blob: e773b531a1e2784ca34a05626728621c5fd4adc2 [file] [log] [blame]
<
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM64
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/isolate.h"
#include "src/jsregexp.h"
#include "src/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
static void InitializeArrayConstructorDescriptor(
Isolate* isolate, CodeStubDescriptor* descriptor,
int constant_stack_parameter_count) {
// cp: context
// x1: function
// x2: allocation site with elements kind
// x0: number of arguments to the constructor function
Address deopt_handler = Runtime::FunctionForId(
Runtime::kArrayConstructor)->entry;
if (constant_stack_parameter_count == 0) {
descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE);
} else {
descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
}
}
void ArrayNoArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
}
void ArraySingleArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
}
void ArrayNArgumentsConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
}
static void InitializeInternalArrayConstructorDescriptor(
Isolate* isolate, CodeStubDescriptor* descriptor,
int constant_stack_parameter_count) {
Address deopt_handler = Runtime::FunctionForId(
Runtime::kInternalArrayConstructor)->entry;
if (constant_stack_parameter_count == 0) {
descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE);
} else {
descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
}
}
void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
}
void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
}
void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
CodeStubDescriptor* descriptor) {
InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
}
#define __ ACCESS_MASM(masm)
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetEnvironmentParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
DCHECK((param_count == 0) ||
x0.Is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
// Push arguments
MacroAssembler::PushPopQueue queue(masm);
for (int i = 0; i < param_count; ++i) {
queue.Queue(descriptor.GetEnvironmentParameterRegister(i));
}
queue.PushQueued();
__ CallExternalReference(miss, param_count);
}
__ Ret();
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label done;
Register input = source();
Register result = destination();
DCHECK(is_truncating());
DCHECK(result.Is64Bits());
DCHECK(jssp.Is(masm->StackPointer()));
int double_offset = offset();
DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
Register scratch2 =
GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
__ Push(scratch1, scratch2);
// Account for saved regs if input is jssp.
if (input.is(jssp)) double_offset += 2 * kPointerSize;
if (!skip_fastpath()) {
__ Push(double_scratch);
if (input.is(jssp)) double_offset += 1 * kDoubleSize;
__ Ldr(double_scratch, MemOperand(input, double_offset));
// Try to convert with a FPU convert instruction. This handles all
// non-saturating cases.
__ TryConvertDoubleToInt64(result, double_scratch, &done);
__ Fmov(result, double_scratch);
} else {
__ Ldr(result, MemOperand(input, double_offset));
}
// If we reach here we need to manually convert the input to an int32.
// Extract the exponent.
Register exponent = scratch1;
__ Ubfx(exponent, result, HeapNumber::kMantissaBits,
HeapNumber::kExponentBits);
// It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
// the mantissa gets shifted completely out of the int32_t result.
__ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
__ CzeroX(result, ge);
__ B(ge, &done);
// The Fcvtzs sequence handles all cases except where the conversion causes
// signed overflow in the int64_t target. Since we've already handled
// exponents >= 84, we can guarantee that 63 <= exponent < 84.
if (masm->emit_debug_code()) {
__ Cmp(exponent, HeapNumber::kExponentBias + 63);
// Exponents less than this should have been handled by the Fcvt case.
__ Check(ge, kUnexpectedValue);
}
// Isolate the mantissa bits, and set the implicit '1'.
Register mantissa = scratch2;
__ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
__ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
// Negate the mantissa if necessary.
__ Tst(result, kXSignMask);
__ Cneg(mantissa, mantissa, ne);
// Shift the mantissa bits in the correct place. We know that we have to shift
// it left here, because exponent >= 63 >= kMantissaBits.
__ Sub(exponent, exponent,
HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
__ Lsl(result, mantissa, exponent);
__ Bind(&done);
if (!skip_fastpath()) {
__ Pop(double_scratch);
}
__ Pop(scratch2, scratch1);
__ Ret();
}
// See call site for description.
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
Register left,
Register right,
Register scratch,
FPRegister double_scratch,
Label* slow,
Condition cond) {
DCHECK(!AreAliased(left, right, scratch));
Label not_identical, return_equal, heap_number;
Register result = x0;
__ Cmp(right, left);
__ B(ne, &not_identical);
// Test for NaN. Sadly, we can't just compare to factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if ((cond == lt) || (cond == gt)) {
__ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow,
ge);
} else if (cond == eq) {
__ JumpIfHeapNumber(right, &heap_number);
} else {
Register right_type = scratch;
__ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
&heap_number);
// Comparing JS objects with <=, >= is complicated.
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
__ B(ge, slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if ((cond == le) || (cond == ge)) {
__ Cmp(right_type, ODDBALL_TYPE);
__ B(ne, &return_equal);
__ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
if (cond == le) {
// undefined <= undefined should fail.
__ Mov(result, GREATER);
} else {
// undefined >= undefined should fail.
__ Mov(result, LESS);
}
__ Ret();
}
}
__ Bind(&return_equal);
if (cond == lt) {
__ Mov(result, GREATER); // Things aren't less than themselves.
} else if (cond == gt) {
__ Mov(result, LESS); // Things aren't greater than themselves.
} else {
__ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
}
__ Ret();
// Cases lt and gt have been handled earlier, and case ne is never seen, as
// it is handled in the parser (see Parser::ParseBinaryExpression). We are
// only concerned with cases ge, le and eq here.
if ((cond != lt) && (cond != gt)) {
DCHECK((cond == ge) || (cond == le) || (cond == eq));
__ Bind(&heap_number);
// Left and right are identical pointers to a heap number object. Return
// non-equal if the heap number is a NaN, and equal otherwise. Comparing
// the number to itself will set the overflow flag iff the number is NaN.
__ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
__ Fcmp(double_scratch, double_scratch);
__ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
if (cond == le) {
__ Mov(result, GREATER);
} else {
__ Mov(result, LESS);
}
__ Ret();
}
// No fall through here.
if (FLAG_debug_code) {
__ Unreachable();
}
__ Bind(&not_identical);
}
// See call site for description.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register left,
Register right,
Register left_type,
Register right_type,
Register scratch) {
DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
if (masm->emit_debug_code()) {
// We assume that the arguments are not identical.
__ Cmp(left, right);
__ Assert(ne, kExpectedNonIdenticalObjects);
}
// If either operand is a JS object or an oddball value, then they are not
// equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
Label right_non_object;
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
__ B(lt, &right_non_object);
// Return non-zero - x0 already contains a non-zero pointer.
DCHECK(left.is(x0) || right.is(x0));
Label return_not_equal;
__ Bind(&return_not_equal);
__ Ret();
__ Bind(&right_non_object);
// Check for oddballs: true, false, null, undefined.
__ Cmp(right_type, ODDBALL_TYPE);
// If right is not ODDBALL, test left. Otherwise, set eq condition.
__ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
// If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
// Otherwise, right or left is ODDBALL, so set a ge condition.
__ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
__ B(ge, &return_not_equal);
// Internalized strings are unique, so they can only be equal if they are the
// same object. We have already tested that case, so if left and right are
// both internalized strings, they cannot be equal.
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
__ Orr(scratch, left_type, right_type);
__ TestAndBranchIfAllClear(
scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
}
// See call site for description.
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register left,
Register right,
FPRegister left_d,
FPRegister right_d,
Label* slow,
bool strict) {
DCHECK(!AreAliased(left_d, right_d));
DCHECK((left.is(x0) && right.is(x1)) ||
(right.is(x0) && left.is(x1)));
Register result = x0;
Label right_is_smi, done;
__ JumpIfSmi(right, &right_is_smi);
// Left is the smi. Check whether right is a heap number.
if (strict) {
// If right is not a number and left is a smi, then strict equality cannot
// succeed. Return non-equal.
Label is_heap_number;
__ JumpIfHeapNumber(right, &is_heap_number);
// Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
if (!right.is(result)) {
__ Mov(result, NOT_EQUAL);
}
__ Ret();
__ Bind(&is_heap_number);
} else {
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
// runtime.
__ JumpIfNotHeapNumber(right, slow);
}
// Left is the smi. Right is a heap number. Load right value into right_d, and
// convert left smi into double in left_d.
__ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
__ SmiUntagToDouble(left_d, left);
__ B(&done);
__ Bind(&right_is_smi);
// Right is a smi. Check whether the non-smi left is a heap number.
if (strict) {
// If left is not a number and right is a smi then strict equality cannot
// succeed. Return non-equal.
Label is_heap_number;
__ JumpIfHeapNumber(left, &is_heap_number);
// Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
if (!left.is(result)) {
__ Mov(result, NOT_EQUAL);
}
__ Ret();
__ Bind(&is_heap_number);
} else {
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
// runtime.
__ JumpIfNotHeapNumber(left, slow);
}
// Right is the smi. Left is a heap number. Load left value into left_d, and
// convert right smi into double in right_d.
__ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
__ SmiUntagToDouble(right_d, right);
// Fall through to both_loaded_as_doubles.
__ Bind(&done);
}
// Fast negative check for internalized-to-internalized equality.
// See call site for description.
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
Register left,
Register right,
Register left_map,
Register right_map,
Register left_type,
Register right_type,
Label* possible_strings,
Label* not_both_strings) {
DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
Register result = x0;
Label object_test;
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
// TODO(all): reexamine this branch sequence for optimisation wrt branch
// prediction.
__ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
__ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
__ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
__ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
// Both are internalized. We already checked that they weren't the same
// pointer, so they are not equal.
__ Mov(result, NOT_EQUAL);
__ Ret();
__ Bind(&object_test);
__ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
// If right >= FIRST_SPEC_OBJECT_TYPE, test left.
// Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
__ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
__ B(lt, not_both_strings);
// If both objects are undetectable, they are equal. Otherwise, they are not
// equal, since they are different objects and an object is not equal to
// undefined.
// Returning here, so we can corrupt right_type and left_type.
Register right_bitfield = right_type;
Register left_bitfield = left_type;
__ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
__ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
__ And(result, right_bitfield, left_bitfield);
__ And(result, result, 1 << Map::kIsUndetectable);
__ Eor(result, result, 1 << Map::kIsUndetectable);
__ Ret();
}
static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
CompareICState::State expected,
Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ JumpIfNotHeapNumber(input, fail);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ Bind(&ok);
}
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Register lhs = x1;
Register rhs = x0;
Register result = x0;
Condition cond = GetCondition();
Label miss;
CompareICStub_CheckInputType(masm, lhs, left(), &miss);
CompareICStub_CheckInputType(masm, rhs, right(), &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles;
Label not_two_smis, smi_done;
__ JumpIfEitherNotSmi(lhs, rhs, &not_two_smis);
__ SmiUntag(lhs);
__ Sub(result, lhs, Operand::UntagSmi(rhs));
__ Ret();
__ Bind(&not_two_smis);
// NOTICE! This code is only reached after a smi-fast-case check, so it is
// certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
// If either is a smi (we know that at least one is not a smi), then they can
// only be strictly equal if the other is a HeapNumber.
__ JumpIfBothNotSmi(lhs, rhs, &not_smis);
// Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
// can:
// 1) Return the answer.
// 2) Branch to the slow case.
// 3) Fall through to both_loaded_as_doubles.
// In case 3, we have found out that we were dealing with a number-number
// comparison. The double values of the numbers have been loaded, right into
// rhs_d, left into lhs_d.
FPRegister rhs_d = d0;
FPRegister lhs_d = d1;
EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
__ Bind(&both_loaded_as_doubles);
// The arguments have been converted to doubles and stored in rhs_d and
// lhs_d.
Label nan;
__ Fcmp(lhs_d, rhs_d);
__ B(vs, &nan); // Overflow flag set if either is NaN.
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
__ Ret();
__ Bind(&nan);
// Left and/or right is a NaN. Load the result register with whatever makes
// the comparison fail, since comparisons with NaN always fail (except ne,
// which is filtered out at a higher level.)
DCHECK(cond != ne);
if ((cond == lt) || (cond == le)) {
__ Mov(result, GREATER);
} else {
__ Mov(result, LESS);
}
__ Ret();
__ Bind(&not_smis);
// At this point we know we are dealing with two different objects, and
// neither of them is a smi. The objects are in rhs_ and lhs_.
// Load the maps and types of the objects.
Register rhs_map = x10;
Register rhs_type = x11;
Register lhs_map = x12;
Register lhs_type = x13;
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
if (strict()) {
// This emits a non-equal return sequence for some object types, or falls
// through if it was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
}
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap number comparison. Branch to earlier double comparison code
// if they are heap numbers, otherwise, branch to internalized string check.
__ Cmp(rhs_type, HEAP_NUMBER_TYPE);
__ B(ne, &check_for_internalized_strings);
__ Cmp(lhs_map, rhs_map);
// If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
// string check.
__ B(ne, &flat_string_check);
// Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
// comparison code.
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ B(&both_loaded_as_doubles);
__ Bind(&check_for_internalized_strings);
// In the strict case, the EmitStrictTwoHeapObjectCompare already took care
// of internalized strings.
if ((cond == eq) && !strict()) {
// Returns an answer for two internalized strings or two detectable objects.
// Otherwise branches to the string case or not both strings case.
EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
lhs_type, rhs_type,
&flat_string_check, &slow);
}
// Check for both being sequential one-byte strings,
// and inline if that is the case.
__ Bind(&flat_string_check);
__ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
x15, &slow);
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
x11);
if (cond == eq) {
StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
x12);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
x12, x13);
}
// Never fall through to here.
if (FLAG_debug_code) {
__ Unreachable();
}
__ Bind(&slow);
__ Push(lhs, rhs);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript native;
if (cond == eq) {
native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
native = Builtins::COMPARE;
int ncr; // NaN compare result
if ((cond == lt) || (cond == le)) {
ncr = GREATER;
} else {
DCHECK((cond == gt) || (cond == ge)); // remaining cases
ncr = LESS;
}
__ Mov(x10, Smi::FromInt(ncr));
__ Push(x10);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(native, JUMP_FUNCTION);
__ Bind(&miss);
GenerateMiss(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
CPURegList saved_regs = kCallerSaved;
CPURegList saved_fp_regs = kCallerSavedFP;
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
// We don't care if MacroAssembler scratch registers are corrupted.
saved_regs.Remove(*(masm->TmpList()));
saved_fp_regs.Remove(*(masm->FPTmpList()));
__ PushCPURegList(saved_regs);
if (save_doubles()) {
__ PushCPURegList(saved_fp_regs);
}
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(x0, ExternalReference::isolate_address(isolate()));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
if (save_doubles()) {
__ PopCPURegList(saved_fp_regs);
}
__ PopCPURegList(saved_regs);
__ Ret();
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
UseScratchRegisterScope temps(masm);
Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
Register return_address = temps.AcquireX();
__ Mov(return_address, lr);
// Restore lr with the value it had before the call to this stub (the value
// which must be pushed).
__ Mov(lr, saved_lr);
__ PushSafepointRegisters();
__ Ret(return_address);
}
void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
UseScratchRegisterScope temps(masm);
Register return_address = temps.AcquireX();
// Preserve the return address (lr will be clobbered by the pop).
__ Mov(return_address, lr);
__ PopSafepointRegisters();
__ Ret(return_address);
}
void MathPowStub::Generate(MacroAssembler* masm) {
// Stack on entry:
// jssp[0]: Exponent (as a tagged value).
// jssp[1]: Base (as a tagged value).
//
// The (tagged) result will be returned in x0, as a heap number.
Register result_tagged = x0;
Register base_tagged = x10;
Register exponent_tagged = MathPowTaggedDescriptor::exponent();
DCHECK(exponent_tagged.is(x11));
Register exponent_integer = MathPowIntegerDescriptor::exponent();
DCHECK(exponent_integer.is(x12));
Register scratch1 = x14;
Register scratch0 = x15;
Register saved_lr = x19;
FPRegister result_double = d0;
FPRegister base_double = d0;
FPRegister exponent_double = d1;
FPRegister base_double_copy = d2;
FPRegister scratch1_double = d6;
FPRegister scratch0_double = d7;
// A fast-path for integer exponents.
Label exponent_is_smi, exponent_is_integer;
// Bail out to runtime.
Label call_runtime;
// Allocate a heap number for the result, and return it.
Label done;
// Unpack the inputs.
if (exponent_type() == ON_STACK) {
Label base_is_smi;
Label unpack_exponent;
__ Pop(exponent_tagged, base_tagged);
__ JumpIfSmi(base_tagged, &base_is_smi);
__ JumpIfNotHeapNumber(base_tagged, &call_runtime);
// base_tagged is a heap number, so load its double value.
__ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
__ B(&unpack_exponent);
__ Bind(&base_is_smi);
// base_tagged is a SMI, so untag it and convert it to a double.
__ SmiUntagToDouble(base_double, base_tagged);
__ Bind(&unpack_exponent);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// d1 base_double The base as a double.
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
__ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
// exponent_tagged is a heap number, so load its double value.
__ Ldr(exponent_double,
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
} else if (exponent_type() == TAGGED) {
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
__ Ldr(exponent_double,
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
}
// Handle double (heap number) exponents.
if (exponent_type() != INTEGER) {
// Detect integer exponents stored as doubles and handle those in the
// integer fast-path.
__ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
scratch0_double, &exponent_is_integer);
if (exponent_type() == ON_STACK) {
FPRegister half_double = d3;
FPRegister minus_half_double = d4;
// Detect square root case. Crankshaft detects constant +/-0.5 at compile
// time and uses DoMathPowHalf instead. We then skip this check for
// non-constant cases of +/-0.5 as these hardly occur.
__ Fmov(minus_half_double, -0.5);
__ Fmov(half_double, 0.5);
__ Fcmp(minus_half_double, exponent_double);
__ Fccmp(half_double, exponent_double, NZFlag, ne);
// Condition flags at this point:
// 0.5; nZCv // Identified by eq && pl
// -0.5: NZcv // Identified by eq && mi
// other: ?z?? // Identified by ne
__ B(ne, &call_runtime);
// The exponent is 0.5 or -0.5.
// Given that exponent is known to be either 0.5 or -0.5, the following
// special cases could apply (according to ECMA-262 15.8.2.13):
//
// base.isNaN(): The result is NaN.
// (base == +INFINITY) || (base == -INFINITY)
// exponent == 0.5: The result is +INFINITY.
// exponent == -0.5: The result is +0.
// (base == +0) || (base == -0)
// exponent == 0.5: The result is +0.
// exponent == -0.5: The result is +INFINITY.
// (base < 0) && base.isFinite(): The result is NaN.
//
// Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
// where base is -INFINITY or -0.
// Add +0 to base. This has no effect other than turning -0 into +0.
