blob: a3119deaf15d87f2b55c4f3fcbd070998317e16e [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Client-space code for DRD. drd_pthread_intercepts.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of DRD, a thread error detector.
Copyright (C) 2006-2013 Bart Van Assche <bvanassche@acm.org>.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
/* ---------------------------------------------------------------------
ALL THE CODE IN THIS FILE RUNS ON THE SIMULATED CPU.
These functions are not called directly - they're the targets of code
redirection or load notifications (see pub_core_redir.h for info).
They're named weirdly so that the intercept code can find them when the
shared object is initially loaded.
Note that this filename has the "drd_" prefix because it can appear
in stack traces, and the "drd_" makes it a little clearer that it
originates from Valgrind.
------------------------------------------------------------------ */
/*
* Define _GNU_SOURCE to make sure that pthread_spinlock_t is available when
* compiling with older glibc versions (2.3 or before).
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <assert.h> /* assert() */
#include <errno.h>
#include <pthread.h> /* pthread_mutex_t */
#include <semaphore.h> /* sem_t */
#include <stdint.h> /* uintptr_t */
#include <stdio.h> /* fprintf() */
#include <stdlib.h> /* malloc(), free() */
#include <unistd.h> /* confstr() */
#include "config.h" /* HAVE_PTHREAD_MUTEX_ADAPTIVE_NP etc. */
#ifdef HAVE_USABLE_LINUX_FUTEX_H
#include <asm/unistd.h> /* __NR_futex */
#include <linux/futex.h> /* FUTEX_WAIT */
#ifndef FUTEX_PRIVATE_FLAG
#define FUTEX_PRIVATE_FLAG 0
#endif
#endif
#include "drd_basics.h" /* DRD_() */
#include "drd_clientreq.h"
#include "pub_tool_redir.h" /* VG_WRAP_FUNCTION_ZZ() */
/*
* Notes regarding thread creation:
* - sg_init() runs on the context of the created thread and copies the vector
* clock of the creator thread. This only works reliably if the creator
* thread waits until this copy has been performed.
* - DRD_(thread_compute_minimum_vc)() does not take the vector clocks into
* account that are involved in thread creation and for which the
* corresponding thread has not yet been created. So not waiting until the
* created thread has been started would make it possible that segments get
* discarded that should not yet be discarded. Or: some data races are not
* detected.
*/
/**
* Macro for generating a Valgrind interception function.
* @param[in] ret_ty Return type of the function to be generated.
* @param[in] zf Z-encoded name of the interception function.
* @param[in] implf Name of the function that implements the intercept.
* @param[in] arg_decl Argument declaration list enclosed in parentheses.
* @param[in] argl Argument list enclosed in parentheses.
*/
#ifdef VGO_darwin
static int never_true;
#define PTH_FUNC(ret_ty, zf, implf, argl_decl, argl) \
ret_ty VG_WRAP_FUNCTION_ZZ(VG_Z_LIBPTHREAD_SONAME,zf) argl_decl; \
ret_ty VG_WRAP_FUNCTION_ZZ(VG_Z_LIBPTHREAD_SONAME,zf) argl_decl \
{ \
ret_ty pth_func_result = implf argl; \
/* Apparently inserting a function call in wrapper functions */ \
/* is sufficient to avoid misaligned stack errors. */ \
if (never_true) \
fflush(stdout); \
return pth_func_result; \
}
#else
#define PTH_FUNC(ret_ty, zf, implf, argl_decl, argl) \
ret_ty VG_WRAP_FUNCTION_ZZ(VG_Z_LIBPTHREAD_SONAME,zf) argl_decl; \
ret_ty VG_WRAP_FUNCTION_ZZ(VG_Z_LIBPTHREAD_SONAME,zf) argl_decl \
{ return implf argl; }
#endif
/**
* Macro for generating three Valgrind interception functions: one with the
* Z-encoded name zf, one with ZAZa ("@*") appended to the name zf and one
* with ZDZa ("$*") appended to the name zf. The second generated interception
* function will intercept versioned symbols on Linux, and the third will
* intercept versioned symbols on Darwin.
