blob: 7b6052c3e624ef89eb678241ef74dbffcfadf5dc [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/base/bits.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/hydrogen-osr.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/ppc/lithium-codegen-ppc.h"
#include "src/ppc/lithium-gap-resolver-ppc.h"
namespace v8 {
namespace internal {
class SafepointGenerator FINAL : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
virtual ~SafepointGenerator() {}
void BeforeCall(int call_size) const OVERRIDE {}
void AfterCall() const OVERRIDE {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// NONE indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::NONE);
return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
GenerateJumpTable() && GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
PopulateDeoptimizationData(code);
}
void LCodeGen::SaveCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ stfd(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ lfd(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop_at");
}
#endif
// r4: Callee's JS function.
// cp: Callee's context.
// pp: Callee's constant pool pointer (if FLAG_enable_ool_constant_pool)
// fp: Caller's frame pointer.
// lr: Caller's pc.
// ip: Our own function entry (required by the prologue)
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info_->this_has_uses() && info_->strict_mode() == SLOPPY &&
!info_->is_native()) {
Label ok;
int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
__ LoadP(r5, MemOperand(sp, receiver_offset));
__ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
__ bne(&ok);
__ LoadP(r5, GlobalObjectOperand());
__ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset));
__ StoreP(r5, MemOperand(sp, receiver_offset));
__ bind(&ok);
}
}
int prologue_offset = masm_->pc_offset();
if (prologue_offset) {
// Prologue logic requires it's starting address in ip and the
// corresponding offset from the function entry.
prologue_offset += Instruction::kInstrSize;
__ addi(ip, ip, Operand(prologue_offset));
}
info()->set_prologue_offset(prologue_offset);
if (NeedsEagerFrame()) {
if (info()->IsStub()) {
__ StubPrologue(prologue_offset);
} else {
__ Prologue(info()->IsCodePreAgingActive(), prologue_offset);
}
frame_is_built_ = true;
info_->AddNoFrameRange(0, masm_->pc_offset());
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
__ subi(sp, sp, Operand(slots * kPointerSize));
if (FLAG_debug_code) {
__ Push(r3, r4);
__ li(r0, Operand(slots));
__ mtctr(r0);
__ addi(r3, sp, Operand((slots + 2) * kPointerSize));
__ mov(r4, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ StorePU(r4, MemOperand(r3, -kPointerSize));
__ bdnz(&loop);
__ Pop(r3, r4);
}
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
// Possibly allocate a local context.
int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is in r4.
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), heap_slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(r4);
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in both r3 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ mr(cp, r3);
__ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ LoadP(r3, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ StoreP(r3, target, r0);
// Update the write barrier. This clobbers r6 and r3.
if (need_write_barrier) {
__ RecordWriteContextSlot(cp, target.offset(), r3, r6,
GetLinkRegisterState(), kSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(cp, r3, &done);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace && info()->IsOptimizing()) {
// We have not executed any compiled code yet, so cp still holds the
// incoming context.
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ subi(sp, sp, Operand(slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(
chunk()->graph()->SourcePositionToScriptPosition(value->position()));
Comment(
";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(), code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
__ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
__ PushFixedFrame(scratch0());
__ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
__ PopFixedFrame(ip);
frame_is_built_ = false;
}
__ b(code->exit());
}
}
return !is_aborted();
}
bool LCodeGen::GenerateJumpTable() {
// Check that the jump table is accessible from everywhere in the function
// code, i.e. that offsets to the table can be encoded in the 24bit signed
// immediate of a branch instruction.
// To simplify we consider the code size from the first instruction to the
// end of the jump table. We also don't consider the pc load delta.
// Each entry in the jump table generates one instruction and inlines one
// 32bit data after it.
if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
jump_table_.length() * 7)) {
Abort(kGeneratedCodeIsTooLarge);
}
if (jump_table_.length() > 0) {
Label needs_frame, call_deopt_entry;
Comment(";;; -------------------- Jump table --------------------");
Address base = jump_table_[0].address;
Register entry_offset = scratch0();
int length = jump_table_.length();
for (int i = 0; i < length; i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
Address entry = table_entry->address;
DeoptComment(table_entry->reason);
// Second-level deopt table entries are contiguous and small, so instead
// of loading the full, absolute address of each one, load an immediate
// offset which will be added to the base address later.
__ mov(entry_offset, Operand(entry - base));
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
if (needs_frame.is_bound()) {
__ b(&needs_frame);
} else {
__ bind(&needs_frame);
Comment(";;; call deopt with frame");
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
DCHECK(info()->IsStub());
__ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
__ PushFixedFrame(ip);
__ addi(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
__ bind(&call_deopt_entry);
// Add the base address to the offset previously loaded in
// entry_offset.
__ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
__ add(ip, entry_offset, ip);
__ Call(ip);
}
} else {
// The last entry can fall through into `call_deopt_entry`, avoiding a
// branch.
bool need_branch = ((i + 1) != length) || call_deopt_entry.is_bound();
if (need_branch) __ b(&call_deopt_entry);
}
}
if (!call_deopt_entry.is_bound()) {
Comment(";;; call deopt");
__ bind(&call_deopt_entry);
if (info()->saves_caller_doubles()) {
DCHECK(info()->IsStub());
RestoreCallerDoubles();
}
// Add the base address to the offset previously loaded in entry_offset.
__ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
__ add(ip, entry_offset, ip);
__ Call(ip);
}
}
// The deoptimization jump table is the last part of the instruction
// sequence. Mark the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
return DoubleRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
DCHECK(literal->IsNumber());
__ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
} else if (r.IsDouble()) {
Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
} else {
DCHECK(r.IsSmiOrTagged());
__ Move(scratch, literal);
}
return scratch;
} else if (op->IsStackSlot()) {
__ LoadP(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
Register dst) {
DCHECK(IsInteger32(const_op));
HConstant* constant = chunk_->LookupConstant(const_op);
int32_t value = constant->Integer32Value();
if (IsSmi(const_op)) {
__ LoadSmiLiteral(dst, Smi::FromInt(value));
} else {
__ LoadIntLiteral(dst, value);
}
}
DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(r.IsSmiOrTagged());
return reinterpret_cast<intptr_t>(Smi::FromInt(value));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk()->LookupConstant(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsSmi()) {
DCHECK(constant->HasSmiValue());
return Operand(Smi::FromInt(constant->Integer32Value()));
} else if (r.IsInteger32()) {
DCHECK(constant->HasInteger32Value());
return Operand(constant->Integer32Value());
} else if (r.IsDouble()) {
Abort(kToOperandUnsupportedDoubleImmediate);
}
DCHECK(r.IsTagged());
return Operand(constant->handle(isolate()));
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort(kToOperandIsDoubleRegisterUnimplemented);
return Operand::Zero();
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand::Zero();
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize;
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, StackSlotOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
DCHECK(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp,
ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
bool has_closure_id =
!info()->closure().is_null() &&
!info()->closure().is_identical_to(environment->closure());
int closure_id = has_closure_id
? DefineDeoptimizationLiteral(environment->closure())
: Translation::kSelfLiteralId;
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case JS_GETTER:
DCHECK(translation_size == 1);
DCHECK(height == 0);
translation->BeginGetterStubFrame(closure_id);
break;
case JS_SETTER:
DCHECK(translation_size == 2);
DCHECK(height == 0);
translation->BeginSetterStubFrame(closure_id);
break;
case STUB:
translation->BeginCompiledStubFrame();
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
}
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(
environment, translation, value, environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation, LOperand* op,
bool is_tagged, bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment, translation, value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer, dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else if (is_uint32) {
translation->StoreUint32StackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
DCHECK(instr != NULL);
__ Call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
LInstruction* instr, SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
__ Move(cp, ToRegister(context));
} else if (context->IsStackSlot()) {
__ LoadP(cp, ToMemOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
LInstruction* instr, LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(instr->pointer_map(), argc,
Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index, translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
const char* detail,
Deoptimizer::BailoutType bailout_type,
CRegister cr) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
DCHECK(info()->IsOptimizing() || info()->IsStub());
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
CRegister alt_cr = cr6;
Register scratch = scratch0();
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
DCHECK(!alt_cr.is(cr));
__ Push(r4, scratch);
__ mov(scratch, Operand(count));
__ lwz(r4, MemOperand(scratch));
__ subi(r4, r4, Operand(1));
__ cmpi(r4, Operand::Zero(), alt_cr);
__ bne(&no_deopt, alt_cr);
__ li(r4, Operand(FLAG_deopt_every_n_times));
__ stw(r4, MemOperand(scratch));
__ Pop(r4, scratch);
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ stw(r4, MemOperand(scratch));
__ Pop(r4, scratch);
}
if (info()->ShouldTrapOnDeopt()) {
__ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
}
Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
instr->Mnemonic(), detail);
DCHECK(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
DeoptComment(reason);
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
__ b(cond, &jump_table_.last().label, cr);
}
}
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
const char* detail, CRegister cr) {
Deoptimizer::BailoutType bailout_type =
info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
DeoptimizeIf(condition, instr, detail, bailout_type, cr);
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
DeoptimizationInputData::New(isolate(), length, TENURED);
Handle<ByteArray> translations =
translations_.CreateByteArray(isolate()->factory());
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
if (info_->IsOptimizing()) {
// Reference to shared function info does not change between phases.
AllowDeferredHandleDereference allow_handle_dereference;
data->SetSharedFunctionInfo(*info_->shared_info());
} else {
data->SetSharedFunctionInfo(Smi::FromInt(0));
}
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
{
AllowDeferredHandleDereference copy_handles;
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
}
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, env->ast_id());
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal, zone());
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
DCHECK(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length(); i < length; i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(instr->pointer_map(), 0,
Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
int arguments, Safepoint::DeoptMode deopt_mode) {
DCHECK(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint =
safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
#if V8_OOL_CONSTANT_POOL
if (kind & Safepoint::kWithRegisters) {
// Register always contains a pointer to the constant pool.
safepoint.DefinePointerRegister(kConstantPoolRegister, zone());
}
#endif
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
void LCodeGen::RecordAndWritePosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
masm()->positions_recorder()->WriteRecordedPositions();
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_, label->hydrogen_value()->id(),
label->block_id(), LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->result()).is(r3));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpExec: {
RegExpExecStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t shift = WhichPowerOf2Abs(divisor);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ cmpwi(dividend, Operand::Zero());
__ bge(&dividend_is_not_negative);
if (shift) {
// Note that this is correct even for kMinInt operands.
