blob: a73bb8caaff618b1b0203075d8869485fecef6fc [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/arm64/lithium-arm64.h"
#include "src/arm64/lithium-gap-resolver-arm64.h"
#include "src/deoptimizer.h"
#include "src/lithium-codegen.h"
#include "src/safepoint-table.h"
#include "src/scopes.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// Forward declarations.
class LDeferredCode;
class SafepointGenerator;
class BranchGenerator;
class LCodeGen: public LCodeGenBase {
LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info)
: LCodeGenBase(chunk, assembler, info),
deoptimizations_(4, info->zone()),
jump_table_(4, info->zone()),
deoptimization_literals_(8, info->zone()),
deferred_(8, info->zone()),
inlined_arguments_(false) {
~LCodeGen() {
DCHECK(!after_push_argument_ || inlined_arguments_);
// Simple accessors.
Scope* scope() const { return scope_; }
int LookupDestination(int block_id) const {
return chunk()->LookupDestination(block_id);
bool IsNextEmittedBlock(int block_id) const {
return LookupDestination(block_id) == GetNextEmittedBlock();
bool NeedsEagerFrame() const {
return GetStackSlotCount() > 0 ||
info()->is_non_deferred_calling() ||
!info()->IsStub() ||
bool NeedsDeferredFrame() const {
return !NeedsEagerFrame() && info()->is_deferred_calling();
LinkRegisterStatus GetLinkRegisterState() const {
return frame_is_built_ ? kLRHasBeenSaved : kLRHasNotBeenSaved;
// Try to generate code for the entire chunk, but it may fail if the
// chunk contains constructs we cannot handle. Returns true if the
// code generation attempt succeeded.
bool GenerateCode();
// Finish the code by setting stack height, safepoint, and bailout
// information on it.
void FinishCode(Handle<Code> code);
enum IntegerSignedness { SIGNED_INT32, UNSIGNED_INT32 };
// Support for converting LOperands to assembler types.
Register ToRegister(LOperand* op) const;
Register ToRegister32(LOperand* op) const;
Operand ToOperand(LOperand* op);
Operand ToOperand32(LOperand* op);
enum StackMode { kMustUseFramePointer, kCanUseStackPointer };
MemOperand ToMemOperand(LOperand* op,
StackMode stack_mode = kCanUseStackPointer) const;
Handle<Object> ToHandle(LConstantOperand* op) const;
template <class LI>
Operand ToShiftedRightOperand32(LOperand* right, LI* shift_info);
int JSShiftAmountFromLConstant(LOperand* constant) {
return ToInteger32(LConstantOperand::cast(constant)) & 0x1f;
// TODO(jbramley): Examine these helpers and check that they make sense.
// IsInteger32Constant returns true for smi constants, for example.
bool IsInteger32Constant(LConstantOperand* op) const;
bool IsSmi(LConstantOperand* op) const;
int32_t ToInteger32(LConstantOperand* op) const;
Smi* ToSmi(LConstantOperand* op) const;
double ToDouble(LConstantOperand* op) const;
DoubleRegister ToDoubleRegister(LOperand* op) const;
// Declare methods that deal with the individual node types.
#define DECLARE_DO(type) void Do##type(L##type* node);
// Return a double scratch register which can be used locally
// when generating code for a lithium instruction.
DoubleRegister double_scratch() { return crankshaft_fp_scratch; }
// Deferred code support.
void DoDeferredNumberTagD(LNumberTagD* instr);
void DoDeferredStackCheck(LStackCheck* instr);
void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr);
void DoDeferredStringCharFromCode(LStringCharFromCode* instr);
void DoDeferredMathAbsTagged(LMathAbsTagged* instr,
Label* exit,
Label* allocation_entry);
void DoDeferredNumberTagU(LInstruction* instr,
LOperand* value,
LOperand* temp1,
LOperand* temp2);
void DoDeferredTaggedToI(LTaggedToI* instr,
LOperand* value,
LOperand* temp1,
LOperand* temp2);
void DoDeferredAllocate(LAllocate* instr);
void DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr);
void DoDeferredInstanceMigration(LCheckMaps* instr, Register object);
void DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
Register result,
Register object,
Register index);
static Condition TokenToCondition(Token::Value op, bool is_unsigned);
void EmitGoto(int block);
void DoGap(LGap* instr);
// Generic version of EmitBranch. It contains some code to avoid emitting a
// branch on the next emitted basic block where we could just fall-through.
