blob: 726dd55470cabd6b20938d19bd5c5ac67702835c [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- An expandable array implementation. m_xarray.h ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2007-2013 OpenWorks LLP
info@open-works.co.uk
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#include "pub_core_basics.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_xarray.h" /* self */
/* See pub_tool_xarray.h for details of what this is all about. */
struct _XArray {
void* (*alloc_fn) ( const HChar*, SizeT ); /* alloc fn (nofail) */
const HChar* cc; /* cost centre for alloc */
void (*free_fn) ( void* ); /* free fn */
Int (*cmpFn) ( const void*, const void* ); /* cmp fn (may be NULL) */
Word elemSzB; /* element size in bytes */
void* arr; /* pointer to elements */
Word usedsizeE; /* # used elements in arr */
Word totsizeE; /* max size of arr, in elements */
Bool sorted; /* is it sorted? */
};
XArray* VG_(newXA) ( void*(*alloc_fn)(const HChar*,SizeT),
const HChar* cc,
void(*free_fn)(void*),
Word elemSzB )
{
XArray* xa;
/* Implementation relies on Word being signed and (possibly)
on SizeT being unsigned. */
vg_assert( sizeof(Word) == sizeof(void*) );
vg_assert( ((Word)(-1)) < ((Word)(0)) );
vg_assert( ((SizeT)(-1)) > ((SizeT)(0)) );
/* check user-supplied info .. */
vg_assert(alloc_fn);
vg_assert(free_fn);
vg_assert(elemSzB > 0);
xa = alloc_fn( cc, sizeof(struct _XArray) );
xa->alloc_fn = alloc_fn;
xa->cc = cc;
xa->free_fn = free_fn;
xa->cmpFn = NULL;
xa->elemSzB = elemSzB;
xa->usedsizeE = 0;
xa->totsizeE = 0;
xa->sorted = False;
xa->arr = NULL;
return xa;
}
XArray* VG_(cloneXA)( const HChar* cc, const XArray* xa )
{
XArray* nyu;
const HChar* nyu_cc;
vg_assert(xa);
vg_assert(xa->alloc_fn);
vg_assert(xa->free_fn);
vg_assert(xa->elemSzB >= 1);
nyu_cc = cc ? cc : xa->cc;
nyu = xa->alloc_fn( nyu_cc, sizeof(struct _XArray) );
/* Copy everything verbatim ... */
*nyu = *xa;
nyu->cc = nyu_cc;
/* ... except we have to clone the contents-array */
if (nyu->arr) {
/* Restrict the total size of the new array to its current
actual size. That means we don't waste space copying the
unused tail of the original. The tradeoff is that it
guarantees we will have to resize the child if even one more
element is later added to it, unfortunately. */
nyu->totsizeE = nyu->usedsizeE;
/* and allocate .. */
nyu->arr = nyu->alloc_fn( nyu->cc, nyu->totsizeE * nyu->elemSzB );
VG_(memcpy)( nyu->arr, xa->arr, nyu->totsizeE * nyu->elemSzB );
}
/* We're done! */
return nyu;
}
void VG_(deleteXA) ( XArray* xa )
{
vg_assert(xa);
vg_assert(xa->free_fn);
if (xa->arr)
xa->free_fn(xa->arr);
xa->free_fn(xa);
}
void VG_(setCmpFnXA) ( XArray* xa, XACmpFn_t compar )
{
vg_assert(xa);
vg_assert(compar);
xa->cmpFn = compar;
xa->sorted = False;
}
inline void* VG_(indexXA) ( const XArray* xa, Word n )
{
vg_assert(xa);
/* vg_assert(n >= 0); If n negative, the UWord conversion will make
it bigger than usedsizeE, which is verified to be non negative when
xa is modified. */
vg_assert((UWord)n < (UWord)xa->usedsizeE);
return ((char*)xa->arr) + n * xa->elemSzB;
}
void VG_(hintSizeXA) ( XArray* xa, Word n)
{
/* Currently, we support giving a size hint only just after the
call to VG_(newXA). So, we could instead have done
a function VG_(newXA_with_SizeHint). The separate VG_(hintSizeXA)
function is however chosen as we might one day accept to
give a size hint after having added elements. That could be useful
for reducing the size of an xarray to just the size currently needed
or to give a size hint when it is known that a lot more elements
are needed or when the final nr of elements is known. */
vg_assert(xa);
vg_assert(xa->usedsizeE == 0);
vg_assert(xa->totsizeE == 0);
vg_assert(!xa->arr);
xa->arr = xa->alloc_fn(xa->cc, n * xa->elemSzB);
xa->totsizeE = n;
}
static inline void ensureSpaceXA ( XArray* xa )
{
if (xa->usedsizeE == xa->totsizeE) {
void* tmp;
Word newsz;
if (xa->totsizeE == 0)
vg_assert(!xa->arr);
if (xa->totsizeE > 0)
vg_assert(xa->arr);
if (xa->totsizeE == 0) {
/* No point in having tiny (eg) 2-byte allocations for the
element array, since all allocs are rounded up to 8 anyway.
