_t right;
mach_port_delta_t delta;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_mod_refs(%s, %s, 0x%x, 0x%x)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->right, req->delta);
MACH_ARG(mach_port_mod_refs.port) = req->name;
MACH_ARG(mach_port_mod_refs.right) = req->right;
MACH_ARG(mach_port_mod_refs.delta) = req->delta;
AFTER = POST_FN(mach_port_mod_refs);
// Must block to prevent race (other thread allocates and
// notifies after we deallocate but before we notify)
*flags &= ~SfMayBlock;
}
POST(mach_port_mod_refs)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// Must have cleared SfMayBlock in PRE to prevent race
record_port_mod_refs(MACH_ARG(mach_port_mod_refs.port),
MACH_PORT_TYPE(MACH_ARG(mach_port_mod_refs.right)),
MACH_ARG(mach_port_mod_refs.delta));
} else {
VG_(printf)("UNKNOWN remote port mod refs\n");
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_port_get_set_status)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_get_set_status(%s, %s)",
name_for_port(MACH_REMOTE),
name_for_port(req->name));
AFTER = POST_FN(mach_port_get_set_status);
}
POST(mach_port_get_set_status)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_ool_descriptor_t members;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_msg_type_number_t membersCnt;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
// Reply *reply = (Reply *)ARG1;
// GrP fixme nothing to do?
}
PRE(mach_port_move_member)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t member;
mach_port_name_t after;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_move_member(%s, %s, %s)",
name_for_port(MACH_REMOTE),
name_for_port(req->member),
name_for_port(req->after));
/*
MACH_ARG(mach_port_move_member.member) = req->member;
MACH_ARG(mach_port_move_member.after) = req->after;
*/
AFTER = POST_FN(mach_port_move_member);
}
POST(mach_port_move_member)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
// fixme port set tracker?
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_port_destroy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_destroy(%s, %s)",
name_for_port(MACH_REMOTE),
name_for_port(req->name));
MACH_ARG(mach_port.port) = req->name;
AFTER = POST_FN(mach_port_destroy);
// Must block to prevent race (other thread allocates and
// notifies after we deallocate but before we notify)
*flags &= ~SfMayBlock;
}
POST(mach_port_destroy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// Must have cleared SfMayBlock in PRE to prevent race
record_port_destroy(MACH_ARG(mach_port.port));
} else {
VG_(printf)("UNKNOWN remote port destroy\n");
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_port_request_notification)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t notify;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_port_name_t name;
mach_msg_id_t msgid;
mach_port_mscount_t sync;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_request_notification(%s, %s, %d, %d, %d, %d, ...)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->msgid, req->sync,
req->notify.name, req->notify.disposition);
AFTER = POST_FN(mach_port_request_notification);
}
POST(mach_port_request_notification)
{
// GrP fixme port tracker? not sure
}
PRE(mach_port_insert_right)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t poly;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_port_name_t name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_insert_right(%s, %s, %d, %d)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->poly.name, req->poly.disposition);
AFTER = POST_FN(mach_port_insert_right);
if (MACH_REMOTE == mach_task_self()) {
// GrP fixme import_complex_message handles everything?
// what about export_complex_message for MOVE variants?
} else {
VG_(printf)("UNKNOWN mach_port_insert_right into remote task!\n");
// GrP fixme also may remove rights from this task?
}
// GrP fixme port tracker?
}
POST(mach_port_insert_right)
{
}
PRE(mach_port_extract_right)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_msg_type_name_t msgt_name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_extract_right(%s, %s, %d)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->msgt_name);
AFTER = POST_FN(mach_port_extract_right);
// fixme port tracker?
}
POST(mach_port_extract_right)
{
// fixme import_complex_message handles the returned result, right?
}
PRE(mach_port_get_attributes)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_port_flavor_t flavor;
mach_msg_type_number_t port_info_outCnt;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_get_attributes(%s, %s, %d, ..., %d)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->flavor, req->port_info_outCnt);
AFTER = POST_FN(mach_port_get_attributes);
}
POST(mach_port_get_attributes)
{
}
PRE(mach_port_set_attributes)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_port_flavor_t flavor;
mach_msg_type_number_t port_infoCnt;
integer_t port_info[10];
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_set_attributes(%s, %s, %d, ..., %d)",
name_for_port(MACH_REMOTE),
name_for_port(req->name), req->flavor, req->port_infoCnt);
AFTER = POST_FN(mach_port_set_attributes);
}
POST(mach_port_set_attributes)
{
}
PRE(mach_port_insert_member)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_port_name_t name;
mach_port_name_t pset;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_port_insert_member(%s, 0x%x, 0x%x)",
name_for_port(MACH_REMOTE), req->name, req->pset);
AFTER = POST_FN(mach_port_insert_member);
// GrP fixme port tracker?
}
POST(mach_port_insert_member)
{
}
PRE(task_get_special_port)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
int which_port;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
switch (req->which_port) {
case TASK_KERNEL_PORT:
PRINT("task_get_special_port(%s, TASK_KERNEL_PORT)",
name_for_port(MACH_REMOTE));
break;
case TASK_HOST_PORT:
PRINT("task_get_special_port(%s, TASK_HOST_PORT)",
name_for_port(MACH_REMOTE));
break;
case TASK_BOOTSTRAP_PORT:
PRINT("task_get_special_port(%s, TASK_BOOTSTRAP_PORT)",
name_for_port(MACH_REMOTE));
break;
#if DARWIN_VERS < DARWIN_10_8
/* These disappeared in 10.8 */
case TASK_WIRED_LEDGER_PORT:
PRINT("task_get_special_port(%s, TASK_WIRED_LEDGER_PORT)",
name_for_port(MACH_REMOTE));
break;
case TASK_PAGED_LEDGER_PORT:
PRINT("task_get_special_port(%s, TASK_PAGED_LEDGER_PORT)",
name_for_port(MACH_REMOTE));
break;
#endif
default:
PRINT("task_get_special_port(%s, %d)",
name_for_port(MACH_REMOTE), req->which_port);
break;
}
MACH_ARG(task_get_special_port.which_port) = req->which_port;
AFTER = POST_FN(task_get_special_port);
}
POST(task_get_special_port)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t special_port;
/* end of the kernel processed data */
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
PRINT("got port %#x ", reply->special_port.name);
switch (MACH_ARG(task_get_special_port.which_port)) {
case TASK_BOOTSTRAP_PORT:
vg_bootstrap_port = reply->special_port.name;
assign_port_name(reply->special_port.name, "bootstrap");
break;
case TASK_KERNEL_PORT:
assign_port_name(reply->special_port.name, "kernel");
break;
case TASK_HOST_PORT:
assign_port_name(reply->special_port.name, "host");
break;
#if DARWIN_VERS < DARWIN_10_8
/* These disappeared in 10.8 */
case TASK_WIRED_LEDGER_PORT:
assign_port_name(reply->special_port.name, "wired-ledger");
break;
case TASK_PAGED_LEDGER_PORT:
assign_port_name(reply->special_port.name, "paged-ledger");
break;
#endif
default:
assign_port_name(reply->special_port.name, "special-%p");
break;
}
PRINT("%s", name_for_port(reply->special_port.name));
}
PRE(semaphore_create)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
int policy;
int value;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("semaphore_create(%s, ..., %d, %d)",
name_for_port(MACH_REMOTE), req->policy, req->value);
AFTER = POST_FN(semaphore_create);
}
POST(semaphore_create)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t semaphore;
/* end of the kernel processed data */
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
assign_port_name(reply->semaphore.name, "semaphore-%p");
PRINT("%s", name_for_port(reply->semaphore.name));
}
PRE(semaphore_destroy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t semaphore;
/* end of the kernel processed data */
mach_msg_trailer_t trailer;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("semaphore_destroy(%s, %s)",
name_for_port(MACH_REMOTE), name_for_port(req->semaphore.name));
record_port_destroy(req->semaphore.name);
AFTER = POST_FN(semaphore_destroy);
}
POST(semaphore_destroy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_ports_lookup)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
} Request;
#pragma pack()
// Request *req = (Request *)ARG1;
PRINT("mach_ports_lookup(%s)", name_for_port(MACH_REMOTE));
AFTER = POST_FN(mach_ports_lookup);
}
POST(mach_ports_lookup)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_ool_ports_descriptor_t init_port_set;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_msg_type_number_t init_port_setCnt;
} Reply;
#pragma pack()
// Reply *reply = (Reply *)ARG1;
}
PRE(task_threads)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
} Request;
#pragma pack()
// Request *req = (Request *)ARG1;
PRINT("task_threads(%s)", name_for_port(MACH_REMOTE));
AFTER = POST_FN(task_threads);
}
POST(task_threads)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_ool_ports_descriptor_t act_list;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_msg_type_number_t act_listCnt;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (MACH_REMOTE == vg_task_port) {
assign_port_names(&reply->act_list, "thread-%p");
} else {
assign_port_names(&reply->act_list, "remote-thread-%p");
}
}
PRE(task_suspend)
{
PRINT("task_suspend(%s)", name_for_port(MACH_REMOTE));
if (MACH_REMOTE == vg_task_port) {
// GrP fixme self-suspend
vg_assert(0);
} else {
// suspend other - no problem
}
AFTER = POST_FN(task_suspend);
}
POST(task_suspend)
{
}
PRE(task_resume)
{
PRINT("task_resume(%s)", name_for_port(MACH_REMOTE));
if (MACH_REMOTE == vg_task_port) {
// GrP fixme self-resume
vg_assert(0);
} else {
// resume other - no problem
}
AFTER = POST_FN(task_resume);
}
POST(task_resume)
{
}
PRE(vm_allocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
int flags;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_allocate (%s, at %#llx, size %lld, flags %#x)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size, req->flags);
MACH_ARG(vm_allocate.size) = req->size;
MACH_ARG(vm_allocate.flags) = req->flags;
AFTER = POST_FN(vm_allocate);
}
POST(vm_allocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
vm_address_t address;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
PRINT("allocated at %#llx", (ULong)reply->address);
// requesting 0 bytes returns address 0 with no error
if (MACH_ARG(vm_allocate.size)) {
ML_(notify_core_and_tool_of_mmap)(
reply->address, MACH_ARG(vm_allocate.size),
VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_ANON, -1, 0);
}
} else {
PRINT("allocated at %#llx in remote task %s",
(ULong)reply->address,
name_for_port(MACH_REMOTE));
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(vm_deallocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_deallocate(%s, at %#llx, size %lld)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size);
MACH_ARG(vm_deallocate.address) = req->address;
MACH_ARG(vm_deallocate.size) = req->size;
AFTER = POST_FN(vm_deallocate);
// Must block to prevent race (other thread allocates and
// notifies after we deallocate but before we notify)
*flags &= ~SfMayBlock;
}
POST(vm_deallocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
if (MACH_ARG(vm_deallocate.size)) {
Addr start = VG_PGROUNDDN(MACH_ARG(vm_deallocate.address));
Addr end = VG_PGROUNDUP(MACH_ARG(vm_deallocate.address) +
MACH_ARG(vm_deallocate.size));
// Must have cleared SfMayBlock in PRE to prevent race
ML_(notify_core_and_tool_of_munmap)(start, end - start);
}
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(vm_protect)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
boolean_t set_maximum;
vm_prot_t new_protection;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_protect(%s, at %#llx, size %lld, set_max %d, prot %d)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size,
req->set_maximum, req->new_protection);
MACH_ARG(vm_protect.address) = req->address;
MACH_ARG(vm_protect.size) = req->size;
MACH_ARG(vm_protect.set_maximum) = req->set_maximum;
MACH_ARG(vm_protect.new_protection) = req->new_protection;
AFTER = POST_FN(vm_protect);
}
POST(vm_protect)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
Addr start = VG_PGROUNDDN(MACH_ARG(vm_protect.address));
Addr end = VG_PGROUNDUP(MACH_ARG(vm_protect.address) +
MACH_ARG(vm_protect.size));
UInt prot = MACH_ARG(vm_protect.new_protection);
if (MACH_ARG(vm_protect.set_maximum)) {
// GrP fixme mprotect max
VG_(printf)("UNKNOWN vm_protect set maximum");
//VG_(mprotect_max_range)(start, end-start, prot);
} else {
ML_(notify_core_and_tool_of_mprotect)(start, end-start, prot);
VG_(di_notify_vm_protect)(start, end-start, prot);
}
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(vm_inherit)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
vm_inherit_t new_inheritance;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_inherit(%s, at %#llx, size %lld, value %d)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size,
req->new_inheritance);
AFTER = POST_FN(vm_inherit);
}
POST(vm_inherit)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// GrP fixme do something?