*/
#define PTH_FUNCS(ret_ty, zf, implf, argl_decl, argl) \
PTH_FUNC(ret_ty, zf, implf, argl_decl, argl); \
PTH_FUNC(ret_ty, zf ## ZAZa, implf, argl_decl, argl); \
PTH_FUNC(ret_ty, zf ## ZDZa, implf, argl_decl, argl);
/*
* Not inlining one of the intercept functions will cause the regression
* tests to fail because this would cause an additional stackfram to appear
* in the output. The __always_inline macro guarantees that inlining will
* happen, even when compiling with optimization disabled.
*/
#undef __always_inline /* since already defined in <cdefs.h> */
#if __GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 2
#define __always_inline __inline__ __attribute__((always_inline))
#else
#define __always_inline __inline__
#endif
/* Local data structures. */
typedef struct {
pthread_mutex_t mutex;
int counter;
int waiters;
} DrdSema;
typedef struct
{
void* (*start)(void*);
void* arg;
int detachstate;
DrdSema* wrapper_started;
} DrdPosixThreadArgs;
/* Local function declarations. */
static void DRD_(init)(void) __attribute__((constructor));
static void DRD_(check_threading_library)(void);
static void DRD_(set_main_thread_state)(void);
static void DRD_(sema_init)(DrdSema* sema);
static void DRD_(sema_destroy)(DrdSema* sema);
static void DRD_(sema_down)(DrdSema* sema);
static void DRD_(sema_up)(DrdSema* sema);
/* Function definitions. */
/**
* Shared library initialization function. The function init() is called after
* dlopen() has loaded the shared library with DRD client intercepts because
* the constructor attribute was specified in the declaration of this function.
* Note: do specify the -nostdlib option to gcc when linking this code into a
* shared library because doing so would cancel the effect of the constructor
* attribute ! Using the gcc option -nodefaultlibs is fine because this last
* option preserves the shared library initialization code that calls
* constructor and destructor functions.
*/
static void DRD_(init)(void)
{
DRD_(check_threading_library)();
DRD_(set_main_thread_state)();
}
static __always_inline void DRD_(ignore_mutex_ordering)(pthread_mutex_t *mutex)
{
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__DRD_IGNORE_MUTEX_ORDERING,
mutex, 0, 0, 0, 0);
}
static void DRD_(sema_init)(DrdSema* sema)
{
DRD_IGNORE_VAR(*sema);
pthread_mutex_init(&sema->mutex, NULL);
DRD_(ignore_mutex_ordering)(&sema->mutex);
sema->counter = 0;
sema->waiters = 0;
}
static void DRD_(sema_destroy)(DrdSema* sema)
{
pthread_mutex_destroy(&sema->mutex);
}
static void DRD_(sema_down)(DrdSema* sema)
{
int res = ENOSYS;
pthread_mutex_lock(&sema->mutex);
if (sema->counter == 0) {
sema->waiters++;
while (sema->counter == 0) {
pthread_mutex_unlock(&sema->mutex);
#ifdef HAVE_USABLE_LINUX_FUTEX_H
if (syscall(__NR_futex, (UWord)&sema->counter,
FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0) == 0)
res = 0;
else
res = errno;
#endif
/*
* Invoke sched_yield() on non-Linux systems, if the futex syscall has
* not been invoked or if this code has been built on a Linux system
* where __NR_futex is defined and is run on a Linux system that does
* not support the futex syscall.
*/
if (res != 0 && res != EWOULDBLOCK)
sched_yield();
pthread_mutex_lock(&sema->mutex);
}
sema->waiters--;
}
sema->counter--;
pthread_mutex_unlock(&sema->mutex);
}
static void DRD_(sema_up)(DrdSema* sema)
{
pthread_mutex_lock(&sema->mutex);
sema->counter++;
#ifdef HAVE_USABLE_LINUX_FUTEX_H
if (sema->waiters > 0)
syscall(__NR_futex, (UWord)&sema->counter,
FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1);
#endif
pthread_mutex_unlock(&sema->mutex);
}
/**
* POSIX threads and DRD each have their own mutex type identification.
* Convert POSIX threads' mutex type to DRD's mutex type. In the code below
* if-statements are used to test the value of 'kind' instead of a switch
* statement because some of the PTHREAD_MUTEX_ macro's may have the same
* value.
