blob: 1bb4f54f4ac07fca102fea4e2bf3668eaace403d [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_PPC
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/compiler.h"
#include "src/debug.h"
#include "src/full-codegen.h"
#include "src/ic/ic.h"
#include "src/isolate-inl.h"
#include "src/parser.h"
#include "src/scopes.h"
#include "src/ppc/code-stubs-ppc.h"
#include "src/ppc/macro-assembler-ppc.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// A patch site is a location in the code which it is possible to patch. This
// class has a number of methods to emit the code which is patchable and the
// method EmitPatchInfo to record a marker back to the patchable code. This
// marker is a cmpi rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 bit
// immediate value is used) is the delta from the pc to the first instruction of
// the patchable code.
// See PatchInlinedSmiCode in ic-ppc.cc for the code that patches it
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); }
// When initially emitting this ensure that a jump is always generated to skip
// the inlined smi code.
void EmitJumpIfNotSmi(Register reg, Label* target) {
DCHECK(!patch_site_.is_bound() && !info_emitted_);
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
__ bind(&patch_site_);
__ cmp(reg, reg, cr0);
__ beq(target, cr0); // Always taken before patched.
}
// When initially emitting this ensure that a jump is never generated to skip
// the inlined smi code.
void EmitJumpIfSmi(Register reg, Label* target) {
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
DCHECK(!patch_site_.is_bound() && !info_emitted_);
__ bind(&patch_site_);
__ cmp(reg, reg, cr0);
__ bne(target, cr0); // Never taken before patched.
}
void EmitPatchInfo() {
if (patch_site_.is_bound()) {
int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
Register reg;
// I believe this is using reg as the high bits of of the offset
reg.set_code(delta_to_patch_site / kOff16Mask);
__ cmpi(reg, Operand(delta_to_patch_site % kOff16Mask));
#ifdef DEBUG
info_emitted_ = true;
#endif
} else {
__ nop(); // Signals no inlined code.
}
}
private:
MacroAssembler* masm_;
Label patch_site_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right. The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
// o r4: the JS function object being called (i.e., ourselves)
// o cp: our context
// o fp: our caller's frame pointer (aka r31)
// o sp: stack pointer
// o lr: return address
// o ip: our own function entry (required by the prologue)
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-ppc.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
handler_table_ =
isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
profiling_counter_ = isolate()->factory()->NewCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
SetFunctionPosition(function());
Comment cmnt(masm_, "[ function compiled by full code generator");
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop-at");
}
#endif
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info->strict_mode() == SLOPPY && !info->is_native()) {
Label ok;
int receiver_offset = info->scope()->num_parameters() * kPointerSize;
__ LoadP(r5, MemOperand(sp, receiver_offset), r0);
__ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
__ bne(&ok);
__ LoadP(r5, GlobalObjectOperand());
__ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset));
__ StoreP(r5, MemOperand(sp, receiver_offset), r0);
__ bind(&ok);
}
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
int prologue_offset = masm_->pc_offset();
if (prologue_offset) {
// Prologue logic requires it's starting address in ip and the
// corresponding offset from the function entry.
prologue_offset += Instruction::kInstrSize;
__ addi(ip, ip, Operand(prologue_offset));
}
info->set_prologue_offset(prologue_offset);
__ Prologue(info->IsCodePreAgingActive(), prologue_offset);
info->AddNoFrameRange(0, masm_->pc_offset());
{
Comment cmnt(masm_, "[ Allocate locals");
int locals_count = info->scope()->num_stack_slots();
// Generators allocate locals, if any, in context slots.
DCHECK(!info->function()->is_generator() || locals_count == 0);
if (locals_count > 0) {
if (locals_count >= 128) {
Label ok;
__ Add(ip, sp, -(locals_count * kPointerSize), r0);
__ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
__ cmpl(ip, r5);
__ bc_short(ge, &ok);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ bind(&ok);
}
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
if (locals_count >= kMaxPushes) {
int loop_iterations = locals_count / kMaxPushes;
__ mov(r5, Operand(loop_iterations));
__ mtctr(r5);
Label loop_header;
__ bind(&loop_header);
// Do pushes.
for (int i = 0; i < kMaxPushes; i++) {
__ push(ip);
}
// Continue loop if not done.
__ bdnz(&loop_header);
}
int remaining = locals_count % kMaxPushes;
// Emit the remaining pushes.
for (int i = 0; i < remaining; i++) {
__ push(ip);
}
}
}
bool function_in_register = true;
// Possibly allocate a local context.
int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
// Argument to NewContext is the function, which is still in r4.
Comment cmnt(masm_, "[ Allocate context");
bool need_write_barrier = true;
if (FLAG_harmony_scoping && info->scope()->is_script_scope()) {
__ push(r4);
__ Push(info->scope()->GetScopeInfo());
__ CallRuntime(Runtime::kNewScriptContext, 2);
} else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), heap_slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(r4);
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
function_in_register = false;
// Context is returned in r3. It replaces the context passed to us.
// It's saved in the stack and kept live in cp.
__ mr(cp, r3);
__ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = info->scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ LoadP(r3, MemOperand(fp, parameter_offset), r0);
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ StoreP(r3, target, r0);
// Update the write barrier.
if (need_write_barrier) {
__ RecordWriteContextSlot(cp, target.offset(), r3, r6,
kLRHasBeenSaved, kDontSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(cp, r3, &done);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
}
Variable* arguments = scope()->arguments();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register) {
// Load this again, if it's used by the local context below.
__ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ mr(r6, r4);
}
// Receiver is just before the parameters on the caller's stack.
int num_parameters = info->scope()->num_parameters();
int offset = num_parameters * kPointerSize;
__ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset + offset));
__ LoadSmiLiteral(r4, Smi::FromInt(num_parameters));
__ Push(r6, r5, r4);
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiever and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub::Type type;
if (strict_mode() == STRICT) {
type = ArgumentsAccessStub::NEW_STRICT;
} else if (function()->has_duplicate_parameters()) {
type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
} else {
type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
}
ArgumentsAccessStub stub(isolate(), type);
__ CallStub(&stub);
SetVar(arguments, r3, r4, r5);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ Declarations");
scope()->VisitIllegalRedeclaration(this);
} else {
PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
{
Comment cmnt(masm_, "[ Declarations");
// For named function expressions, declare the function name as a
// constant.
if (scope()->is_function_scope() && scope()->function() != NULL) {
VariableDeclaration* function = scope()->function();
DCHECK(function->proxy()->var()->mode() == CONST ||
function->proxy()->var()->mode() == CONST_LEGACY);
DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
VisitVariableDeclaration(function);
}
VisitDeclarations(scope()->declarations());
}
{
Comment cmnt(masm_, "[ Stack check");
PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmpl(sp, ip);
__ bc_short(ge, &ok);
__ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
__ bind(&ok);
}
{
Comment cmnt(masm_, "[ Body");
DCHECK(loop_depth() == 0);
VisitStatements(function()->body());
DCHECK(loop_depth() == 0);
}
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{
Comment cmnt(masm_, "[ return <undefined>;");
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
}
EmitReturnSequence();
}
void FullCodeGenerator::ClearAccumulator() {
__ LoadSmiLiteral(r3, Smi::FromInt(0));
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ mov(r5, Operand(profiling_counter_));
__ LoadP(r6, FieldMemOperand(r5, Cell::kValueOffset));
__ SubSmiLiteral(r6, r6, Smi::FromInt(delta), r0);
__ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
if (info_->is_debug()) {
// Detect debug break requests as soon as possible.
reset_value = FLAG_interrupt_budget >> 4;
}
__ mov(r5, Operand(profiling_counter_));
__ LoadSmiLiteral(r6, Smi::FromInt(reset_value));
__ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
}
void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target) {
Comment cmnt(masm_, "[ Back edge bookkeeping");
Label ok;
DCHECK(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target) +
kCodeSizeMultiplier / 2;
int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
EmitProfilingCounterDecrement(weight);
{
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
// BackEdgeTable::PatchAt manipulates this sequence.
__ cmpi(r6, Operand::Zero());
__ bc_short(ge, &ok);
__ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordBackEdge(stmt->OsrEntryId());
}
EmitProfilingCounterReset();
__ bind(&ok);
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
// Record a mapping of the OSR id to this PC. This is used if the OSR
// entry becomes the target of a bailout. We don't expect it to be, but
// we want it to work if it is.
PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ b(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r3
__ push(r3);
__ CallRuntime(Runtime::kTraceExit, 1);
}
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else {
int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ cmpi(r6, Operand::Zero());
__ bge(&ok);
__ push(r3);
__ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
__ pop(r3);
EmitProfilingCounterReset();
__ bind(&ok);
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
__ bind(&check_exit_codesize);
#endif
// Make sure that the constant pool is not emitted inside of the return
// sequence.
{
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
__ RecordJSReturn();
int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
#if V8_TARGET_ARCH_PPC64
// With 64bit we may need nop() instructions to ensure we have
// enough space to SetDebugBreakAtReturn()
if (is_int16(sp_delta)) {
#if !V8_OOL_CONSTANT_POOL
masm_->nop();
#endif
masm_->nop();
}
#endif
__ blr();
info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
}
#ifdef DEBUG
// Check that the size of the code used for returning is large enough
// for the debugger's requirements.
DCHECK(Assembler::kJSReturnSequenceInstructions <=
masm_->InstructionsGeneratedSince(&check_exit_codesize));
#endif
}
}
void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
}
void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Variable* var) const {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
// For simplicity we always test the accumulator register.
codegen()->GetVar(result_register(), var);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
false_label_);
if (index == Heap::kUndefinedValueRootIndex ||
index == Heap::kNullValueRootIndex ||
index == Heap::kFalseValueRootIndex) {
if (false_label_ != fall_through_) __ b(false_label_);
} else if (index == Heap::kTrueValueRootIndex) {
if (true_label_ != fall_through_) __ b(true_label_);
} else {
__ LoadRoot(result_register(), index);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
__ mov(result_register(), Operand(lit));
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
// Immediates cannot be pushed directly.
__ mov(result_register(), Operand(lit));
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
false_label_);
DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
if (false_label_ != fall_through_) __ b(false_label_);
} else if (lit->IsTrue() || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ b(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ b(false_label_);
} else {
if (true_label_ != fall_through_) __ b(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::cast(*lit)->value() == 0) {
if (false_label_ != fall_through_) __ b(false_label_);
} else {
if (true_label_ != fall_through_) __ b(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ mov(result_register(), Operand(lit));
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
__ Drop(count);
}
void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
int count, Register reg) const {
DCHECK(count > 0);
__ Drop(count);
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
if (count > 1) __ Drop(count - 1);
__ StoreP(reg, MemOperand(sp, 0));
}
void FullCodeGenerator::TestContext::DropAndPlug(int count,
Register reg) const {
DCHECK(count > 0);
// For simplicity we always test the accumulator register.
__ Drop(count);
__ Move(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == materialize_false);
__ bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true, Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ b(&done);
__ bind(materialize_false);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
__ bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true, Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ b(&done);
__ bind(materialize_false);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ bind(&done);
__ push(ip);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
DCHECK(materialize_true == true_label_);
DCHECK(materialize_false == false_label_);
}
void FullCodeGenerator::EffectContext::Plug(bool flag) const {}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(result_register(), value_root_index);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(ip, value_root_index);
__ push(ip);
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
false_label_);
if (flag) {
if (true_label_ != fall_through_) __ b(true_label_);
} else {
if (false_label_ != fall_through_) __ b(false_label_);
}
}
void FullCodeGenerator::DoTest(Expression* condition, Label* if_true,
Label* if_false, Label* fall_through) {
Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(ic, condition->test_id());
__ cmpi(result_register(), Operand::Zero());
Split(ne, if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false,
Label* fall_through, CRegister cr) {
if (if_false == fall_through) {
__ b(cond, if_true, cr);
} else if (if_true == fall_through) {
__ b(NegateCondition(cond), if_false, cr);
} else {
__ b(cond, if_true, cr);
__ b(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
DCHECK(var->IsStackAllocated());
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return MemOperand(fp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
// Use destination as scratch.