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(vm_read)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_read(from %s at %#llx size %llu)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size);
MACH_ARG(vm_read.addr) = req->address;
MACH_ARG(vm_read.size) = req->size;
AFTER = POST_FN(vm_read);
}
POST(vm_read)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_ool_descriptor_t data;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_msg_type_number_t dataCnt;
} Reply;
#pragma pack()
// Reply *reply = (Reply *)ARG1;
if (MACH_REMOTE == vg_task_port) {
// vm_read from self
// GrP fixme copy initialized state
}
}
PRE(mach_vm_read)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
mach_vm_size_t size;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_read(from %s at 0x%llx size %llu)",
name_for_port(MACH_REMOTE), req->address, req->size);
MACH_ARG(mach_vm_read.addr) = req->address;
MACH_ARG(mach_vm_read.size) = req->size;
AFTER = POST_FN(mach_vm_read);
}
POST(mach_vm_read)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_ool_descriptor_t data;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_msg_type_number_t dataCnt;
} Reply;
#pragma pack()
// Reply *reply = (Reply *)ARG1;
if (MACH_REMOTE == vg_task_port) {
// vm_read from self
// GrP fixme copy initialized state
}
}
PRE(vm_read_overwrite)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
vm_address_t data;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_read_overwrite(from %s at %#llx size %llu to %#llx)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size, (ULong)req->data);
MACH_ARG(vm_read_overwrite.addr) = req->address;
MACH_ARG(vm_read_overwrite.size) = req->size;
MACH_ARG(vm_read_overwrite.data) = req->data;
PRE_MEM_WRITE("vm_read_overwrite(data)", req->data, req->size);
AFTER = POST_FN(vm_read_overwrite);
}
POST(vm_read_overwrite)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
vm_size_t outsize;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (reply->RetCode) {
PRINT("mig return %d", reply->RetCode);
} else {
PRINT("read %llu bytes", (unsigned long long)reply->outsize);
if (MACH_REMOTE == vg_task_port) {
// vm_read_overwrite from self
// GrP fixme copy initialized state
POST_MEM_WRITE(MACH_ARG(vm_read_overwrite.data), reply->outsize);
} else {
// vm_read_overwrite from remote
POST_MEM_WRITE(MACH_ARG(vm_read_overwrite.data), reply->outsize);
}
}
}
PRE(vm_copy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t source_address;
vm_size_t size;
vm_address_t dest_address;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_copy(%s, %#llx, %lld, %#llx)",
name_for_port(MACH_REMOTE),
(ULong)req->source_address,
(ULong)req->size, (ULong)req->dest_address);
MACH_ARG(vm_copy.src) = req->source_address;
MACH_ARG(vm_copy.dst) = req->dest_address;
MACH_ARG(vm_copy.size) = req->size;
AFTER = POST_FN(vm_copy);
}
POST(vm_copy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// GrP fixme set dst's initialization equal to src's
// and wipe any symbols or translations in dst
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(vm_map)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t object;
/* end of the kernel processed data */
NDR_record_t NDR;
vm_address_t address;
vm_size_t size;
vm_address_t mask;
int flags;
vm_offset_t offset;
boolean_t copy;
vm_prot_t cur_protection;
vm_prot_t max_protection;
vm_inherit_t inheritance;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
// GrP fixme check these
PRINT("vm_map(in %s, at %#llx, size %lld, from %s ...)",
name_for_port(MACH_REMOTE),
(ULong)req->address, (ULong)req->size,
name_for_port(req->object.name));
MACH_ARG(vm_map.size) = req->size;
MACH_ARG(vm_map.copy) = req->copy;
MACH_ARG(vm_map.protection) = (req->cur_protection & req->max_protection);
AFTER = POST_FN(vm_map);
}
POST(vm_map)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
vm_address_t address;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
// GrP fixme check src and dest tasks
PRINT("mapped at %#llx", (ULong)reply->address);
// GrP fixme max prot
ML_(notify_core_and_tool_of_mmap)(
reply->address, VG_PGROUNDUP(MACH_ARG(vm_map.size)),
MACH_ARG(vm_map.protection), VKI_MAP_SHARED, -1, 0);
// GrP fixme VKI_MAP_PRIVATE if !copy?
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(vm_remap)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t src_task;
/* end of the kernel processed data */
NDR_record_t NDR;
vm_address_t target_address;
vm_size_t size;
vm_address_t mask;
boolean_t anywhere;
vm_address_t src_address;
boolean_t copy;
vm_inherit_t inheritance;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
// GrP fixme check src and dest tasks
if (VG_(clo_trace_syscalls)) {
mach_port_name_t source_task = req->src_task.name;
if (source_task == mach_task_self()) {
PRINT("vm_remap(mach_task_self(), "
"to %#llx size %lld, from mach_task_self() at %#llx, ...)",
(ULong)req->target_address,
(ULong)req->size, (ULong)req->src_address);
} else {
PRINT("vm_remap(mach_task_self(), "
"to %#llx size %lld, from task %u at %#llx, ...)",
(ULong)req->target_address, (ULong)req->size,
source_task, (ULong)req->src_address);
}
}
// arg1 is task
// vt->syscall_arg2 = req->target_address;
MACH_ARG(vm_remap.size) = req->size;
// vt->syscall_arg4 = req->copy;
AFTER = POST_FN(vm_remap);
}
POST(vm_remap)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
vm_address_t target_address;
vm_prot_t cur_protection;
vm_prot_t max_protection;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
// GrP fixme check src and dest tasks
UInt prot = reply->cur_protection & reply->max_protection;
// GrP fixme max prot
PRINT("mapped at %#llx", (ULong)reply->target_address);
ML_(notify_core_and_tool_of_mmap)(
reply->target_address, VG_PGROUNDUP(MACH_ARG(vm_remap.size)),
prot, VKI_MAP_SHARED, -1, 0);
// GrP fixme VKI_MAP_FIXED if !copy?
// GrP fixme copy initialized bits from source to dest if source_task is also mach_task_self
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_make_memory_entry_64)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t parent_entry;
/* end of the kernel processed data */
NDR_record_t NDR;
memory_object_size_t size;
memory_object_offset_t offset;
vm_prot_t permission;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_make_memory_entry_64(%s, %llu, %llu, %d, ..., %u)",
name_for_port(MACH_REMOTE),
req->size, req->offset, req->permission, req->parent_entry.type);
AFTER = POST_FN(mach_make_memory_entry_64);
}
POST(mach_make_memory_entry_64)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t object;
NDR_record_t NDR;
memory_object_size_t size;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (reply->Head.msgh_bits & MACH_MSGH_BITS_COMPLEX) {
assign_port_name(reply->object.name, "memory-%p");
PRINT("%s", name_for_port(reply->object.name));
}
}
PRE(vm_purgable_control)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
vm_address_t address;
vm_purgable_t control;
int state;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("vm_purgable_control(%s, %#llx, %d, %d)",
name_for_port(MACH_REMOTE),
(ULong)req->address, req->control, req->state);
// GrP fixme verify address?
AFTER = POST_FN(vm_purgable_control);
}
POST(vm_purgable_control)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
int state;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_purgable_control)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
vm_purgable_t control;
int state;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_purgable_control(%s, 0x%llx, %d, %d)",
name_for_port(MACH_REMOTE),
(unsigned long long)req->address, req->control, req->state);
// GrP fixme verify address?
AFTER = POST_FN(mach_vm_purgable_control);
}
POST(mach_vm_purgable_control)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
int state;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_allocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
mach_vm_size_t size;
int flags;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_allocate (%s, at 0x%llx, size %lld, flags 0x%x)",
name_for_port(MACH_REMOTE),
req->address, req->size, req->flags);
MACH_ARG(mach_vm_allocate.size) = req->size;
MACH_ARG(mach_vm_allocate.flags) = req->flags;
AFTER = POST_FN(mach_vm_allocate);
}
POST(mach_vm_allocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_vm_address_t address;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
PRINT("allocated at 0x%llx", reply->address);
// requesting 0 bytes returns address 0 with no error
if (MACH_ARG(mach_vm_allocate.size)) {
ML_(notify_core_and_tool_of_mmap)(
reply->address, MACH_ARG(mach_vm_allocate.size),
VKI_PROT_READ|VKI_PROT_WRITE, VKI_MAP_ANON, -1, 0);
}
} else {
PRINT("allocated at 0x%llx in remote task %s", reply->address,
name_for_port(MACH_REMOTE));
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_deallocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
mach_vm_size_t size;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_deallocate(%s, at 0x%llx, size %lld)",
name_for_port(MACH_REMOTE),
req->address, req->size);
MACH_ARG(mach_vm_deallocate.address) = req->address;
MACH_ARG(mach_vm_deallocate.size) = req->size;
AFTER = POST_FN(mach_vm_deallocate);
// Must block to prevent race (other thread allocates and
// notifies after we deallocate but before we notify)
*flags &= ~SfMayBlock;
}
POST(mach_vm_deallocate)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
if (MACH_ARG(mach_vm_deallocate.size)) {
Addr start = VG_PGROUNDDN(MACH_ARG(mach_vm_deallocate.address));
Addr end = VG_PGROUNDUP(MACH_ARG(mach_vm_deallocate.address) +
MACH_ARG(mach_vm_deallocate.size));
// Must have cleared SfMayBlock in PRE to prevent race
ML_(notify_core_and_tool_of_munmap)(start, end - start);
}
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_protect)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
mach_vm_size_t size;
boolean_t set_maximum;
vm_prot_t new_protection;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_protect(%s, at 0x%llx, size %lld, set_max %d, prot %d)",
name_for_port(MACH_REMOTE), req->address, req->size,
req->set_maximum, req->new_protection);
MACH_ARG(mach_vm_protect.address) = req->address;
MACH_ARG(mach_vm_protect.size) = req->size;
MACH_ARG(mach_vm_protect.set_maximum) = req->set_maximum;
MACH_ARG(mach_vm_protect.new_protection) = req->new_protection;
AFTER = POST_FN(mach_vm_protect);
}
POST(mach_vm_protect)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
Addr start = VG_PGROUNDDN(MACH_ARG(mach_vm_protect.address));
Addr end = VG_PGROUNDUP(MACH_ARG(mach_vm_protect.address) +
MACH_ARG(mach_vm_protect.size));
UInt prot = MACH_ARG(mach_vm_protect.new_protection);
if (MACH_ARG(mach_vm_protect.set_maximum)) {
// DDD: #warning GrP fixme mprotect max
//VG_(mprotect_max_range)(start, end-start, prot);
} else {
ML_(notify_core_and_tool_of_mprotect)(start, end-start, prot);
}
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_inherit)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
mach_vm_size_t size;
vm_inherit_t new_inheritance;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_inherit(to %s, at 0x%llx, size %llu, value %u)",
name_for_port(MACH_REMOTE),
req->address, req->size, req->new_inheritance);
AFTER = POST_FN(mach_vm_inherit);
}
POST(mach_vm_inherit)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
// no V-visible side effects
// GrP fixme except maybe fork/exec
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_copy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t source_address;
mach_vm_size_t size;
mach_vm_address_t dest_address;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_copy(%s, 0x%llx, %llu, 0x%llx)",
name_for_port(MACH_REMOTE),
req->source_address, req->size, req->dest_address);
// arg1 is task
// vt->syscall_arg2 = req->source_address;
// vt->syscall_arg3 = req->size;
// vt->syscall_arg4 = req->dest_address;
AFTER = POST_FN(mach_vm_copy);
}
POST(mach_vm_copy)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
if (MACH_REMOTE == vg_task_port) {
// GrP fixme set dest's initialization equal to src's
// BUT vm_copy allocates no memory
}
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_map)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t object;
/* end of the kernel processed data */
NDR_record_t NDR;
mach_vm_address_t address;
mach_vm_size_t size;
mach_vm_address_t mask;
int flags;
memory_object_offset_t offset;
boolean_t copy;
vm_prot_t cur_protection;
vm_prot_t max_protection;
vm_inherit_t inheritance;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
// GrP fixme check these
PRINT("mach_vm_map(in %s, at 0x%llx, size %llu, from %s ...)",
name_for_port(MACH_REMOTE),
req->address, req->size,
name_for_port(req->object.name));
MACH_ARG(mach_vm_map.size) = req->size;
MACH_ARG(mach_vm_map.copy) = req->copy;
MACH_ARG(mach_vm_map.protection) =
(req->cur_protection & req->max_protection);
AFTER = POST_FN(mach_vm_map);
}
POST(mach_vm_map)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_vm_address_t address;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
// GrP fixme check src and dest tasks
PRINT("mapped at 0x%llx", reply->address);
// GrP fixme max prot
ML_(notify_core_and_tool_of_mmap)(
reply->address, VG_PGROUNDUP(MACH_ARG(mach_vm_map.size)),
MACH_ARG(mach_vm_map.protection), VKI_MAP_SHARED, -1, 0);
// GrP fixme VKI_MAP_PRIVATE if !copy?