__ Fadd(base_double, base_double, fp_zero);
// The operation -0+0 results in +0 in all cases except where the
// FPCR rounding mode is 'round towards minus infinity' (RM). The
// ARM64 simulator does not currently simulate FPCR (where the rounding
// mode is set), so test the operation with some debug code.
if (masm->emit_debug_code()) {
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
__ Fneg(scratch0_double, fp_zero);
// Verify that we correctly generated +0.0 and -0.0.
// bits(+0.0) = 0x0000000000000000
// bits(-0.0) = 0x8000000000000000
__ Fmov(temp, fp_zero);
__ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
__ Fmov(temp, scratch0_double);
__ Eor(temp, temp, kDSignMask);
__ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
// Check that -0.0 + 0.0 == +0.0.
__ Fadd(scratch0_double, scratch0_double, fp_zero);
__ Fmov(temp, scratch0_double);
__ CheckRegisterIsClear(temp, kExpectedPositiveZero);
}
// If base is -INFINITY, make it +INFINITY.
// * Calculate base - base: All infinities will become NaNs since both
// -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
// * If the result is NaN, calculate abs(base).
__ Fsub(scratch0_double, base_double, base_double);
__ Fcmp(scratch0_double, 0.0);
__ Fabs(scratch1_double, base_double);
__ Fcsel(base_double, scratch1_double, base_double, vs);
// Calculate the square root of base.
__ Fsqrt(result_double, base_double);
__ Fcmp(exponent_double, 0.0);
__ B(ge, &done); // Finish now for exponents of 0.5.
// Find the inverse for exponents of -0.5.
__ Fmov(scratch0_double, 1.0);
__ Fdiv(result_double, scratch0_double, result_double);
__ B(&done);
}
{
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(saved_lr, lr);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
__ Mov(lr, saved_lr);
__ B(&done);
}
// Handle SMI exponents.
__ Bind(&exponent_is_smi);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// d1 base_double The base as a double.
__ SmiUntag(exponent_integer, exponent_tagged);
}
__ Bind(&exponent_is_integer);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// x12 exponent_integer The exponent as an integer.
// d1 base_double The base as a double.
// Find abs(exponent). For negative exponents, we can find the inverse later.
Register exponent_abs = x13;
__ Cmp(exponent_integer, 0);
__ Cneg(exponent_abs, exponent_integer, mi);
// x13 exponent_abs The value of abs(exponent_integer).
// Repeatedly multiply to calculate the power.
// result = 1.0;
// For each bit n (exponent_integer{n}) {
// if (exponent_integer{n}) {
// result *= base;
// }
// base *= base;
// if (remaining bits in exponent_integer are all zero) {
// break;
// }
// }
Label power_loop, power_loop_entry, power_loop_exit;
__ Fmov(scratch1_double, base_double);
__ Fmov(base_double_copy, base_double);
__ Fmov(result_double, 1.0);
__ B(&power_loop_entry);
__ Bind(&power_loop);
__ Fmul(scratch1_double, scratch1_double, scratch1_double);
__ Lsr(exponent_abs, exponent_abs, 1);
__ Cbz(exponent_abs, &power_loop_exit);
__ Bind(&power_loop_entry);
__ Tbz(exponent_abs, 0, &power_loop);
__ Fmul(result_double, result_double, scratch1_double);
__ B(&power_loop);
__ Bind(&power_loop_exit);
// If the exponent was positive, result_double holds the result.
__ Tbz(exponent_integer, kXSignBit, &done);
// The exponent was negative, so find the inverse.
__ Fmov(scratch0_double, 1.0);
__ Fdiv(result_double, scratch0_double, result_double);
// ECMA-262 only requires Math.pow to return an 'implementation-dependent
// approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
// to calculate the subnormal value 2^-1074. This method of calculating
// negative powers doesn't work because 2^1074 overflows to infinity. To
// catch this corner-case, we bail out if the result was 0. (This can only
// occur if the divisor is infinity or the base is zero.)
__ Fcmp(result_double, 0.0);
__ B(&done, ne);
if (exponent_type() == ON_STACK) {
// Bail out to runtime code.
__ Bind(&call_runtime);
// Put the arguments back on the stack.
__ Push(base_tagged, exponent_tagged);
__ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
// Return.
__ Bind(&done);
__ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
result_double);
DCHECK(result_tagged.is(x0));
__ IncrementCounter(
isolate()->counters()->math_pow(), 1, scratch0, scratch1);
__ Ret();
} else {
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(saved_lr, lr);
__ Fmov(base_double, base_double_copy);
__ Scvtf(exponent_double, exponent_integer);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
__ Mov(lr, saved_lr);
__ Bind(&done);
__ IncrementCounter(
isolate()->counters()->math_pow(), 1, scratch0, scratch1);
__ Ret();
}
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
// It is important that the following stubs are generated in this order
// because pregenerated stubs can only call other pregenerated stubs.
// RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
// CEntryStub.
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
StoreRegistersStateStub::GenerateAheadOfTime(isolate);
RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
}
void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
StoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
RestoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Floating-point code doesn't get special handling in ARM64, so there's
// nothing to do here.
USE(isolate);
}
bool CEntryStub::NeedsImmovableCode() {
// CEntryStub stores the return address on the stack before calling into
// C++ code. In some cases, the VM accesses this address, but it is not used
// when the C++ code returns to the stub because LR holds the return address
// in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
// returning to dead code.
// TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
// find any comment to confirm this, and I don't hit any crashes whatever
// this function returns. The anaylsis should be properly confirmed.
return true;
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
stub_fp.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// The Abort mechanism relies on CallRuntime, which in turn relies on
// CEntryStub, so until this stub has been generated, we have to use a
// fall-back Abort mechanism.
//
// Note that this stub must be generated before any use of Abort.
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
ASM_LOCATION("CEntryStub::Generate entry");
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Register parameters:
// x0: argc (including receiver, untagged)
// x1: target
//
// The stack on entry holds the arguments and the receiver, with the receiver
// at the highest address:
//
// jssp]argc-1]: receiver
// jssp[argc-2]: arg[argc-2]
// ... ...
// jssp[1]: arg[1]
// jssp[0]: arg[0]
//
// The arguments are in reverse order, so that arg[argc-2] is actually the
// first argument to the target function and arg[0] is the last.
DCHECK(jssp.Is(__ StackPointer()));
const Register& argc_input = x0;
const Register& target_input = x1;
// Calculate argv, argc and the target address, and store them in
// callee-saved registers so we can retry the call without having to reload
// these arguments.
// TODO(jbramley): If the first call attempt succeeds in the common case (as
// it should), then we might be better off putting these parameters directly
// into their argument registers, rather than using callee-saved registers and
// preserving them on the stack.
const Register& argv = x21;
const Register& argc = x22;
const Register& target = x23;
// Derive argv from the stack pointer so that it points to the first argument
// (arg[argc-2]), or just below the receiver in case there are no arguments.
// - Adjust for the arg[] array.
Register temp_argv = x11;
__ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
// - Adjust for the receiver.
__ Sub(temp_argv, temp_argv, 1 * kPointerSize);
// Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
// registers.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(save_doubles(), x10, 3);
DCHECK(csp.Is(__ StackPointer()));
// Poke callee-saved registers into reserved space.
__ Poke(argv, 1 * kPointerSize);
__ Poke(argc, 2 * kPointerSize);
__ Poke(target, 3 * kPointerSize);
// We normally only keep tagged values in callee-saved registers, as they
// could be pushed onto the stack by called stubs and functions, and on the
// stack they can confuse the GC. However, we're only calling C functions
// which can push arbitrary data onto the stack anyway, and so the GC won't
// examine that part of the stack.
__ Mov(argc, argc_input);
__ Mov(target, target_input);
__ Mov(argv, temp_argv);
// x21 : argv
// x22 : argc
// x23 : call target
//
// The stack (on entry) holds the arguments and the receiver, with the
// receiver at the highest address:
//
// argv[8]: receiver
// argv -> argv[0]: arg[argc-2]
// ... ...
// argv[...]: arg[1]
// argv[...]: arg[0]
//
// Immediately below (after) this is the exit frame, as constructed by
// EnterExitFrame:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: Space reserved for SPOffset.
// fp[-16]: CodeObject()
// csp[...]: Saved doubles, if saved_doubles is true.
// csp[32]: Alignment padding, if necessary.
// csp[24]: Preserved x23 (used for target).
// csp[16]: Preserved x22 (used for argc).
// csp[8]: Preserved x21 (used for argv).
// csp -> csp[0]: Space reserved for the return address.
//
// After a successful call, the exit frame, preserved registers (x21-x23) and
// the arguments (including the receiver) are dropped or popped as
// appropriate. The stub then returns.
//
// After an unsuccessful call, the exit frame and suchlike are left
// untouched, and the stub either throws an exception by jumping to one of
// the exception_returned label.
DCHECK(csp.Is(__ StackPointer()));
// Prepare AAPCS64 arguments to pass to the builtin.
__ Mov(x0, argc);
__ Mov(x1, argv);
__ Mov(x2, ExternalReference::isolate_address(isolate()));
Label return_location;
__ Adr(x12, &return_location);
__ Poke(x12, 0);
if (__ emit_debug_code()) {
// Verify that the slot below fp[kSPOffset]-8 points to the return location
// (currently in x12).