MemOperand location = VarOperand(var, dest);
__ LoadP(dest, location, r0);
}
void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0,
Register scratch1) {
DCHECK(var->IsContextSlot() || var->IsStackAllocated());
DCHECK(!scratch0.is(src));
DCHECK(!scratch0.is(scratch1));
DCHECK(!scratch1.is(src));
MemOperand location = VarOperand(var, scratch0);
__ StoreP(src, location, r0);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
__ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1,
kLRHasBeenSaved, kDontSaveFPRegs);
}
}
void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false) {
// Only prepare for bailouts before splits if we're in a test
// context. Otherwise, we let the Visit function deal with the
// preparation to avoid preparing with the same AST id twice.
if (!context()->IsTest() || !info_->IsOptimizable()) return;
Label skip;
if (should_normalize) __ b(&skip);
PrepareForBailout(expr, TOS_REG);
if (should_normalize) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r3, ip);
Split(eq, if_true, if_false, NULL);
__ bind(&skip);
}
}
void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
// The variable in the declaration always resides in the current function
// context.
DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
if (generate_debug_code_) {
// Check that we're not inside a with or catch context.
__ LoadP(r4, FieldMemOperand(cp, HeapObject::kMapOffset));
__ CompareRoot(r4, Heap::kWithContextMapRootIndex);
__ Check(ne, kDeclarationInWithContext);
__ CompareRoot(r4, Heap::kCatchContextMapRootIndex);
__ Check(ne, kDeclarationInCatchContext);
}
}
void FullCodeGenerator::VisitVariableDeclaration(
VariableDeclaration* declaration) {
// If it was not possible to allocate the variable at compile time, we
// need to "declare" it at runtime to make sure it actually exists in the
// local context.
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
switch (variable->location()) {
case Variable::UNALLOCATED:
globals_->Add(variable->name(), zone());
globals_->Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(),
zone());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ StoreP(ip, StackOperand(variable));
}
break;
case Variable::CONTEXT:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
EmitDebugCheckDeclarationContext(variable);
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ StoreP(ip, ContextOperand(cp, variable->index()), r0);
// No write barrier since the_hole_value is in old space.
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
}
break;
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ VariableDeclaration");
__ mov(r5, Operand(variable->name()));
// Declaration nodes are always introduced in one of four modes.
DCHECK(IsDeclaredVariableMode(mode));
PropertyAttributes attr =
IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
__ LoadSmiLiteral(r4, Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (hole_init) {
__ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
__ Push(cp, r5, r4, r3);
} else {
__ LoadSmiLiteral(r3, Smi::FromInt(0)); // Indicates no initial value.
__ Push(cp, r5, r4, r3);
}
__ CallRuntime(Runtime::kDeclareLookupSlot, 4);
break;
}
}
}
void FullCodeGenerator::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
globals_->Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_->Add(function, zone());
break;
}
case Variable::PARAMETER:
case Variable::LOCAL: {
Comment cmnt(masm_, "[ FunctionDeclaration");
VisitForAccumulatorValue(declaration->fun());
__ StoreP(result_register(), StackOperand(variable));
break;
}
case Variable::CONTEXT: {
Comment cmnt(masm_, "[ FunctionDeclaration");
EmitDebugCheckDeclarationContext(variable);
VisitForAccumulatorValue(declaration->fun());
__ StoreP(result_register(), ContextOperand(cp, variable->index()), r0);
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(cp, offset, result_register(), r5,
kLRHasBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
break;
}
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ FunctionDeclaration");
__ mov(r5, Operand(variable->name()));
__ LoadSmiLiteral(r4, Smi::FromInt(NONE));
__ Push(cp, r5, r4);
// Push initial value for function declaration.
VisitForStackValue(declaration->fun());
__ CallRuntime(Runtime::kDeclareLookupSlot, 4);
break;
}
}
}
void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
Variable* variable = declaration->proxy()->var();
DCHECK(variable->location() == Variable::CONTEXT);
DCHECK(variable->interface()->IsFrozen());
Comment cmnt(masm_, "[ ModuleDeclaration");
EmitDebugCheckDeclarationContext(variable);
// Load instance object.
__ LoadContext(r4, scope_->ContextChainLength(scope_->ScriptScope()));
__ LoadP(r4, ContextOperand(r4, variable->interface()->Index()));
__ LoadP(r4, ContextOperand(r4, Context::EXTENSION_INDEX));
// Assign it.
__ StoreP(r4, ContextOperand(cp, variable->index()), r0);
// We know that we have written a module, which is not a smi.
__ RecordWriteContextSlot(cp, Context::SlotOffset(variable->index()), r4, r6,
kLRHasBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
// Traverse into body.
Visit(declaration->module());
}
void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED:
// TODO(rossberg)
break;
case Variable::CONTEXT: {
Comment cmnt(masm_, "[ ImportDeclaration");
EmitDebugCheckDeclarationContext(variable);
// TODO(rossberg)
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::LOOKUP:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
// TODO(rossberg)
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
// The context is the first argument.
__ mov(r4, Operand(pairs));
__ LoadSmiLiteral(r3, Smi::FromInt(DeclareGlobalsFlags()));
__ Push(cp, r4, r3);
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
// Call the runtime to declare the modules.
__ Push(descriptions);
__ CallRuntime(Runtime::kDeclareModules, 1);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
// Perform the comparison as if via '==='.
__ LoadP(r4, MemOperand(sp, 0)); // Switch value.
bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ orx(r5, r4, r3);
patch_site.EmitJumpIfNotSmi(r5, &slow_case);
__ cmp(r4, r3);
__ bne(&next_test);
__ Drop(1); // Switch value is no longer needed.
__ b(clause->body_target());
__ bind(&slow_case);
}
// Record position before stub call for type feedback.
SetSourcePosition(clause->position());
Handle<Code> ic =
CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
CallIC(ic, clause->CompareId());
patch_site.EmitPatchInfo();
Label skip;
__ b(&skip);
PrepareForBailout(clause, TOS_REG);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r3, ip);
__ bne(&next_test);
__ Drop(1);
__ b(clause->body_target());
__ bind(&skip);
__ cmpi(r3, Operand::Zero());
__ bne(&next_test);
__ Drop(1); // Switch value is no longer needed.
__ b(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ b(nested_statement.break_label());
} else {
__ b(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target());
PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_label());
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
SetStatementPosition(stmt);
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. If the object is null or undefined, skip
// over the loop. See ECMA-262 version 5, section 12.6.4.
VisitForAccumulatorValue(stmt->enumerable());
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r3, ip);
__ beq(&exit);
Register null_value = r7;
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
__ cmp(r3, null_value);
__ beq(&exit);
PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
// Convert the object to a JS object.
Label convert, done_convert;
__ JumpIfSmi(r3, &convert);
__ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
__ bge(&done_convert);
__ bind(&convert);
__ push(r3);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ bind(&done_convert);
PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
__ push(r3);
// Check for proxies.
Label call_runtime;
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CompareObjectType(r3, r4, r4, LAST_JS_PROXY_TYPE);
__ ble(&call_runtime);
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
__ CheckEnumCache(null_value, &call_runtime);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
Label use_cache;
__ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
__ b(&use_cache);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(r3); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kMetaMapRootIndex);
__ cmp(r5, ip);
__ bne(&fixed_array);
// We got a map in register r3. Get the enumeration cache from it.
Label no_descriptors;
__ bind(&use_cache);
__ EnumLength(r4, r3);
__ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
__ beq(&no_descriptors);
__ LoadInstanceDescriptors(r3, r5);
__ LoadP(r5, FieldMemOperand(r5, DescriptorArray::kEnumCacheOffset));
__ LoadP(r5,
FieldMemOperand(r5, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ push(r3); // Map.
__ LoadSmiLiteral(r3, Smi::FromInt(0));
// Push enumeration cache, enumeration cache length (as smi) and zero.
__ Push(r5, r4, r3);
__ b(&loop);
__ bind(&no_descriptors);
__ Drop(1);
__ b(&exit);
// We got a fixed array in register r3. Iterate through that.
Label non_proxy;
__ bind(&fixed_array);
__ Move(r4, FeedbackVector());
__ mov(r5, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
int vector_index = FeedbackVector()->GetIndex(slot);
__ StoreP(
r5, FieldMemOperand(r4, FixedArray::OffsetOfElementAt(vector_index)), r0);
__ LoadSmiLiteral(r4, Smi::FromInt(1)); // Smi indicates slow check
__ LoadP(r5, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CompareObjectType(r5, r6, r6, LAST_JS_PROXY_TYPE);
__ bgt(&non_proxy);
__ LoadSmiLiteral(r4, Smi::FromInt(0)); // Zero indicates proxy
__ bind(&non_proxy);
__ Push(r4, r3); // Smi and array
__ LoadP(r4, FieldMemOperand(r3, FixedArray::kLengthOffset));
__ LoadSmiLiteral(r3, Smi::FromInt(0));
__ Push(r4, r3); // Fixed array length (as smi) and initial index.
// Generate code for doing the condition check.
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
__ bind(&loop);
// Load the current count to r3, load the length to r4.
__ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
__ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
__ cmpl(r3, r4); // Compare to the array length.
__ bge(loop_statement.break_label());
// Get the current entry of the array into register r6.
__ LoadP(r5, MemOperand(sp, 2 * kPointerSize));
__ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ SmiToPtrArrayOffset(r6, r3);
__ LoadPX(r6, MemOperand(r6, r5));
// Get the expected map from the stack or a smi in the
// permanent slow case into register r5.
__ LoadP(r5, MemOperand(sp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ LoadP(r4, MemOperand(sp, 4 * kPointerSize));
__ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
__ cmp(r7, r5);
__ beq(&update_each);
// For proxies, no filtering is done.
// TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
__ CmpSmiLiteral(r5, Smi::FromInt(0), r0);
__ beq(&update_each);
// Convert the entry to a string or (smi) 0 if it isn't a property
// any more. If the property has been removed while iterating, we
// just skip it.
__ Push(r4, r6); // Enumerable and current entry.
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
__ mr(r6, r3);
__ cmpi(r6, Operand::Zero());
__ beq(loop_statement.continue_label());
// Update the 'each' property or variable from the possibly filtered
// entry in register r6.
__ bind(&update_each);
__ mr(result_register(), r6);
// Perform the assignment as if via '='.
{
EffectContext context(this);
EmitAssignment(stmt->each());
}
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for the going to the next element by incrementing
// the index (smi) stored on top of the stack.
__ bind(loop_statement.continue_label());
__ pop(r3);
__ AddSmiLiteral(r3, r3, Smi::FromInt(1), r0);
__ push(r3);
EmitBackEdgeBookkeeping(stmt, &loop);
__ b(&loop);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_label());
__ Drop(5);
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
Comment cmnt(masm_, "[ ForOfStatement");
SetStatementPosition(stmt);
Iteration loop_statement(this, stmt);
increment_loop_depth();
// var iterator = iterable[Symbol.iterator]();
VisitForEffect(stmt->assign_iterator());
// Loop entry.
__ bind(loop_statement.continue_label());
// result = iterator.next()
VisitForEffect(stmt->next_result());
// if (result.done) break;
Label result_not_done;
VisitForControl(stmt->result_done(), loop_statement.break_label(),
&result_not_done, &result_not_done);
__ bind(&result_not_done);
// each = result.value
VisitForEffect(stmt->assign_each());
// Generate code for the body of the loop.
Visit(stmt->body());
// Check stack before looping.
PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
__ b(loop_statement.continue_label());
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(loop_statement.break_label());
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
bool pretenure) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning. If
// we're running with the --always-opt or the --prepare-always-opt
// flag, we need to use the runtime function so that the new function
// we are creating here gets a chance to have its code optimized and
// doesn't just get a copy of the existing unoptimized code.
if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure &&
scope()->is_function_scope() && info->num_literals() == 0) {
FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
__ mov(r5, Operand(info));
__ CallStub(&stub);
} else {
__ mov(r3, Operand(info));
__ LoadRoot(
r4, pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
__ Push(cp, r3, r4);
__ CallRuntime(Runtime::kNewClosure, 3);
}
context()->Plug(r3);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr);
}
void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
Comment cnmt(masm_, "[ SuperReference ");
__ LoadP(LoadDescriptor::ReceiverRegister(),
MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
__ Move(LoadDescriptor::NameRegister(), home_object_symbol);
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(expr->HomeObjectFeedbackSlot())));
CallLoadIC(NOT_CONTEXTUAL);
} else {
CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
}
__ Cmpi(r3, Operand(isolate()->factory()->undefined_value()), r0);
Label done;
__ bne(&done);
__ CallRuntime(Runtime::kThrowNonMethodError, 0);
__ bind(&done);
}
void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
TypeofState typeof_state,
Label* slow) {
Register current = cp;
Register next = r4;
Register temp = r5;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is NULL.
__ LoadP(temp, ContextOperand(current, Context::EXTENSION_INDEX));
__ cmpi(temp, Operand::Zero());
__ bne(slow);
}
// Load next context in chain.
__ LoadP(next, ContextOperand(current, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
current = next;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
Label loop, fast;
if (!current.is(next)) {
__ Move(next, current);
}
__ bind(&loop);
// Terminate at native context.
__ LoadP(temp, FieldMemOperand(next, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
__ cmp(temp, ip);
__ beq(&fast);
// Check that extension is NULL.
__ LoadP(temp, ContextOperand(next, Context::EXTENSION_INDEX));
__ cmpi(temp, Operand::Zero());
__ bne(slow);
// Load next context in chain.
__ LoadP(next, ContextOperand(next, Context::PREVIOUS_INDEX));
__ b(&loop);
__ bind(&fast);
}
__ LoadP(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
__ mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name()));
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
}
ContextualMode mode =
(typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL : CONTEXTUAL;
CallLoadIC(mode);
}
MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
Label* slow) {
DCHECK(var->IsContextSlot());
Register context = cp;
Register next = r6;
Register temp = r7;
for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is NULL.
__ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
__ cmpi(temp, Operand::Zero());
__ bne(slow);
}
__ LoadP(next, ContextOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
context = next;
}
}
// Check that last extension is NULL.
__ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
__ cmpi(temp, Operand::Zero());
__ bne(slow);
// This function is used only for loads, not stores, so it's safe to
// return an cp-based operand (the write barrier cannot be allowed to
// destroy the cp register).
return ContextOperand(context, var->index());
}
void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
TypeofState typeof_state,
Label* slow, Label* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
Variable* var = proxy->var();
if (var->mode() == DYNAMIC_GLOBAL) {
EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
__ b(done);
} else if (var->mode() == DYNAMIC_LOCAL) {
Variable* local = var->local_if_not_shadowed();
__ LoadP(r3, ContextSlotOperandCheckExtensions(local, slow));
if (local->mode() == LET || local->mode() == CONST ||
local->mode() == CONST_LEGACY) {
__ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
__ bne(done);
if (local->mode() == CONST_LEGACY) {
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
} else { // LET || CONST
__ mov(r3, Operand(var->name()));
__ push(r3);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
}
}
__ b(done);
}
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
// Record position before possible IC call.
SetSourcePosition(proxy->position());
Variable* var = proxy->var();
// Three cases: global variables, lookup variables, and all other types of
// variables.
switch (var->location()) {
case Variable::UNALLOCATED: {
Comment cmnt(masm_, "[ Global variable");
__ LoadP(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
__ mov(LoadDescriptor::NameRegister(), Operand(var->name()));
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
}
CallLoadIC(CONTEXTUAL);
context()->Plug(r3);
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::CONTEXT: {
Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
: "[ Stack variable");
if (var->binding_needs_init()) {
// var->scope() may be NULL when the proxy is located in eval code and
// refers to a potential outside binding. Currently those bindings are
// always looked up dynamically, i.e. in that case
// var->location() == LOOKUP.
// always holds.
DCHECK(var->scope() != NULL);
// Check if the binding really needs an initialization check. The check
// can be skipped in the following situation: we have a LET or CONST
// binding in harmony mode, both the Variable and the VariableProxy have
// the same declaration scope (i.e. they are both in global code, in the
// same function or in the same eval code) and the VariableProxy is in
// the source physically located after the initializer of the variable.
//
// We cannot skip any initialization checks for CONST in non-harmony
// mode because const variables may be declared but never initialized:
// if (false) { const x; }; var y = x;
//
// The condition on the declaration scopes is a conservative check for
// nested functions that access a binding and are called before the
// binding is initialized:
// function() { f(); let x = 1; function f() { x = 2; } }
//
bool skip_init_check;
if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
skip_init_check = false;
} else {
// Check that we always have valid source position.
DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
DCHECK(proxy->position() != RelocInfo::kNoPosition);
skip_init_check = var->mode() != CONST_LEGACY &&
var->initializer_position() < proxy->position();
}
if (!skip_init_check) {
Label done;
// Let and const need a read barrier.
GetVar(r3, var);
__ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
__ bne(&done);
if (var->mode() == LET || var->mode() == CONST) {
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
__ mov(r3, Operand(var->name()));
__ push(r3);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
} else {
// Uninitalized const bindings outside of harmony mode are unholed.
DCHECK(var->mode() == CONST_LEGACY);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
}
__ bind(&done);
context()->Plug(r3);
break;
}
}
context()->Plug(var);
break;
}
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ Lookup variable");
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
__ mov(r4, Operand(var->name()));
__ Push(cp, r4); // Context and name.
__ CallRuntime(Runtime::kLoadLookupSlot, 2);
__ bind(&done);
context()->Plug(r3);
}
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label materialized;
// Registers will be used as follows:
// r8 = materialized value (RegExp literal)
// r7 = JS function, literals array
// r6 = literal index
// r5 = RegExp pattern
// r4 = RegExp flags
// r3 = RegExp literal clone
__ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ LoadP(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ LoadP(r8, FieldMemOperand(r7, literal_offset), r0);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r8, ip);
__ bne(&materialized);
// Create regexp literal using runtime function.
// Result will be in r3.
__ LoadSmiLiteral(r6, Smi::FromInt(expr->literal_index()));
__ mov(r5, Operand(expr->pattern()));
__ mov(r4, Operand(expr->flags()));
__ Push(r7, r6, r5, r4);
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ mr(r8, r3);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ Allocate(size, r3, r5, r6, &runtime_allocate, TAG_OBJECT);
__ b(&allocated);
__ bind(&runtime_allocate);
__ LoadSmiLiteral(r3, Smi::FromInt(size));
__ Push(r8, r3);
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ pop(r8);
__ bind(&allocated);
// After this, registers are used as follows:
// r3: Newly allocated regexp.
// r8: Materialized regexp.
// r5: temp.
__ CopyFields(r3, r8, r5.bit(), size / kPointerSize);
context()->Plug(r3);
}
void FullCodeGenerator::EmitAccessor(Expression* expression) {
if (expression == NULL) {
__ LoadRoot(r4, Heap::kNullValueRootIndex);
__ push(r4);
} else {
VisitForStackValue(expression);
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
expr->BuildConstantProperties(isolate());
Handle<FixedArray> constant_properties = expr->constant_properties();
__ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
__ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
__ mov(r4, Operand(constant_properties));
int flags = expr->fast_elements() ? ObjectLiteral::kFastElements
: ObjectLiteral::kNoFlags;
flags |= expr->has_function() ? ObjectLiteral::kHasFunction
: ObjectLiteral::kNoFlags;
__ LoadSmiLiteral(r3, Smi::FromInt(flags));
int properties_count = constant_properties->length() / 2;
if (expr->may_store_doubles() || expr->depth() > 1 ||
masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
__ Push(r6, r5, r4, r3);
__ CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else {
FastCloneShallowObjectStub stub(isolate(), properties_count);
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in r3.
bool result_saved = false;
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
expr->CalculateEmitStore(zone());
AccessorTable accessor_table(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(r3); // Save result on stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
VisitForAccumulatorValue(value);
DCHECK(StoreDescriptor::ValueRegister().is(r3));
__ mov(StoreDescriptor::NameRegister(), Operand(key->value()));
__ LoadP(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
CallStoreIC(key->LiteralFeedbackId());
PrepareForBailoutForId(key->id(), NO_REGISTERS);
} else {
VisitForEffect(value);
}
break;
}
// Duplicate receiver on stack.
__ LoadP(r3, MemOperand(sp));
__ push(r3);
VisitForStackValue(key);
VisitForStackValue(value);
if (property->emit_store()) {
__ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY)); // PropertyAttributes
__ push(r3);
__ CallRuntime(Runtime::kSetProperty, 4);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
// Duplicate receiver on stack.
__ LoadP(r3, MemOperand(sp));
__ push(r3);
VisitForStackValue(value);
if (property->emit_store()) {
__ CallRuntime(Runtime::kInternalSetPrototype, 2);
} else {
__ Drop(2);
}
break;
case ObjectLiteral::Property::GETTER:
accessor_table.lookup(key)->second->getter = value;
break;
case ObjectLiteral::Property::SETTER:
accessor_table.lookup(key)->second->setter = value;
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end(); ++it) {
__ LoadP(r3, MemOperand(sp)); // Duplicate receiver.
__ push(r3);
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
__ LoadSmiLiteral(r3, Smi::FromInt(NONE));
__ push(r3);
__ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
}
if (expr->has_function()) {
DCHECK(result_saved);
__ LoadP(r3, MemOperand(sp));
__ push(r3);
__ CallRuntime(Runtime::kToFastProperties, 1);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(r3);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
expr->BuildConstantElements(isolate());
int flags = expr->depth() == 1 ? ArrayLiteral::kShallowElements
: ArrayLiteral::kNoFlags;
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
Handle<FixedArray> constant_elements = expr->constant_elements();
DCHECK_EQ(2, constant_elements->length());
ElementsKind constant_elements_kind =
static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
Handle<FixedArrayBase> constant_elements_values(
FixedArrayBase::cast(constant_elements->get(1)));
AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
// If the only customer of allocation sites is transitioning, then
// we can turn it off if we don't have anywhere else to transition to.
allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
}
__ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
__ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
__ mov(r4, Operand(constant_elements));
if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
__ LoadSmiLiteral(r3, Smi::FromInt(flags));
__ Push(r6, r5, r4, r3);
__ CallRuntime(Runtime::kCreateArrayLiteral, 4);
} else {
FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
__ CallStub(&stub);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
if (!result_saved) {
__ push(r3);
__ Push(Smi::FromInt(expr->literal_index()));
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
if (IsFastObjectElementsKind(constant_elements_kind)) {
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ LoadP(r8, MemOperand(sp, kPointerSize)); // Copy of array literal.
__ LoadP(r4, FieldMemOperand(r8, JSObject::kElementsOffset));
__ StoreP(result_register(), FieldMemOperand(r4, offset), r0);
// Update the write barrier for the array store.
__ RecordWriteField(r4, offset, result_register(), r5, kLRHasBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET,
INLINE_SMI_CHECK);
} else {
__ LoadSmiLiteral(r6, Smi::FromInt(i));
StoreArrayLiteralElementStub stub(isolate());
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
}
if (result_saved) {
__ pop(); // literal index
context()->PlugTOS();
} else {
context()->Plug(r3);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
DCHECK(expr->target()->IsValidReferenceExpression());
Comment cmnt(masm_, "[ Assignment");
Property* property = expr->target()->AsProperty();
LhsKind assign_type = GetAssignType(property);
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the register.