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(mach_vm_region_recurse)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
mach_vm_address_t address;
natural_t nesting_depth;
mach_msg_type_number_t infoCnt;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("mach_vm_region_recurse(in %s, at 0x%llx, depth %u, count %u)",
name_for_port(MACH_REMOTE),
req->address, req->nesting_depth, req->infoCnt);
AFTER = POST_FN(mach_vm_region_recurse);
}
POST(mach_vm_region_recurse)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_vm_address_t address;
mach_vm_size_t size;
natural_t nesting_depth;
mach_msg_type_number_t infoCnt;
int info[19];
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (!reply->RetCode) {
PRINT("got region at 0x%llx, size %llu, depth %u, count %u",
reply->address, reply->size,
reply->nesting_depth, reply->infoCnt);
// GrP fixme mark info contents beyond infoCnt as bogus
} else {
PRINT("mig return %d", reply->RetCode);
}
}
/* ---------------------------------------------------------------------
mach_msg: messages to thread
------------------------------------------------------------------ */
POST(thread_terminate)
{
}
PRE(thread_terminate)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
Bool self_terminate = (mh->msgh_request_port == MACH_THREAD);
PRINT("thread_terminate(%s)", name_for_port(mh->msgh_request_port));
AFTER = POST_FN(thread_terminate);
if (self_terminate) {
// Terminating this thread.
// Copied from sys_exit.
ThreadState *tst = VG_(get_ThreadState)(tid);
tst->exitreason = VgSrc_ExitThread;
tst->os_state.exitcode = 0; // GrP fixme anything better?
// What we would like to do is:
// SET_STATUS_Success(0);
// but that doesn't work, because this is a MACH-class syscall,
// and SET_STATUS_Success creates a UNIX-class syscall result.
// Hence we have to laboriously construct the full SysRes "by hand"
// and use that to set the syscall return status.
SET_STATUS_from_SysRes(
VG_(mk_SysRes_x86_darwin)(
VG_DARWIN_SYSCALL_CLASS_MACH,
False/*success*/, 0, 0
)
);
*flags &= ~SfMayBlock; // clear flag set by PRE(mach_msg)
} else {
// Terminating some other thread.
// Do keep the scheduler lock while terminating any other thread.
// Otherwise we might halt the other thread while it holds the lock,
// which would deadlock the process.
// GrP fixme good enough?
// GrP fixme need to clean up other thread's valgrind data?
}
}
POST(thread_create)
{
}
PRE(thread_create)
{
PRINT("thread_create(mach_task_self(), ...)");
AFTER = POST_FN(thread_create);
// GrP fixme
VG_(core_panic)("thread_create() unimplemented");
}
PRE(thread_create_running)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
thread_state_flavor_t flavor;
mach_msg_type_number_t new_stateCnt;
natural_t new_state[144];
} Request;
#pragma pack()
Request *req;
thread_state_t regs;
ThreadState *new_thread;
PRINT("thread_create_running(mach_task_self(), ...)");
// The new thread will immediately begin execution,
// so we need to hijack the register state here.
req = (Request *)ARG1;
regs = (thread_state_t)req->new_state;
// Build virtual thread.
new_thread = build_thread(regs, req->flavor, req->new_stateCnt);
// Edit the thread state to send to the real kernel.
hijack_thread_state(regs, req->flavor, req->new_stateCnt, new_thread);
AFTER = POST_FN(thread_create_running);
}
POST(thread_create_running)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t child_act;
/* end of the kernel processed data */
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
assign_port_name(reply->child_act.name, "thread-%p");
PRINT("%s", name_for_port(reply->child_act.name));
}
PRE(bsdthread_create)
{
ThreadState *tst;
PRINT("bsdthread_create( %#lx, %#lx, %#lx, %#lx, %#lx )",
ARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(pthread_t,"bsdthread_create",
void *,"func", void *,"func_arg", void *,"stack",
pthread_t,"thread", unsigned int,"flags");
// The kernel will call V's pthread_hijack() to launch the thread.
// Here we allocate the thread state and pass it to pthread_hijack()
// via the func_arg parameter.
tst = VG_(get_ThreadState)(VG_(alloc_ThreadState)());
allocstack(tst->tid);
tst->os_state.func_arg = (Addr)ARG2;
ARG2 = (Word)tst;
// Create a semaphore that pthread_hijack will signal once it starts
// POST(bsdthread_create) needs to wait for the new memory map to appear
semaphore_create(mach_task_self(), &tst->os_state.child_go,
SYNC_POLICY_FIFO, 0);
semaphore_create(mach_task_self(), &tst->os_state.child_done,
SYNC_POLICY_FIFO, 0);
}
POST(bsdthread_create)
{
// Tell new thread's pthread_hijack to proceed, and wait for it to finish.
// We hold V's lock on the child's behalf.
// If we return before letting pthread_hijack do its thing, V thinks
// the new pthread struct is still unmapped when we return to libc,
// causing false errors.
ThreadState *tst = (ThreadState *)ARG2;
semaphore_signal(tst->os_state.child_go);
semaphore_wait(tst->os_state.child_done);
semaphore_destroy(mach_task_self(), tst->os_state.child_go);
semaphore_destroy(mach_task_self(), tst->os_state.child_done);
// GrP fixme semaphore destroy needed when thread creation fails
// GrP fixme probably other cleanup too
// GrP fixme spinlocks might be good enough?
// DDD: I'm not at all sure this is the right spot for this. It probably
// should be in pthread_hijack instead, just before the call to
// start_thread_NORETURN(), call_on_new_stack_0_1(), but we don't have the
// parent tid value there...
vg_assert(VG_(owns_BigLock_LL)(tid));
VG_TRACK ( pre_thread_ll_create, tid, tst->tid );
}
PRE(bsdthread_terminate)
{
ThreadState *tst;
PRINT("bsdthread_terminate( %#lx, %lx, %s, %s )",
ARG1, ARG2, name_for_port(ARG3), name_for_port(ARG4));
PRE_REG_READ4(int,"bsdthread_terminate",
void *,"freeaddr", size_t,"freesize",
mach_port_t,"kport", mach_port_t,"joinsem");
// Free memory and signal semaphore.
// GrP fixme errors?
if (ARG4) semaphore_signal((semaphore_t)ARG4);
if (ARG1 && ARG2) {
ML_(notify_core_and_tool_of_munmap)(ARG1, ARG2);
# if DARWIN_VERS >= DARWIN_10_8
/* JRS 2012 Aug 02: ugly hack: vm_deallocate disappeared from
the mig output. Work around it for the time being. */
VG_(do_syscall2)(__NR_munmap, ARG1, ARG2);
# else
vm_deallocate(mach_task_self(), (vm_address_t)ARG1, (vm_size_t)ARG2);
# endif
}
// Tell V to terminate the thread.
// Copied from sys_exit.
tst = VG_(get_ThreadState)(tid);
tst->exitreason = VgSrc_ExitThread;
tst->os_state.exitcode = 0; // GrP fixme anything better?
SET_STATUS_Success(0);
}
POST(thread_suspend)
{
}
PRE(thread_suspend)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
Bool self_suspend = (mh->msgh_request_port == MACH_THREAD);
PRINT("thread_suspend(%s)", name_for_port(mh->msgh_request_port));
AFTER = POST_FN(thread_suspend);
if (self_suspend) {
// Don't keep the scheduler lock while self-suspending.
// Otherwise we might halt while still holding the lock,
// which would deadlock the process.
*flags |= SfMayBlock;
} else {
// Do keep the scheduler lock while suspending any other thread.
// Otherwise we might halt the other thread while it holds the lock,
// which would deadlock the process.
}
}
POST(thread_get_state)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_type_number_t old_stateCnt;
natural_t old_state[144];
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
// mach_port_t thread = MACH_ARG(thread_get_state.thread);
thread_state_flavor_t flavor = MACH_ARG(thread_get_state.flavor);
if (!reply->RetCode) {
thread_state_from_vex((thread_state_t)reply->old_state,
flavor, reply->old_stateCnt,
&VG_(get_ThreadState)(tid)->arch.vex);
} else {
PRINT("mig return %d", reply->RetCode);
}
}
PRE(thread_get_state)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
thread_state_flavor_t flavor;
mach_msg_type_number_t old_stateCnt;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
// Bool self = (req->Head.msgh_request_port == MACH_THREAD);
// GrP fixme if (self) {
PRINT("thread_get_state(%s, %d)",
name_for_port(req->Head.msgh_request_port), req->flavor);
/*} else {
PRINT("thread_get_state(0x%x, %d)",
req->Head.msgh_request_port, req->flavor);
}*/
// Hack the thread state after making the real call.
MACH_ARG(thread_get_state.thread) = req->Head.msgh_request_port;
MACH_ARG(thread_get_state.flavor) = req->flavor;
AFTER = POST_FN(thread_get_state);
}
PRE(thread_policy)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
// Bool self = (mh->msgh_request_port == MACH_THREAD);
// GrP fixme if (self) {
PRINT("thread_policy(%s, ...)", name_for_port(mh->msgh_request_port));
/*} else {
PRINT("thread_policy(thread 0x%x, ...)", mh->msgh_request_port);
}*/
AFTER = POST_FN(thread_policy);
}
POST(thread_policy)
{
}
PRE(thread_policy_set)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
PRINT("thread_policy_set(%s, ...)", name_for_port(mh->msgh_request_port));
AFTER = POST_FN(thread_policy_set);
}
POST(thread_policy_set)
{
}
PRE(thread_info)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
PRINT("thread_info(%s, ...)", name_for_port(mh->msgh_request_port));
// GrP fixme does any thread info need to be hijacked?
AFTER = POST_FN(thread_info);
}
POST(thread_info)
{
// GrP fixme mark unused parts of thread_info_out as uninitialized?
}
/* ---------------------------------------------------------------------
mach_msg: messages to bootstrap port
------------------------------------------------------------------ */
POST(bootstrap_register)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if (reply->RetCode) PRINT("mig return %d", reply->RetCode);
}
PRE(bootstrap_register)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t service_port;
/* end of the kernel processed data */
NDR_record_t NDR;
name_t service_name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("bootstrap_register(port 0x%x, \"%s\")",
req->service_port.name, req->service_name);
/* The required entry in the allocated_ports list (mapping) might
not exist, due perhaps to broken syscall wrappers (mach__N etc).