*/
static MutexT DRD_(pthread_to_drd_mutex_type)(int kind)
{
/*
* See also PTHREAD_MUTEX_KIND_MASK_NP in glibc source file
* <nptl/pthreadP.h>.
*/
kind &= PTHREAD_MUTEX_RECURSIVE | PTHREAD_MUTEX_ERRORCHECK |
PTHREAD_MUTEX_NORMAL | PTHREAD_MUTEX_DEFAULT;
if (kind == PTHREAD_MUTEX_RECURSIVE)
return mutex_type_recursive_mutex;
else if (kind == PTHREAD_MUTEX_ERRORCHECK)
return mutex_type_errorcheck_mutex;
else if (kind == PTHREAD_MUTEX_NORMAL)
return mutex_type_default_mutex;
else if (kind == PTHREAD_MUTEX_DEFAULT)
return mutex_type_default_mutex;
#if defined(HAVE_PTHREAD_MUTEX_ADAPTIVE_NP)
else if (kind == PTHREAD_MUTEX_ADAPTIVE_NP)
return mutex_type_default_mutex;
#endif
else
return mutex_type_invalid_mutex;
}
#define IS_ALIGNED(p) (((uintptr_t)(p) & (sizeof(*(p)) - 1)) == 0)
/**
* Read the mutex type stored in the client memory used for the mutex
* implementation.
*
* @note This function depends on the implementation of the POSIX threads
* library -- the POSIX standard does not define the name of the member in
* which the mutex type is stored.
* @note The function mutex_type() has been declared inline in order
* to avoid that it shows up in call stacks (drd/tests/...exp* files).
* @note glibc stores the mutex type in the lowest two bits, and uses the
* higher bits for flags like PTHREAD_MUTEXATTR_FLAG_ROBUST and
* PTHREAD_MUTEXATTR_FLAG_PSHARED.
*/
static __always_inline MutexT DRD_(mutex_type)(pthread_mutex_t* mutex)
{
#if defined(HAVE_PTHREAD_MUTEX_T__M_KIND)
/* glibc + LinuxThreads. */
if (IS_ALIGNED(&mutex->__m_kind))
{
const int kind = mutex->__m_kind & 3;
return DRD_(pthread_to_drd_mutex_type)(kind);
}
#elif defined(HAVE_PTHREAD_MUTEX_T__DATA__KIND)
/* glibc + NPTL. */
if (IS_ALIGNED(&mutex->__data.__kind))
{
const int kind = mutex->__data.__kind & 3;
return DRD_(pthread_to_drd_mutex_type)(kind);
}
#else
/*
* Another POSIX threads implementation. The mutex type won't be printed
* when enabling --trace-mutex=yes.
*/
#endif
return mutex_type_unknown;
}
/**
* Tell DRD whether 'tid' is a joinable thread or a detached thread.
*/
static void DRD_(set_joinable)(const pthread_t tid, const int joinable)
{
assert(joinable == 0 || joinable == 1);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__SET_JOINABLE,
tid, joinable, 0, 0, 0);
}
/** Tell DRD that the calling thread is about to enter pthread_create(). */
static __always_inline void DRD_(entering_pthread_create)(void)
{
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__ENTERING_PTHREAD_CREATE,
0, 0, 0, 0, 0);
}
/** Tell DRD that the calling thread has left pthread_create(). */
static __always_inline void DRD_(left_pthread_create)(void)
{
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__LEFT_PTHREAD_CREATE,
0, 0, 0, 0, 0);
}
/**
* Entry point for newly created threads. This function is called from the
* thread created by pthread_create().
*/
static void* DRD_(thread_wrapper)(void* arg)
{
DrdPosixThreadArgs* arg_ptr;
DrdPosixThreadArgs arg_copy;
arg_ptr = (DrdPosixThreadArgs*)arg;
arg_copy = *arg_ptr;
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__SET_PTHREADID,
pthread_self(), 0, 0, 0, 0);
DRD_(set_joinable)(pthread_self(),
arg_copy.detachstate == PTHREAD_CREATE_JOINABLE);
/*
* Only set 'wrapper_started' after VG_USERREQ__SET_PTHREADID and
* DRD_(set_joinable)() have been invoked to avoid a race with
* a pthread_detach() invocation for this thread from another thread.