VisitForStackValue(property->obj());
__ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
} else {
VisitForStackValue(property->obj());
}
break;
case NAMED_SUPER_PROPERTY:
VisitForStackValue(property->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(property->obj()->AsSuperReference());
__ Push(result_register());
if (expr->is_compound()) {
const Register scratch = r4;
__ LoadP(scratch, MemOperand(sp, kPointerSize));
__ Push(scratch, result_register());
}
break;
case KEYED_SUPER_PROPERTY: {
const Register scratch = r4;
VisitForStackValue(property->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(property->obj()->AsSuperReference());
__ Move(scratch, result_register());
VisitForAccumulatorValue(property->key());
__ Push(scratch, result_register());
if (expr->is_compound()) {
const Register scratch1 = r5;
__ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
__ Push(scratch1, scratch, result_register());
}
break;
}
case KEYED_PROPERTY:
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ LoadP(LoadDescriptor::ReceiverRegister(),
MemOperand(sp, 1 * kPointerSize));
__ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
{
AccumulatorValueContext context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
PrepareForBailout(expr->target(), TOS_REG);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case NAMED_SUPER_PROPERTY:
EmitNamedSuperPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_SUPER_PROPERTY:
EmitKeyedSuperPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
}
}
Token::Value op = expr->binary_op();
__ push(r3); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
? OVERWRITE_RIGHT
: NO_OVERWRITE;
SetSourcePosition(expr->position() + 1);
AccumulatorValueContext context(this);
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr->binary_operation(), op, mode, expr->target(),
expr->value());
} else {
EmitBinaryOp(expr->binary_operation(), op, mode);
}
// Deoptimization point in case the binary operation may have side effects.
PrepareForBailout(expr->binary_operation(), TOS_REG);
} else {
VisitForAccumulatorValue(expr->value());
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r3);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case NAMED_SUPER_PROPERTY:
EmitNamedSuperPropertyStore(property);
context()->Plug(r3);
break;
case KEYED_SUPER_PROPERTY:
EmitKeyedSuperPropertyStore(property);
context()->Plug(r3);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::VisitYield(Yield* expr) {
Comment cmnt(masm_, "[ Yield");
// Evaluate yielded value first; the initial iterator definition depends on
// this. It stays on the stack while we update the iterator.
VisitForStackValue(expr->expression());
switch (expr->yield_kind()) {
case Yield::kSuspend:
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(false);
__ push(result_register());
// Fall through.
case Yield::kInitial: {
Label suspend, continuation, post_runtime, resume;
__ b(&suspend);
__ bind(&continuation);
__ b(&resume);
__ bind(&suspend);
VisitForAccumulatorValue(expr->generator_object());
DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
__ LoadSmiLiteral(r4, Smi::FromInt(continuation.pos()));
__ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
r0);
__ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
__ mr(r4, cp);
__ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
kLRHasBeenSaved, kDontSaveFPRegs);
__ addi(r4, fp, Operand(StandardFrameConstants::kExpressionsOffset));
__ cmp(sp, r4);
__ beq(&post_runtime);
__ push(r3); // generator object
__ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&post_runtime);
__ pop(result_register());
EmitReturnSequence();
__ bind(&resume);
context()->Plug(result_register());
break;
}
case Yield::kFinal: {
VisitForAccumulatorValue(expr->generator_object());
__ LoadSmiLiteral(r4, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
__ StoreP(r4, FieldMemOperand(result_register(),
JSGeneratorObject::kContinuationOffset),
r0);
// Pop value from top-of-stack slot, box result into result register.
EmitCreateIteratorResult(true);
EmitUnwindBeforeReturn();
EmitReturnSequence();
break;
}
case Yield::kDelegating: {
VisitForStackValue(expr->generator_object());
// Initial stack layout is as follows:
// [sp + 1 * kPointerSize] iter
// [sp + 0 * kPointerSize] g
Label l_catch, l_try, l_suspend, l_continuation, l_resume;
Label l_next, l_call;
Register load_receiver = LoadDescriptor::ReceiverRegister();
Register load_name = LoadDescriptor::NameRegister();
// Initial send value is undefined.
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ b(&l_next);
// catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
__ bind(&l_catch);
handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
__ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
__ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
__ Push(load_name, r6, r3); // "throw", iter, except
__ b(&l_call);
// try { received = %yield result }
// Shuffle the received result above a try handler and yield it without
// re-boxing.
__ bind(&l_try);
__ pop(r3); // result
__ PushTryHandler(StackHandler::CATCH, expr->index());
const int handler_size = StackHandlerConstants::kSize;
__ push(r3); // result
__ b(&l_suspend);
__ bind(&l_continuation);
__ b(&l_resume);
__ bind(&l_suspend);
const int generator_object_depth = kPointerSize + handler_size;
__ LoadP(r3, MemOperand(sp, generator_object_depth));
__ push(r3); // g
DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
__ LoadSmiLiteral(r4, Smi::FromInt(l_continuation.pos()));
__ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
r0);
__ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
__ mr(r4, cp);
__ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
kLRHasBeenSaved, kDontSaveFPRegs);
__ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ pop(r3); // result
EmitReturnSequence();
__ bind(&l_resume); // received in r3
__ PopTryHandler();
// receiver = iter; f = 'next'; arg = received;
__ bind(&l_next);
__ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
__ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
__ Push(load_name, r6, r3); // "next", iter, received
// result = receiver[f](arg);
__ bind(&l_call);
__ LoadP(load_receiver, MemOperand(sp, kPointerSize));
__ LoadP(load_name, MemOperand(sp, 2 * kPointerSize));
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(expr->KeyedLoadFeedbackSlot())));
}
Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
CallIC(ic, TypeFeedbackId::None());
__ mr(r4, r3);
__ StoreP(r4, MemOperand(sp, 2 * kPointerSize));
CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
__ CallStub(&stub);
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Drop(1); // The function is still on the stack; drop it.
// if (!result.done) goto l_try;
__ Move(load_receiver, r3);
__ push(load_receiver); // save result
__ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(expr->DoneFeedbackSlot())));
}
CallLoadIC(NOT_CONTEXTUAL); // r0=result.done
Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(bool_ic);
__ cmpi(r3, Operand::Zero());
__ beq(&l_try);
// result.value
__ pop(load_receiver); // result
__ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(expr->ValueFeedbackSlot())));
}
CallLoadIC(NOT_CONTEXTUAL); // r3=result.value
context()->DropAndPlug(2, r3); // drop iter and g
break;
}
}
}
void FullCodeGenerator::EmitGeneratorResume(
Expression* generator, Expression* value,
JSGeneratorObject::ResumeMode resume_mode) {
// The value stays in r3, and is ultimately read by the resumed generator, as
// if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
// is read to throw the value when the resumed generator is already closed.
// r4 will hold the generator object until the activation has been resumed.
VisitForStackValue(generator);
VisitForAccumulatorValue(value);
__ pop(r4);
// Check generator state.
Label wrong_state, closed_state, done;
__ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
__ CmpSmiLiteral(r6, Smi::FromInt(0), r0);
__ beq(&closed_state);
__ blt(&wrong_state);
// Load suspended function and context.
__ LoadP(cp, FieldMemOperand(r4, JSGeneratorObject::kContextOffset));
__ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
// Load receiver and store as the first argument.
__ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
__ push(r5);
// Push holes for the rest of the arguments to the generator function.
__ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
__ LoadWordArith(
r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
Label argument_loop, push_frame;
#if V8_TARGET_ARCH_PPC64
__ cmpi(r6, Operand::Zero());
__ beq(&push_frame);
#else
__ SmiUntag(r6, SetRC);
__ beq(&push_frame, cr0);
#endif
__ mtctr(r6);
__ bind(&argument_loop);
__ push(r5);
__ bdnz(&argument_loop);
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
Label resume_frame;
__ bind(&push_frame);
__ b(&resume_frame, SetLK);
__ b(&done);
__ bind(&resume_frame);
// lr = return address.
// fp = caller's frame pointer.
// cp = callee's context,
// r7 = callee's JS function.
__ PushFixedFrame(r7);
// Adjust FP to point to saved FP.
__ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Load the operand stack size.
__ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kOperandStackOffset));
__ LoadP(r6, FieldMemOperand(r6, FixedArray::kLengthOffset));
__ SmiUntag(r6, SetRC);
// If we are sending a value and there is no operand stack, we can jump back
// in directly.
Label call_resume;
if (resume_mode == JSGeneratorObject::NEXT) {
Label slow_resume;
__ bne(&slow_resume, cr0);
__ LoadP(ip, FieldMemOperand(r7, JSFunction::kCodeEntryOffset));
#if V8_OOL_CONSTANT_POOL
{
ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
// Load the new code object's constant pool pointer.
__ LoadP(kConstantPoolRegister,
MemOperand(ip, Code::kConstantPoolOffset - Code::kHeaderSize));
#endif
__ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
__ SmiUntag(r5);
__ add(ip, ip, r5);
__ LoadSmiLiteral(r5,
Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
__ StoreP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset),
r0);
__ Jump(ip);
__ bind(&slow_resume);
#if V8_OOL_CONSTANT_POOL
}
#endif
} else {
__ beq(&call_resume, cr0);
}
// Otherwise, we push holes for the operand stack and call the runtime to fix
// up the stack and the handlers.
Label operand_loop;
__ mtctr(r6);
__ bind(&operand_loop);
__ push(r5);
__ bdnz(&operand_loop);
__ bind(&call_resume);
DCHECK(!result_register().is(r4));
__ Push(r4, result_register());
__ Push(Smi::FromInt(resume_mode));
__ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
// Not reached: the runtime call returns elsewhere.
__ stop("not-reached");
// Reach here when generator is closed.
__ bind(&closed_state);
if (resume_mode == JSGeneratorObject::NEXT) {
// Return completed iterator result when generator is closed.
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ push(r5);
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(true);
} else {
// Throw the provided value.
__ push(r3);
__ CallRuntime(Runtime::kThrow, 1);
}
__ b(&done);
// Throw error if we attempt to operate on a running generator.
__ bind(&wrong_state);
__ push(r4);
__ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
__ bind(&done);
context()->Plug(result_register());
}
void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
Label gc_required;
Label allocated;
const int instance_size = 5 * kPointerSize;
DCHECK_EQ(isolate()->native_context()->iterator_result_map()->instance_size(),
instance_size);
__ Allocate(instance_size, r3, r5, r6, &gc_required, TAG_OBJECT);
__ b(&allocated);
__ bind(&gc_required);
__ Push(Smi::FromInt(instance_size));
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ LoadP(context_register(),
MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&allocated);
__ LoadP(r4, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ LoadP(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
__ LoadP(r4, ContextOperand(r4, Context::ITERATOR_RESULT_MAP_INDEX));
__ pop(r5);
__ mov(r6, Operand(isolate()->factory()->ToBoolean(done)));
__ mov(r7, Operand(isolate()->factory()->empty_fixed_array()));
__ StoreP(r4, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
__ StoreP(r7, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
__ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
__ StoreP(r5,
FieldMemOperand(r3, JSGeneratorObject::kResultValuePropertyOffset),
r0);
__ StoreP(r6,
FieldMemOperand(r3, JSGeneratorObject::kResultDonePropertyOffset),
r0);
// Only the value field needs a write barrier, as the other values are in the
// root set.
__ RecordWriteField(r3, JSGeneratorObject::kResultValuePropertyOffset, r5, r6,
kLRHasBeenSaved, kDontSaveFPRegs);
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
DCHECK(!prop->IsSuperAccess());
__ mov(LoadDescriptor::NameRegister(), Operand(key->value()));
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
CallLoadIC(NOT_CONTEXTUAL);
} else {
CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
}
}
void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
// Stack: receiver, home_object.
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
DCHECK(prop->IsSuperAccess());
__ Push(key->value());
__ CallRuntime(Runtime::kLoadFromSuper, 3);
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(prop->PropertyFeedbackSlot())));
CallIC(ic);
} else {
CallIC(ic, prop->PropertyFeedbackId());
}
}
void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
// Stack: receiver, home_object, key.
SetSourcePosition(prop->position());
__ CallRuntime(Runtime::kLoadKeyedFromSuper, 3);
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode,
Expression* left_expr,
Expression* right_expr) {
Label done, smi_case, stub_call;
Register scratch1 = r5;
Register scratch2 = r6;
// Get the arguments.
Register left = r4;
Register right = r3;
__ pop(left);
// Perform combined smi check on both operands.