Create a minimal entry so that assign_port_name below doesn't
cause an assertion. */
if (!port_exists(req->service_port.name)) {
port_create_vanilla(req->service_port.name);
}
assign_port_name(req->service_port.name, req->service_name);
AFTER = POST_FN(bootstrap_register);
}
POST(bootstrap_look_up)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_port_descriptor_t service_port;
/* end of the kernel processed data */
mach_msg_trailer_t trailer;
} Reply;
#pragma pack()
Reply *reply = (Reply *)ARG1;
if ((reply->Head.msgh_bits & MACH_MSGH_BITS_COMPLEX) &&
reply->service_port.name)
{
assign_port_name(reply->service_port.name,
MACH_ARG(bootstrap_look_up.service_name));
PRINT("%s", name_for_port(reply->service_port.name));
} else {
PRINT("not found");
}
VG_(arena_free)(VG_AR_CORE, MACH_ARG(bootstrap_look_up.service_name));
}
PRE(bootstrap_look_up)
{
#pragma pack(4)
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;
name_t service_name;
} Request;
#pragma pack()
Request *req = (Request *)ARG1;
PRINT("bootstrap_look_up(\"%s\")", req->service_name);
MACH_ARG(bootstrap_look_up.service_name) =
VG_(arena_strdup)(VG_AR_CORE, "syswrap-darwin.bootstrap-name",
req->service_name);
AFTER = POST_FN(bootstrap_look_up);
}
/* ---------------------------------------------------------------------
mach_msg: receiver-specific handlers
------------------------------------------------------------------ */
POST(mach_msg_receive)
{
// mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
// GrP fixme don't know of anything interesting here currently
// import_complex_message handles everything
// PRINT("UNHANDLED reply %d", mh->msgh_id);
// Assume the call may have mapped or unmapped memory
ML_(sync_mappings)("after", "mach_msg_receive", 0);
}
PRE(mach_msg_receive)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
PRINT("mach_msg_receive(port %s)", name_for_port(mh->msgh_reply_port));
AFTER = POST_FN(mach_msg_receive);
// no message sent, only listening for a reply
// assume message may block
*flags |= SfMayBlock;
}
PRE(mach_msg_bootstrap)
{
// message to bootstrap port
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
switch (mh->msgh_id) {
case 403:
CALL_PRE(bootstrap_register);
return;
case 404:
CALL_PRE(bootstrap_look_up);
return;
default:
PRINT("UNHANDLED bootstrap message [id %d, to %s, reply 0x%x]\n",
mh->msgh_id, name_for_port(mh->msgh_request_port),
mh->msgh_reply_port);
return;
}
}
PRE(mach_msg_host)
{
// message to host self - check for host-level kernel calls
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
switch (mh->msgh_id) {
case 200:
CALL_PRE(host_info);
return;
case 202:
CALL_PRE(host_page_size);
return;
case 205:
CALL_PRE(host_get_io_master);
return;
case 206:
CALL_PRE(host_get_clock_service);
return;
case 217:
CALL_PRE(host_request_notification);
return;
default:
// unknown message to host self
VG_(printf)("UNKNOWN host message [id %d, to %s, reply 0x%x]\n",
mh->msgh_id, name_for_port(mh->msgh_request_port),
mh->msgh_reply_port);
return;
}
}
// JRS 2011-Aug-25: these magic numbers (3201 etc) come from
// /usr/include/mach/mach_port.h et al (grep in /usr/include
// for them)
PRE(mach_msg_task)
{
// message to a task port
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
switch (mh->msgh_id) {
case 3201:
CALL_PRE(mach_port_type);
return;
case 3204:
CALL_PRE(mach_port_allocate);
return;
case 3205:
CALL_PRE(mach_port_destroy);
return;
case 3206:
CALL_PRE(mach_port_deallocate);
return;
case 3207:
CALL_PRE(mach_port_get_refs);
return;
case 3208:
CALL_PRE(mach_port_mod_refs);
return;
case 3211:
CALL_PRE(mach_port_get_set_status);
return;
case 3212:
CALL_PRE(mach_port_move_member);
return;
case 3213:
CALL_PRE(mach_port_request_notification);
return;
case 3214:
CALL_PRE(mach_port_insert_right);
return;
case 3215:
CALL_PRE(mach_port_extract_right);
return;
case 3217:
CALL_PRE(mach_port_get_attributes);
return;
case 3218:
CALL_PRE(mach_port_set_attributes);
return;
case 3226:
CALL_PRE(mach_port_insert_member);
return;
case 3227:
CALL_PRE(mach_port_extract_member);
return;
case 3229:
CALL_PRE(mach_port_set_context);
return;
case 3402:
CALL_PRE(task_threads);
return;
case 3404:
CALL_PRE(mach_ports_lookup);
return;
case 3407:
CALL_PRE(task_suspend);
return;
case 3408:
CALL_PRE(task_resume);
return;
case 3409:
CALL_PRE(task_get_special_port);
return;
case 3411:
CALL_PRE(thread_create);
return;
case 3412:
CALL_PRE(thread_create_running);
return;
case 3414:
CALL_PRE(task_get_exception_ports);
return;
case 3418:
CALL_PRE(semaphore_create);
return;
case 3419:
CALL_PRE(semaphore_destroy);
return;
case 3801:
CALL_PRE(vm_allocate);
return;
case 3802:
CALL_PRE(vm_deallocate);
return;
case 3803:
CALL_PRE(vm_protect);
return;
case 3804:
CALL_PRE(vm_inherit);
return;
case 3805:
CALL_PRE(vm_read);
return;
case 3808:
CALL_PRE(vm_copy);
return;
case 3809:
CALL_PRE(vm_read_overwrite);
return;
case 3812:
CALL_PRE(vm_map);
return;
case 3814:
CALL_PRE(vm_remap);
return;
case 3825:
CALL_PRE(mach_make_memory_entry_64);
return;
case 3830:
CALL_PRE(vm_purgable_control);
return;
case 4800:
CALL_PRE(mach_vm_allocate);
return;
case 4801:
CALL_PRE(mach_vm_deallocate);
return;
case 4802:
CALL_PRE(mach_vm_protect);
return;
case 4803:
CALL_PRE(mach_vm_inherit);
return;
case 4804:
CALL_PRE(mach_vm_read);
return;
case 4807:
CALL_PRE(mach_vm_copy);
return;
case 4811:
CALL_PRE(mach_vm_map);
return;
case 4815:
CALL_PRE(mach_vm_region_recurse);
return;
case 4817:
CALL_PRE(mach_make_memory_entry_64);
return;
case 4818:
CALL_PRE(mach_vm_purgable_control);
return;
default:
// unknown message to task self
VG_(printf)("UNKNOWN task message [id %d, to %s, reply 0x%x]\n",
mh->msgh_id, name_for_port(mh->msgh_remote_port),
mh->msgh_reply_port);
return;
}
}
PRE(mach_msg_thread)
{
// message to local thread - check for thread-level kernel calls
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
switch (mh->msgh_id) {
case 3600:
CALL_PRE(thread_terminate);
return;
case 3603:
CALL_PRE(thread_get_state);
return;
case 3605:
CALL_PRE(thread_suspend);
return;
case 3612:
CALL_PRE(thread_info);
return;
case 3616:
CALL_PRE(thread_policy);
return;
case 3617:
CALL_PRE(thread_policy_set);
return;
default:
// unknown message to a thread
VG_(printf)("UNKNOWN thread message [id %d, to %s, reply 0x%x]\n",
mh->msgh_id, name_for_port(mh->msgh_request_port),
mh->msgh_reply_port);
return;
}
}
static int is_thread_port(mach_port_t port)
{
if (port == 0) return False;
return VG_(lwpid_to_vgtid)(port) != VG_INVALID_THREADID;
}
static int is_task_port(mach_port_t port)
{
if (port == 0) return False;
if (port == vg_task_port) return True;
return (0 == VG_(strncmp)("task-", name_for_port(port), 5));
}
/* ---------------------------------------------------------------------
mach_msg: base handlers
------------------------------------------------------------------ */
PRE(mach_msg)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
mach_msg_option_t option = (mach_msg_option_t)ARG2;
// mach_msg_size_t send_size = (mach_msg_size_t)ARG3;
mach_msg_size_t rcv_size = (mach_msg_size_t)ARG4;
// mach_port_t rcv_name = (mach_port_t)ARG5;
size_t complex_header_size = 0;
PRE_REG_READ7(long, "mach_msg",
mach_msg_header_t*,"msg", mach_msg_option_t,"option",
mach_msg_size_t,"send_size", mach_msg_size_t,"rcv_size",
mach_port_t,"rcv_name", mach_msg_timeout_t,"timeout",
mach_port_t,"notify");
// Assume default POST handler until specified otherwise
AFTER = NULL;
// Assume call may block unless specified otherwise
*flags |= SfMayBlock;
if (option & MACH_SEND_MSG) {
// Validate outgoing message header
PRE_MEM_READ("mach_msg(msg.msgh_bits)",
(Addr)&mh->msgh_bits, sizeof(mh->msgh_bits));
// msgh_size not required, use parameter instead
PRE_MEM_READ("mach_msg(msg.msgh_remote_port)",
(Addr)&mh->msgh_remote_port, sizeof(mh->msgh_remote_port));
PRE_MEM_READ("mach_msg(msg.msgh_local_port)",
(Addr)&mh->msgh_local_port, sizeof(mh->msgh_local_port));
// msgh_reserved not required
PRE_MEM_READ("mach_msg(msg.msgh_id)",
(Addr)&mh->msgh_id, sizeof(mh->msgh_id));
if (mh->msgh_bits & MACH_MSGH_BITS_COMPLEX) {
// Validate typed message data and handle memory map changes.
complex_header_size = export_complex_message(tid, mh);
}
// GrP fixme handle sender-specified message trailer
// (but is this only for too-secure processes?)
vg_assert(! (mh->msgh_bits & MACH_SEND_TRAILER));
MACH_REMOTE = mh->msgh_remote_port;
MACH_MSGH_ID = mh->msgh_id;
}
if (option & MACH_RCV_MSG) {
// Pre-validate receive buffer
PRE_MEM_WRITE("mach_msg(receive buffer)", (Addr)mh, rcv_size);
}
// Call a PRE handler. The PRE handler may set an AFTER handler.
if (!(option & MACH_SEND_MSG)) {
// no message sent, receive only
CALL_PRE(mach_msg_receive);
return;
}
else if (mh->msgh_request_port == vg_host_port) {
// message sent to mach_host_self()
CALL_PRE(mach_msg_host);
return;
}
else if (is_task_port(mh->msgh_request_port)) {
// message sent to a task
CALL_PRE(mach_msg_task);
return;
}
else if (mh->msgh_request_port == vg_bootstrap_port) {
// message sent to bootstrap port
CALL_PRE(mach_msg_bootstrap);
return;
}
else if (is_thread_port(mh->msgh_request_port)) {
// message sent to one of this process's threads
CALL_PRE(mach_msg_thread);
return;
}
else {
// arbitrary message to arbitrary port
PRINT("UNHANDLED mach_msg [id %d, to %s, reply 0x%x]",
mh->msgh_id, name_for_port(mh->msgh_request_port),
mh->msgh_reply_port);
AFTER = POST_FN(mach_msg_unhandled);
// Assume the entire message body may be read.
// GrP fixme generates false positives for unknown protocols
/*
PRE_MEM_READ("mach_msg(payload)",
(Addr)((char*)mh + sizeof(mach_msg_header_t) + complex_header_size),
send_size - sizeof(mach_msg_header_t) - complex_header_size);
*/
return;
}
}
POST(mach_msg)
{
mach_msg_header_t *mh = (mach_msg_header_t *)ARG1;
mach_msg_option_t option = (mach_msg_option_t)ARG2;
if (option & MACH_RCV_MSG) {
if (RES != 0) {
// error during send or receive
// GrP fixme need to clean up port rights?