*/
DRD_(sema_up)(arg_copy.wrapper_started);
return (arg_copy.start)(arg_copy.arg);
}
/**
* Return 1 if the LinuxThreads implementation of POSIX Threads has been
* detected, and 0 otherwise.
*
* @see For more information about the confstr() function, see also
* http://www.opengroup.org/onlinepubs/009695399/functions/confstr.html
*/
static int DRD_(detected_linuxthreads)(void)
{
#if defined(linux)
#if defined(_CS_GNU_LIBPTHREAD_VERSION)
/* Linux with a recent glibc. */
HChar buffer[256];
unsigned len;
len = confstr(_CS_GNU_LIBPTHREAD_VERSION, buffer, sizeof(buffer));
assert(len <= sizeof(buffer));
return len > 0 && buffer[0] == 'l';
#else
/* Linux without _CS_GNU_LIBPTHREAD_VERSION: most likely LinuxThreads. */
return 1;
#endif
#else
/* Another OS than Linux, hence no LinuxThreads. */
return 0;
#endif
}
/**
* Stop and print an error message in case a non-supported threading
* library implementation (LinuxThreads) has been detected.
*/
static void DRD_(check_threading_library)(void)
{
if (DRD_(detected_linuxthreads)())
{
if (getenv("LD_ASSUME_KERNEL"))
{
fprintf(stderr,
"Detected the LinuxThreads threading library. Sorry, but DRD only supports\n"
"the newer NPTL (Native POSIX Threads Library). Please try to rerun DRD\n"
"after having unset the environment variable LD_ASSUME_KERNEL. Giving up.\n"
);
}
else
{
fprintf(stderr,
"Detected the LinuxThreads threading library. Sorry, but DRD only supports\n"
"the newer NPTL (Native POSIX Threads Library). Please try to rerun DRD\n"
"after having upgraded to a newer version of your Linux distribution.\n"
"Giving up.\n"
);
}
abort();
}
}
/**
* The main thread is the only thread not created by pthread_create().
* Update DRD's state information about the main thread.
*/
static void DRD_(set_main_thread_state)(void)
{
// Make sure that DRD knows about the main thread's POSIX thread ID.
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__SET_PTHREADID,
pthread_self(), 0, 0, 0, 0);
}
/*
* Note: as of today there exist three different versions of pthread_create
* in Linux:
* - pthread_create@GLIBC_2.0
* - pthread_create@@GLIBC_2.1
* - pthread_create@@GLIBC_2.2.5
* As an example, in libpthread-2.3.4 both pthread_create@GLIBC_2.0 and
* pthread_create@@GLIBC_2.1 are defined, while in libpthread-2.9 all three
* versions have been implemented. In any glibc version where more than one
* pthread_create function has been implemented, older versions call the
* newer versions. Or: the pthread_create* wrapper defined below can be
* called recursively. Any code in this wrapper should take this in account.
* As an example, it is not safe to invoke the DRD_STOP_RECORDING
* / DRD_START_RECORDING client requests from the pthread_create wrapper.
* See also the implementation of pthread_create@GLIBC_2.0 in
* glibc-2.9/nptl/pthread_create.c.
*/
static __always_inline
int pthread_create_intercept(pthread_t* thread, const pthread_attr_t* attr,
void* (*start)(void*), void* arg)
{
int ret;
OrigFn fn;
DrdSema wrapper_started;
DrdPosixThreadArgs thread_args;
VALGRIND_GET_ORIG_FN(fn);
DRD_(sema_init)(&wrapper_started);
thread_args.start = start;
thread_args.arg = arg;
thread_args.wrapper_started = &wrapper_started;
/*
* Find out whether the thread will be started as a joinable thread
* or as a detached thread. If no thread attributes have been specified,
* this means that the new thread will be started as a joinable thread.