__ neg(dividend, dividend);
__ ExtractBitRange(dividend, dividend, shift - 1, 0);
__ neg(dividend, dividend, LeaveOE, SetRC);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, "minus zero", cr0);
}
} else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ li(dividend, Operand::Zero());
} else {
DeoptimizeIf(al, instr, "minus zero");
}
__ b(&done);
}
__ bind(&dividend_is_not_negative);
if (shift) {
__ ExtractBitRange(dividend, dividend, shift - 1, 0);
} else {
__ li(dividend, Operand::Zero());
}
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, "division by zero");
return;
}
__ TruncatingDiv(result, dividend, Abs(divisor));
__ mov(ip, Operand(Abs(divisor)));
__ mullw(result, result, ip);
__ sub(result, dividend, result, LeaveOE, SetRC);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ bne(&remainder_not_zero, cr0);
__ cmpwi(dividend, Operand::Zero());
DeoptimizeIf(lt, instr, "minus zero");
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
Register right_reg = ToRegister(instr->right());
Register result_reg = ToRegister(instr->result());
Register scratch = scratch0();
Label done;
if (hmod->CheckFlag(HValue::kCanOverflow)) {
__ li(r0, Operand::Zero()); // clear xer
__ mtxer(r0);
}
__ divw(scratch, left_reg, right_reg, SetOE, SetRC);
// Check for x % 0.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmpwi(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
// Check for kMinInt % -1, divw will return undefined, which is not what we
// want. We have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(overflow, instr, "minus zero", cr0);
} else {
__ bnooverflow(&no_overflow_possible, cr0);
__ li(result_reg, Operand::Zero());
__ b(&done);
}
__ bind(&no_overflow_possible);
}
__ mullw(scratch, right_reg, scratch);
__ sub(result_reg, left_reg, scratch, LeaveOE, SetRC);
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ bne(&done, cr0);
__ cmpwi(left_reg, Operand::Zero());
DeoptimizeIf(lt, instr, "minus zero");
}
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ cmpwi(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
__ cmpw(dividend, r0);
DeoptimizeIf(eq, instr, "overflow");
}
int32_t shift = WhichPowerOf2Abs(divisor);
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
__ TestBitRange(dividend, shift - 1, 0, r0);
DeoptimizeIf(ne, instr, "lost precision", cr0);
}
if (divisor == -1) { // Nice shortcut, not needed for correctness.
__ neg(result, dividend);
return;
}
if (shift == 0) {
__ mr(result, dividend);
} else {
if (shift == 1) {
__ srwi(result, dividend, Operand(31));
} else {
__ srawi(result, dividend, 31);
__ srwi(result, result, Operand(32 - shift));
}
__ add(result, dividend, result);
__ srawi(result, result, shift);
}
if (divisor < 0) __ neg(result, result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, "division by zero");
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ cmpwi(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ neg(result, result);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
Register scratch = scratch0();
__ mov(ip, Operand(divisor));
__ mullw(scratch, result, ip);
__ cmpw(scratch, dividend);
DeoptimizeIf(ne, instr, "lost precision");
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
const Register dividend = ToRegister(instr->dividend());
const Register divisor = ToRegister(instr->divisor());
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
DCHECK(!divisor.is(result));
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
__ li(r0, Operand::Zero()); // clear xer
__ mtxer(r0);
}
__ divw(result, dividend, divisor, SetOE, SetRC);
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmpwi(divisor, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ cmpwi(dividend, Operand::Zero());
__ bne(&dividend_not_zero);
__ cmpwi(divisor, Operand::Zero());
DeoptimizeIf(lt, instr, "minus zero");
__ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
DeoptimizeIf(overflow, instr, "overflow", cr0);
} else {
// When truncating, we want kMinInt / -1 = kMinInt.
__ bnooverflow(&no_overflow_possible, cr0);
__ mr(result, dividend);
}
__ bind(&no_overflow_possible);
}
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
Register scratch = scratch0();
__ mullw(scratch, divisor, result);
__ cmpw(dividend, scratch);
DeoptimizeIf(ne, instr, "lost precision");
}
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register result = ToRegister(instr->result());
int32_t divisor = instr->divisor();
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 0) {
if (shift || !result.is(dividend)) {
__ srawi(result, dividend, shift);
}
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
OEBit oe = LeaveOE;
#if V8_TARGET_ARCH_PPC64
if (divisor == -1 && hdiv->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
__ cmpw(dividend, r0);
DeoptimizeIf(eq, instr, "overflow");
}
#else
if (hdiv->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ li(r0, Operand::Zero()); // clear xer
__ mtxer(r0);
oe = SetOE;
}
#endif
__ neg(result, dividend, oe, SetRC);
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, "minus zero", cr0);
}
// If the negation could not overflow, simply shifting is OK.