__ orx(scratch1, left, right);
STATIC_ASSERT(kSmiTag == 0);
JumpPatchSite patch_site(masm_);
patch_site.EmitJumpIfSmi(scratch1, &smi_case);
__ bind(&stub_call);
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
CallIC(code, expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
__ b(&done);
__ bind(&smi_case);
// Smi case. This code works the same way as the smi-smi case in the type
// recording binary operation stub.
switch (op) {
case Token::SAR:
__ GetLeastBitsFromSmi(scratch1, right, 5);
__ ShiftRightArith(right, left, scratch1);
__ ClearRightImm(right, right, Operand(kSmiTagSize + kSmiShiftSize));
break;
case Token::SHL: {
__ GetLeastBitsFromSmi(scratch2, right, 5);
#if V8_TARGET_ARCH_PPC64
__ ShiftLeft_(right, left, scratch2);
#else
__ SmiUntag(scratch1, left);
__ ShiftLeft_(scratch1, scratch1, scratch2);
// Check that the *signed* result fits in a smi
__ JumpIfNotSmiCandidate(scratch1, scratch2, &stub_call);
__ SmiTag(right, scratch1);
#endif
break;
}
case Token::SHR: {
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ srw(scratch1, scratch1, scratch2);
// Unsigned shift is not allowed to produce a negative number.
__ JumpIfNotUnsignedSmiCandidate(scratch1, r0, &stub_call);
__ SmiTag(right, scratch1);
break;
}
case Token::ADD: {
__ AddAndCheckForOverflow(scratch1, left, right, scratch2, r0);
__ bne(&stub_call, cr0);
__ mr(right, scratch1);
break;
}
case Token::SUB: {
__ SubAndCheckForOverflow(scratch1, left, right, scratch2, r0);
__ bne(&stub_call, cr0);
__ mr(right, scratch1);
break;
}
case Token::MUL: {
Label mul_zero;
#if V8_TARGET_ARCH_PPC64
// Remove tag from both operands.
__ SmiUntag(ip, right);
__ SmiUntag(r0, left);
__ Mul(scratch1, r0, ip);
// Check for overflowing the smi range - no overflow if higher 33 bits of
// the result are identical.
__ TestIfInt32(scratch1, scratch2, ip);
__ bne(&stub_call);
#else
__ SmiUntag(ip, right);
__ mullw(scratch1, left, ip);
__ mulhw(scratch2, left, ip);
// Check for overflowing the smi range - no overflow if higher 33 bits of
// the result are identical.
__ TestIfInt32(scratch2, scratch1, ip);
__ bne(&stub_call);
#endif
// Go slow on zero result to handle -0.
__ cmpi(scratch1, Operand::Zero());
__ beq(&mul_zero);
#if V8_TARGET_ARCH_PPC64
__ SmiTag(right, scratch1);
#else
__ mr(right, scratch1);
#endif
__ b(&done);
// We need -0 if we were multiplying a negative number with 0 to get 0.
// We know one of them was zero.
__ bind(&mul_zero);
__ add(scratch2, right, left);
__ cmpi(scratch2, Operand::Zero());
__ blt(&stub_call);
__ LoadSmiLiteral(right, Smi::FromInt(0));
break;
}
case Token::BIT_OR:
__ orx(right, left, right);
break;
case Token::BIT_AND:
__ and_(right, left, right);
break;
case Token::BIT_XOR:
__ xor_(right, left, right);
break;
default:
UNREACHABLE();
}
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
// Constructor is in r3.
DCHECK(lit != NULL);
__ push(r3);
// No access check is needed here since the constructor is created by the
// class literal.
Register scratch = r4;
__ LoadP(scratch,
FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
__ push(scratch);
for (int i = 0; i < lit->properties()->length(); i++) {
ObjectLiteral::Property* property = lit->properties()->at(i);
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
DCHECK(key != NULL);
if (property->is_static()) {
__ LoadP(scratch, MemOperand(sp, kPointerSize)); // constructor
} else {
__ LoadP(scratch, MemOperand(sp, 0)); // prototype
}
__ push(scratch);
VisitForStackValue(key);
VisitForStackValue(value);
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
case ObjectLiteral::Property::COMPUTED:
case ObjectLiteral::Property::PROTOTYPE:
__ CallRuntime(Runtime::kDefineClassMethod, 3);
break;
case ObjectLiteral::Property::GETTER:
__ CallRuntime(Runtime::kDefineClassGetter, 3);
break;
case ObjectLiteral::Property::SETTER:
__ CallRuntime(Runtime::kDefineClassSetter, 3);
break;
default:
UNREACHABLE();
}
}
// prototype
__ CallRuntime(Runtime::kToFastProperties, 1);
// constructor
__ CallRuntime(Runtime::kToFastProperties, 1);
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op,
OverwriteMode mode) {
__ pop(r4);
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
CallIC(code, expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
context()->Plug(r3);
}
void FullCodeGenerator::EmitAssignment(Expression* expr) {
DCHECK(expr->IsValidReferenceExpression());
Property* prop = expr->AsProperty();
LhsKind assign_type = GetAssignType(prop);
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EffectContext context(this);
EmitVariableAssignment(var, Token::ASSIGN);
break;
}
case NAMED_PROPERTY: {
__ push(r3); // Preserve value.
VisitForAccumulatorValue(prop->obj());
__ Move(StoreDescriptor::ReceiverRegister(), r3);
__ pop(StoreDescriptor::ValueRegister()); // Restore value.
__ mov(StoreDescriptor::NameRegister(),
Operand(prop->key()->AsLiteral()->value()));
CallStoreIC();
break;
}
case NAMED_SUPER_PROPERTY: {
__ Push(r3);
VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(prop->obj()->AsSuperReference());
// stack: value, this; r3: home_object
Register scratch = r5;
Register scratch2 = r6;
__ mr(scratch, result_register()); // home_object
__ LoadP(r3, MemOperand(sp, kPointerSize)); // value
__ LoadP(scratch2, MemOperand(sp, 0)); // this
__ StoreP(scratch2, MemOperand(sp, kPointerSize)); // this
__ StoreP(scratch, MemOperand(sp, 0)); // home_object
// stack: this, home_object; r3: value
EmitNamedSuperPropertyStore(prop);
break;
}
case KEYED_SUPER_PROPERTY: {
__ Push(r3);
VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(prop->obj()->AsSuperReference());
__ Push(result_register());
VisitForAccumulatorValue(prop->key());
Register scratch = r5;
Register scratch2 = r6;
__ LoadP(scratch2, MemOperand(sp, 2 * kPointerSize)); // value
// stack: value, this, home_object; r3: key, r6: value
__ LoadP(scratch, MemOperand(sp, kPointerSize)); // this
__ StoreP(scratch, MemOperand(sp, 2 * kPointerSize));
__ LoadP(scratch, MemOperand(sp, 0)); // home_object
__ StoreP(scratch, MemOperand(sp, kPointerSize));
__ StoreP(r3, MemOperand(sp, 0));
__ Move(r3, scratch2);
// stack: this, home_object, key; r3: value.
EmitKeyedSuperPropertyStore(prop);
break;
}
case KEYED_PROPERTY: {
__ push(r3); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ Move(StoreDescriptor::NameRegister(), r3);
__ Pop(StoreDescriptor::ValueRegister(),
StoreDescriptor::ReceiverRegister());
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
CallIC(ic);
break;
}
}
context()->Plug(r3);
}
void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
Variable* var, MemOperand location) {
__ StoreP(result_register(), location, r0);
if (var->IsContextSlot()) {
// RecordWrite may destroy all its register arguments.
__ mr(r6, result_register());
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(r4, offset, r6, r5, kLRHasBeenSaved,
kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
if (var->IsUnallocated()) {
// Global var, const, or let.
__ mov(StoreDescriptor::NameRegister(), Operand(var->name()));
__ LoadP(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
CallStoreIC();
} else if (op == Token::INIT_CONST_LEGACY) {
// Const initializers need a write barrier.
DCHECK(!var->IsParameter()); // No const parameters.
if (var->IsLookupSlot()) {
__ push(r3);
__ mov(r3, Operand(var->name()));
__ Push(cp, r3); // Context and name.
__ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
} else {
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label skip;
MemOperand location = VarOperand(var, r4);
__ LoadP(r5, location);
__ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
__ bne(&skip);
EmitStoreToStackLocalOrContextSlot(var, location);
__ bind(&skip);
}
} else if (var->mode() == LET && op != Token::INIT_LET) {
// Non-initializing assignment to let variable needs a write barrier.
DCHECK(!var->IsLookupSlot());
DCHECK(var->IsStackAllocated() || var->IsContextSlot());
Label assign;
MemOperand location = VarOperand(var, r4);
__ LoadP(r6, location);
__ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
__ bne(&assign);
__ mov(r6, Operand(var->name()));
__ push(r6);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
// Perform the assignment.
__ bind(&assign);
EmitStoreToStackLocalOrContextSlot(var, location);
} else if (!var->is_const_mode() || op == Token::INIT_CONST) {
if (var->IsLookupSlot()) {
// Assignment to var.
__ push(r3); // Value.
__ mov(r4, Operand(var->name()));
__ mov(r3, Operand(Smi::FromInt(strict_mode())));
__ Push(cp, r4, r3); // Context, name, strict mode.
__ CallRuntime(Runtime::kStoreLookupSlot, 4);
} else {
// Assignment to var or initializing assignment to let/const in harmony
// mode.
DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
MemOperand location = VarOperand(var, r4);
if (generate_debug_code_ && op == Token::INIT_LET) {
// Check for an uninitialized let binding.
__ LoadP(r5, location);
__ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
__ Check(eq, kLetBindingReInitialization);
}
EmitStoreToStackLocalOrContextSlot(var, location);
}
}
// Non-initializing assignments to consts are ignored.
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
DCHECK(prop != NULL);
DCHECK(prop->key()->IsLiteral());
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ mov(StoreDescriptor::NameRegister(),
Operand(prop->key()->AsLiteral()->value()));
__ pop(StoreDescriptor::ReceiverRegister());
CallStoreIC(expr->AssignmentFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r3);
}
void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
// Assignment to named property of super.
// r3 : value
// stack : receiver ('this'), home_object
DCHECK(prop != NULL);
Literal* key = prop->key()->AsLiteral();
DCHECK(key != NULL);
__ Push(key->value());
__ Push(r3);
__ CallRuntime((strict_mode() == STRICT ? Runtime::kStoreToSuper_Strict
: Runtime::kStoreToSuper_Sloppy),
4);
}
void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
// Assignment to named property of super.
// r3 : value
// stack : receiver ('this'), home_object, key
DCHECK(prop != NULL);
__ Push(r3);
__ CallRuntime((strict_mode() == STRICT ? Runtime::kStoreKeyedToSuper_Strict
: Runtime::kStoreKeyedToSuper_Sloppy),
4);
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
DCHECK(StoreDescriptor::ValueRegister().is(r3));
Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
CallIC(ic, expr->AssignmentFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r3);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
if (key->IsPropertyName()) {
if (!expr->IsSuperAccess()) {
VisitForAccumulatorValue(expr->obj());
__ Move(LoadDescriptor::ReceiverRegister(), r3);
EmitNamedPropertyLoad(expr);
} else {
VisitForStackValue(expr->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(expr->obj()->AsSuperReference());
__ Push(result_register());
EmitNamedSuperPropertyLoad(expr);
}
PrepareForBailoutForId(expr->LoadId(), TOS_REG);
context()->Plug(r3);
} else {
if (!expr->IsSuperAccess()) {
VisitForStackValue(expr->obj());
VisitForAccumulatorValue(expr->key());
__ Move(LoadDescriptor::NameRegister(), r3);
__ pop(LoadDescriptor::ReceiverRegister());
EmitKeyedPropertyLoad(expr);
} else {
VisitForStackValue(expr->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(expr->obj()->AsSuperReference());
__ Push(result_register());
VisitForStackValue(expr->key());
EmitKeyedSuperPropertyLoad(expr);
}
context()->Plug(r3);
}
}
void FullCodeGenerator::CallIC(Handle<Code> code, TypeFeedbackId ast_id) {
ic_total_count_++;
__ Call(code, RelocInfo::CODE_TARGET, ast_id);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
CallICState::CallType call_type =
callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
// Get the target function.
if (call_type == CallICState::FUNCTION) {
{
StackValueContext context(this);
EmitVariableLoad(callee->AsVariableProxy());
PrepareForBailout(callee, NO_REGISTERS);
}
// Push undefined as receiver. This is patched in the method prologue if it
// is a sloppy mode method.