} else {
mach_msg_trailer_t *mt =
(mach_msg_trailer_t *)((Addr)mh + round_msg(mh->msgh_size));
// Assume the entire received message and trailer is initialized
// GrP fixme would being more specific catch any bugs?
POST_MEM_WRITE((Addr)mh,
round_msg(mh->msgh_size) + mt->msgh_trailer_size);
if (mh->msgh_bits & MACH_MSGH_BITS_COMPLEX) {
// Update memory map for out-of-line message data
import_complex_message(tid, mh);
}
}
}
// Call handler chosen by PRE(mach_msg)
if (AFTER) {
(*AFTER)(tid, arrghs, status);
}
}
POST(mach_msg_unhandled)
{
ML_(sync_mappings)("after", "mach_msg_receive (unhandled)", 0);
}
/* ---------------------------------------------------------------------
other Mach traps
------------------------------------------------------------------ */
PRE(mach_reply_port)
{
PRINT("mach_reply_port()");
}
POST(mach_reply_port)
{
record_named_port(tid, RES, MACH_PORT_RIGHT_RECEIVE, "reply-%p");
PRINT("reply port %s", name_for_port(RES));
}
PRE(mach_thread_self)
{
PRINT("mach_thread_self()");
}
POST(mach_thread_self)
{
record_named_port(tid, RES, MACH_PORT_RIGHT_SEND, "thread-%p");
PRINT("thread %#lx", RES);
}
PRE(mach_host_self)
{
PRINT("mach_host_self()");
}
POST(mach_host_self)
{
vg_host_port = RES;
record_named_port(tid, RES, MACH_PORT_RIGHT_SEND, "mach_host_self()");
PRINT("host %#lx", RES);
}
PRE(mach_task_self)
{
PRINT("mach_task_self()");
}
POST(mach_task_self)
{
vg_task_port = RES;
record_named_port(tid, RES, MACH_PORT_RIGHT_SEND, "mach_task_self()");
PRINT("task %#lx", RES);
}
PRE(syscall_thread_switch)
{
PRINT("syscall_thread_switch(%s, %ld, %ld)",
name_for_port(ARG1), ARG2, ARG3);
PRE_REG_READ3(long, "syscall_thread_switch",
mach_port_t,"thread", int,"option", natural_t,"timeout");
*flags |= SfMayBlock;
}
PRE(semaphore_signal)
{
PRINT("semaphore_signal(%s)", name_for_port(ARG1));
PRE_REG_READ1(long, "semaphore_signal", semaphore_t,"semaphore");
}
PRE(semaphore_signal_all)
{
PRINT("semaphore_signal_all(%s)", name_for_port(ARG1));
PRE_REG_READ1(long, "semaphore_signal_all", semaphore_t,"semaphore");
}
PRE(semaphore_signal_thread)
{
PRINT("semaphore_signal_thread(%s, %s)",
name_for_port(ARG1), name_for_port(ARG2));
PRE_REG_READ2(long, "semaphore_signal_thread",
semaphore_t,"semaphore", mach_port_t,"thread");
}
PRE(semaphore_wait)
{
PRINT("semaphore_wait(%s)", name_for_port(ARG1));
PRE_REG_READ1(long, "semaphore_signal", semaphore_t,"semaphore");
*flags |= SfMayBlock;
}
PRE(semaphore_wait_signal)
{
PRINT("semaphore_wait_signal(%s, %s)",
name_for_port(ARG1), name_for_port(ARG2));
PRE_REG_READ2(long, "semaphore_wait_signal",
semaphore_t,"wait_semaphore",
semaphore_t,"signal_semaphore");
*flags |= SfMayBlock;
}
PRE(semaphore_timedwait)
{
PRINT("semaphore_timedwait(%s, %g seconds)",
name_for_port(ARG1), ARG2+ARG3/1000000000.0);
PRE_REG_READ3(long, "semaphore_wait_signal",
semaphore_t,"semaphore",
int,"wait_time_hi",
int,"wait_time_lo");
*flags |= SfMayBlock;
}
PRE(semaphore_timedwait_signal)
{
PRINT("semaphore_wait_signal(wait %s, signal %s, %g seconds)",
name_for_port(ARG1), name_for_port(ARG2), ARG3+ARG4/1000000000.0);
PRE_REG_READ4(long, "semaphore_wait_signal",
semaphore_t,"wait_semaphore",
semaphore_t,"signal_semaphore",
int,"wait_time_hi",
int,"wait_time_lo");
*flags |= SfMayBlock;
}
PRE(__semwait_signal)
{
/* 10.5 args: int cond_sem, int mutex_sem,
int timeout, int relative,
time_t tv_sec, time_t tv_nsec */
PRINT("__semwait_signal(wait %s, signal %s, %ld, %ld, %lds:%ldns)",
name_for_port(ARG1), name_for_port(ARG2), ARG3, ARG4, ARG5, ARG6);
PRE_REG_READ6(long, "__semwait_signal",
int,"cond_sem", int,"mutex_sem",
int,"timeout", int,"relative",
vki_time_t,"tv_sec", int,"tv_nsec");
*flags |= SfMayBlock;
}
// GrP provided this alternative version for 10.6, but NjN
// reckons the 10.5 is is still correct for 10.6. So, retaining
// Greg's version as a comment just in case we need it later.
//PRE(__semwait_signal)
//{
// /* 10.5 args: int cond_sem, int mutex_sem,
// int timeout, int relative,
// const timespec *ts */
// PRINT("__semwait_signal(wait %s, signal %s, %ld, %ld, %#lx)",
// name_for_port(ARG1), name_for_port(ARG2), ARG3, ARG4, ARG5);
// PRE_REG_READ5(int, "__semwait_signal",
// int,cond_sem, int,mutex_sem,
// int,timeout, int,relative,
// const struct vki_timespec *,ts);
//
// if (ARG5) PRE_MEM_READ ("__semwait_signal(ts)",
// ARG5, sizeof(struct vki_timespec));
//
// *flags |= SfMayBlock;
//}
PRE(__thread_selfid)
{
PRINT("__thread_selfid ()");
PRE_REG_READ0(vki_uint64_t, "__thread_selfid");
}
PRE(task_for_pid)
{
PRINT("task_for_pid(%s, %ld, %#lx)", name_for_port(ARG1), ARG2, ARG3);
PRE_REG_READ3(long, "task_for_pid",
mach_port_t,"target",
vki_pid_t, "pid", mach_port_t *,"task");
PRE_MEM_WRITE("task_for_pid(task)", ARG3, sizeof(mach_port_t));
}
POST(task_for_pid)
{
mach_port_t task;
POST_MEM_WRITE(ARG3, sizeof(mach_port_t));
task = *(mach_port_t *)ARG3;
record_named_port(tid, task, MACH_PORT_RIGHT_SEND, "task-%p");
PRINT("task 0x%x", task);
}
PRE(pid_for_task)
{
PRINT("pid_for_task(%s, %#lx)", name_for_port(ARG1), ARG2);
PRE_REG_READ2(long, "task_for_pid", mach_port_t,"task", vki_pid_t *,"pid");
PRE_MEM_WRITE("task_for_pid(pid)", ARG2, sizeof(vki_pid_t));
}
POST(pid_for_task)
{
vki_pid_t pid;
POST_MEM_WRITE(ARG2, sizeof(vki_pid_t));
pid = *(vki_pid_t *)ARG2;
PRINT("pid %u", pid);
}
PRE(mach_timebase_info)
{
PRINT("mach_timebase_info(%#lx)", ARG1);
PRE_REG_READ1(long, "mach_timebase_info", void *,"info");
PRE_MEM_WRITE("mach_timebase_info(info)", ARG1, sizeof(struct vki_mach_timebase_info));
}
POST(mach_timebase_info)
{
POST_MEM_WRITE(ARG1, sizeof(struct vki_mach_timebase_info));
}
PRE(mach_wait_until)
{
#if VG_WORDSIZE == 8
PRINT("mach_wait_until(%lu)", ARG1);
PRE_REG_READ1(long, "mach_wait_until",
unsigned long long,"deadline");
#else
PRINT("mach_wait_until(%llu)", LOHI64(ARG1, ARG2));
PRE_REG_READ2(long, "mach_wait_until",
int,"deadline_hi", int,"deadline_lo");
#endif
*flags |= SfMayBlock;
}
PRE(mk_timer_create)
{
PRINT("mk_timer_create()");
PRE_REG_READ0(long, "mk_timer_create");
}
POST(mk_timer_create)
{
record_named_port(tid, RES, MACH_PORT_RIGHT_SEND, "mk_timer-%p");
}
PRE(mk_timer_destroy)
{
PRINT("mk_timer_destroy(%s)", name_for_port(ARG1));
PRE_REG_READ1(long, "mk_timer_destroy", mach_port_t,"name");
// Must block to prevent race (other thread allocates and
// notifies after we deallocate but before we notify)
*flags &= ~SfMayBlock;
}
POST(mk_timer_destroy)
{
// Must have cleared SfMayBlock in PRE to prevent race
record_port_destroy(ARG1);
}
PRE(mk_timer_arm)
{
#if VG_WORDSIZE == 8
PRINT("mk_timer_arm(%s, %lu)", name_for_port(ARG1), ARG2);
PRE_REG_READ2(long, "mk_timer_arm", mach_port_t,"name",
unsigned long,"expire_time");
#else
PRINT("mk_timer_arm(%s, %llu)", name_for_port(ARG1), LOHI64(ARG2, ARG3));
PRE_REG_READ3(long, "mk_timer_arm", mach_port_t,"name",
int,"expire_time_hi", int,"expire_time_lo");
#endif
}
PRE(mk_timer_cancel)
{
PRINT("mk_timer_cancel(%s, %#lx)", name_for_port(ARG1), ARG2);
PRE_REG_READ2(long, "mk_timer_cancel",
mach_port_t,"name", Addr,"result_time");
if (ARG2) {
PRE_MEM_WRITE("mk_timer_cancel(result_time)", ARG2,sizeof(vki_uint64_t));
}
}
POST(mk_timer_cancel)
{
if (ARG2) {
POST_MEM_WRITE(ARG2, sizeof(vki_uint64_t));
}
}
PRE(iokit_user_client_trap)
{
PRINT("iokit_user_client_trap(%s, %ld, %lx, %lx, %lx, %lx, %lx, %lx)",
name_for_port(ARG1), ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8);
PRE_REG_READ8(kern_return_t, "iokit_user_client_trap",
mach_port_t,connect, unsigned int,index,
uintptr_t,p1, uintptr_t,p2, uintptr_t,p3,
uintptr_t,p4, uintptr_t,p5, uintptr_t,p6);
// can't do anything else with this in general
// might be able to use connect+index to choose something sometimes
}
POST(iokit_user_client_trap)
{
ML_(sync_mappings)("after", "iokit_user_client_trap", ARG2);
}
PRE(swtch)
{
PRINT("swtch ( )");
PRE_REG_READ0(long, "swtch");
*flags |= SfMayBlock;
}
PRE(swtch_pri)
{
PRINT("swtch_pri ( %ld )", ARG1);
PRE_REG_READ1(long, "swtch_pri", int,"pri");
*flags |= SfMayBlock;
}
PRE(FAKE_SIGRETURN)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
/* This handles the fake signal-return system call created by
sigframe-x86-darwin.c. */
/* See also comments just below on PRE(sigreturn). */
PRINT("FAKE_SIGRETURN ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Remove the signal frame from this thread's (guest) stack,
in the process restoring the pre-signal guest state. */
VG_(sigframe_destroy)(tid, True);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sigreturn)
{
/* This is the "real" sigreturn. But because we construct all the
signal frames ourselves (of course, in m_sigframe), this cannot
happen as a result of normal signal delivery. I think it
happens only when doing siglongjmp, in which case Darwin's Libc
appears to use it for two different purposes: to mess with the
per-thread sigaltstack flags (as per arg 2), or to restore the
thread's state from a ucontext* (as per arg 1). */
PRINT("sigreturn ( uctx=%#lx, infostyle=%#lx )", ARG1, ARG2);
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
if (ARG2 == VKI_UC_SET_ALT_STACK) {
/* This is confusing .. the darwin kernel sources imply there is
a per-thread on-altstack/not-on-altstack flag, which is set
by this flag. Just ignore it and claim success for the time
being. */
VG_(debugLog)(0, "syswrap-darwin",
"WARNING: Ignoring sigreturn( ..., "
"UC_SET_ALT_STACK );\n");
SET_STATUS_Success(0);
return;
}
if (ARG2 == VKI_UC_RESET_ALT_STACK) {
/* Ditto */
VG_(debugLog)(0, "syswrap-darwin",
"WARNING: Ignoring sigreturn( ..., "
"UC_RESET_ALT_STACK );\n");
SET_STATUS_Success(0);
return;
}
/* Otherwise claim this isn't supported. (Could be
catastrophic).