*/
thread_args.detachstate = PTHREAD_CREATE_JOINABLE;
if (attr)
{
if (pthread_attr_getdetachstate(attr, &thread_args.detachstate) != 0)
assert(0);
}
assert(thread_args.detachstate == PTHREAD_CREATE_JOINABLE
|| thread_args.detachstate == PTHREAD_CREATE_DETACHED);
DRD_(entering_pthread_create)();
CALL_FN_W_WWWW(ret, fn, thread, attr, DRD_(thread_wrapper), &thread_args);
DRD_(left_pthread_create)();
if (ret == 0) {
/* Wait until the thread wrapper started. */
DRD_(sema_down)(&wrapper_started);
}
DRD_(sema_destroy)(&wrapper_started);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__DRD_START_NEW_SEGMENT,
pthread_self(), 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucreate, pthread_create_intercept,
(pthread_t *thread, const pthread_attr_t *attr,
void *(*start) (void *), void *arg),
(thread, attr, start, arg));
static __always_inline
int pthread_join_intercept(pthread_t pt_joinee, void **thread_return)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
/*
* Avoid that the sys_futex(td->tid) call invoked by the NPTL pthread_join()
* implementation triggers a (false positive) race report.
*/
ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
CALL_FN_W_WW(ret, fn, pt_joinee, thread_return);
if (ret == 0)
{
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_THREAD_JOIN,
pt_joinee, 0, 0, 0, 0);
}
ANNOTATE_IGNORE_READS_AND_WRITES_END();
return ret;
}
PTH_FUNCS(int, pthreadZujoin, pthread_join_intercept,
(pthread_t pt_joinee, void **thread_return),
(pt_joinee, thread_return));
static __always_inline
int pthread_detach_intercept(pthread_t pt_thread)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_W(ret, fn, pt_thread);
DRD_(set_joinable)(pt_thread, 0);
return ret;
}
PTH_FUNCS(int, pthreadZudetach, pthread_detach_intercept,
(pthread_t thread), (thread));
// NOTE: be careful to intercept only pthread_cancel() and not
// pthread_cancel_init() on Linux.
static __always_inline
int pthread_cancel_intercept(pthread_t pt_thread)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_THREAD_CANCEL,
pt_thread, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, pt_thread);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_THREAD_CANCEL,
pt_thread, ret==0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucancel, pthread_cancel_intercept,
(pthread_t thread), (thread))
static __always_inline
int pthread_once_intercept(pthread_once_t *once_control,
void (*init_routine)(void))
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
/*
* Ignore any data races triggered by the implementation of pthread_once().
* Necessary for Darwin. This is not necessary for Linux but doesn't have
* any known adverse effects.
*/
DRD_IGNORE_VAR(*once_control);
ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
CALL_FN_W_WW(ret, fn, once_control, init_routine);
ANNOTATE_IGNORE_READS_AND_WRITES_END();
DRD_STOP_IGNORING_VAR(*once_control);
return ret;
}
PTH_FUNCS(int, pthreadZuonce, pthread_once_intercept,
(pthread_once_t *once_control, void (*init_routine)(void)),
(once_control, init_routine));
static __always_inline
int pthread_mutex_init_intercept(pthread_mutex_t *mutex,
const pthread_mutexattr_t* attr)
{
int ret;
OrigFn fn;
int mt;
VALGRIND_GET_ORIG_FN(fn);
mt = PTHREAD_MUTEX_DEFAULT;
if (attr)
pthread_mutexattr_gettype(attr, &mt);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_INIT,
mutex, DRD_(pthread_to_drd_mutex_type)(mt),
0, 0, 0);
CALL_FN_W_WW(ret, fn, mutex, attr);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_INIT,
mutex, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZumutexZuinit, pthread_mutex_init_intercept,
(pthread_mutex_t *mutex, const pthread_mutexattr_t* attr),
(mutex, attr));
static __always_inline
int pthread_mutex_destroy_intercept(pthread_mutex_t* mutex)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_DESTROY,
mutex, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_DESTROY,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZumutexZudestroy, pthread_mutex_destroy_intercept,
(pthread_mutex_t *mutex), (mutex));
static __always_inline
int pthread_mutex_lock_intercept(pthread_mutex_t* mutex)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_LOCK,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_LOCK,
mutex, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZumutexZulock, pthread_mutex_lock_intercept,
(pthread_mutex_t *mutex), (mutex));
static __always_inline
int pthread_mutex_trylock_intercept(pthread_mutex_t* mutex)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_LOCK,
mutex, DRD_(mutex_type)(mutex), 1, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_LOCK,
mutex, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZumutexZutrylock, pthread_mutex_trylock_intercept,
(pthread_mutex_t *mutex), (mutex));
static __always_inline
int pthread_mutex_timedlock_intercept(pthread_mutex_t *mutex,