__ Push(isolate()->factory()->undefined_value());
} else {
// Load the function from the receiver.
DCHECK(callee->IsProperty());
DCHECK(!callee->AsProperty()->IsSuperAccess());
__ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
EmitNamedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ LoadP(ip, MemOperand(sp, 0));
__ push(ip);
__ StoreP(r3, MemOperand(sp, kPointerSize));
}
EmitCall(expr, call_type);
}
void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
DCHECK(callee->IsProperty());
Property* prop = callee->AsProperty();
DCHECK(prop->IsSuperAccess());
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
DCHECK(!key->value()->IsSmi());
// Load the function from the receiver.
const Register scratch = r4;
SuperReference* super_ref = prop->obj()->AsSuperReference();
EmitLoadHomeObject(super_ref);
__ mr(scratch, r3);
VisitForAccumulatorValue(super_ref->this_var());
__ Push(scratch, r3, r3, scratch);
__ Push(key->value());
// Stack here:
// - home_object
// - this (receiver)
// - this (receiver) <-- LoadFromSuper will pop here and below.
// - home_object
// - key
__ CallRuntime(Runtime::kLoadFromSuper, 3);
// Replace home_object with target function.
__ StoreP(r3, MemOperand(sp, kPointerSize));
// Stack here:
// - target function
// - this (receiver)
EmitCall(expr, CallICState::METHOD);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
Expression* callee = expr->expression();
// Load the function from the receiver.
DCHECK(callee->IsProperty());
__ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
__ Move(LoadDescriptor::NameRegister(), r3);
EmitKeyedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ LoadP(ip, MemOperand(sp, 0));
__ push(ip);
__ StoreP(r3, MemOperand(sp, kPointerSize));
EmitCall(expr, CallICState::METHOD);
}
void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
Expression* callee = expr->expression();
DCHECK(callee->IsProperty());
Property* prop = callee->AsProperty();
DCHECK(prop->IsSuperAccess());
SetSourcePosition(prop->position());
// Load the function from the receiver.
const Register scratch = r4;
SuperReference* super_ref = prop->obj()->AsSuperReference();
EmitLoadHomeObject(super_ref);
__ Push(r3);
VisitForAccumulatorValue(super_ref->this_var());
__ Push(r3);
__ Push(r3);
__ LoadP(scratch, MemOperand(sp, kPointerSize * 2));
__ Push(scratch);
VisitForStackValue(prop->key());
// Stack here:
// - home_object
// - this (receiver)
// - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
// - home_object
// - key
__ CallRuntime(Runtime::kLoadKeyedFromSuper, 3);
// Replace home_object with target function.
__ StoreP(r3, MemOperand(sp, kPointerSize));
// Stack here:
// - target function
// - this (receiver)
EmitCall(expr, CallICState::METHOD);
}
void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
// Load the arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{
PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position of the IC call.
SetSourcePosition(expr->position());
Handle<Code> ic = CallIC::initialize_stub(isolate(), arg_count, call_type);
__ LoadSmiLiteral(r6, SmiFromSlot(expr->CallFeedbackSlot()));
__ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
// Don't assign a type feedback id to the IC, since type feedback is provided
// by the vector above.
CallIC(ic);
RecordJSReturnSite(expr);
// Restore context register.
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r3);
}
void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
// r8: copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ LoadP(r8, MemOperand(sp, arg_count * kPointerSize), r0);
} else {
__ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
}
// r7: the receiver of the enclosing function.
__ LoadP(r7, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
// r6: the receiver of the enclosing function.
int receiver_offset = 2 + info_->scope()->num_parameters();
__ LoadP(r6, MemOperand(fp, receiver_offset * kPointerSize), r0);
// r5: strict mode.
__ LoadSmiLiteral(r5, Smi::FromInt(strict_mode()));
// r4: the start position of the scope the calls resides in.
__ LoadSmiLiteral(r4, Smi::FromInt(scope()->start_position()));
// Do the runtime call.
__ Push(r8, r7, r6, r5, r4);
__ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
}
void FullCodeGenerator::EmitLoadSuperConstructor(SuperReference* super_ref) {
DCHECK(super_ref != NULL);
__ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Push(r3);
__ CallRuntime(Runtime::kGetPrototype, 1);
}
void FullCodeGenerator::VisitCall(Call* expr) {
#ifdef DEBUG
// We want to verify that RecordJSReturnSite gets called on all paths
// through this function. Avoid early returns.
expr->return_is_recorded_ = false;
#endif
Comment cmnt(masm_, "[ Call");
Expression* callee = expr->expression();
Call::CallType call_type = expr->GetCallType(isolate());
if (call_type == Call::POSSIBLY_EVAL_CALL) {
// In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
// to resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{
PreservePositionScope pos_scope(masm()->positions_recorder());
VisitForStackValue(callee);
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ push(r5); // Reserved receiver slot.
// Push the arguments.
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Push a copy of the function (found below the arguments) and
// resolve eval.
__ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
__ push(r4);
EmitResolvePossiblyDirectEval(arg_count);
// The runtime call returns a pair of values in r3 (function) and
// r4 (receiver). Touch up the stack with the right values.
__ StoreP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
__ StoreP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
PrepareForBailoutForId(expr->EvalOrLookupId(), NO_REGISTERS);
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
__ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r3);
} else if (call_type == Call::GLOBAL_CALL) {
EmitCallWithLoadIC(expr);
} else if (call_type == Call::LOOKUP_SLOT_CALL) {
// Call to a lookup slot (dynamically introduced variable).
VariableProxy* proxy = callee->AsVariableProxy();
Label slow, done;
{
PreservePositionScope scope(masm()->positions_recorder());
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
}
__ bind(&slow);
// Call the runtime to find the function to call (returned in r3)
// and the object holding it (returned in edx).
DCHECK(!context_register().is(r5));
__ mov(r5, Operand(proxy->name()));
__ Push(context_register(), r5);
__ CallRuntime(Runtime::kLoadLookupSlot, 2);
__ Push(r3, r4); // Function, receiver.
PrepareForBailoutForId(expr->EvalOrLookupId(), NO_REGISTERS);
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
Label call;
__ b(&call);
__ bind(&done);
// Push function.
__ push(r3);
// The receiver is implicitly the global receiver. Indicate this
// by passing the hole to the call function stub.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ push(r4);
__ bind(&call);
}
// The receiver is either the global receiver or an object found
// by LoadContextSlot.
EmitCall(expr);
} else if (call_type == Call::PROPERTY_CALL) {
Property* property = callee->AsProperty();
bool is_named_call = property->key()->IsPropertyName();
if (property->IsSuperAccess()) {
if (is_named_call) {
EmitSuperCallWithLoadIC(expr);
} else {
EmitKeyedSuperCallWithLoadIC(expr);
}
} else {
{
PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(property->obj());
}
if (is_named_call) {
EmitCallWithLoadIC(expr);
} else {
EmitKeyedCallWithLoadIC(expr, property->key());
}
}
} else if (call_type == Call::SUPER_CALL) {
SuperReference* super_ref = callee->AsSuperReference();
EmitLoadSuperConstructor(super_ref);
__ Push(result_register());
VisitForStackValue(super_ref->this_var());
EmitCall(expr, CallICState::METHOD);
} else {
DCHECK(call_type == Call::OTHER_CALL);
// Call to an arbitrary expression not handled specially above.
{
PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(callee);
}
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ push(r4);
// Emit function call.
EmitCall(expr);
}
#ifdef DEBUG
// RecordJSReturnSite should have been called.
DCHECK(expr->return_is_recorded_);
#endif
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
if (expr->expression()->IsSuperReference()) {
EmitLoadSuperConstructor(expr->expression()->AsSuperReference());
__ Push(result_register());
} else {
VisitForStackValue(expr->expression());
}
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function and argument count into r4 and r3.
__ mov(r3, Operand(arg_count));
__ LoadP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
// Record call targets in unoptimized code.
if (FLAG_pretenuring_call_new) {
EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() ==
expr->CallNewFeedbackSlot().ToInt() + 1);
}
__ Move(r5, FeedbackVector());
__ LoadSmiLiteral(r6, SmiFromSlot(expr->CallNewFeedbackSlot()));
CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
__ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
context()->Plug(r3);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ TestIfSmi(r3, r0);
Split(eq, if_true, if_false, fall_through, cr0);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ TestIfPositiveSmi(r3, r0);
Split(eq, if_true, if_false, fall_through, cr0);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(r3, ip);
__ beq(if_true);
__ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ lbz(r4, FieldMemOperand(r5, Map::kBitFieldOffset));
__ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
__ bne(if_false, cr0);
__ lbz(r4, FieldMemOperand(r5, Map::kInstanceTypeOffset));
__ cmpi(r4, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ blt(if_false);
__ cmpi(r4, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(le, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
__ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ge, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
__ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ lbz(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
__ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ne, if_true, if_false, fall_through, cr0);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false, skip_lookup;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ AssertNotSmi(r3);
__ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ lbz(ip, FieldMemOperand(r4, Map::kBitField2Offset));
__ andi(r0, ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ bne(&skip_lookup, cr0);
// Check for fast case object. Generate false result for slow case object.
__ LoadP(r5, FieldMemOperand(r3, JSObject::kPropertiesOffset));
__ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r5, ip);
__ beq(if_false);
// Look for valueOf name in the descriptor array, and indicate false if
// found. Since we omit an enumeration index check, if it is added via a
// transition that shares its descriptor array, this is a false positive.
Label entry, loop, done;
// Skip loop if no descriptors are valid.
__ NumberOfOwnDescriptors(r6, r4);
__ cmpi(r6, Operand::Zero());
__ beq(&done);
__ LoadInstanceDescriptors(r4, r7);
// r7: descriptor array.
// r6: valid entries in the descriptor array.
__ mov(ip, Operand(DescriptorArray::kDescriptorSize));
__ Mul(r6, r6, ip);
// Calculate location of the first key name.
__ addi(r7, r7, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
// Calculate the end of the descriptor array.
__ mr(r5, r7);
__ ShiftLeftImm(ip, r6, Operand(kPointerSizeLog2));
__ add(r5, r5, ip);
// Loop through all the keys in the descriptor array. If one of these is the
// string "valueOf" the result is false.
// The use of ip to store the valueOf string assumes that it is not otherwise
// used in the loop below.
__ mov(ip, Operand(isolate()->factory()->value_of_string()));
__ b(&entry);
__ bind(&loop);
__ LoadP(r6, MemOperand(r7, 0));
__ cmp(r6, ip);
__ beq(if_false);
__ addi(r7, r7, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
__ bind(&entry);
__ cmp(r7, r5);
__ bne(&loop);
__ bind(&done);
// Set the bit in the map to indicate that there is no local valueOf field.
__ lbz(r5, FieldMemOperand(r4, Map::kBitField2Offset));
__ ori(r5, r5, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ stb(r5, FieldMemOperand(r4, Map::kBitField2Offset));
__ bind(&skip_lookup);
// If a valueOf property is not found on the object check that its
// prototype is the un-modified String prototype. If not result is false.
__ LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
__ JumpIfSmi(r5, if_false);
__ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadP(r6, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ LoadP(r6, FieldMemOperand(r6, GlobalObject::kNativeContextOffset));
__ LoadP(r6,
ContextOperand(r6, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
__ cmp(r5, r6);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
__ CompareObjectType(r3, r4, r5, JS_FUNCTION_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
#if V8_TARGET_ARCH_PPC64
__ LoadP(r4, FieldMemOperand(r3, HeapNumber::kValueOffset));
__ li(r5, Operand(1));
__ rotrdi(r5, r5, 1); // r5 = 0x80000000_00000000
__ cmp(r4, r5);
#else
__ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
__ lwz(r4, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
Label skip;
__ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
__ cmp(r5, r0);
__ bne(&skip);
__ cmpi(r4, Operand::Zero());
__ bind(&skip);
#endif
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
__ CompareObjectType(r3, r4, r4, JS_ARRAY_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
__ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ JumpIfSmi(r3, if_false);
Register map = r4;
Register type_reg = r5;
__ LoadP(map, FieldMemOperand(r3, HeapObject::kMapOffset));
__ lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ subi(type_reg, type_reg, Operand(FIRST_JS_PROXY_TYPE));
__ cmpli(type_reg, Operand(LAST_JS_PROXY_TYPE - FIRST_JS_PROXY_TYPE));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(le, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
// Get the frame pointer for the calling frame.
__ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ LoadP(r4, MemOperand(r5, StandardFrameConstants::kContextOffset));
__ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
__ bne(&check_frame_marker);
__ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ LoadP(r4, MemOperand(r5, StandardFrameConstants::kMarkerOffset));
STATIC_ASSERT(StackFrame::CONSTRUCT < 0x4000);
__ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::CONSTRUCT), r0);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ pop(r4);
__ cmp(r3, r4);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
// ArgumentsAccessStub expects the key in edx and the formal
// parameter count in r3.
VisitForAccumulatorValue(args->at(0));
__ mr(r4, r3);
__ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
Label exit;
// Get the number of formal parameters.
__ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
// Check if the calling frame is an arguments adaptor frame.
__ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
__ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
__ bne(&exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
context()->Plug(r3);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is a smi, we return null.
__ JumpIfSmi(r3, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
// Assume that there are only two callable types, and one of them is at
// either end of the type range for JS object types. Saves extra comparisons.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ CompareObjectType(r3, r3, r4, FIRST_SPEC_OBJECT_TYPE);
// Map is now in r3.
__ blt(&null);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
__ beq(&function);
__ cmpi(r4, Operand(LAST_SPEC_OBJECT_TYPE));
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1);
__ beq(&function);
// Assume that there is no larger type.
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
// Check if the constructor in the map is a JS function.
__ LoadP(r3, FieldMemOperand(r3, Map::kConstructorOffset));
__ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
__ bne(&non_function_constructor);
// r3 now contains the constructor function. Grab the
// instance class name from there.
__ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r3,
FieldMemOperand(r3, SharedFunctionInfo::kInstanceClassNameOffset));
__ b(&done);
// Functions have class 'Function'.
__ bind(&function);
__ LoadRoot(r3, Heap::kFunction_stringRootIndex);
__ b(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ LoadRoot(r3, Heap::kObject_stringRootIndex);
__ b(&done);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(r3, Heap::kNullValueRootIndex);
// All done.
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
SubStringStub stub(isolate());
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
RegExpExecStub stub(isolate());
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 4);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
VisitForStackValue(args->at(3));
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(r3, &done);
// If the object is not a value type, return the object.
__ CompareObjectType(r3, r4, r4, JS_VALUE_TYPE);
__ bne(&done);
__ LoadP(r3, FieldMemOperand(r3, JSValue::kValueOffset));
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
DCHECK_NE(NULL, args->at(1)->AsLiteral());
Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label runtime, done, not_date_object;
Register object = r3;
Register result = r3;
Register scratch0 = r11;
Register scratch1 = r4;
__ JumpIfSmi(object, &not_date_object);
__ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
__ bne(&not_date_object);
if (index->value() == 0) {
__ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset));
__ b(&done);
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch1, Operand(stamp));
__ LoadP(scratch1, MemOperand(scratch1));
__ LoadP(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
__ cmp(scratch1, scratch0);
__ bne(&runtime);
__ LoadP(result,
FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()),
scratch0);
__ b(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch1);
__ LoadSmiLiteral(r4, index);
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ b(&done);
}
__ bind(&not_date_object);
__ CallRuntime(Runtime::kThrowNotDateError, 0);
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(3, args->length());
Register string = r3;
Register index = r4;
Register value = r5;
VisitForStackValue(args->at(0)); // index
VisitForStackValue(args->at(1)); // value
VisitForAccumulatorValue(args->at(2)); // string
__ Pop(index, value);
if (FLAG_debug_code) {
__ TestIfSmi(value, r0);
__ Check(eq, kNonSmiValue, cr0);
__ TestIfSmi(index, r0);
__ Check(eq, kNonSmiIndex, cr0);
__ SmiUntag(index, index);
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
__ SmiTag(index, index);
}
__ SmiUntag(value);
__ addi(ip, string, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ SmiToByteArrayOffset(r0, index);
__ stbx(value, MemOperand(ip, r0));
context()->Plug(string);
}
void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(3, args->length());
Register string = r3;
Register index = r4;
Register value = r5;
VisitForStackValue(args->at(0)); // index
VisitForStackValue(args->at(1)); // value
VisitForAccumulatorValue(args->at(2)); // string
__ Pop(index, value);
if (FLAG_debug_code) {
__ TestIfSmi(value, r0);
__ Check(eq, kNonSmiValue, cr0);
__ TestIfSmi(index, r0);
__ Check(eq, kNonSmiIndex, cr0);
__ SmiUntag(index, index);
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
__ SmiTag(index, index);
}
__ SmiUntag(value);
__ addi(ip, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ SmiToShortArrayOffset(r0, index);
__ sthx(value, MemOperand(ip, r0));
context()->Plug(string);
}
void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
// Load the arguments on the stack and call the runtime function.
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
MathPowStub stub(isolate(), MathPowStub::ON_STACK);
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0)); // Load the object.
VisitForAccumulatorValue(args->at(1)); // Load the value.
__ pop(r4); // r3 = value. r4 = object.
Label done;
// If the object is a smi, return the value.
__ JumpIfSmi(r4, &done);
// If the object is not a value type, return the value.
__ CompareObjectType(r4, r5, r5, JS_VALUE_TYPE);
__ bne(&done);
// Store the value.
__ StoreP(r3, FieldMemOperand(r4, JSValue::kValueOffset), r0);
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ mr(r5, r3);
__ RecordWriteField(r4, JSValue::kValueOffset, r5, r6, kLRHasBeenSaved,
kDontSaveFPRegs);
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(args->length(), 1);
// Load the argument into r3 and call the stub.
VisitForAccumulatorValue(args->at(0));
NumberToStringStub stub(isolate());
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label done;
StringCharFromCodeGenerator generator(r3, r4);
generator.GenerateFast(masm_);
__ b(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(r4);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = r4;
Register index = r3;
Register result = r6;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
&need_conversion, &index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ b(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ b(&done);
__ bind(&need_conversion);
// Load the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ b(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = r4;
Register index = r3;
Register scratch = r6;
Register result = r3;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object, index, scratch, result,
&need_conversion, &need_conversion,
&index_out_of_range, STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ b(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kempty_stringRootIndex);
__ b(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ LoadSmiLiteral(result, Smi::FromInt(0));
__ b(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ pop(r4);
StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
StringCompareStub stub(isolate());
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() >= 2);
int arg_count = args->length() - 2; // 2 ~ receiver and function.
for (int i = 0; i < arg_count + 1; i++) {
VisitForStackValue(args->at(i));
}
VisitForAccumulatorValue(args->last()); // Function.
Label runtime, done;
// Check for non-function argument (including proxy).
__ JumpIfSmi(r3, &runtime);
__ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
__ bne(&runtime);
// InvokeFunction requires the function in r4. Move it in there.
__ mr(r4, result_register());
ParameterCount count(arg_count);
__ InvokeFunction(r4, count, CALL_FUNCTION, NullCallWrapper());
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ b(&done);
__ bind(&runtime);
__ push(r3);
__ CallRuntime(Runtime::kCall, args->length());
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
RegExpConstructResultStub stub(isolate());
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(2));
__ Pop(r5, r4);
__ CallStub(&stub);
context()->Plug(r3);
}
void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK_EQ(2, args->length());
DCHECK_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
Handle<FixedArray> jsfunction_result_caches(
isolate()->native_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort(kAttemptToUseUndefinedCache);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
context()->Plug(r3);
return;
}
VisitForAccumulatorValue(args->at(1));
Register key = r3;
Register cache = r4;
__ LoadP(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ LoadP(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
__ LoadP(cache,
ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ LoadP(cache,
FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)), r0);
Label done, not_found;
__ LoadP(r5, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
// r5 now holds finger offset as a smi.
__ addi(r6, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// r6 now points to the start of fixed array elements.
__ SmiToPtrArrayOffset(r5, r5);
__ LoadPUX(r5, MemOperand(r6, r5));
// r6 now points to the key of the pair.
__ cmp(key, r5);
__ bne(&not_found);
__ LoadP(r3, MemOperand(r6, kPointerSize));
__ b(&done);
__ bind(&not_found);
// Call runtime to perform the lookup.
__ Push(cache, key);
__ CallRuntime(Runtime::kGetFromCache, 2);
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
__ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
// PPC - assume ip is free
__ mov(ip, Operand(String::kContainsCachedArrayIndexMask));
__ and_(r0, r3, ip);
__ cmpi(r0, Operand::Zero());
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
__ AssertString(r3);
__ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
__ IndexFromHash(r3, r3);
context()->Plug(r3);
}
void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
Label bailout, done, one_char_separator, long_separator, non_trivial_array,
not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
one_char_separator_loop_entry, long_separator_loop;
ZoneList<Expression*>* args = expr->arguments();
DCHECK(args->length() == 2);
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(0));
// All aliases of the same register have disjoint lifetimes.
Register array = r3;
Register elements = no_reg; // Will be r3.
Register result = no_reg; // Will be r3.
Register separator = r4;
Register array_length = r5;
Register result_pos = no_reg; // Will be r5
Register string_length = r6;
Register string = r7;
Register element = r8;
Register elements_end = r9;
Register scratch1 = r10;
Register scratch2 = r11;
// Separator operand is on the stack.
__ pop(separator);
// Check that the array is a JSArray.
__ JumpIfSmi(array, &bailout);
__ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE);
__ bne(&bailout);
// Check that the array has fast elements.
__ CheckFastElements(scratch1, scratch2, &bailout);
// If the array has length zero, return the empty string.
__ LoadP(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
__ SmiUntag(array_length);
__ cmpi(array_length, Operand::Zero());
__ bne(&non_trivial_array);
__ LoadRoot(r3, Heap::kempty_stringRootIndex);
__ b(&done);
__ bind(&non_trivial_array);
// Get the FixedArray containing array's elements.
elements = array;
__ LoadP(elements, FieldMemOperand(array, JSArray::kElementsOffset));
array = no_reg; // End of array's live range.
// Check that all array elements are sequential one-byte strings, and
// accumulate the sum of their lengths, as a smi-encoded value.
__ li(string_length, Operand::Zero());
__ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
__ add(elements_end, element, elements_end);
// Loop condition: while (element < elements_end).
// Live values in registers:
// elements: Fixed array of strings.
// array_length: Length of the fixed array of strings (not smi)
// separator: Separator string
// string_length: Accumulated sum of string lengths (smi).
// element: Current array element.
// elements_end: Array end.
if (generate_debug_code_) {
__ cmpi(array_length, Operand::Zero());
__ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
}
__ bind(&loop);
__ LoadP(string, MemOperand(element));
__ addi(element, element, Operand(kPointerSize));
__ JumpIfSmi(string, &bailout);
__ LoadP(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
__ LoadP(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
__ AddAndCheckForOverflow(string_length, string_length, scratch1, scratch2,
r0);
__ BranchOnOverflow(&bailout);
__ cmp(element, elements_end);
__ blt(&loop);
// If array_length is 1, return elements[0], a string.