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
__ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
__ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
__ Cmp(temp, x12);
__ Check(eq, kReturnAddressNotFoundInFrame);
}
// Call the builtin.
__ Blr(target);
__ Bind(&return_location);
// x0 result The return code from the call.
// x21 argv
// x22 argc
// x23 target
const Register& result = x0;
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(result, Heap::kExceptionRootIndex);
__ B(eq, &exception_returned);
// The call succeeded, so unwind the stack and return.
// Restore callee-saved registers x21-x23.
__ Mov(x11, argc);
__ Peek(argv, 1 * kPointerSize);
__ Peek(argc, 2 * kPointerSize);
__ Peek(target, 3 * kPointerSize);
__ LeaveExitFrame(save_doubles(), x10, true);
DCHECK(jssp.Is(__ StackPointer()));
// Pop or drop the remaining stack slots and return from the stub.
// jssp[24]: Arguments array (of size argc), including receiver.
// jssp[16]: Preserved x23 (used for target).
// jssp[8]: Preserved x22 (used for argc).
// jssp[0]: Preserved x21 (used for argv).
__ Drop(x11);
__ AssertFPCRState();
__ Ret();
// The stack pointer is still csp if we aren't returning, and the frame
// hasn't changed (except for the return address).
__ SetStackPointer(csp);
// Handling of exception.
__ Bind(&exception_returned);
// Retrieve the pending exception.
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
const Register& exception = result;
const Register& exception_address = x11;
__ Mov(exception_address, Operand(pending_exception_address));
__ Ldr(exception, MemOperand(exception_address));
// Clear the pending exception.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Str(x10, MemOperand(exception_address));
// x0 exception The exception descriptor.
// x21 argv
// x22 argc
// x23 target
// Special handling of termination exceptions, which are uncatchable by
// JavaScript code.
Label throw_termination_exception;
__ Cmp(exception, Operand(isolate()->factory()->termination_exception()));
__ B(eq, &throw_termination_exception);
// We didn't execute a return case, so the stack frame hasn't been updated
// (except for the return address slot). However, we don't need to initialize
// jssp because the throw method will immediately overwrite it when it
// unwinds the stack.
__ SetStackPointer(jssp);
ASM_LOCATION("Throw normal");
__ Mov(argv, 0);
__ Mov(argc, 0);
__ Mov(target, 0);
__ Throw(x0, x10, x11, x12, x13);
__ Bind(&throw_termination_exception);
ASM_LOCATION("Throw termination");
__ Mov(argv, 0);
__ Mov(argc, 0);
__ Mov(target, 0);
__ ThrowUncatchable(x0, x10, x11, x12, x13);
}
// This is the entry point from C++. 5 arguments are provided in x0-x4.
// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
// Input:
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
// Output:
// x0: result.
void JSEntryStub::Generate(MacroAssembler* masm) {
DCHECK(jssp.Is(__ StackPointer()));
Register code_entry = x0;
// Enable instruction instrumentation. This only works on the simulator, and
// will have no effect on the model or real hardware.
__ EnableInstrumentation();
Label invoke, handler_entry, exit;
// Push callee-saved registers and synchronize the system stack pointer (csp)
// and the JavaScript stack pointer (jssp).
//
// We must not write to jssp until after the PushCalleeSavedRegisters()
// call, since jssp is itself a callee-saved register.
__ SetStackPointer(csp);
__ PushCalleeSavedRegisters();
__ Mov(jssp, csp);
__ SetStackPointer(jssp);
// Configure the FPCR. We don't restore it, so this is technically not allowed
// according to AAPCS64. However, we only set default-NaN mode and this will
// be harmless for most C code. Also, it works for ARM.
__ ConfigureFPCR();
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Set up the reserved register for 0.0.
__ Fmov(fp_zero, 0.0);
// Build an entry frame (see layout below).
int marker = type();
int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, Smi::FromInt(marker));
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(x13, xzr, x12, x10);
// Set up fp.
__ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
// Push the JS entry frame marker. Also set js_entry_sp if this is the
// outermost JS call.
Label non_outermost_js, done;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ Mov(x10, ExternalReference(js_entry_sp));
__ Ldr(x11, MemOperand(x10));
__ Cbnz(x11, &non_outermost_js);
__ Str(fp, MemOperand(x10));
__ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ Push(x12);
__ B(&done);
__ Bind(&non_outermost_js);
// We spare one instruction by pushing xzr since the marker is 0.
DCHECK(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
__ Push(xzr);
__ Bind(&done);
// The frame set up looks like this:
// jssp[0] : JS entry frame marker.
// jssp[1] : C entry FP.
// jssp[2] : stack frame marker.
// jssp[3] : stack frmae marker.
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ B(&invoke);
// Prevent the constant pool from being emitted between the record of the
// handler_entry position and the first instruction of the sequence here.
// There is no risk because Assembler::Emit() emits the instruction before
// checking for constant pool emission, but we do not want to depend on
// that.
{
Assembler::BlockPoolsScope block_pools(masm);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushTryHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
}
__ Str(code_entry, MemOperand(x10));
__ LoadRoot(x0, Heap::kExceptionRootIndex);
__ B(&exit);
// Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0.
__ Bind(&invoke);
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the B(&invoke) above, which
// restores all callee-saved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ Str(x10, MemOperand(x11));
// Invoke the function by calling through the JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
? Builtins::kJSConstructEntryTrampoline
: Builtins::kJSEntryTrampoline,
isolate());
__ Mov(x10, entry);
// Call the JSEntryTrampoline.
__ Ldr(x11, MemOperand(x10)); // Dereference the address.
__ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
__ Blr(x12);
// Unlink this frame from the handler chain.
__ PopTryHandler();
__ Bind(&exit);
// x0 holds the result.
// The stack pointer points to the top of the entry frame pushed on entry from
// C++ (at the beginning of this stub):
// jssp[0] : JS entry frame marker.
// jssp[1] : C entry FP.
// jssp[2] : stack frame marker.
// jssp[3] : stack frmae marker.
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ Pop(x10);
__ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ B(ne, &non_outermost_js_2);
__ Mov(x11, ExternalReference(js_entry_sp));
__ Str(xzr, MemOperand(x11));
__ Bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ Pop(x10);
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
__ Str(x10, MemOperand(x11));
// Reset the stack to the callee saved registers.
__ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
// Restore the callee-saved registers and return.
DCHECK(jssp.Is(__ StackPointer()));
__ Mov(csp, jssp);
__ SetStackPointer(csp);
__ PopCalleeSavedRegisters();
// After this point, we must not modify jssp because it is a callee-saved
// register which we have just restored.
__ Ret();
}
void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
// Ensure that the vector and slot registers won't be clobbered before
// calling the miss handler.
DCHECK(!FLAG_vector_ics ||
!AreAliased(x10, x11, VectorLoadICDescriptor::VectorRegister(),
VectorLoadICDescriptor::SlotRegister()));
NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10,
x11, &miss);
__ Bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
}
void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
// Return address is in lr.
Label miss;
Register receiver = LoadDescriptor::ReceiverRegister();
Register index = LoadDescriptor::NameRegister();
Register result = x0;
Register scratch = x10;
DCHECK(!scratch.is(receiver) && !scratch.is(index));
DCHECK(!FLAG_vector_ics ||
(!scratch.is(VectorLoadICDescriptor::VectorRegister()) &&
result.is(VectorLoadICDescriptor::SlotRegister())));
// StringCharAtGenerator doesn't use the result register until it's passed
// the different miss possibilities. If it did, we would have a conflict
// when FLAG_vector_ics is true.
StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX,
RECEIVER_IS_STRING);
char_at_generator.GenerateFast(masm);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ Bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
}
void InstanceofStub::Generate(MacroAssembler* masm) {
// Stack on entry:
// jssp[0]: function.
// jssp[8]: object.
//
// Returns result in x0. Zero indicates instanceof, smi 1 indicates not
// instanceof.
Register result = x0;
Register function = right();
Register object = left();
Register scratch1 = x6;
Register scratch2 = x7;
Register res_true = x8;
Register res_false = x9;
// Only used if there was an inline map check site. (See
// LCodeGen::DoInstanceOfKnownGlobal().)
Register map_check_site = x4;
// Delta for the instructions generated between the inline map check and the
// instruction setting the result.
const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
Label not_js_object, slow;
if (!HasArgsInRegisters()) {
__ Pop(function, object);
}
if (ReturnTrueFalseObject()) {
__ LoadTrueFalseRoots(res_true, res_false);
} else {
// This is counter-intuitive, but correct.
__ Mov(res_true, Smi::FromInt(0));
__ Mov(res_false, Smi::FromInt(1));
}
// Check that the left hand side is a JS object and load its map as a side
// effect.
Register map = x12;
__ JumpIfSmi(object, &not_js_object);
__ IsObjectJSObjectType(object, map, scratch2, &not_js_object);
// If there is a call site cache, don't look in the global cache, but do the
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
Label miss;
__ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
__ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
__ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
__ Ret();
__ Bind(&miss);
}
// Get the prototype of the function.
Register prototype = x13;
__ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
MacroAssembler::kMissOnBoundFunction);
// Check that the function prototype is a JS object.
__ JumpIfSmi(prototype, &slow);
__ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
// Update the global instanceof or call site inlined cache with the current
// map and function. The cached answer will be set when it is known below.
if (HasCallSiteInlineCheck()) {
// Patch the (relocated) inlined map check.