#if !V8_TARGET_ARCH_PPC64
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
#endif
if (shift) {
__ ShiftRightArithImm(result, result, shift);
}
return;
#if !V8_TARGET_ARCH_PPC64
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
DeoptimizeIf(overflow, instr, "overflow", cr0);
return;
}
Label overflow, done;
__ boverflow(&overflow, cr0);
__ srawi(result, result, shift);
__ b(&done);
__ bind(&overflow);
__ mov(result, Operand(kMinInt / divisor));
__ bind(&done);
#endif
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, "division by zero");
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ cmpwi(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ neg(result, result);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp());
DCHECK(!temp.is(dividend) && !temp.is(result));
Label needs_adjustment, done;
__ cmpwi(dividend, Operand::Zero());
__ b(divisor > 0 ? lt : gt, &needs_adjustment);
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ neg(result, result);
__ b(&done);
__ bind(&needs_adjustment);
__ addi(temp, dividend, Operand(divisor > 0 ? 1 : -1));
__ TruncatingDiv(result, temp, Abs(divisor));
if (divisor < 0) __ neg(result, result);
__ subi(result, result, Operand(1));
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
const Register dividend = ToRegister(instr->dividend());
const Register divisor = ToRegister(instr->divisor());
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
DCHECK(!divisor.is(result));
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
__ li(r0, Operand::Zero()); // clear xer
__ mtxer(r0);
}
__ divw(result, dividend, divisor, SetOE, SetRC);
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmpwi(divisor, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ cmpwi(dividend, Operand::Zero());
__ bne(&dividend_not_zero);
__ cmpwi(divisor, Operand::Zero());
DeoptimizeIf(lt, instr, "minus zero");
__ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
DeoptimizeIf(overflow, instr, "overflow", cr0);
} else {
// When truncating, we want kMinInt / -1 = kMinInt.
__ bnooverflow(&no_overflow_possible, cr0);
__ mr(result, dividend);
}
__ bind(&no_overflow_possible);
}
Label done;
Register scratch = scratch0();
// If both operands have the same sign then we are done.
#if V8_TARGET_ARCH_PPC64
__ xor_(scratch, dividend, divisor);
__ cmpwi(scratch, Operand::Zero());
__ bge(&done);
#else
__ xor_(scratch, dividend, divisor, SetRC);
__ bge(&done, cr0);
#endif
// If there is no remainder then we are done.
__ mullw(scratch, divisor, result);
__ cmpw(dividend, scratch);
__ beq(&done);
// We performed a truncating division. Correct the result.
__ subi(result, result, Operand(1));
__ bind(&done);
}
void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
DoubleRegister addend = ToDoubleRegister(instr->addend());
DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
DoubleRegister result = ToDoubleRegister(instr->result());
__ fmadd(result, multiplier, multiplicand, addend);
}
void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
DoubleRegister minuend = ToDoubleRegister(instr->minuend());
DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
DoubleRegister result = ToDoubleRegister(instr->result());
__ fmsub(result, multiplier, multiplicand, minuend);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
// Note that result may alias left.
Register left = ToRegister(instr->left());
LOperand* right_op = instr->right();
bool bailout_on_minus_zero =
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right_op->IsConstantOperand()) {
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
if (bailout_on_minus_zero && (constant < 0)) {
// The case of a null constant will be handled separately.
// If constant is negative and left is null, the result should be -0.
__ cmpi(left, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
switch (constant) {
case -1:
if (can_overflow) {
#if V8_TARGET_ARCH_PPC64
if (instr->hydrogen()->representation().IsSmi()) {
#endif
__ li(r0, Operand::Zero()); // clear xer
__ mtxer(r0);
__ neg(result, left, SetOE, SetRC);
DeoptimizeIf(overflow, instr, "overflow", cr0);
#if V8_TARGET_ARCH_PPC64
} else {
__ neg(result, left);
__ TestIfInt32(result, scratch, r0);
DeoptimizeIf(ne, instr, "overflow");
}
#endif
} else {
__ neg(result, left);
}
break;
case 0:
if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
#if V8_TARGET_ARCH_PPC64
if (instr->hydrogen()->representation().IsSmi()) {
#endif
__ cmpi(left, Operand::Zero());
#if V8_TARGET_ARCH_PPC64
} else {
__ cmpwi(left, Operand::Zero());
}
#endif
DeoptimizeIf(lt, instr, "minus zero");
}
__ li(result, Operand::Zero());
break;
case 1:
__ Move(result, left);
break;
default:
// Multiplying by powers of two and powers of two plus or minus
// one can be done faster with shifted operands.
// For other constants we emit standard code.
int32_t mask = constant >> 31;
uint32_t constant_abs = (constant + mask) ^ mask;
if (base::bits::IsPowerOfTwo32(constant_abs)) {
int32_t shift = WhichPowerOf2(constant_abs);
__ ShiftLeftImm(result, left, Operand(shift));
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ neg(result, result);
} else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
int32_t shift = WhichPowerOf2(constant_abs - 1);
__ ShiftLeftImm(scratch, left, Operand(shift));
__ add(result, scratch, left);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ neg(result, result);
} else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
int32_t shift = WhichPowerOf2(constant_abs + 1);
__ ShiftLeftImm(scratch, left, Operand(shift));
__ sub(result, scratch, left);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ neg(result, result);
} else {
// Generate standard code.
__ mov(ip, Operand(constant));
__ Mul(result, left, ip);
}
}
} else {
DCHECK(right_op->IsRegister());
Register right = ToRegister(right_op);
if (can_overflow) {
#if V8_TARGET_ARCH_PPC64
// result = left * right.
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ SmiUntag(scratch, right);
__ Mul(result, result, scratch);
} else {
__ Mul(result, left, right);
}
__ TestIfInt32(result, scratch, r0);
DeoptimizeIf(ne, instr, "overflow");
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiTag(result);
}
#else
// scratch:result = left * right.