Hence increase the initial array size for tiny elements in
an attempt to avoid reallocations of size 2, 4, 8 if the
array does start to fill up. */
if (xa->elemSzB == 1) newsz = 8;
else if (xa->elemSzB == 2) newsz = 4;
else newsz = 2;
} else {
newsz = 2 + (3 * xa->totsizeE) / 2; /* 2 * xa->totsizeE; */
}
if (0 && xa->totsizeE >= 10000)
VG_(printf)("addToXA: increasing from %ld to %ld\n",
xa->totsizeE, newsz);
tmp = xa->alloc_fn(xa->cc, newsz * xa->elemSzB);
if (xa->usedsizeE > 0)
VG_(memcpy)(tmp, xa->arr, xa->usedsizeE * xa->elemSzB);
if (xa->arr)
xa->free_fn(xa->arr);
xa->arr = tmp;
xa->totsizeE = newsz;
}
}
Word VG_(addToXA) ( XArray* xa, const void* elem )
{
vg_assert(xa);
vg_assert(elem);
vg_assert(xa->totsizeE >= 0);
vg_assert(xa->usedsizeE >= 0 && xa->usedsizeE <= xa->totsizeE);
ensureSpaceXA( xa );
vg_assert(xa->usedsizeE < xa->totsizeE);
vg_assert(xa->arr);
VG_(memcpy)( ((UChar*)xa->arr) + xa->usedsizeE * xa->elemSzB,
elem, xa->elemSzB );
xa->usedsizeE++;
xa->sorted = False;
return xa->usedsizeE-1;
}
Word VG_(addBytesToXA) ( XArray* xa, const void* bytesV, Word nbytes )
{
Word r, i;
vg_assert(xa);
vg_assert(xa->elemSzB == 1);
vg_assert(nbytes >= 0);
vg_assert(xa->totsizeE >= 0);
vg_assert(xa->usedsizeE >= 0 && xa->usedsizeE <= xa->totsizeE);
r = xa->usedsizeE;
for (i = 0; i < nbytes; i++) {
ensureSpaceXA( xa );
vg_assert(xa->usedsizeE < xa->totsizeE);
vg_assert(xa->arr);
* (((UChar*)xa->arr) + xa->usedsizeE) = ((const UChar*)bytesV)[i];
xa->usedsizeE++;
}
xa->sorted = False;
return r;
}
void VG_(sortXA) ( XArray* xa )
{
vg_assert(xa);
vg_assert(xa->cmpFn);
VG_(ssort)( xa->arr, xa->usedsizeE, xa->elemSzB, xa->cmpFn );
xa->sorted = True;
}
Bool VG_(lookupXA_UNSAFE) ( const XArray* xa, const void* key,
/*OUT*/Word* first, /*OUT*/Word* last,
Int(*cmpFn)(const void*, const void*) )
{
Word lo, mid, hi, cres;
void* midv;
vg_assert(xa);
lo = 0;
hi = xa->usedsizeE-1;
while (True) {
/* current unsearched space is from lo to hi, inclusive. */
if (lo > hi) return False; /* not found */
mid = (lo + hi) / 2;
midv = VG_(indexXA)( xa, mid );
cres = cmpFn( key, midv );
if (cres < 0) { hi = mid-1; continue; }
if (cres > 0) { lo = mid+1; continue; }
/* Found it, at mid. See how far we can expand this. */
vg_assert(cmpFn( key, VG_(indexXA)(xa, lo) ) >= 0);
vg_assert(cmpFn( key, VG_(indexXA)(xa, hi) ) <= 0);
if (first) {
*first = mid;
while (*first > 0
&& 0 == cmpFn( key, VG_(indexXA)(xa, (*first)-1))) {
(*first)--;
}
}