// You shouldn't use that directly but rather consider one of the helper like
// LCodeGen::EmitBranch, LCodeGen::EmitCompareAndBranch...
template<class InstrType>
void EmitBranchGeneric(InstrType instr,
const BranchGenerator& branch);
template<class InstrType>
void EmitBranch(InstrType instr, Condition condition);
template<class InstrType>
void EmitCompareAndBranch(InstrType instr,
Condition condition,
const Register& lhs,
const Operand& rhs);
template<class InstrType>
void EmitTestAndBranch(InstrType instr,
Condition condition,
const Register& value,
uint64_t mask);
template<class InstrType>
void EmitBranchIfNonZeroNumber(InstrType instr,
const FPRegister& value,
const FPRegister& scratch);
template<class InstrType>
void EmitBranchIfHeapNumber(InstrType instr,
const Register& value);
template<class InstrType>
void EmitBranchIfRoot(InstrType instr,
const Register& value,
Heap::RootListIndex index);
// Emits optimized code to deep-copy the contents of statically known object
// graphs (e.g. object literal boilerplate). Expects a pointer to the
// allocated destination object in the result register, and a pointer to the
// source object in the source register.
void EmitDeepCopy(Handle<JSObject> object,
Register result,
Register source,
Register scratch,
int* offset,
AllocationSiteMode mode);
template <class T>
void EmitVectorLoadICRegisters(T* instr);
// Emits optimized code for %_IsString(x). Preserves input register.
// Returns the condition on which a final split to
// true and false label should be made, to optimize fallthrough.
Condition EmitIsString(Register input, Register temp1, Label* is_not_string,
SmiCheck check_needed);
int DefineDeoptimizationLiteral(Handle<Object> literal);
void PopulateDeoptimizationData(Handle<Code> code);
void PopulateDeoptimizationLiteralsWithInlinedFunctions();
MemOperand BuildSeqStringOperand(Register string,
Register temp,
LOperand* index,
String::Encoding encoding);
void DeoptimizeBranch(LInstruction* instr, const char* detail,
BranchType branch_type, Register reg = NoReg,
int bit = -1,
Deoptimizer::BailoutType* override_bailout_type = NULL);
void Deoptimize(LInstruction* instr, const char* detail,
Deoptimizer::BailoutType* override_bailout_type = NULL);
void DeoptimizeIf(Condition cond, LInstruction* instr, const char* detail);
void DeoptimizeIfZero(Register rt, LInstruction* instr, const char* detail);
void DeoptimizeIfNotZero(Register rt, LInstruction* instr,
const char* detail);
void DeoptimizeIfNegative(Register rt, LInstruction* instr,
const char* detail);
void DeoptimizeIfSmi(Register rt, LInstruction* instr, const char* detail);
void DeoptimizeIfNotSmi(Register rt, LInstruction* instr, const char* detail);
void DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
LInstruction* instr, const char* detail);
void DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
LInstruction* instr, const char* detail);
void DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr);
void DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
const char* detail);
void DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
const char* detail);
void DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
const char* detail);
MemOperand PrepareKeyedExternalArrayOperand(Register key,
Register base,
Register scratch,
bool key_is_smi,
bool key_is_constant,
int constant_key,
ElementsKind elements_kind,
int base_offset);
MemOperand PrepareKeyedArrayOperand(Register base,
Register elements,
Register key,
bool key_is_tagged,
ElementsKind elements_kind,
Representation representation,
int base_offset);
void RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode);
int GetStackSlotCount() const { return chunk()->spill_slot_count(); }
void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code, zone()); }
// Emit frame translation commands for an environment.
void WriteTranslation(LEnvironment* environment, Translation* translation);
void AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer);
void SaveCallerDoubles();
void RestoreCallerDoubles();
// Code generation steps. Returns true if code generation should continue.
void GenerateBodyInstructionPre(LInstruction* instr) OVERRIDE;
bool GeneratePrologue();
bool GenerateDeferredCode();
bool GenerateJumpTable();
bool GenerateSafepointTable();
// Generates the custom OSR entrypoint and sets the osr_pc_offset.
void GenerateOsrPrologue();
enum SafepointMode {
void CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr);
void CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode);
void CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntime(Runtime::FunctionId id,
int num_arguments,
LInstruction* instr) {
const Runtime::Function* function = Runtime::FunctionForId(id);
CallRuntime(function, num_arguments, instr);
void LoadContextFromDeferred(LOperand* context);
void CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context);
// Generate a direct call to a known function.