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ mulhw(scratch, result, right);
__ mullw(result, result, right);
} else {
__ mulhw(scratch, left, right);
__ mullw(result, left, right);
}
__ TestIfInt32(scratch, result, r0);
DeoptimizeIf(ne, instr, "overflow");
#endif
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ Mul(result, result, right);
} else {
__ Mul(result, left, right);
}
}
if (bailout_on_minus_zero) {
Label done;
#if V8_TARGET_ARCH_PPC64
if (instr->hydrogen()->representation().IsSmi()) {
#endif
__ xor_(r0, left, right, SetRC);
__ bge(&done, cr0);
#if V8_TARGET_ARCH_PPC64
} else {
__ xor_(r0, left, right);
__ cmpwi(r0, Operand::Zero());
__ bge(&done);
}
#endif
// Bail out if the result is minus zero.
__ cmpi(result, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
__ bind(&done);
}
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left_op = instr->left();
LOperand* right_op = instr->right();
DCHECK(left_op->IsRegister());
Register left = ToRegister(left_op);
Register result = ToRegister(instr->result());
Operand right(no_reg);
if (right_op->IsStackSlot()) {
right = Operand(EmitLoadRegister(right_op, ip));
} else {
DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
right = ToOperand(right_op);
if (right_op->IsConstantOperand() && is_uint16(right.immediate())) {
switch (instr->op()) {
case Token::BIT_AND:
__ andi(result, left, right);
break;
case Token::BIT_OR:
__ ori(result, left, right);
break;
case Token::BIT_XOR:
__ xori(result, left, right);
break;
default:
UNREACHABLE();
break;
}
return;
}
}
switch (instr->op()) {
case Token::BIT_AND:
__ And(result, left, right);
break;
case Token::BIT_OR:
__ Or(result, left, right);
break;
case Token::BIT_XOR:
if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
__ notx(result, left);
} else {
__ Xor(result, left, right);
}
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
// result may alias either of them.
LOperand* right_op = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
if (right_op->IsRegister()) {
// Mask the right_op operand.
__ andi(scratch, ToRegister(right_op), Operand(0x1F));
switch (instr->op()) {
case Token::ROR:
// rotate_right(a, b) == rotate_left(a, 32 - b)
__ subfic(scratch, scratch, Operand(32));
__ rotlw(result, left, scratch);
break;
case Token::SAR:
__ sraw(result, left, scratch);
break;
case Token::SHR:
if (instr->can_deopt()) {
__ srw(result, left, scratch, SetRC);
#if V8_TARGET_ARCH_PPC64
__ extsw(result, result, SetRC);
#endif
DeoptimizeIf(lt, instr, "negative value", cr0);
} else {
__ srw(result, left, scratch);
}
break;
case Token::SHL:
__ slw(result, left, scratch);
#if V8_TARGET_ARCH_PPC64
__ extsw(result, result);
#endif
break;
default:
UNREACHABLE();
break;
}
} else {
// Mask the right_op operand.
int value = ToInteger32(LConstantOperand::cast(right_op));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ rotrwi(result, left, shift_count);
} else {
__ Move(result, left);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ srawi(result, left, shift_count);
} else {
__ Move(result, left);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ srwi(result, left, Operand(shift_count));
} else {
if (instr->can_deopt()) {
__ cmpwi(left, Operand::Zero());
DeoptimizeIf(lt, instr, "negative value");
}
__ Move(result, left);
}
break;
case Token::SHL:
if (shift_count != 0) {
#if V8_TARGET_ARCH_PPC64
if (instr->hydrogen_value()->representation().IsSmi()) {
__ sldi(result, left, Operand(shift_count));
#else
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ slwi(result, left, Operand(shift_count - 1));
__ SmiTagCheckOverflow(result, result, scratch);
} else {
__ SmiTagCheckOverflow(result, left, scratch);
}
DeoptimizeIf(lt, instr, "overflow", cr0);
#endif
} else {
__ slwi(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_PPC64
__ extsw(result, result);
#endif
}
} else {
__ Move(result, left);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* right = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (!can_overflow) {
if (right->IsConstantOperand()) {
__ Add(result, left, -(ToOperand(right).immediate()), r0);
} else {
__ sub(result, left, EmitLoadRegister(right, ip));
}
} else {
if (right->IsConstantOperand()) {
__ AddAndCheckForOverflow(result, left, -(ToOperand(right).immediate()),
scratch0(), r0);
} else {
__ SubAndCheckForOverflow(result, left, EmitLoadRegister(right, ip),
scratch0(), r0);
}
// Doptimize on overflow
#if V8_TARGET_ARCH_PPC64
if (!instr->hydrogen()->representation().IsSmi()) {
__ extsw(scratch0(), scratch0(), SetRC);
}
#endif
DeoptimizeIf(lt, instr, "overflow", cr0);
}
#if V8_TARGET_ARCH_PPC64
if (!instr->hydrogen()->representation().IsSmi()) {
__ extsw(result, result);
}
#endif
}
void LCodeGen::DoRSubI(LRSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
right->IsConstantOperand());
Operand right_operand = ToOperand(right);
if (is_int16(right_operand.immediate())) {
__ subfic(ToRegister(result), ToRegister(left), right_operand);
} else {
__ mov(r0, right_operand);
__ sub(ToRegister(result), r0, ToRegister(left));
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
}
// TODO(penguin): put const to constant pool instead
// of storing double to stack
void LCodeGen::DoConstantD(LConstantD* instr) {
DCHECK(instr->result()->IsDoubleRegister());
DoubleRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
__ LoadDoubleLiteral(result, v, scratch0());
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ Move(ToRegister(instr->result()), object);
}
void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->value());