__ GetRelocatedValueLocation(map_check_site, scratch1);
// We have a cell, so need another level of dereferencing.
__ Ldr(scratch1, MemOperand(scratch1));
__ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
} else {
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
}
Label return_true, return_result;
Register smi_value = scratch1;
{
// Loop through the prototype chain looking for the function prototype.
Register chain_map = x1;
Register chain_prototype = x14;
Register null_value = x15;
Label loop;
__ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
// Speculatively set a result.
__ Mov(result, res_false);
if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
// Value to store in the cache cannot be an object.
__ Mov(smi_value, Smi::FromInt(1));
}
__ Bind(&loop);
// If the chain prototype is the object prototype, return true.
__ Cmp(chain_prototype, prototype);
__ B(eq, &return_true);
// If the chain prototype is null, we've reached the end of the chain, so
// return false.
__ Cmp(chain_prototype, null_value);
__ B(eq, &return_result);
// Otherwise, load the next prototype in the chain, and loop.
__ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
__ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
__ B(&loop);
}
// Return sequence when no arguments are on the stack.
// We cannot fall through to here.
__ Bind(&return_true);
__ Mov(result, res_true);
if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
// Value to store in the cache cannot be an object.
__ Mov(smi_value, Smi::FromInt(0));
}
__ Bind(&return_result);
if (HasCallSiteInlineCheck()) {
DCHECK(ReturnTrueFalseObject());
__ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
__ GetRelocatedValueLocation(map_check_site, scratch2);
__ Str(result, MemOperand(scratch2));
} else {
Register cached_value = ReturnTrueFalseObject() ? smi_value : result;
__ StoreRoot(cached_value, Heap::kInstanceofCacheAnswerRootIndex);
}
__ Ret();
Label object_not_null, object_not_null_or_smi;
__ Bind(&not_js_object);
Register object_type = x14;
// x0 result result return register (uninit)
// x10 function pointer to function
// x11 object pointer to object
// x14 object_type type of object (uninit)
// Before null, smi and string checks, check that the rhs is a function.
// For a non-function rhs, an exception must be thrown.
__ JumpIfSmi(function, &slow);
__ JumpIfNotObjectType(
function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
__ Mov(result, res_false);
// Null is not instance of anything.
__ Cmp(object, Operand(isolate()->factory()->null_value()));
__ B(ne, &object_not_null);
__ Ret();
__ Bind(&object_not_null);
// Smi values are not instances of anything.
__ JumpIfNotSmi(object, &object_not_null_or_smi);
__ Ret();
__ Bind(&object_not_null_or_smi);
// String values are not instances of anything.
__ IsObjectJSStringType(object, scratch2, &slow);
__ Ret();
// Slow-case. Tail call builtin.
__ Bind(&slow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Arguments have either been passed into registers or have been previously
// popped. We need to push them before calling builtin.
__ Push(object, function);
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
}
if (ReturnTrueFalseObject()) {
// Reload true/false because they were clobbered in the builtin call.
__ LoadTrueFalseRoots(res_true, res_false);
__ Cmp(result, 0);
__ Csel(result, res_true, res_false, eq);
}
__ Ret();
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
Register arg_count = ArgumentsAccessReadDescriptor::parameter_count();
Register key = ArgumentsAccessReadDescriptor::index();
DCHECK(arg_count.is(x0));
DCHECK(key.is(x1));
// The displacement is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement =
StandardFrameConstants::kCallerSPOffset - kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(key, &slow);
// Check if the calling frame is an arguments adaptor frame.
Register local_fp = x11;
Register caller_fp = x11;
Register caller_ctx = x12;
Label skip_adaptor;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(caller_ctx, MemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ Csel(local_fp, fp, caller_fp, ne);
__ B(ne, &skip_adaptor);
// Load the actual arguments limit found in the arguments adaptor frame.
__ Ldr(arg_count, MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Bind(&skip_adaptor);
// Check index against formal parameters count limit. Use unsigned comparison
// to get negative check for free: branch if key < 0 or key >= arg_count.
__ Cmp(key, arg_count);
__ B(hs, &slow);
// Read the argument from the stack and return it.
__ Sub(x10, arg_count, key);
__ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
__ Ldr(x0, MemOperand(x10, kDisplacement));
__ Ret();
// Slow case: handle non-smi or out-of-bounds access to arguments by calling
// the runtime system.
__ Bind(&slow);
__ Push(key);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
// Stack layout on entry.
// jssp[0]: number of parameters (tagged)
// jssp[8]: address of receiver argument
// jssp[16]: function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
Register caller_fp = x10;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Load and untag the context.
__ Ldr(w11, UntagSmiMemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
__ B(ne, &runtime);
// Patch the arguments.length and parameters pointer in the current frame.
__ Ldr(x11, MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Poke(x11, 0 * kXRegSize);
__ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
__ Add(x10, x10, StandardFrameConstants::kCallerSPOffset);
__ Poke(x10, 1 * kXRegSize);
__ Bind(&runtime);
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
}
void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
// Stack layout on entry.
// jssp[0]: number of parameters (tagged)
// jssp[8]: address of receiver argument
// jssp[16]: function
//
// Returns pointer to result object in x0.
// Note: arg_count_smi is an alias of param_count_smi.
Register arg_count_smi = x3;
Register param_count_smi = x3;
Register param_count = x7;
Register recv_arg = x14;
Register function = x4;
__ Pop(param_count_smi, recv_arg, function);
__ SmiUntag(param_count, param_count_smi);
// Check if the calling frame is an arguments adaptor frame.
Register caller_fp = x11;
Register caller_ctx = x12;
Label runtime;
Label adaptor_frame, try_allocate;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(caller_ctx, MemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ B(eq, &adaptor_frame);
// No adaptor, parameter count = argument count.
// x1 mapped_params number of mapped params, min(params, args) (uninit)
// x2 arg_count number of function arguments (uninit)
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x7 param_count number of function parameters
// x11 caller_fp caller's frame pointer
// x14 recv_arg pointer to receiver arguments
Register arg_count = x2;
__ Mov(arg_count, param_count);
__ B(&try_allocate);
// We have an adaptor frame. Patch the parameters pointer.
__ Bind(&adaptor_frame);
__ Ldr(arg_count_smi,
MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(arg_count, arg_count_smi);
__ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
__ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
// Compute the mapped parameter count = min(param_count, arg_count)
Register mapped_params = x1;
__ Cmp(param_count, arg_count);
__ Csel(mapped_params, param_count, arg_count, lt);
__ Bind(&try_allocate);
// x0 alloc_obj pointer to allocated objects: param map, backing
// store, arguments (uninit)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x7 param_count number of function parameters
// x10 size size of objects to allocate (uninit)
// x14 recv_arg pointer to receiver arguments
// Compute the size of backing store, parameter map, and arguments object.
// 1. Parameter map, has two extra words containing context and backing
// store.
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
// Calculate the parameter map size, assuming it exists.
Register size = x10;
__ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
__ Add(size, size, kParameterMapHeaderSize);
// If there are no mapped parameters, set the running size total to zero.
// Otherwise, use the parameter map size calculated earlier.
__ Cmp(mapped_params, 0);
__ CzeroX(size, eq);
// 2. Add the size of the backing store and arguments object.
__ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
__ Add(size, size,
FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
// Do the allocation of all three objects in one go. Assign this to x0, as it
// will be returned to the caller.
Register alloc_obj = x0;
__ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x7 param_count number of function parameters
// x11 sloppy_args_map offset to args (or aliased args) map (uninit)
// x14 recv_arg pointer to receiver arguments
Register global_object = x10;
Register global_ctx = x10;
Register sloppy_args_map = x11;
Register aliased_args_map = x10;
__ Ldr(global_object, GlobalObjectMemOperand());
__ Ldr(global_ctx, FieldMemOperand(global_object,
GlobalObject::kNativeContextOffset));
__ Ldr(sloppy_args_map,
ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ Ldr(aliased_args_map,
ContextMemOperand(global_ctx, Context::ALIASED_ARGUMENTS_MAP_INDEX));
__ Cmp(mapped_params, 0);
__ CmovX(sloppy_args_map, aliased_args_map, ne);
// Copy the JS object part.
__ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
__ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
__ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
__ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
// Set up the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
const int kCalleeOffset = JSObject::kHeaderSize +
Heap::kArgumentsCalleeIndex * kPointerSize;
__ AssertNotSmi(function);
__ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
// Use the length and set that as an in-object property.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
const int kLengthOffset = JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize;
__ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
// Set up the elements pointer in the allocated arguments object.
// If we allocated a parameter map, "elements" will point there, otherwise
// it will point to the backing store.
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x5 elements pointer to parameter map or backing store (uninit)
// x6 backing_store pointer to backing store (uninit)
// x7 param_count number of function parameters
// x14 recv_arg pointer to receiver arguments
Register elements = x5;
__ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
__ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
// Initialize parameter map. If there are no mapped arguments, we're done.
Label skip_parameter_map;
__ Cmp(mapped_params, 0);
// Set up backing store address, because it is needed later for filling in
// the unmapped arguments.
Register backing_store = x6;
__ CmovX(backing_store, elements, eq);
__ B(eq, &skip_parameter_map);
__ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
__ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
__ Add(x10, mapped_params, 2);
__ SmiTag(x10);
__ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Str(cp, FieldMemOperand(elements,
FixedArray::kHeaderSize + 0 * kPointerSize));
__ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
__ Add(x10, x10, kParameterMapHeaderSize);
__ Str(x10, FieldMemOperand(elements,
FixedArray::kHeaderSize + 1 * kPointerSize));
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. Then index the context,
// where parameters are stored in reverse order, at:
//
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
//
// The mapped parameter thus needs to get indices:
//
// MIN_CONTEXT_SLOTS + parameter_count - 1 ..
// MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
//
// We loop from right to left.
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x3 arg_count_smi number of function arguments (smi)
// x4 function function pointer
// x5 elements pointer to parameter map or backing store (uninit)
// x6 backing_store pointer to backing store (uninit)
// x7 param_count number of function parameters
// x11 loop_count parameter loop counter (uninit)
// x12 index parameter index (smi, uninit)
// x13 the_hole hole value (uninit)
// x14 recv_arg pointer to receiver arguments
Register loop_count = x11;
Register index = x12;
Register the_hole = x13;
Label parameters_loop, parameters_test;
__ Mov(loop_count, mapped_params);
__ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
__ Sub(index, index, mapped_params);
__ SmiTag(index);
__ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
__ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
__ Add(backing_store, backing_store, kParameterMapHeaderSize);
__ B(&parameters_test);
__ Bind(&parameters_loop);
__ Sub(loop_count, loop_count, 1);
__ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
__ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
__ Str(index, MemOperand(elements, x10));
__ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
__ Str(the_hole, MemOperand(backing_store, x10));
__ Add(index, index, Smi::FromInt(1));
__ Bind(&parameters_test);
__ Cbnz(loop_count, &parameters_loop);
__ Bind(&skip_parameter_map);
// Copy arguments header and remaining slots (if there are any.)
__ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
__ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
__ Str(arg_count_smi, FieldMemOperand(backing_store,
FixedArray::kLengthOffset));
// x0 alloc_obj pointer to allocated objects (param map, backing
// store, arguments)
// x1 mapped_params number of mapped parameters, min(params, args)
// x2 arg_count number of function arguments
// x4 function function pointer
// x3 arg_count_smi number of function arguments (smi)
// x6 backing_store pointer to backing store (uninit)
// x14 recv_arg pointer to receiver arguments
Label arguments_loop, arguments_test;
__ Mov(x10, mapped_params);
__ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
__ B(&arguments_test);
__ Bind(&arguments_loop);
__ Sub(recv_arg, recv_arg, kPointerSize);
__ Ldr(x11, MemOperand(recv_arg));
__ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
__ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
__ Add(x10, x10, 1);
__ Bind(&arguments_test);
__ Cmp(x10, arg_count);
__ B(lt, &arguments_loop);
__ Ret();
// Do the runtime call to allocate the arguments object.
__ Bind(&runtime);
__ Push(function, recv_arg, arg_count_smi);
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
}
void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
// Return address is in lr.
Label slow;
Register receiver = LoadDescriptor::ReceiverRegister();
Register key = LoadDescriptor::NameRegister();
// Check that the key is an array index, that is Uint32.
__ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
// Everything is fine, call runtime.
__ Push(receiver, key);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
masm->isolate()),
2, 1);
__ Bind(&slow);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
}
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// Stack layout on entry.
// jssp[0]: number of parameters (tagged)
// jssp[8]: address of receiver argument
// jssp[16]: function
//
// Returns pointer to result object in x0.
// Get the stub arguments from the frame, and make an untagged copy of the
// parameter count.
Register param_count_smi = x1;
Register params = x2;
Register function = x3;
Register param_count = x13;
__ Pop(param_count_smi, params, function);
__ SmiUntag(param_count, param_count_smi);
// Test if arguments adaptor needed.
Register caller_fp = x11;
Register caller_ctx = x12;
Label try_allocate, runtime;
__ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(caller_ctx, MemOperand(caller_fp,
StandardFrameConstants::kContextOffset));
__ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ B(ne, &try_allocate);
// x1 param_count_smi number of parameters passed to function (smi)
// x2 params pointer to parameters
// x3 function function pointer
// x11 caller_fp caller's frame pointer
// x13 param_count number of parameters passed to function
// Patch the argument length and parameters pointer.
__ Ldr(param_count_smi,
MemOperand(caller_fp,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(param_count, param_count_smi);
__ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
__ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
// Try the new space allocation. Start out with computing the size of the
// arguments object and the elements array in words.
Register size = x10;
__ Bind(&try_allocate);
__ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
__ Cmp(param_count, 0);
__ CzeroX(size, eq);
__ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
// Do the allocation of both objects in one go. Assign this to x0, as it will
// be returned to the caller.
Register alloc_obj = x0;
__ Allocate(size, alloc_obj, x11, x12, &runtime,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Get the arguments boilerplate from the current (native) context.
Register global_object = x10;
Register global_ctx = x10;
Register strict_args_map = x4;
__ Ldr(global_object, GlobalObjectMemOperand());
__ Ldr(global_ctx, FieldMemOperand(global_object,
GlobalObject::kNativeContextOffset));
__ Ldr(strict_args_map,
ContextMemOperand(global_ctx, Context::STRICT_ARGUMENTS_MAP_INDEX));
// x0 alloc_obj pointer to allocated objects: parameter array and
// arguments object
// x1 param_count_smi number of parameters passed to function (smi)
// x2 params pointer to parameters
// x3 function function pointer
// x4 strict_args_map offset to arguments map
// x13 param_count number of parameters passed to function
__ Str(strict_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
__ LoadRoot(x5, Heap::kEmptyFixedArrayRootIndex);
__ Str(x5, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
__ Str(x5, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
// Set the smi-tagged length as an in-object property.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
const int kLengthOffset = JSObject::kHeaderSize +
Heap::kArgumentsLengthIndex * kPointerSize;
__ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
// If there are no actual arguments, we're done.
Label done;
__ Cbz(param_count, &done);
// Set up the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
Register elements = x5;
__ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
__ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
__ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
__ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
__ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
// x0 alloc_obj pointer to allocated objects: parameter array and
// arguments object
// x1 param_count_smi number of parameters passed to function (smi)
// x2 params pointer to parameters
// x3 function function pointer
// x4 array pointer to array slot (uninit)
// x5 elements pointer to elements array of alloc_obj
// x13 param_count number of parameters passed to function
// Copy the fixed array slots.
Label loop;
Register array = x4;
// Set up pointer to first array slot.
__ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Bind(&loop);
// Pre-decrement the parameters pointer by kPointerSize on each iteration.
// Pre-decrement in order to skip receiver.
__ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
// Post-increment elements by kPointerSize on each iteration.
__ Str(x10, MemOperand(array, kPointerSize, PostIndex));
__ Sub(param_count, param_count, 1);
__ Cbnz(param_count, &loop);
// Return from stub.
__ Bind(&done);
__ Ret();
// Do the runtime call to allocate the arguments object.
__ Bind(&runtime);
__ Push(function, params, param_count_smi);
__ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// jssp[0]: last_match_info (expected JSArray)
// jssp[8]: previous index
// jssp[16]: subject string
// jssp[24]: JSRegExp object
Label runtime;
// Use of registers for this function.
// Variable registers:
// x10-x13 used as scratch registers
// w0 string_type type of subject string
// x2 jsstring_length subject string length
// x3 jsregexp_object JSRegExp object
// w4 string_encoding Latin1 or UC16
// w5 sliced_string_offset if the string is a SlicedString
// offset to the underlying string
// w6 string_representation groups attributes of the string:
// - is a string
// - type of the string
// - is a short external string
Register string_type = w0;
Register jsstring_length = x2;
Register jsregexp_object = x3;
Register string_encoding = w4;
Register sliced_string_offset = w5;
Register string_representation = w6;
// These are in callee save registers and will be preserved by the call
// to the native RegExp code, as this code is called using the normal
// C calling convention. When calling directly from generated code the
// native RegExp code will not do a GC and therefore the content of
// these registers are safe to use after the call.
// x19 subject subject string
// x20 regexp_data RegExp data (FixedArray)
// x21 last_match_info_elements info relative to the last match
// (FixedArray)
// x22 code_object generated regexp code
Register subject = x19;
Register regexp_data = x20;
Register last_match_info_elements = x21;
Register code_object = x22;
// TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
CPURegList used_callee_saved_registers(subject,
regexp_data,
last_match_info_elements,
code_object);
__ PushCPURegList(used_callee_saved_registers);
// Stack frame.
// jssp[0] : x19
// jssp[8] : x20
// jssp[16]: x21
// jssp[24]: x22
// jssp[32]: last_match_info (JSArray)
// jssp[40]: previous index
// jssp[48]: subject string
// jssp[56]: JSRegExp object
const int kLastMatchInfoOffset = 4 * kPointerSize;
const int kPreviousIndexOffset = 5 * kPointerSize;
const int kSubjectOffset = 6 * kPointerSize;
const int kJSRegExpOffset = 7 * kPointerSize;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ Mov(x10, address_of_regexp_stack_memory_size);
__ Ldr(x10, MemOperand(x10));
__ Cbz(x10, &runtime);
// Check that the first argument is a JSRegExp object.
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(jsregexp_object, kJSRegExpOffset);
__ JumpIfSmi(jsregexp_object, &runtime);
__ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
STATIC_ASSERT(kSmiTag == 0);
__ Tst(regexp_data, kSmiTagMask);
__ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
__ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
__ B(ne, &runtime);
// Check that the number of captures fit in the static offsets vector buffer.
// We have always at least one capture for the whole match, plus additional
// ones due to capturing parentheses. A capture takes 2 registers.