if (last) {
*last = mid;
while (*last < xa->usedsizeE-1
&& 0 == cmpFn( key, VG_(indexXA)(xa, (*last)+1))) {
(*last)++;
}
}
return True;
}
}
Bool VG_(lookupXA) ( const XArray* xa, const void* key,
/*OUT*/Word* first, /*OUT*/Word* last )
{
vg_assert(xa);
vg_assert(xa->cmpFn);
vg_assert(xa->sorted);
return VG_(lookupXA_UNSAFE)(xa, key, first, last, xa->cmpFn);
}
Word VG_(sizeXA) ( const XArray* xa )
{
vg_assert(xa);
return xa->usedsizeE;
}
void VG_(dropTailXA) ( XArray* xa, Word n )
{
vg_assert(xa);
vg_assert(n >= 0);
vg_assert(n <= xa->usedsizeE);
xa->usedsizeE -= n;
}
void VG_(dropHeadXA) ( XArray* xa, Word n )
{
vg_assert(xa);
vg_assert(n >= 0);
vg_assert(n <= xa->usedsizeE);
if (n == 0) {
return;
}
if (n == xa->usedsizeE) {
xa->usedsizeE = 0;
return;
}
vg_assert(n > 0);
vg_assert(xa->usedsizeE - n > 0);
VG_(memcpy)( (char*)xa->arr,
((char*)xa->arr) + n * xa->elemSzB,
(xa->usedsizeE - n) * xa->elemSzB );
xa->usedsizeE -= n;
}
void VG_(removeIndexXA)( XArray* xa, Word n )
{
vg_assert(xa);
vg_assert(n >= 0);
vg_assert(n < xa->usedsizeE);
if (n+1 < xa->usedsizeE) {
VG_(memmove)( ((char*)xa->arr) + (n+0) * xa->elemSzB,
((char*)xa->arr) + (n+1) * xa->elemSzB,
(xa->usedsizeE - n - 1) * xa->elemSzB );
}
xa->usedsizeE--;
}
void VG_(insertIndexXA)( XArray* xa, Word n, const void* elem )
{
vg_assert(xa);
vg_assert(n >= 0);
vg_assert(n <= xa->usedsizeE);
vg_assert(xa->usedsizeE >= 0 && xa->usedsizeE <= xa->totsizeE);
ensureSpaceXA( xa );
vg_assert(xa->usedsizeE < xa->totsizeE);
vg_assert(xa->arr);
if (n < xa->usedsizeE) {
VG_(memmove) ( ((char*)xa->arr) + (n+1) * xa->elemSzB,
((char*)xa->arr) + (n+0) * xa->elemSzB,
(xa->usedsizeE - n) * xa->elemSzB );
}
VG_(memcpy)( ((UChar*)xa->arr) + n * xa->elemSzB,
elem, xa->elemSzB );
xa->usedsizeE++;
xa->sorted = False;
}
void VG_(getContentsXA_UNSAFE)( XArray* xa,
/*OUT*/void** ctsP,
/*OUT*/Word* usedP )
{
vg_assert(xa);
*ctsP = (void*)xa->arr;
*usedP = xa->usedsizeE;
}
/* --------- Printeffery --------- */
static void add_char_to_XA ( HChar c, void* opaque )
{
XArray* dst = (XArray*)opaque;
(void) VG_(addBytesToXA)( dst, &c, 1 );
}
void VG_(xaprintf)( XArray* dst, const HChar* format, ... )
{
va_list vargs;
va_start(vargs, format);
VG_(vcbprintf)( add_char_to_XA, (void*)dst, format, vargs );
va_end(vargs);
}
/*--------------------------------------------------------------------*/
/*--- end m_xarray.c ---*/
/*--------------------------------------------------------------------*/