const struct timespec *abs_timeout)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_LOCK,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
CALL_FN_W_WW(ret, fn, mutex, abs_timeout);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_LOCK,
mutex, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZumutexZutimedlock, pthread_mutex_timedlock_intercept,
(pthread_mutex_t *mutex, const struct timespec *abs_timeout),
(mutex, abs_timeout));
static __always_inline
int pthread_mutex_unlock_intercept(pthread_mutex_t *mutex)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_UNLOCK,
mutex, DRD_(mutex_type)(mutex), 0, 0, 0);
CALL_FN_W_W(ret, fn, mutex);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_UNLOCK,
mutex, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZumutexZuunlock, pthread_mutex_unlock_intercept,
(pthread_mutex_t *mutex), (mutex));
static __always_inline
int pthread_cond_init_intercept(pthread_cond_t* cond,
const pthread_condattr_t* attr)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_COND_INIT,
cond, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, cond, attr);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_COND_INIT,
cond, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucondZuinit, pthread_cond_init_intercept,
(pthread_cond_t* cond, const pthread_condattr_t* attr),
(cond, attr));
static __always_inline
int pthread_cond_destroy_intercept(pthread_cond_t* cond)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_COND_DESTROY,
cond, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, cond);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_COND_DESTROY,
cond, ret==0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucondZudestroy, pthread_cond_destroy_intercept,
(pthread_cond_t* cond), (cond));
static __always_inline
int pthread_cond_wait_intercept(pthread_cond_t *cond, pthread_mutex_t *mutex)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_COND_WAIT,
cond, mutex, DRD_(mutex_type)(mutex), 0, 0);
CALL_FN_W_WW(ret, fn, cond, mutex);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_COND_WAIT,
cond, mutex, 1, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucondZuwait, pthread_cond_wait_intercept,
(pthread_cond_t *cond, pthread_mutex_t *mutex),
(cond, mutex));
static __always_inline
int pthread_cond_timedwait_intercept(pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec* abstime)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_COND_WAIT,
cond, mutex, DRD_(mutex_type)(mutex), 0, 0);
CALL_FN_W_WWW(ret, fn, cond, mutex, abstime);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_COND_WAIT,
cond, mutex, 1, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucondZutimedwait, pthread_cond_timedwait_intercept,
(pthread_cond_t *cond, pthread_mutex_t *mutex,
const struct timespec* abstime),
(cond, mutex, abstime));
// NOTE: be careful to intercept only pthread_cond_signal() and not Darwin's
// pthread_cond_signal_thread_np(). The former accepts one argument; the latter
// two. Intercepting all pthread_cond_signal* functions will cause only one
// argument to be passed to pthread_cond_signal_np() and hence will cause this
// last function to crash.
static __always_inline
int pthread_cond_signal_intercept(pthread_cond_t* cond)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_COND_SIGNAL,
cond, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, cond);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_COND_SIGNAL,
cond, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucondZusignal, pthread_cond_signal_intercept,
(pthread_cond_t* cond), (cond));
static __always_inline
int pthread_cond_broadcast_intercept(pthread_cond_t* cond)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_COND_BROADCAST,
cond, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, cond);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_COND_BROADCAST,
cond, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZucondZubroadcast, pthread_cond_broadcast_intercept,
(pthread_cond_t* cond), (cond));
#if defined(HAVE_PTHREAD_SPIN_LOCK) \
&& !defined(DISABLE_PTHREAD_SPINLOCK_INTERCEPT)
static __always_inline
int pthread_spin_init_intercept(pthread_spinlock_t *spinlock, int pshared)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SPIN_INIT_OR_UNLOCK,
spinlock, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, spinlock, pshared);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SPIN_INIT_OR_UNLOCK,
spinlock, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZuspinZuinit, pthread_spin_init_intercept,
(pthread_spinlock_t *spinlock, int pshared), (spinlock, pshared));
static __always_inline
int pthread_spin_destroy_intercept(pthread_spinlock_t *spinlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_DESTROY,
spinlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_DESTROY,
spinlock, mutex_type_spinlock, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZuspinZudestroy, pthread_spin_destroy_intercept,