// The number of capture registers then is (number_of_captures + 1) * 2.
__ Ldrsw(x10,
UntagSmiFieldMemOperand(regexp_data,
JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// number_of_captures * 2 <= offsets vector size - 2
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ Add(x10, x10, x10);
__ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
__ B(hi, &runtime);
// Initialize offset for possibly sliced string.
__ Mov(sliced_string_offset, 0);
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(subject, kSubjectOffset);
__ JumpIfSmi(subject, &runtime);
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
// (3) Cons string. If the string is flat, replace subject with first string.
// Otherwise bailout.
// (4) Is subject external? If yes, go to (7).
// (5) Sequential string. Load regexp code according to encoding.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (6) Not a long external string? If yes, go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
// Go to (5).
// (8) Short external string or not a string? If yes, bail out to runtime.
// (9) Sliced string. Replace subject with parent. Go to (4).
Label check_underlying; // (4)
Label seq_string; // (5)
Label not_seq_nor_cons; // (6)
Label external_string; // (7)
Label not_long_external; // (8)
// (1) Sequential string? If yes, go to (5).
__ And(string_representation,
string_type,
kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask);
// We depend on the fact that Strings of type
// SeqString and not ShortExternalString are defined
// by the following pattern:
// string_type: 0XX0 XX00
// ^ ^ ^^
// | | ||
// | | is a SeqString
// | is not a short external String
// is a String
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
STATIC_ASSERT(kShortExternalStringTag != 0);
__ Cbz(string_representation, &seq_string); // Go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ Cmp(string_representation, kExternalStringTag);
__ B(ge, &not_seq_nor_cons); // Go to (6).
// (3) Cons string. Check that it's flat.
__ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
__ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
// Replace subject with first string.
__ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
// (4) Is subject external? If yes, go to (7).
__ Bind(&check_underlying);
// Reload the string type.
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSeqStringTag == 0);
// The underlying external string is never a short external string.
STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
__ TestAndBranchIfAnySet(string_type.X(),
kStringRepresentationMask,
&external_string); // Go to (7).
// (5) Sequential string. Load regexp code according to encoding.
__ Bind(&seq_string);
// Check that the third argument is a positive smi less than the subject
// string length. A negative value will be greater (unsigned comparison).
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(x10, kPreviousIndexOffset);
__ JumpIfNotSmi(x10, &runtime);
__ Cmp(jsstring_length, x10);
__ B(ls, &runtime);
// Argument 2 (x1): We need to load argument 2 (the previous index) into x1
// before entering the exit frame.
__ SmiUntag(x1, x10);
// The third bit determines the string encoding in string_type.
STATIC_ASSERT(kOneByteStringTag == 0x04);
STATIC_ASSERT(kTwoByteStringTag == 0x00);
STATIC_ASSERT(kStringEncodingMask == 0x04);
// Find the code object based on the assumptions above.
// kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
// of kPointerSize to reach the latter.
DCHECK_EQ(JSRegExp::kDataOneByteCodeOffset + kPointerSize,
JSRegExp::kDataUC16CodeOffset);
__ Mov(x10, kPointerSize);
// We will need the encoding later: Latin1 = 0x04
// UC16 = 0x00
__ Ands(string_encoding, string_type, kStringEncodingMask);
__ CzeroX(x10, ne);
__ Add(x10, regexp_data, x10);
__ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
// (E) Carry on. String handling is done.
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(code_object, &runtime);
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
x10,
x11);
// Isolates: note we add an additional parameter here (isolate pointer).
__ EnterExitFrame(false, x10, 1);
DCHECK(csp.Is(__ StackPointer()));
// We have 9 arguments to pass to the regexp code, therefore we have to pass
// one on the stack and the rest as registers.
// Note that the placement of the argument on the stack isn't standard
// AAPCS64:
// csp[0]: Space for the return address placed by DirectCEntryStub.
// csp[8]: Argument 9, the current isolate address.
__ Mov(x10, ExternalReference::isolate_address(isolate()));
__ Poke(x10, kPointerSize);
Register length = w11;
Register previous_index_in_bytes = w12;
Register start = x13;
// Load start of the subject string.
__ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
__ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
__ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
// Handle UC16 encoding, two bytes make one character.
// string_encoding: if Latin1: 0x04
// if UC16: 0x00
STATIC_ASSERT(kStringEncodingMask == 0x04);
__ Ubfx(string_encoding, string_encoding, 2, 1);
__ Eor(string_encoding, string_encoding, 1);
// string_encoding: if Latin1: 0
// if UC16: 1
// Convert string positions from characters to bytes.
// Previous index is in x1.
__ Lsl(previous_index_in_bytes, w1, string_encoding);
__ Lsl(length, length, string_encoding);
__ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
// Argument 1 (x0): Subject string.
__ Mov(x0, subject);
// Argument 2 (x1): Previous index, already there.
// Argument 3 (x2): Get the start of input.
// Start of input = start of string + previous index + substring offset
// (0 if the string
// is not sliced).
__ Add(w10, previous_index_in_bytes, sliced_string_offset);
__ Add(x2, start, Operand(w10, UXTW));
// Argument 4 (x3):
// End of input = start of input + (length of input - previous index)
__ Sub(w10, length, previous_index_in_bytes);
__ Add(x3, x2, Operand(w10, UXTW));
// Argument 5 (x4): static offsets vector buffer.
__ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
// Argument 6 (x5): Set the number of capture registers to zero to force
// global regexps to behave as non-global. This stub is not used for global
// regexps.
__ Mov(x5, 0);
// Argument 7 (x6): Start (high end) of backtracking stack memory area.
__ Mov(x10, address_of_regexp_stack_memory_address);
__ Ldr(x10, MemOperand(x10));
__ Mov(x11, address_of_regexp_stack_memory_size);
__ Ldr(x11, MemOperand(x11));
__ Add(x6, x10, x11);
// Argument 8 (x7): Indicate that this is a direct call from JavaScript.
__ Mov(x7, 1);
// Locate the code entry and call it.
__ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
DirectCEntryStub stub(isolate());
stub.GenerateCall(masm, code_object);
__ LeaveExitFrame(false, x10, true);
// The generated regexp code returns an int32 in w0.
Label failure, exception;
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
__ CompareAndBranch(w0,
NativeRegExpMacroAssembler::EXCEPTION,
eq,
&exception);
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
// Success: process the result from the native regexp code.
Register number_of_capture_registers = x12;
// Calculate number of capture registers (number_of_captures + 1) * 2
// and store it in the last match info.
__ Ldrsw(x10,
UntagSmiFieldMemOperand(regexp_data,
JSRegExp::kIrregexpCaptureCountOffset));
__ Add(x10, x10, x10);
__ Add(number_of_capture_registers, x10, 2);
// Check that the fourth object is a JSArray object.
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(x10, kLastMatchInfoOffset);
__ JumpIfSmi(x10, &runtime);
__ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
// Check that the JSArray is the fast case.
__ Ldr(last_match_info_elements,
FieldMemOperand(x10, JSArray::kElementsOffset));
__ Ldr(x10,
FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information (overhead).
// (number_of_captures + 1) * 2 + overhead <= last match info size
// (number_of_captures * 2) + 2 + overhead <= last match info size
// number_of_capture_registers + overhead <= last match info size
__ Ldrsw(x10,
UntagSmiFieldMemOperand(last_match_info_elements,
FixedArray::kLengthOffset));
__ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
__ Cmp(x11, x10);
__ B(gt, &runtime);
// Store the capture count.
__ SmiTag(x10, number_of_capture_registers);
__ Str(x10,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
__ Str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
// Use x10 as the subject string in order to only need
// one RecordWriteStub.
__ Mov(x10, subject);
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastSubjectOffset,
x10,
x11,
kLRHasNotBeenSaved,
kDontSaveFPRegs);
__ Str(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
__ Mov(x10, subject);
__ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastInputOffset,
x10,
x11,
kLRHasNotBeenSaved,
kDontSaveFPRegs);
Register last_match_offsets = x13;
Register offsets_vector_index = x14;
Register current_offset = x15;
// Get the static offsets vector filled by the native regexp code
// and fill the last match info.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ Mov(offsets_vector_index, address_of_static_offsets_vector);
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// iterates down to zero (inclusive).
__ Add(last_match_offsets,
last_match_info_elements,
RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
__ Bind(&next_capture);
__ Subs(number_of_capture_registers, number_of_capture_registers, 2);
__ B(mi, &done);
// Read two 32 bit values from the static offsets vector buffer into
// an X register
__ Ldr(current_offset,
MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
// Store the smi values in the last match info.
__ SmiTag(x10, current_offset);
// Clearing the 32 bottom bits gives us a Smi.
STATIC_ASSERT(kSmiTag == 0);
__ Bic(x11, current_offset, kSmiShiftMask);
__ Stp(x10,
x11,
MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
__ B(&next_capture);
__ Bind(&done);
// Return last match info.
__ Peek(x0, kLastMatchInfoOffset);
__ PopCPURegList(used_callee_saved_registers);
// Drop the 4 arguments of the stub from the stack.
__ Drop(4);
__ Ret();
__ Bind(&exception);
Register exception_value = x0;
// A stack overflow (on the backtrack stack) may have occured
// in the RegExp code but no exception has been created yet.