// If the function is already loaded into x1 by the caller, function_reg may
// be set to x1. Otherwise, it must be NoReg, and CallKnownFunction will
// automatically load it.
void CallKnownFunction(Handle<JSFunction> function,
int formal_parameter_count,
int arity,
LInstruction* instr,
Register function_reg = NoReg);
// Support for recording safepoint and position information.
void RecordAndWritePosition(int position) OVERRIDE;
void RecordSafepoint(LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode mode);
void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode);
void RecordSafepoint(Safepoint::DeoptMode mode);
void RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode mode);
void RecordSafepointWithLazyDeopt(LInstruction* instr,
SafepointMode safepoint_mode);
void EnsureSpaceForLazyDeopt(int space_needed) OVERRIDE;
ZoneList<LEnvironment*> deoptimizations_;
ZoneList<Deoptimizer::JumpTableEntry*> jump_table_;
ZoneList<Handle<Object> > deoptimization_literals_;
int inlined_function_count_;
Scope* const scope_;
TranslationBuffer translations_;
ZoneList<LDeferredCode*> deferred_;
int osr_pc_offset_;
bool frame_is_built_;
// Builder that keeps track of safepoints in the code. The table itself is
// emitted at the end of the generated code.
SafepointTableBuilder safepoints_;
// Compiler from a set of parallel moves to a sequential list of moves.
LGapResolver resolver_;
Safepoint::Kind expected_safepoint_kind_;
// This flag is true when we are after a push (but before a call).
// In this situation, jssp no longer references the end of the stack slots so,
// we can only reference a stack slot via fp.
bool after_push_argument_;
// If we have inlined arguments, we are no longer able to use jssp because
// jssp is modified and we never know if we are in a block after or before
// the pop of the arguments (which restores jssp).
bool inlined_arguments_;
int old_position_;
class PushSafepointRegistersScope BASE_EMBEDDED {
explicit PushSafepointRegistersScope(LCodeGen* codegen)
: codegen_(codegen) {
DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters;
UseScratchRegisterScope temps(codegen_->masm_);
// Preserve the value of lr which must be saved on the stack (the call to
// the stub will clobber it).
Register to_be_pushed_lr =
codegen_->masm_->Mov(to_be_pushed_lr, lr);
StoreRegistersStateStub stub(codegen_->isolate());
~PushSafepointRegistersScope() {
DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters);
RestoreRegistersStateStub stub(codegen_->isolate());
codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
LCodeGen* codegen_;
friend class LDeferredCode;
friend class SafepointGenerator;
class LDeferredCode: public ZoneObject {
explicit LDeferredCode(LCodeGen* codegen)
: codegen_(codegen),
instruction_index_(codegen->current_instruction_) {
virtual ~LDeferredCode() { }
virtual void Generate() = 0;
virtual LInstruction* instr() = 0;
void SetExit(Label* exit) { external_exit_ = exit; }
Label* entry() { return &entry_; }
Label* exit() { return (external_exit_ != NULL) ? external_exit_ : &exit_; }
int instruction_index() const { return instruction_index_; }
LCodeGen* codegen() const { return codegen_; }
MacroAssembler* masm() const { return codegen_->masm(); }
LCodeGen* codegen_;
Label entry_;
Label exit_;
Label* external_exit_;
int instruction_index_;
// This is the abstract class used by EmitBranchGeneric.
// It is used to emit code for conditional branching. The Emit() function
// emits code to branch when the condition holds and EmitInverted() emits
// the branch when the inverted condition is verified.
// For actual examples of condition see the concrete implementation in
// (e.g. BranchOnCondition, CompareAndBranch).
class BranchGenerator BASE_EMBEDDED {
explicit BranchGenerator(LCodeGen* codegen)
: codegen_(codegen) { }
virtual ~BranchGenerator() { }
virtual void Emit(Label* label) const = 0;
virtual void EmitInverted(Label* label) const = 0;
MacroAssembler* masm() const { return codegen_->masm(); }
LCodeGen* codegen_;
} } // namespace v8::internal