What do we have to do if we do need to support it?
1. Change the second argument of VG_(sigframe_destroy) from
"Bool isRT" to "UInt sysno", so we can pass the syscall
number, so it can distinguish this case from the
__NR_DARWIN_FAKE_SIGRETURN case.
2. In VG_(sigframe_destroy), look at sysno to distinguish the
cases. For __NR_DARWIN_FAKE_SIGRETURN, behave as at present.
For this case, restore the thread's CPU state (or at least
the integer regs) from the ucontext in ARG1 (and do all the
other "signal-returns" stuff too).
3. For (2), how do we know where the ucontext is? One way is to
temporarily copy ARG1 into this thread's guest_EBX (or any
other int reg), and have VG_(sigframe_destroy) read
guest_EBX. Why is it ok to trash guest_EBX (or any other int
reg)? Because VG_(sigframe_destroy) is just about to
overwrite all the regs anyway -- since the primary purpose of
calling it is to restore the register state from the ucontext
pointed to by ARG1.
Hey, it's uggerly. But at least it's documented.
*/
/* But in the meantime ... */
VG_(debugLog)(0, "syswrap-darwin",
"WARNING: Ignoring sigreturn( uctx=..., 0 );\n");
VG_(debugLog)(0, "syswrap-darwin",
"WARNING: Thread/program/Valgrind "
"will likely segfault now.\n");
VG_(debugLog)(0, "syswrap-darwin",
"WARNING: Please file a bug report at "
"http://www.valgrind.org.\n");
SET_STATUS_Failure( VKI_ENOSYS );
}
/* ---------------------------------------------------------------------
machine-dependent traps
------------------------------------------------------------------ */
#if defined(VGA_x86)
static VexGuestX86SegDescr* alloc_zeroed_x86_LDT ( void )
{
Int nbytes = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr);
return VG_(arena_calloc)(VG_AR_CORE, "syswrap-darwin.ldt", nbytes, 1);
}
#endif
PRE(thread_fast_set_cthread_self)
{
PRINT("thread_fast_set_cthread_self ( %#lx )", ARG1);
PRE_REG_READ1(void, "thread_fast_set_cthread_self", struct pthread_t *, self);
#if defined(VGA_x86)
// Point the USER_CTHREAD ldt entry (slot 6, reg 0x37) at this pthread
{
VexGuestX86SegDescr *ldt;
ThreadState *tst = VG_(get_ThreadState)(tid);
ldt = (VexGuestX86SegDescr *)tst->arch.vex.guest_LDT;
if (!ldt) {
ldt = alloc_zeroed_x86_LDT();
tst->arch.vex.guest_LDT = (HWord)ldt;
}
VG_(memset)(&ldt[6], 0, sizeof(ldt[6]));
ldt[6].LdtEnt.Bits.LimitLow = 1;
ldt[6].LdtEnt.Bits.LimitHi = 0;
ldt[6].LdtEnt.Bits.BaseLow = ARG1 & 0xffff;
ldt[6].LdtEnt.Bits.BaseMid = (ARG1 >> 16) & 0xff;
ldt[6].LdtEnt.Bits.BaseHi = (ARG1 >> 24) & 0xff;
ldt[6].LdtEnt.Bits.Pres = 1; // ACC_P
ldt[6].LdtEnt.Bits.Dpl = 3; // ACC_PL_U
ldt[6].LdtEnt.Bits.Type = 0x12; // ACC_DATA_W
ldt[6].LdtEnt.Bits.Granularity = 1; // SZ_G
ldt[6].LdtEnt.Bits.Default_Big = 1; // SZ_32
tst->os_state.pthread = ARG1;
tst->arch.vex.guest_GS = 0x37;
// What we would like to do is:
// SET_STATUS_Success(0x37);
// but that doesn't work, because this is a MDEP-class syscall,
// and SET_STATUS_Success creates a UNIX-class syscall result.
// Hence we have to laboriously construct the full SysRes "by hand"
// and use that to set the syscall return status.
SET_STATUS_from_SysRes(
VG_(mk_SysRes_x86_darwin)(
VG_DARWIN_SYSNO_CLASS(__NR_thread_fast_set_cthread_self),
False, 0, 0x37
)
);
}
#elif defined(VGA_amd64)
// GrP fixme bigger hack than x86
{
ThreadState *tst = VG_(get_ThreadState)(tid);
tst->os_state.pthread = ARG1;
tst->arch.vex.guest_GS_0x60 = ARG1;
// SET_STATUS_Success(0x60);
// see comments on x86 case just above
SET_STATUS_from_SysRes(
VG_(mk_SysRes_amd64_darwin)(
VG_DARWIN_SYSNO_CLASS(__NR_thread_fast_set_cthread_self),
False, 0, 0x60
)
);
}
#else
#error unknown architecture
#endif
}
/* ---------------------------------------------------------------------
Added for OSX 10.7 (Lion)
------------------------------------------------------------------ */
#if DARWIN_VERS >= DARWIN_10_7
PRE(getaudit_addr)
{
PRINT("getaudit_addr(%#lx, %lu)", ARG1, ARG2);
PRE_REG_READ1(void*, "auditinfo_addr", int, "length");
PRE_MEM_WRITE("getaudit_addr(auditinfo_addr)", ARG1, ARG2);
}
POST(getaudit_addr)
{
POST_MEM_WRITE(ARG1, ARG2);
}
PRE(psynch_mutexwait)
{
PRINT("psynch_mutexwait(BOGUS)");
*flags |= SfMayBlock;
}
POST(psynch_mutexwait)
{
}
PRE(psynch_mutexdrop)
{
PRINT("psynch_mutexdrop(BOGUS)");
*flags |= SfMayBlock;
}
POST(psynch_mutexdrop)
{
}
PRE(psynch_cvbroad)
{
PRINT("psynch_cvbroad(BOGUS)");
}
POST(psynch_cvbroad)
{
}
PRE(psynch_cvsignal)
{
PRINT("psynch_cvsignal(BOGUS)");
}
POST(psynch_cvsignal)
{
}
PRE(psynch_cvwait)
{
PRINT("psynch_cvwait(BOGUS)");
*flags |= SfMayBlock;
}
POST(psynch_cvwait)
{
}
PRE(psynch_rw_rdlock)
{
PRINT("psynch_rw_rdlock(BOGUS)");
*flags |= SfMayBlock;
}
POST(psynch_rw_rdlock)
{
}
PRE(psynch_rw_wrlock)
{
PRINT("psynch_rw_wrlock(BOGUS)");
*flags |= SfMayBlock;
}
POST(psynch_rw_wrlock)
{
}
PRE(psynch_rw_unlock)
{
PRINT("psynch_rw_unlock(BOGUS)");
}
POST(psynch_rw_unlock)
{
}
PRE(psynch_cvclrprepost)
{
PRINT("psynch_cvclrprepost(BOGUS)");
*flags |= SfMayBlock;
}
POST(psynch_cvclrprepost)
{
}
#endif /* DARWIN_VERS >= DARWIN_10_7 */
/* ---------------------------------------------------------------------
Added for OSX 10.8 (Mountain Lion)
------------------------------------------------------------------ */
#if DARWIN_VERS >= DARWIN_10_8
PRE(mach__10)
{
PRINT("mach__10(FIXME,ARGUMENTS_UNKNOWN)");
}
POST(mach__10)
{
ML_(sync_mappings)("after", "mach__10", 0);
}
PRE(mach__12)
{
PRINT("mach__12(FIXME,ARGUMENTS_UNKNOWN)");
}
POST(mach__12)
{
ML_(sync_mappings)("after", "mach__12", 0);
}
PRE(mach__14)
{
PRINT("mach__14(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__16)
{
PRINT("mach__16(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__17)
{
PRINT("mach__17(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__18)
{
PRINT("mach__18(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__19)
{
PRINT("mach__19(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__20)
{
PRINT("mach__20(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__21)
{
PRINT("mach__21(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__22)
{
PRINT("mach__22(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(mach__23)
{
PRINT("mach__23(FIXME,ARGUMENTS_UNKNOWN)");
}
PRE(iopolicysys)
{
PRINT("iopolicysys(FIXME)(0x%lx, 0x%lx, 0x%lx)", ARG1, ARG2, ARG3);
/* mem effects unknown */
}
POST(iopolicysys)
{
}
#endif /* DARWIN_VERS >= DARWIN_10_8 */
/* ---------------------------------------------------------------------
syscall tables
------------------------------------------------------------------ */
/* Add a Darwin-specific, arch-independent wrapper to a syscall table. */
#define MACX_(sysno, name) WRAPPER_ENTRY_X_(darwin, VG_DARWIN_SYSNO_INDEX(sysno), name)
#define MACXY(sysno, name) WRAPPER_ENTRY_XY(darwin, VG_DARWIN_SYSNO_INDEX(sysno), name)
#define _____(sysno) GENX_(sysno, sys_ni_syscall) /* UNIX style only */
/*
_____ : unsupported by the kernel (sys_ni_syscall) (UNIX-style only)
unfortunately misused for Mach too, causing assertion failures
// _____ : unimplemented in valgrind
GEN : handlers are in syswrap-generic.c
MAC : handlers are in this file
X_ : PRE handler only
XY : PRE and POST handlers
*/
const SyscallTableEntry ML_(syscall_table)[] = {
// _____(__NR_syscall), // 0
MACX_(__NR_exit, exit),
GENX_(__NR_fork, sys_fork),
GENXY(__NR_read, sys_read),
GENX_(__NR_write, sys_write),
GENXY(__NR_open, sys_open),
GENXY(__NR_close, sys_close),
GENXY(__NR_wait4, sys_wait4),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(8)), // old creat
GENX_(__NR_link, sys_link),
GENX_(__NR_unlink, sys_unlink),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(11)), // old execv
GENX_(__NR_chdir, sys_chdir),
GENX_(__NR_fchdir, sys_fchdir),
GENX_(__NR_mknod, sys_mknod),
GENX_(__NR_chmod, sys_chmod),
GENX_(__NR_chown, sys_chown),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(17)), // old break
MACXY(__NR_getfsstat, getfsstat),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(19)), // old lseek
GENX_(__NR_getpid, sys_getpid), // 20
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(21)), // old mount
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(22)), // old umount
GENX_(__NR_setuid, sys_setuid),
GENX_(__NR_getuid, sys_getuid),
GENX_(__NR_geteuid, sys_geteuid),
MACX_(__NR_ptrace, ptrace),
MACXY(__NR_recvmsg, recvmsg),
MACX_(__NR_sendmsg, sendmsg),
MACXY(__NR_recvfrom, recvfrom),
MACXY(__NR_accept, accept),
MACXY(__NR_getpeername, getpeername),
MACXY(__NR_getsockname, getsockname),
GENX_(__NR_access, sys_access),
MACX_(__NR_chflags, chflags),
MACX_(__NR_fchflags, fchflags),
GENX_(__NR_sync, sys_sync),
GENX_(__NR_kill, sys_kill),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(38)), // old stat
GENX_(__NR_getppid, sys_getppid),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(40)), // old lstat
GENXY(__NR_dup, sys_dup),
MACXY(__NR_pipe, pipe),
GENX_(__NR_getegid, sys_getegid),
// _____(__NR_profil),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(45)), // old ktrace
MACXY(__NR_sigaction, sigaction),
GENX_(__NR_getgid, sys_getgid),
MACXY(__NR_sigprocmask, sigprocmask),
MACXY(__NR_getlogin, getlogin),
// _____(__NR_setlogin),
// _____(__NR_acct),
MACXY(__NR_sigpending, sigpending),
GENXY(__NR_sigaltstack, sys_sigaltstack),
MACXY(__NR_ioctl, ioctl),
// _____(__NR_reboot),
// _____(__NR_revoke),
GENX_(__NR_symlink, sys_symlink), // 57
GENX_(__NR_readlink, sys_readlink),
GENX_(__NR_execve, sys_execve),
GENX_(__NR_umask, sys_umask), // 60
GENX_(__NR_chroot, sys_chroot),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(62)), // old fstat
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(63)), // used internally, reserved
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(64)), // old getpagesize
GENX_(__NR_msync, sys_msync),
GENX_(__NR_vfork, sys_fork), // (We treat vfork as fork.)