(pthread_spinlock_t *spinlock), (spinlock));
static __always_inline
int pthread_spin_lock_intercept(pthread_spinlock_t *spinlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_LOCK,
spinlock, mutex_type_spinlock, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_LOCK,
spinlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZuspinZulock, pthread_spin_lock_intercept,
(pthread_spinlock_t *spinlock), (spinlock));
static __always_inline
int pthread_spin_trylock_intercept(pthread_spinlock_t *spinlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_MUTEX_LOCK,
spinlock, mutex_type_spinlock, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_MUTEX_LOCK,
spinlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZuspinZutrylock, pthread_spin_trylock_intercept,
(pthread_spinlock_t *spinlock), (spinlock));
static __always_inline
int pthread_spin_unlock_intercept(pthread_spinlock_t *spinlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SPIN_INIT_OR_UNLOCK,
spinlock, mutex_type_spinlock, 0, 0, 0);
CALL_FN_W_W(ret, fn, spinlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SPIN_INIT_OR_UNLOCK,
spinlock, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZuspinZuunlock, pthread_spin_unlock_intercept,
(pthread_spinlock_t *spinlock), (spinlock));
#endif // HAVE_PTHREAD_SPIN_LOCK
#if defined(HAVE_PTHREAD_BARRIER_INIT)
static __always_inline
int pthread_barrier_init_intercept(pthread_barrier_t* barrier,
const pthread_barrierattr_t* attr,
unsigned count)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_BARRIER_INIT,
barrier, pthread_barrier, count, 0, 0);
CALL_FN_W_WWW(ret, fn, barrier, attr, count);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_BARRIER_INIT,
barrier, pthread_barrier, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZubarrierZuinit, pthread_barrier_init_intercept,
(pthread_barrier_t* barrier, const pthread_barrierattr_t* attr,
unsigned count), (barrier, attr, count));
static __always_inline
int pthread_barrier_destroy_intercept(pthread_barrier_t* barrier)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_BARRIER_DESTROY,
barrier, pthread_barrier, 0, 0, 0);
CALL_FN_W_W(ret, fn, barrier);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_BARRIER_DESTROY,
barrier, pthread_barrier, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, pthreadZubarrierZudestroy, pthread_barrier_destroy_intercept,
(pthread_barrier_t* barrier), (barrier));
static __always_inline
int pthread_barrier_wait_intercept(pthread_barrier_t* barrier)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_BARRIER_WAIT,
barrier, pthread_barrier, 0, 0, 0);
CALL_FN_W_W(ret, fn, barrier);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_BARRIER_WAIT,
barrier, pthread_barrier,
ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD,
ret == PTHREAD_BARRIER_SERIAL_THREAD, 0);
return ret;
}
PTH_FUNCS(int, pthreadZubarrierZuwait, pthread_barrier_wait_intercept,
(pthread_barrier_t* barrier), (barrier));
#endif // HAVE_PTHREAD_BARRIER_INIT
static __always_inline
int sem_init_intercept(sem_t *sem, int pshared, unsigned int value)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_INIT,
sem, pshared, value, 0, 0);
CALL_FN_W_WWW(ret, fn, sem, pshared, value);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_INIT,
sem, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZuinit, sem_init_intercept,
(sem_t *sem, int pshared, unsigned int value), (sem, pshared, value));
static __always_inline
int sem_destroy_intercept(sem_t *sem)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_DESTROY,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_DESTROY,
sem, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZudestroy, sem_destroy_intercept, (sem_t *sem), (sem));
static __always_inline
sem_t* sem_open_intercept(const char *name, int oflag, mode_t mode,
unsigned int value)
{
sem_t *ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_OPEN,
name, oflag, mode, value, 0);
CALL_FN_W_WWWW(ret, fn, name, oflag, mode, value);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_OPEN,
ret != SEM_FAILED ? ret : 0,
name, oflag, mode, value);
return ret;
}
PTH_FUNCS(sem_t *, semZuopen, sem_open_intercept,
(const char *name, int oflag, mode_t mode, unsigned int value),
(name, oflag, mode, value));
static __always_inline int sem_close_intercept(sem_t *sem)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_CLOSE,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_CLOSE,
sem, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZuclose, sem_close_intercept, (sem_t *sem), (sem));
static __always_inline int sem_wait_intercept(sem_t *sem)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_WAIT,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_WAIT,
sem, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZuwait, sem_wait_intercept, (sem_t *sem), (sem));