__ EnumLength(result, map);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->date());
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->temp());
Smi* index = instr->index();
Label runtime, done;
DCHECK(object.is(result));
DCHECK(object.is(r3));
DCHECK(!scratch.is(scratch0()));
DCHECK(!scratch.is(object));
__ TestIfSmi(object, r0);
DeoptimizeIf(eq, instr, "Smi", cr0);
__ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
DeoptimizeIf(ne, instr, "not a date object");
if (index->value() == 0) {
__ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand(stamp));
__ LoadP(scratch, MemOperand(scratch));
__ LoadP(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
__ cmp(scratch, scratch0());
__ bne(&runtime);
__ LoadP(result,
FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ b(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ LoadSmiLiteral(r4, index);
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
}
MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldMemOperand(string, SeqString::kHeaderSize + offset);
}
Register scratch = scratch0();
DCHECK(!scratch.is(string));
DCHECK(!scratch.is(ToRegister(index)));
if (encoding == String::ONE_BYTE_ENCODING) {
__ add(scratch, string, ToRegister(index));
} else {
STATIC_ASSERT(kUC16Size == 2);
__ ShiftLeftImm(scratch, ToRegister(index), Operand(1));
__ add(scratch, string, scratch);
}
return FieldMemOperand(scratch, SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
Register scratch = scratch0();
__ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ andi(scratch, scratch,
Operand(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmpi(scratch,
Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
: two_byte_seq_type));
__ Check(eq, kUnexpectedStringType);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ lbz(result, operand);
} else {
__ lhz(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register value = ToRegister(instr->value());
if (FLAG_debug_code) {
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type
: two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ stb(value, operand);
} else {
__ sth(value, operand);
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* right = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
#if V8_TARGET_ARCH_PPC64
bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
instr->hydrogen()->representation().IsExternal());
#endif
if (!can_overflow) {
if (right->IsConstantOperand()) {
__ Add(result, left, ToOperand(right).immediate(), r0);
} else {
__ add(result, left, EmitLoadRegister(right, ip));
}
} else {
if (right->IsConstantOperand()) {
__ AddAndCheckForOverflow(result, left, ToOperand(right).immediate(),
scratch0(), r0);
} else {
__ AddAndCheckForOverflow(result, left, EmitLoadRegister(right, ip),
scratch0(), r0);
}
// Doptimize on overflow
#if V8_TARGET_ARCH_PPC64
if (isInteger) {
__ extsw(scratch0(), scratch0(), SetRC);
}
#endif
DeoptimizeIf(lt, instr, "overflow", cr0);
}
#if V8_TARGET_ARCH_PPC64
if (isInteger) {
__ extsw(result, result);
}
#endif
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
HMathMinMax::Operation operation = instr->hydrogen()->operation();
Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Register left_reg = ToRegister(left);
Register right_reg = EmitLoadRegister(right, ip);
Register result_reg = ToRegister(instr->result());
Label return_left, done;
#if V8_TARGET_ARCH_PPC64
if (instr->hydrogen_value()->representation().IsSmi()) {
#endif
__ cmp(left_reg, right_reg);
#if V8_TARGET_ARCH_PPC64
} else {
__ cmpw(left_reg, right_reg);
}
#endif
__ b(cond, &return_left);
__ Move(result_reg, right_reg);
__ b(&done);
__ bind(&return_left);
__ Move(result_reg, left_reg);
__ bind(&done);
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
DoubleRegister left_reg = ToDoubleRegister(left);
DoubleRegister right_reg = ToDoubleRegister(right);
DoubleRegister result_reg = ToDoubleRegister(instr->result());
Label check_nan_left, check_zero, return_left, return_right, done;
__ fcmpu(left_reg, right_reg);
__ bunordered(&check_nan_left);
__ beq(&check_zero);
__ b(cond, &return_left);
__ b(&return_right);
__ bind(&check_zero);
__ fcmpu(left_reg, kDoubleRegZero);
__ bne(&return_left); // left == right != 0.
// At this point, both left and right are either 0 or -0.
// N.B. The following works because +0 + -0 == +0
if (operation == HMathMinMax::kMathMin) {
// For min we want logical-or of sign bit: -(-L + -R)
__ fneg(left_reg, left_reg);
__ fsub(result_reg, left_reg, right_reg);
__ fneg(result_reg, result_reg);
} else {
// For max we want logical-and of sign bit: (L + R)
__ fadd(result_reg, left_reg, right_reg);
}
__ b(&done);
__ bind(&check_nan_left);
__ fcmpu(left_reg, left_reg);
__ bunordered(&return_left); // left == NaN.
__ bind(&return_right);
if (!right_reg.is(result_reg)) {
__ fmr(result_reg, right_reg);
}
__ b(&done);
__ bind(&return_left);
if (!left_reg.is(result_reg)) {
__ fmr(result_reg, left_reg);
}
__ bind(&done);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->left());
DoubleRegister right = ToDoubleRegister(instr->right());
DoubleRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
__ fadd(result, left, right);
break;
case Token::SUB:
__ fsub(result, left, right);
break;
case Token::MUL:
__ fmul(result, left, right);
break;
case Token::DIV:
__ fdiv(result, left, right);
break;
case Token::MOD: {
__ PrepareCallCFunction(0, 2, scratch0());
__ MovToFloatParameters(left, right);
__ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
0, 2);
// Move the result in the double result register.