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(67)), // old vread
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(68)), // old vwrite
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(69)), // old sbrk
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(70)), // old sstk
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(71)), // old mmap
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(72)), // old vadvise
GENXY(__NR_munmap, sys_munmap),
GENXY(__NR_mprotect, sys_mprotect),
GENX_(__NR_madvise, sys_madvise),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(76)), // old vhangup
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(77)), // old vlimit
GENXY(__NR_mincore, sys_mincore),
GENXY(__NR_getgroups, sys_getgroups),
// _____(__NR_setgroups), // 80
GENX_(__NR_getpgrp, sys_getpgrp),
GENX_(__NR_setpgid, sys_setpgid),
GENXY(__NR_setitimer, sys_setitimer),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(84)), // old wait
// _____(__NR_swapon),
GENXY(__NR_getitimer, sys_getitimer),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(87)), // old gethostname
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(88)), // old sethostname
MACXY(__NR_getdtablesize, getdtablesize),
GENXY(__NR_dup2, sys_dup2),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(91)), // old getdopt
MACXY(__NR_fcntl, fcntl),
GENX_(__NR_select, sys_select),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(94)), // old setdopt
GENX_(__NR_fsync, sys_fsync),
GENX_(__NR_setpriority, sys_setpriority),
MACXY(__NR_socket, socket),
MACX_(__NR_connect, connect),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(99)), // old accept
GENX_(__NR_getpriority, sys_getpriority), // 100
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(101)), // old send
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(102)), // old recv
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(103)), // old sigreturn
MACX_(__NR_bind, bind),
MACX_(__NR_setsockopt, setsockopt),
MACX_(__NR_listen, listen),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(107)), // old vtimes
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(108)), // old sigvec
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(109)), // old sigblock
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(110)), // old sigsetmask
MACX_(__NR_sigsuspend, sigsuspend), // old sigsuspend
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(112)), // old sigstack
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(113)), // old recvmsg
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(114)), // old sendmsg
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(115)), // old vtrace
GENXY(__NR_gettimeofday, sys_gettimeofday),
GENXY(__NR_getrusage, sys_getrusage),
MACXY(__NR_getsockopt, getsockopt),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(119)), // old resuba
GENXY(__NR_readv, sys_readv), // 120
GENX_(__NR_writev, sys_writev),
// _____(__NR_settimeofday),
GENX_(__NR_fchown, sys_fchown),
GENX_(__NR_fchmod, sys_fchmod),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(125)), // old recvfrom
// _____(__NR_setreuid),
// _____(__NR_setregid),
GENX_(__NR_rename, sys_rename),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(129)), // old truncate
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(130)), // old ftruncate
GENX_(__NR_flock, sys_flock),
// _____(__NR_mkfifo),
MACX_(__NR_sendto, sendto),
MACX_(__NR_shutdown, shutdown),
MACXY(__NR_socketpair, socketpair),
GENX_(__NR_mkdir, sys_mkdir),
GENX_(__NR_rmdir, sys_rmdir),
GENX_(__NR_utimes, sys_utimes),
MACX_(__NR_futimes, futimes),
// _____(__NR_adjtime), // 140
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(141)), // old getpeername
MACXY(__NR_gethostuuid, gethostuuid),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(143)), // old sethostid
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(144)), // old getrlimit
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(145)), // old setrlimit
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(146)), // old killpg
GENX_(__NR_setsid, sys_setsid),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(148)), // old setquota
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(149)), // old qquota
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(150)), // old getsockname
// _____(__NR_getpgid),
// _____(__NR_setprivexec),
GENXY(__NR_pread, sys_pread64),
GENX_(__NR_pwrite, sys_pwrite64),
// _____(__NR_nfssvc),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(156)), // old getdirentries
GENXY(__NR_statfs, sys_statfs),
GENXY(__NR_fstatfs, sys_fstatfs),
// _____(__NR_unmount),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(160)), // old async_daemon
// _____(__NR_getfh),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(162)), // old getdomainname
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(163)), // old setdomainname
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(164)), // ???
// _____(__NR_quotactl),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(166)), // old exportfs
MACX_(__NR_mount, mount),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(168)), // old ustat
MACXY(__NR_csops, csops), // code-signing ops
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(170)), // old table
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(171)), // old wait3
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(172)), // old rpause
// _____(__NR_waitid),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(174)), // old getdents
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(175)), // old gc_control
// _____(__NR_add_profil),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(177)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(178)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(179)), // ???
MACX_(__NR_kdebug_trace, kdebug_trace), // 180
GENX_(__NR_setgid, sys_setgid),
MACX_(__NR_setegid, setegid),
MACX_(__NR_seteuid, seteuid),
MACX_(__NR_sigreturn, sigreturn),
// _____(__NR_chud),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(186)), // ???
#if DARWIN_VERS >= DARWIN_10_6
// _____(__NR_fdatasync),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(187)), // ???
#endif
GENXY(__NR_stat, sys_newstat),
GENXY(__NR_fstat, sys_newfstat),
GENXY(__NR_lstat, sys_newlstat),
MACX_(__NR_pathconf, pathconf),
MACX_(__NR_fpathconf, fpathconf),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(193)), // ???
GENXY(__NR_getrlimit, sys_getrlimit),
GENX_(__NR_setrlimit, sys_setrlimit),
MACXY(__NR_getdirentries, getdirentries),
MACXY(__NR_mmap, mmap),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(198)), // __syscall
MACX_(__NR_lseek, lseek),
GENX_(__NR_truncate, sys_truncate64), // 200
GENX_(__NR_ftruncate, sys_ftruncate64),
MACXY(__NR___sysctl, __sysctl),
GENX_(__NR_mlock, sys_mlock),
GENX_(__NR_munlock, sys_munlock),
// _____(__NR_undelete),
// _____(__NR_ATsocket),
// _____(__NR_ATgetmsg),
// _____(__NR_ATputmsg),
// _____(__NR_ATPsndreq),
// _____(__NR_ATPsndrsp),
// _____(__NR_ATPgetreq),
// _____(__NR_ATPgetrsp),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(213)), // Reserved for AppleTalk
#if DARWIN_VERS >= DARWIN_10_6
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(214)), // old kqueue_from_portset_np
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(215)), // old kqueue_portset_np
#else
// _____(__NR_kqueue_from_portset_np),
// _____(__NR_kqueue_portset_np),
#endif
// _____(__NR_mkcomplex),
// _____(__NR_statv),
// _____(__NR_lstatv),
// _____(__NR_fstatv),
MACXY(__NR_getattrlist, getattrlist), // 220
MACX_(__NR_setattrlist, setattrlist),
MACXY(__NR_getdirentriesattr, getdirentriesattr),
MACX_(__NR_exchangedata, exchangedata),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(224)), // checkuseraccess
// _____(__NR_searchfs),
GENX_(__NR_delete, sys_unlink),
// _____(__NR_copyfile),
#if DARWIN_VERS >= DARWIN_10_6
// _____(__NR_fgetattrlist),
// _____(__NR_fsetattrlist),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(228)), // ??
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(229)), // ??
#endif
GENXY(__NR_poll, sys_poll),
MACX_(__NR_watchevent, watchevent),
MACXY(__NR_waitevent, waitevent),
MACX_(__NR_modwatch, modwatch),
MACXY(__NR_getxattr, getxattr),
MACXY(__NR_fgetxattr, fgetxattr),
MACX_(__NR_setxattr, setxattr),
MACX_(__NR_fsetxattr, fsetxattr),
MACX_(__NR_removexattr, removexattr),
MACX_(__NR_fremovexattr, fremovexattr),
MACXY(__NR_listxattr, listxattr), // 240
MACXY(__NR_flistxattr, flistxattr),
MACXY(__NR_fsctl, fsctl),
MACX_(__NR_initgroups, initgroups),
MACXY(__NR_posix_spawn, posix_spawn),
#if DARWIN_VERS >= DARWIN_10_6
// _____(__NR_ffsctl),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(245)), // ???
#endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(246)), // ???
// _____(__NR_nfsclnt),
// _____(__NR_fhopen),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(249)), // ???
// _____(__NR_minherit),
// _____(__NR_semsys),
// _____(__NR_msgsys),
// _____(__NR_shmsys),
MACXY(__NR_semctl, semctl),
MACX_(__NR_semget, semget),
MACX_(__NR_semop, semop),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(257)), // ???
// _____(__NR_msgctl),
// _____(__NR_msgget),
// _____(__NR_msgsnd), // 260
// _____(__NR_msgrcv),
MACXY(__NR_shmat, shmat),
MACXY(__NR_shmctl, shmctl),
MACXY(__NR_shmdt, shmdt),
MACX_(__NR_shmget, shmget),
MACXY(__NR_shm_open, shm_open),
MACXY(__NR_shm_unlink, shm_unlink),
MACX_(__NR_sem_open, sem_open),
MACX_(__NR_sem_close, sem_close),
MACX_(__NR_sem_unlink, sem_unlink),
MACX_(__NR_sem_wait, sem_wait),
MACX_(__NR_sem_trywait, sem_trywait),
MACX_(__NR_sem_post, sem_post),
// _____(__NR_sem_getvalue),
MACXY(__NR_sem_init, sem_init),
MACX_(__NR_sem_destroy, sem_destroy),
MACX_(__NR_open_extended, open_extended), // 277
// _____(__NR_umask_extended),
MACXY(__NR_stat_extended, stat_extended),
MACXY(__NR_lstat_extended, lstat_extended), // 280
MACXY(__NR_fstat_extended, fstat_extended),
MACX_(__NR_chmod_extended, chmod_extended),
MACX_(__NR_fchmod_extended,fchmod_extended),
MACXY(__NR_access_extended,access_extended),
MACX_(__NR_settid, settid),
#if DARWIN_VERS >= DARWIN_10_8
MACX_(__NR_gettid, gettid), // 286
#endif
// _____(__NR_setsgroups),
// _____(__NR_getsgroups),
// _____(__NR_setwgroups),
// _____(__NR_getwgroups),
// _____(__NR_mkfifo_extended),
// _____(__NR_mkdir_extended),
// _____(__NR_identitysvc),
// _____(__NR_shared_region_check_np),
// _____(__NR_shared_region_map_np),
#if DARWIN_VERS >= DARWIN_10_6
// _____(__NR_vm_pressure_monitor),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(296)), // old load_shared_file
#endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(297)), // old reset_shared_file
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(298)), // old new_system_shared_regions
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(299)), // old shared_region_map_file_np
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(300)), // old shared_region_make_private_np
MACXY(__NR_psynch_mutexwait, psynch_mutexwait), // 301
MACXY(__NR_psynch_mutexdrop, psynch_mutexdrop), // 302
MACXY(__NR_psynch_cvbroad, psynch_cvbroad), // 303
MACXY(__NR_psynch_cvsignal, psynch_cvsignal), // 304
MACXY(__NR_psynch_cvwait, psynch_cvwait), // 305
MACXY(__NR_psynch_rw_rdlock, psynch_rw_rdlock), // 306
MACXY(__NR_psynch_rw_wrlock, psynch_rw_wrlock), // 307
MACXY(__NR_psynch_rw_unlock, psynch_rw_unlock), // 308
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(309)), // ???