static __always_inline int sem_trywait_intercept(sem_t *sem)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_WAIT,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_WAIT,
sem, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZutrywait, sem_trywait_intercept, (sem_t *sem), (sem));
static __always_inline
int sem_timedwait_intercept(sem_t *sem, const struct timespec *abs_timeout)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_WAIT,
sem, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, sem, abs_timeout);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_WAIT,
sem, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZutimedwait, sem_timedwait_intercept,
(sem_t *sem, const struct timespec *abs_timeout),
(sem, abs_timeout));
static __always_inline int sem_post_intercept(sem_t *sem)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_SEM_POST,
sem, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, sem);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_SEM_POST,
sem, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int, semZupost, sem_post_intercept, (sem_t *sem), (sem));
/* Android's pthread.h doesn't say anything about rwlocks, hence these
functions have to be conditionally compiled. */
#if defined(HAVE_PTHREAD_RWLOCK_T)
static __always_inline
int pthread_rwlock_init_intercept(pthread_rwlock_t* rwlock,
const pthread_rwlockattr_t* attr)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_INIT,
rwlock, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, rwlock, attr);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_INIT,
rwlock, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZuinit, pthread_rwlock_init_intercept,
(pthread_rwlock_t* rwlock, const pthread_rwlockattr_t* attr),
(rwlock, attr));
static __always_inline
int pthread_rwlock_destroy_intercept(pthread_rwlock_t* rwlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_DESTROY,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_DESTROY,
rwlock, 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZudestroy, pthread_rwlock_destroy_intercept,
(pthread_rwlock_t* rwlock), (rwlock));
static __always_inline
int pthread_rwlock_rdlock_intercept(pthread_rwlock_t* rwlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_RDLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_RDLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZurdlock, pthread_rwlock_rdlock_intercept,
(pthread_rwlock_t* rwlock), (rwlock));
static __always_inline
int pthread_rwlock_wrlock_intercept(pthread_rwlock_t* rwlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_WRLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_WRLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZuwrlock, pthread_rwlock_wrlock_intercept,
(pthread_rwlock_t* rwlock), (rwlock));
static __always_inline
int pthread_rwlock_timedrdlock_intercept(pthread_rwlock_t* rwlock,
const struct timespec *timeout)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_RDLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, rwlock, timeout);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_RDLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZutimedrdlock, pthread_rwlock_timedrdlock_intercept,
(pthread_rwlock_t* rwlock, const struct timespec *timeout),
(rwlock, timeout));
static __always_inline
int pthread_rwlock_timedwrlock_intercept(pthread_rwlock_t* rwlock,
const struct timespec *timeout)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_WRLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_WW(ret, fn, rwlock, timeout);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_WRLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZutimedwrlock, pthread_rwlock_timedwrlock_intercept,
(pthread_rwlock_t* rwlock, const struct timespec *timeout),
(rwlock, timeout));
static __always_inline
int pthread_rwlock_tryrdlock_intercept(pthread_rwlock_t* rwlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_RDLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_RDLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZutryrdlock, pthread_rwlock_tryrdlock_intercept,
(pthread_rwlock_t* rwlock), (rwlock));
static __always_inline
int pthread_rwlock_trywrlock_intercept(pthread_rwlock_t* rwlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_WRLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_WRLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZutrywrlock, pthread_rwlock_trywrlock_intercept,
(pthread_rwlock_t* rwlock), (rwlock));
static __always_inline
int pthread_rwlock_unlock_intercept(pthread_rwlock_t* rwlock)
{
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__PRE_RWLOCK_UNLOCK,
rwlock, 0, 0, 0, 0);
CALL_FN_W_W(ret, fn, rwlock);
VALGRIND_DO_CLIENT_REQUEST_STMT(VG_USERREQ__POST_RWLOCK_UNLOCK,
rwlock, ret == 0, 0, 0, 0);
return ret;
}
PTH_FUNCS(int,
pthreadZurwlockZuunlock, pthread_rwlock_unlock_intercept,
(pthread_rwlock_t* rwlock), (rwlock));
#endif /* defined(HAVE_PTHREAD_RWLOCK_T) */