__ MovFromFloatResult(result);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(r4));
DCHECK(ToRegister(instr->right()).is(r3));
DCHECK(ToRegister(instr->result()).is(r3));
Handle<Code> code =
CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
}
template <class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cond, CRegister cr) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cond == al) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block), cr);
} else if (right_block == next_block) {
__ b(cond, chunk_->GetAssemblyLabel(left_block), cr);
} else {
__ b(cond, chunk_->GetAssemblyLabel(left_block), cr);
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
template <class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond, CRegister cr) {
int false_block = instr->FalseDestination(chunk_);
__ b(cond, chunk_->GetAssemblyLabel(false_block), cr);
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
DoubleRegister dbl_scratch = double_scratch0();
const uint crZOrNaNBits = (1 << (31 - Assembler::encode_crbit(cr7, CR_EQ)) |
1 << (31 - Assembler::encode_crbit(cr7, CR_FU)));
if (r.IsInteger32()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ cmpwi(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (r.IsSmi()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ cmpi(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (r.IsDouble()) {
DCHECK(!info()->IsStub());
DoubleRegister reg = ToDoubleRegister(instr->value());
// Test the double value. Zero and NaN are false.
__ fcmpu(reg, kDoubleRegZero, cr7);
__ mfcr(r0);
__ andi(r0, r0, Operand(crZOrNaNBits));
EmitBranch(instr, eq, cr0);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq);
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
__ cmpi(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, al);
} else if (type.IsHeapNumber()) {
DCHECK(!info()->IsStub());
__ lfd(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
// Test the double value. Zero and NaN are false.
__ fcmpu(dbl_scratch, kDoubleRegZero, cr7);
__ mfcr(r0);
__ andi(r0, r0, Operand(crZOrNaNBits));
EmitBranch(instr, eq, cr0);
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmpi(ip, Operand::Zero());
EmitBranch(instr, ne);
} else {
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ beq(instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// Boolean -> its value.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ beq(instr->TrueLabel(chunk_));
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ beq(instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ beq(instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ cmpi(reg, Operand::Zero());
__ beq(instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ TestIfSmi(reg, r0);
DeoptimizeIf(eq, instr, "Smi", cr0);
}
const Register map = scratch0();
if (expected.NeedsMap()) {
__ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ lbz(ip, FieldMemOperand(map, Map::kBitFieldOffset));
__ TestBit(ip, Map::kIsUndetectable, r0);
__ bne(instr->FalseLabel(chunk_), cr0);
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
__ bge(instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
__ bge(&not_string);
__ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmpi(ip, Operand::Zero());
__ bne(instr->TrueLabel(chunk_));
__ b(instr->FalseLabel(chunk_));
__ bind(&not_string);
}
if (expected.Contains(ToBooleanStub::SYMBOL)) {
// Symbol value -> true.
__ CompareInstanceType(map, ip, SYMBOL_TYPE);
__ beq(instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ bne(&not_heap_number);
__ lfd(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
// Test the double value. Zero and NaN are false.
__ fcmpu(dbl_scratch, kDoubleRegZero, cr7);
__ mfcr(r0);
__ andi(r0, r0, Operand(crZOrNaNBits));
__ bne(instr->FalseLabel(chunk_), cr0);
__ b(instr->TrueLabel(chunk_));
__ bind(&not_heap_number);
}
if (!expected.IsGeneric()) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(al, instr, "unexpected object");
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
Condition LCodeGen::TokenToCondition(Token::Value op) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::NE:
case Token::NE_STRICT:
cond = ne;
break;
case Token::LT:
cond = lt;
break;
case Token::GT:
cond = gt;
break;
case Token::LTE:
cond = le;
break;
case Token::GTE:
cond = ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cond = TokenToCondition(instr->op());
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = EvalComparison(instr->op(), left_val, right_val)
? instr->TrueDestination(chunk_)
: instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Compare left and right operands as doubles and load the
// resulting flags into the normal status register.
__ fcmpu(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered,
// jump to false block label.
__ bunordered(instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
if (is_unsigned) {
__ CmplSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
} else {
__ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
}
} else {
if (is_unsigned) {
__ Cmplwi(ToRegister(left), Operand(value), r0);
} else {
__ Cmpwi(ToRegister(left), Operand(value), r0);
}
}
} else if (left->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
if (is_unsigned) {
__ CmplSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
} else {
__ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
}
} else {
if (is_unsigned) {
__ Cmplwi(ToRegister(right), Operand(value), r0);
} else {
__ Cmpwi(ToRegister(right), Operand(value), r0);
}
}
// We commuted the operands, so commute the condition.