// _____(__NR_getsid),
// _____(__NR_settid_with_pid),
MACXY(__NR_psynch_cvclrprepost, psynch_cvclrprepost), // 312
// _____(__NR_aio_fsync),
MACXY(__NR_aio_return, aio_return),
MACX_(__NR_aio_suspend, aio_suspend),
// _____(__NR_aio_cancel),
MACX_(__NR_aio_error, aio_error),
MACXY(__NR_aio_read, aio_read),
MACX_(__NR_aio_write, aio_write),
// _____(__NR_lio_listio), // 320
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(321)), // ???
#if DARWIN_VERS >= DARWIN_10_8
MACXY(__NR_iopolicysys, iopolicysys),
#endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(323)), // ???
// _____(__NR_mlockall),
// _____(__NR_munlockall),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(326)), // ???
MACX_(__NR_issetugid, issetugid),
MACX_(__NR___pthread_kill, __pthread_kill),
MACX_(__NR___pthread_sigmask, __pthread_sigmask),
// _____(__NR___sigwait),
MACX_(__NR___disable_threadsignal, __disable_threadsignal),
MACX_(__NR___pthread_markcancel, __pthread_markcancel),
MACX_(__NR___pthread_canceled, __pthread_canceled),
MACX_(__NR___semwait_signal, __semwait_signal),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(335)), // old utrace
#if DARWIN_VERS >= DARWIN_10_6
MACXY(__NR_proc_info, proc_info), // 336
#endif
MACXY(__NR_sendfile, sendfile),
MACXY(__NR_stat64, stat64),
MACXY(__NR_fstat64, fstat64),
MACXY(__NR_lstat64, lstat64), // 340
MACXY(__NR_stat64_extended, stat64_extended),
MACXY(__NR_lstat64_extended, lstat64_extended),
MACXY(__NR_fstat64_extended, fstat64_extended),
MACXY(__NR_getdirentries64, getdirentries64),
MACXY(__NR_statfs64, statfs64),
MACXY(__NR_fstatfs64, fstatfs64),
MACXY(__NR_getfsstat64, getfsstat64),
// _____(__NR___pthread_chdir),
// _____(__NR___pthread_fchdir),
// _____(__NR_audit),
MACXY(__NR_auditon, auditon),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(352)), // ???
// _____(__NR_getauid),
// _____(__NR_setauid),
// _____(__NR_getaudit),
// _____(__NR_setaudit),
#if DARWIN_VERS >= DARWIN_10_7
MACXY(__NR_getaudit_addr, getaudit_addr),
#endif
// _____(__NR_setaudit_addr),
// _____(__NR_auditctl),
MACXY(__NR_bsdthread_create, bsdthread_create), // 360
MACX_(__NR_bsdthread_terminate, bsdthread_terminate),
MACXY(__NR_kqueue, kqueue),
MACXY(__NR_kevent, kevent),
GENX_(__NR_lchown, sys_lchown),
// _____(__NR_stack_snapshot),
MACX_(__NR_bsdthread_register, bsdthread_register),
MACX_(__NR_workq_open, workq_open),
MACXY(__NR_workq_ops, workq_ops),
#if DARWIN_VERS >= DARWIN_10_6
// _____(__NR_kevent64),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(369)), // ???
#endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(370)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(371)), // ???
#if DARWIN_VERS >= DARWIN_10_6
MACX_(__NR___thread_selfid, __thread_selfid),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(372)), // ???
#endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(373)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(374)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(375)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(376)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(377)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(378)), // ???
_____(VG_DARWIN_SYSCALL_CONSTRUCT_UNIX(379)), // ???
// _____(__NR___mac_execve), // 380
MACX_(__NR___mac_syscall, __mac_syscall),
// _____(__NR___mac_get_file),
// _____(__NR___mac_set_file),
// _____(__NR___mac_get_link),
// _____(__NR___mac_set_link),
// _____(__NR___mac_get_proc),
// _____(__NR___mac_set_proc),
// _____(__NR___mac_get_fd),
// _____(__NR___mac_set_fd),
// _____(__NR___mac_get_pid),
// _____(__NR___mac_get_lcid),
// _____(__NR___mac_get_lctx),
// _____(__NR___mac_set_lctx),
// _____(__NR_setlcid),
// _____(__NR_getlcid),
// GrP fixme need any special nocancel handling?
GENXY(__NR_read_nocancel, sys_read),
GENX_(__NR_write_nocancel, sys_write),
GENXY(__NR_open_nocancel, sys_open),
GENXY(__NR_close_nocancel, sys_close),
GENXY(__NR_wait4_nocancel, sys_wait4), // 400
MACXY(__NR_recvmsg_nocancel, recvmsg),
MACX_(__NR_sendmsg_nocancel, sendmsg),
MACXY(__NR_recvfrom_nocancel, recvfrom),
MACXY(__NR_accept_nocancel, accept),
GENX_(__NR_msync_nocancel, sys_msync),
MACXY(__NR_fcntl_nocancel, fcntl),
GENX_(__NR_select_nocancel, sys_select),
GENX_(__NR_fsync_nocancel, sys_fsync),
MACX_(__NR_connect_nocancel, connect),
// _____(__NR_sigsuspend_nocancel),
GENXY(__NR_readv_nocancel, sys_readv),
GENX_(__NR_writev_nocancel, sys_writev),
MACX_(__NR_sendto_nocancel, sendto),
GENXY(__NR_pread_nocancel, sys_pread64),
GENX_(__NR_pwrite_nocancel, sys_pwrite64),
// _____(__NR_waitid_nocancel),
GENXY(__NR_poll_nocancel, sys_poll),
// _____(__NR_msgsnd_nocancel),
// _____(__NR_msgrcv_nocancel),
MACX_(__NR_sem_wait_nocancel, sem_wait), // 420
// _____(__NR_aio_suspend_nocancel),
// _____(__NR___sigwait_nocancel),
MACX_(__NR___semwait_signal_nocancel, __semwait_signal),
// _____(__NR___mac_mount),
// _____(__NR___mac_get_mount),
// _____(__NR___mac_getfsstat),
#if DARWIN_VERS >= DARWIN_10_6
MACXY(__NR_fsgetpath, fsgetpath),
MACXY(__NR_audit_session_self, audit_session_self),
// _____(__NR_audit_session_join),
#endif
// _____(__NR_MAXSYSCALL)
MACX_(__NR_DARWIN_FAKE_SIGRETURN, FAKE_SIGRETURN)
};
// Mach traps use negative syscall numbers.
// Use ML_(mach_trap_table)[-mach_trap_number] .
const SyscallTableEntry ML_(mach_trap_table)[] = {
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(0)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(1)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(2)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(3)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(4)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(5)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(6)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(7)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(8)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(9)),
# if DARWIN_VERS >= DARWIN_10_8
MACXY(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(10), mach__10),
# else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(10)),
# endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(11)),
# if DARWIN_VERS >= DARWIN_10_8
MACXY(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(12), mach__12),
# else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(12)),
# endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(13)),
# if DARWIN_VERS >= DARWIN_10_8
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(14), mach__14),
# else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(14)),
# endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(15)),
# if DARWIN_VERS >= DARWIN_10_8
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(16), mach__16),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(17), mach__17),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(18), mach__18),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(19), mach__19),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(20), mach__20),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(21), mach__21),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(22), mach__22),
MACX_(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(23), mach__23),
# else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(16)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(17)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(18)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(19)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(20)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(21)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(22)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(23)),
# endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(24)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(25)),
MACXY(__NR_mach_reply_port, mach_reply_port),
MACXY(__NR_thread_self_trap, mach_thread_self),
MACXY(__NR_task_self_trap, mach_task_self),
MACXY(__NR_host_self_trap, mach_host_self),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(30)),
MACXY(__NR_mach_msg_trap, mach_msg),
// _____(__NR_mach_msg_overwrite_trap),
MACX_(__NR_semaphore_signal_trap, semaphore_signal),
MACX_(__NR_semaphore_signal_all_trap, semaphore_signal_all),
MACX_(__NR_semaphore_signal_thread_trap, semaphore_signal_thread),
MACX_(__NR_semaphore_wait_trap, semaphore_wait),
MACX_(__NR_semaphore_wait_signal_trap, semaphore_wait_signal),
MACX_(__NR_semaphore_timedwait_trap, semaphore_timedwait),
MACX_(__NR_semaphore_timedwait_signal_trap, semaphore_timedwait_signal),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(40)), // -40
#if defined(VGA_x86)
// _____(__NR_init_process),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(42)),
// _____(__NR_map_fd),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(41)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(42)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(43)),
#endif
// _____(__NR_task_name_for_pid),
MACXY(__NR_task_for_pid, task_for_pid),
MACXY(__NR_pid_for_task, pid_for_task),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(47)),
#if defined(VGA_x86)
// _____(__NR_macx_swapon),
// _____(__NR_macx_swapoff),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(50)),
// _____(__NR_macx_triggers),
// _____(__NR_macx_backing_store_suspend),
// _____(__NR_macx_backing_store_recovery),
#else
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(48)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(49)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(50)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(51)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(52)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(53)),
#endif
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(54)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(55)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(56)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(57)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(58)),
MACX_(__NR_swtch_pri, swtch_pri),
MACX_(__NR_swtch, swtch), // -60
MACX_(__NR_syscall_thread_switch, syscall_thread_switch),
// _____(__NR_clock_sleep_trap),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(63)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(64)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(65)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(66)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(67)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(68)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(69)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(70)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(71)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(72)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(73)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(74)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(75)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(76)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(77)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(78)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(79)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(80)), // -80
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(81)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(82)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(83)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(84)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(85)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(86)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(87)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(88)),
MACXY(__NR_mach_timebase_info, mach_timebase_info),
MACX_(__NR_mach_wait_until, mach_wait_until),
MACXY(__NR_mk_timer_create, mk_timer_create),
MACXY(__NR_mk_timer_destroy, mk_timer_destroy),
MACX_(__NR_mk_timer_arm, mk_timer_arm),
MACXY(__NR_mk_timer_cancel, mk_timer_cancel),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(95)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(96)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(97)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(98)),
_____(VG_DARWIN_SYSCALL_CONSTRUCT_MACH(99)),
MACXY(__NR_iokit_user_client_trap, iokit_user_client_trap), // -100
};
// Machine-dependent traps have wacky syscall numbers, and use the Mach trap
// calling convention instead of the syscall convention.
// Use ML_(mdep_trap_table)[syscallno - ML_(mdep_trap_base)] .
#if defined(VGA_x86)
const SyscallTableEntry ML_(mdep_trap_table)[] = {
MACX_(__NR_thread_fast_set_cthread_self, thread_fast_set_cthread_self),
};
#elif defined(VGA_amd64)
const SyscallTableEntry ML_(mdep_trap_table)[] = {
MACX_(__NR_thread_fast_set_cthread_self, thread_fast_set_cthread_self),
};
#else
#error unknown architecture
#endif
const UInt ML_(syscall_table_size) =
sizeof(ML_(syscall_table)) / sizeof(ML_(syscall_table)[0]);
const UInt ML_(mach_trap_table_size) =
sizeof(ML_(mach_trap_table)) / sizeof(ML_(mach_trap_table)[0]);
const UInt ML_(mdep_trap_table_size) =
sizeof(ML_(mdep_trap_table)) / sizeof(ML_(mdep_trap_table)[0]);
#endif // defined(VGO_darwin)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/