// If there is no pending exception, handle that in the runtime system.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Mov(x11,
Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ Ldr(exception_value, MemOperand(x11));
__ Cmp(x10, exception_value);
__ B(eq, &runtime);
__ Str(x10, MemOperand(x11)); // Clear pending exception.
// Check if the exception is a termination. If so, throw as uncatchable.
Label termination_exception;
__ JumpIfRoot(exception_value,
Heap::kTerminationExceptionRootIndex,
&termination_exception);
__ Throw(exception_value, x10, x11, x12, x13);
__ Bind(&termination_exception);
__ ThrowUncatchable(exception_value, x10, x11, x12, x13);
__ Bind(&failure);
__ Mov(x0, Operand(isolate()->factory()->null_value()));
__ PopCPURegList(used_callee_saved_registers);
// Drop the 4 arguments of the stub from the stack.
__ Drop(4);
__ Ret();
__ Bind(&runtime);
__ PopCPURegList(used_callee_saved_registers);
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
// Deferred code for string handling.
// (6) Not a long external string? If yes, go to (8).
__ Bind(&not_seq_nor_cons);
// Compare flags are still set.
__ B(ne, &not_long_external); // Go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
__ Bind(&external_string);
if (masm->emit_debug_code()) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Tst(x10, kIsIndirectStringMask);
__ Check(eq, kExternalStringExpectedButNotFound);
__ And(x10, x10, kStringRepresentationMask);
__ Cmp(x10, 0);
__ Check(ne, kExternalStringExpectedButNotFound);
}
__ Ldr(subject,
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ B(&seq_string); // Go to (5).
// (8) If this is a short external string or not a string, bail out to
// runtime.
__ Bind(&not_long_external);
STATIC_ASSERT(kShortExternalStringTag != 0);
__ TestAndBranchIfAnySet(string_representation,
kShortExternalStringMask | kIsNotStringMask,
&runtime);
// (9) Sliced string. Replace subject with parent.
__ Ldr(sliced_string_offset,
UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
__ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
__ B(&check_underlying); // Go to (4).
#endif
}
static void GenerateRecordCallTarget(MacroAssembler* masm,
Register argc,
Register function,
Register feedback_vector,
Register index,
Register scratch1,
Register scratch2) {
ASM_LOCATION("GenerateRecordCallTarget");
DCHECK(!AreAliased(scratch1, scratch2,
argc, function, feedback_vector, index));
// Cache the called function in a feedback vector slot. Cache states are
// uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
// argc : number of arguments to the construct function
// function : the function to call
// feedback_vector : the feedback vector
// index : slot in feedback vector (smi)
Label initialize, done, miss, megamorphic, not_array_function;
DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
masm->isolate()->heap()->megamorphic_symbol());
DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
// Load the cache state.
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
__ Cmp(scratch1, function);
__ B(eq, &done);
if (!FLAG_pretenuring_call_new) {
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite. Do a map check on the object in scratch1 register.
__ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset));
__ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss);
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
__ Cmp(function, scratch1);
__ B(ne, &megamorphic);
__ B(&done);
}
__ Bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ JumpIfRoot(scratch1, Heap::kuninitialized_symbolRootIndex, &initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ Bind(&megamorphic);
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ LoadRoot(scratch2, Heap::kmegamorphic_symbolRootIndex);
__ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ B(&done);
// An uninitialized cache is patched with the function or sentinel to
// indicate the ElementsKind if function is the Array constructor.
__ Bind(&initialize);
if (!FLAG_pretenuring_call_new) {
// Make sure the function is the Array() function
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
__ Cmp(function, scratch1);
__ B(ne, &not_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
{
FrameScope scope(masm, StackFrame::INTERNAL);
CreateAllocationSiteStub create_stub(masm->isolate());
// Arguments register must be smi-tagged to call out.
__ SmiTag(argc);
__ Push(argc, function, feedback_vector, index);
// CreateAllocationSiteStub expect the feedback vector in x2 and the slot
// index in x3.
DCHECK(feedback_vector.Is(x2) && index.Is(x3));
__ CallStub(&create_stub);
__ Pop(index, feedback_vector, function, argc);
__ SmiUntag(argc);
}
__ B(&done);
__ Bind(&not_array_function);
}
// An uninitialized cache is patched with the function.
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
__ Str(function, MemOperand(scratch1, 0));
__ Push(function);
__ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Pop(function);
__ Bind(&done);
}
static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
// Do not transform the receiver for strict mode functions.
__ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
__ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont);
// Do not transform the receiver for native (Compilerhints already in x3).
__ Tbnz(w4, SharedFunctionInfo::kNative, cont);
}
static void EmitSlowCase(MacroAssembler* masm,
int argc,
Register function,
Register type,
Label* non_function) {
// Check for function proxy.
// x10 : function type.
__ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function);
__ Push(function); // put proxy as additional argument
__ Mov(x0, argc + 1);
__ Mov(x2, 0);
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
{
Handle<Code> adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ Bind(non_function);
__ Poke(function, argc * kXRegSize);
__ Mov(x0, argc); // Set up the number of arguments.
__ Mov(x2, 0);
__ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
// Wrap the receiver and patch it back onto the stack.
{ FrameScope frame_scope(masm, StackFrame::INTERNAL);
__ Push(x1, x3);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ Pop(x1);
}
__ Poke(x0, argc * kPointerSize);
__ B(cont);
}
static void CallFunctionNoFeedback(MacroAssembler* masm,
int argc, bool needs_checks,
bool call_as_method) {
// x1 function the function to call
Register function = x1;
Register type = x4;
Label slow, non_function, wrap, cont;
// TODO(jbramley): This function has a lot of unnamed registers. Name them,
// and tidy things up a bit.
if (needs_checks) {
// Check that the function is really a JavaScript function.
__ JumpIfSmi(function, &non_function);
// Goto slow case if we do not have a function.
__ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
}
// Fast-case: Invoke the function now.
// x1 function pushed function
ParameterCount actual(argc);
if (call_as_method) {
if (needs_checks) {
EmitContinueIfStrictOrNative(masm, &cont);
}
// Compute the receiver in sloppy mode.
__ Peek(x3, argc * kPointerSize);
if (needs_checks) {
__ JumpIfSmi(x3, &wrap);
__ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
} else {
__ B(&wrap);
}
__ Bind(&cont);
}
__ InvokeFunction(function,
actual,
JUMP_FUNCTION,
NullCallWrapper());
if (needs_checks) {
// Slow-case: Non-function called.
__ Bind(&slow);
EmitSlowCase(masm, argc, function, type, &non_function);
}
if (call_as_method) {
__ Bind(&wrap);
EmitWrapCase(masm, argc, &cont);
}
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallFunctionStub::Generate");
CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
}
void CallConstructStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallConstructStub::Generate");
// x0 : number of arguments
// x1 : the function to call
// x2 : feedback vector
// x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol)
Register function = x1;
Label slow, non_function_call;
// Check that the function is not a smi.
__ JumpIfSmi(function, &non_function_call);
// Check that the function is a JSFunction.
Register object_type = x10;
__ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
&slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5);
__ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
if (FLAG_pretenuring_call_new) {
// Put the AllocationSite from the feedback vector into x2.
// By adding kPointerSize we encode that we know the AllocationSite
// entry is at the feedback vector slot given by x3 + 1.
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize));
} else {
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into x2, or undefined.
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
__ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
__ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
&feedback_register_initialized);
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
}
__ AssertUndefinedOrAllocationSite(x2, x5);
}
// Jump to the function-specific construct stub.
Register jump_reg = x4;
Register shared_func_info = jump_reg;
Register cons_stub = jump_reg;
Register cons_stub_code = jump_reg;
__ Ldr(shared_func_info,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(cons_stub,
FieldMemOperand(shared_func_info,
SharedFunctionInfo::kConstructStubOffset));
__ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
__ Br(cons_stub_code);
Label do_call;
__ Bind(&slow);
__ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
__ B(ne, &non_function_call);
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
__ B(&do_call);
__ Bind(&non_function_call);
__ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ Bind(&do_call);
// Set expected number of arguments to zero (not changing x0).
__ Mov(x2, 0);
__ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
__ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(vector, FieldMemOperand(vector,
JSFunction::kSharedFunctionInfoOffset));
__ Ldr(vector, FieldMemOperand(vector,
SharedFunctionInfo::kFeedbackVectorOffset));
}
void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
// x1 - function
// x3 - slot id
Label miss;
Register function = x1;
Register feedback_vector = x2;
Register index = x3;
Register scratch = x4;
EmitLoadTypeFeedbackVector(masm, feedback_vector);
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch);
__ Cmp(function, scratch);
__ B(ne, &miss);
__ Mov(x0, Operand(arg_count()));
__ Add(scratch, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
// Verify that scratch contains an AllocationSite
Register map = x5;
__ Ldr(map, FieldMemOperand(scratch, HeapObject::kMapOffset));
__ JumpIfNotRoot(map, Heap::kAllocationSiteMapRootIndex, &miss);
Register allocation_site = feedback_vector;
__ Mov(allocation_site, scratch);
ArrayConstructorStub stub(masm->isolate(), arg_count());
__ TailCallStub(&stub);
__ bind(&miss);
GenerateMiss(masm);
// The slow case, we need this no matter what to complete a call after a miss.
CallFunctionNoFeedback(masm,
arg_count(),
true,
CallAsMethod());
__ Unreachable();
}
void CallICStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallICStub");
// x1 - function
// x3 - slot id (Smi)
const int with_types_offset =