cond = CommuteCondition(cond);
} else if (instr->hydrogen_value()->representation().IsSmi()) {
if (is_unsigned) {
__ cmpl(ToRegister(left), ToRegister(right));
} else {
__ cmp(ToRegister(left), ToRegister(right));
}
} else {
if (is_unsigned) {
__ cmplw(ToRegister(left), ToRegister(right));
} else {
__ cmpw(ToRegister(left), ToRegister(right));
}
}
}
EmitBranch(instr, cond);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
__ cmp(left, right);
EmitBranch(instr, eq);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ mov(ip, Operand(factory()->the_hole_value()));
__ cmp(input_reg, ip);
EmitBranch(instr, eq);
return;
}
DoubleRegister input_reg = ToDoubleRegister(instr->object());
__ fcmpu(input_reg, input_reg);
EmitFalseBranch(instr, ordered);
Register scratch = scratch0();
__ MovDoubleHighToInt(scratch, input_reg);
__ Cmpi(scratch, Operand(kHoleNanUpper32), r0);
EmitBranch(instr, eq);
}
void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
Representation rep = instr->hydrogen()->value()->representation();
DCHECK(!rep.IsInteger32());
Register scratch = ToRegister(instr->temp());
if (rep.IsDouble()) {
DoubleRegister value = ToDoubleRegister(instr->value());
__ fcmpu(value, kDoubleRegZero);
EmitFalseBranch(instr, ne);
#if V8_TARGET_ARCH_PPC64
__ MovDoubleToInt64(scratch, value);
#else
__ MovDoubleHighToInt(scratch, value);
#endif
__ cmpi(scratch, Operand::Zero());
EmitBranch(instr, lt);
} else {
Register value = ToRegister(instr->value());
__ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
instr->FalseLabel(chunk()), DO_SMI_CHECK);
#if V8_TARGET_ARCH_PPC64
__ LoadP(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
__ li(ip, Operand(1));
__ rotrdi(ip, ip, 1); // ip = 0x80000000_00000000
__ cmp(scratch, ip);
#else
__ lwz(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
__ lwz(ip, FieldMemOperand(value, HeapNumber::kMantissaOffset));
Label skip;
__ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
__ cmp(scratch, r0);
__ bne(&skip);
__ cmpi(ip, Operand::Zero());
__ bind(&skip);
#endif
EmitBranch(instr, eq);
}
}
Condition LCodeGen::EmitIsObject(Register input, Register temp1,
Label* is_not_object, Label* is_object) {
Register temp2 = scratch0();
__ JumpIfSmi(input, is_not_object);
__ LoadRoot(temp2, Heap::kNullValueRootIndex);
__ cmp(input, temp2);
__ beq(is_object);
// Load map.
__ LoadP(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ lbz(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
__ TestBit(temp2, Map::kIsUndetectable, r0);
__ bne(is_not_object, cr0);
// Load instance type and check that it is in object type range.
__ lbz(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
__ cmpi(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ blt(is_not_object);
__ cmpi(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
return le;
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp1 = ToRegister(instr->temp());
Condition true_cond = EmitIsObject(reg, temp1, instr->FalseLabel(chunk_),
instr->TrueLabel(chunk_));
EmitBranch(instr, true_cond);
}
Condition LCodeGen::EmitIsString(Register input, Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
__ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
return lt;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp1 = ToRegister(instr->temp());
SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK
: INLINE_SMI_CHECK;
Condition true_cond =
EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Register input_reg = EmitLoadRegister(instr->value(), ip);
__ TestIfSmi(input_reg, r0);
EmitBranch(instr, eq, cr0);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
__ lbz(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
__ TestBit(temp, Map::kIsUndetectable, r0);
EmitBranch(instr, ne, cr0);
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
Token::Value op = instr->op();
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
// This instruction also signals no smi code inlined
__ cmpi(r3, Operand::Zero());
Condition condition = ComputeCompareCondition(op);
EmitBranch(instr, condition);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
DCHECK(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return eq;
if (to == LAST_TYPE) return ge;
if (from == FIRST_TYPE) return le;
UNREACHABLE();
return eq;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->value());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
EmitBranch(instr, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
__ AssertString(input);
__ lwz(result, FieldMemOperand(input, String::kHashFieldOffset));
__ IndexFromHash(result, result);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->value());
Register scratch = scratch0();
__ lwz(scratch, FieldMemOperand(input, String::kHashFieldOffset));
__ mov(r0, Operand(String::kContainsCachedArrayIndexMask));
__ and_(r0, scratch, r0, SetRC);
EmitBranch(instr, eq, cr0);
}
// Branches to a label or falls through with the answer in flags. Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
Handle<String> class_name, Register input,
Register temp, Register temp2) {
DCHECK(!input.is(temp));
DCHECK(!input.is(temp2));
DCHECK(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
// Assuming the following assertions, we can use the same compares to test
// for both being a function type and being in the object type range.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE);
__ blt(is_false);
__ beq(is_true);
__ cmpi(temp2, Operand(LAST_SPEC_OBJECT_TYPE));
__ beq(is_true);
} else {
// Faster code path to avoid two compares: subtract lower bound from the
// actual type and do a signed compare with the width of the type range.
__ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
__ lbz(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset));
__ subi(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ cmpi(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ bgt(is_false);
}
// Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
// Check if the constructor in the map is a function.
__ LoadP(temp, FieldMemOperand(temp, Map::kConstructorOffset));
// Objects with a non-function constructor have class 'Object'.
__ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE);
if (class_name->IsOneByteEqualTo(STATIC_CHAR_VECTOR("Object"))) {
__ bne(is_true);
} else {