__ cmpi(array_length, Operand(1));
__ bne(&not_size_one_array);
__ LoadP(r3, FieldMemOperand(elements, FixedArray::kHeaderSize));
__ b(&done);
__ bind(&not_size_one_array);
// Live values in registers:
// separator: Separator string
// array_length: Length of the array.
// string_length: Sum of string lengths (smi).
// elements: FixedArray of strings.
// Check that the separator is a flat one-byte string.
__ JumpIfSmi(separator, &bailout);
__ LoadP(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
__ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
// Add (separator length times array_length) - separator length to the
// string_length to get the length of the result string.
__ LoadP(scratch1,
FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ sub(string_length, string_length, scratch1);
#if V8_TARGET_ARCH_PPC64
__ SmiUntag(scratch1, scratch1);
__ Mul(scratch2, array_length, scratch1);
// Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
// zero.
__ ShiftRightImm(ip, scratch2, Operand(31), SetRC);
__ bne(&bailout, cr0);
__ SmiTag(scratch2, scratch2);
#else
// array_length is not smi but the other values are, so the result is a smi
__ mullw(scratch2, array_length, scratch1);
__ mulhw(ip, array_length, scratch1);
// Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
// zero.
__ cmpi(ip, Operand::Zero());
__ bne(&bailout);
__ cmpwi(scratch2, Operand::Zero());
__ blt(&bailout);
#endif
__ AddAndCheckForOverflow(string_length, string_length, scratch2, scratch1,
r0);
__ BranchOnOverflow(&bailout);
__ SmiUntag(string_length);
// Get first element in the array to free up the elements register to be used
// for the result.
__ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
result = elements; // End of live range for elements.
elements = no_reg;
// Live values in registers:
// element: First array element
// separator: Separator string
// string_length: Length of result string (not smi)
// array_length: Length of the array.
__ AllocateOneByteString(result, string_length, scratch1, scratch2,
elements_end, &bailout);
// Prepare for looping. Set up elements_end to end of the array. Set
// result_pos to the position of the result where to write the first
// character.
__ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
__ add(elements_end, element, elements_end);
result_pos = array_length; // End of live range for array_length.
array_length = no_reg;
__ addi(result_pos, result,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// Check the length of the separator.
__ LoadP(scratch1,
FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ CmpSmiLiteral(scratch1, Smi::FromInt(1), r0);
__ beq(&one_char_separator);
__ bgt(&long_separator);
// Empty separator case
__ bind(&empty_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// Copy next array element to the result.
__ LoadP(string, MemOperand(element));
__ addi(element, element, Operand(kPointerSize));
__ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ addi(string, string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1);
__ cmp(element, elements_end);
__ blt(&empty_separator_loop); // End while (element < elements_end).
DCHECK(result.is(r3));
__ b(&done);
// One-character separator case
__ bind(&one_char_separator);
// Replace separator with its one-byte character value.
__ lbz(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator
__ b(&one_char_separator_loop_entry);
__ bind(&one_char_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Single separator one-byte char (in lower byte).
// Copy the separator character to the result.
__ stb(separator, MemOperand(result_pos));
__ addi(result_pos, result_pos, Operand(1));
// Copy next array element to the result.
__ bind(&one_char_separator_loop_entry);
__ LoadP(string, MemOperand(element));
__ addi(element, element, Operand(kPointerSize));
__ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ addi(string, string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1);
__ cmpl(element, elements_end);
__ blt(&one_char_separator_loop); // End while (element < elements_end).
DCHECK(result.is(r3));
__ b(&done);
// Long separator case (separator is more than one character). Entry is at the
// label long_separator below.
__ bind(&long_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Separator string.
// Copy the separator to the result.
__ LoadP(string_length, FieldMemOperand(separator, String::kLengthOffset));
__ SmiUntag(string_length);
__ addi(string, separator,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1);
__ bind(&long_separator);
__ LoadP(string, MemOperand(element));
__ addi(element, element, Operand(kPointerSize));
__ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ addi(string, string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1);
__ cmpl(element, elements_end);
__ blt(&long_separator_loop); // End while (element < elements_end).
DCHECK(result.is(r3));
__ b(&done);
__ bind(&bailout);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ bind(&done);
context()->Plug(r3);
}
void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
DCHECK(expr->arguments()->length() == 0);
ExternalReference debug_is_active =
ExternalReference::debug_is_active_address(isolate());
__ mov(ip, Operand(debug_is_active));
__ lbz(r3, MemOperand(ip));
__ SmiTag(r3);
context()->Plug(r3);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
if (expr->function() != NULL &&
expr->function()->intrinsic_type == Runtime::INLINE) {
Comment cmnt(masm_, "[ InlineRuntimeCall");
EmitInlineRuntimeCall(expr);
return;
}
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
if (expr->is_jsruntime()) {
// Push the builtins object as the receiver.
Register receiver = LoadDescriptor::ReceiverRegister();
__ LoadP(receiver, GlobalObjectOperand());
__ LoadP(receiver,
FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset));
__ push(receiver);
// Load the function from the receiver.
__ mov(LoadDescriptor::NameRegister(), Operand(expr->name()));
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(expr->CallRuntimeFeedbackSlot())));
CallLoadIC(NOT_CONTEXTUAL);
} else {
CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
}
// Push the target function under the receiver.
__ LoadP(ip, MemOperand(sp, 0));
__ push(ip);
__ StoreP(r3, MemOperand(sp, kPointerSize));
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Record source position of the IC call.
SetSourcePosition(expr->position());
CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
__ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
__ CallStub(&stub);
// Restore context register.
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, r3);
} else {
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the C runtime function.
__ CallRuntime(expr->function(), arg_count);
context()->Plug(r3);
}
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ LoadSmiLiteral(r4, Smi::FromInt(strict_mode()));
__ push(r4);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(r3);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode
// but "delete this" is allowed.
DCHECK(strict_mode() == SLOPPY || var->is_this());
if (var->IsUnallocated()) {
__ LoadP(r5, GlobalObjectOperand());
__ mov(r4, Operand(var->name()));
__ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY));
__ Push(r5, r4, r3);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(r3);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
context()->Plug(var->is_this());
} else {
// Non-global variable. Call the runtime to try to delete from the
// context where the variable was introduced.
DCHECK(!context_register().is(r5));
__ mov(r5, Operand(var->name()));
__ Push(context_register(), r5);
__ CallRuntime(Runtime::kDeleteLookupSlot, 2);
context()->Plug(r3);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(Heap::kUndefinedValueRootIndex);
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(), test->false_label(),
test->true_label(), test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
// We handle value contexts explicitly rather than simply visiting
// for control and plugging the control flow into the context,
// because we need to prepare a pair of extra administrative AST ids
// for the optimizing compiler.
DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(), &materialize_false,
&materialize_true, &materialize_true);
__ bind(&materialize_true);
PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
__ LoadRoot(r3, Heap::kTrueValueRootIndex);
if (context()->IsStackValue()) __ push(r3);
__ b(&done);
__ bind(&materialize_false);
PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
__ LoadRoot(r3, Heap::kFalseValueRootIndex);
if (context()->IsStackValue()) __ push(r3);
__ bind(&done);
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{
StackValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ CallRuntime(Runtime::kTypeof, 1);
context()->Plug(r3);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
DCHECK(expr->expression()->IsValidReferenceExpression());
Comment cmnt(masm_, "[ CountOperation");
SetSourcePosition(expr->position());
Property* prop = expr->expression()->AsProperty();
LhsKind assign_type = GetAssignType(prop);
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
__ LoadSmiLiteral(ip, Smi::FromInt(0));
__ push(ip);
}
switch (assign_type) {
case NAMED_PROPERTY: {
// Put the object both on the stack and in the register.
VisitForStackValue(prop->obj());
__ LoadP(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
EmitNamedPropertyLoad(prop);
break;
}
case NAMED_SUPER_PROPERTY: {
VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(prop->obj()->AsSuperReference());
__ Push(result_register());
const Register scratch = r4;
__ LoadP(scratch, MemOperand(sp, kPointerSize));
__ Push(scratch, result_register());
EmitNamedSuperPropertyLoad(prop);
break;
}
case KEYED_SUPER_PROPERTY: {
VisitForStackValue(prop->obj()->AsSuperReference()->this_var());
EmitLoadHomeObject(prop->obj()->AsSuperReference());
const Register scratch = r4;
const Register scratch1 = r5;
__ Move(scratch, result_register());
VisitForAccumulatorValue(prop->key());
__ Push(scratch, result_register());
__ LoadP(scratch1, MemOperand(sp, 2 * kPointerSize));
__ Push(scratch1, scratch, result_register());
EmitKeyedSuperPropertyLoad(prop);
break;
}
case KEYED_PROPERTY: {
VisitForStackValue(prop->obj());
VisitForStackValue(prop->key());
__ LoadP(LoadDescriptor::ReceiverRegister(),
MemOperand(sp, 1 * kPointerSize));
__ LoadP(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
EmitKeyedPropertyLoad(prop);
break;
}
case VARIABLE:
UNREACHABLE();
}
}
// We need a second deoptimization point after loading the value
// in case evaluating the property load my have a side effect.
if (assign_type == VARIABLE) {
PrepareForBailout(expr->expression(), TOS_REG);
} else {
PrepareForBailoutForId(prop->LoadId(), TOS_REG);
}
// Inline smi case if we are in a loop.
Label stub_call, done;
JumpPatchSite patch_site(masm_);
int count_value = expr->op() == Token::INC ? 1 : -1;
if (ShouldInlineSmiCase(expr->op())) {
Label slow;
patch_site.EmitJumpIfNotSmi(r3, &slow);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(r3);
break;
case NAMED_PROPERTY:
__ StoreP(r3, MemOperand(sp, kPointerSize));
break;
case NAMED_SUPER_PROPERTY:
__ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_PROPERTY:
__ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_SUPER_PROPERTY:
__ StoreP(r3, MemOperand(sp, 3 * kPointerSize));
break;
}
}
}
Register scratch1 = r4;
Register scratch2 = r5;
__ LoadSmiLiteral(scratch1, Smi::FromInt(count_value));
__ AddAndCheckForOverflow(r3, r3, scratch1, scratch2, r0);
__ BranchOnNoOverflow(&done);
// Call stub. Undo operation first.
__ sub(r3, r3, scratch1);
__ b(&stub_call);
__ bind(&slow);
}
ToNumberStub convert_stub(isolate());
__ CallStub(&convert_stub);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(r3);
break;
case NAMED_PROPERTY:
__ StoreP(r3, MemOperand(sp, kPointerSize));
break;
case NAMED_SUPER_PROPERTY:
__ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_PROPERTY:
__ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
break;
case KEYED_SUPER_PROPERTY:
__ StoreP(r3, MemOperand(sp, 3 * kPointerSize));
break;
}
}
}
__ bind(&stub_call);
__ mr(r4, r3);
__ LoadSmiLiteral(r3, Smi::FromInt(count_value));
// Record position before stub call.
SetSourcePosition(expr->position());
Handle<Code> code =
CodeFactory::BinaryOpIC(isolate(), Token::ADD, NO_OVERWRITE).code();
CallIC(code, expr->CountBinOpFeedbackId());
patch_site.EmitPatchInfo();
__ bind(&done);
// Store the value returned in r3.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
{
EffectContext context(this);
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context.Plug(r3);
}
// For all contexts except EffectConstant We have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(r3);
}
break;
case NAMED_PROPERTY: {
__ mov(StoreDescriptor::NameRegister(),
Operand(prop->key()->AsLiteral()->value()));
__ pop(StoreDescriptor::ReceiverRegister());
CallStoreIC(expr->CountStoreFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(r3);
}
break;
}
case NAMED_SUPER_PROPERTY: {
EmitNamedSuperPropertyStore(prop);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(r3);
}
break;
}
case KEYED_SUPER_PROPERTY: {
EmitKeyedSuperPropertyStore(prop);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(r3);
}
break;
}
case KEYED_PROPERTY: {
__ Pop(StoreDescriptor::ReceiverRegister(),
StoreDescriptor::NameRegister());
Handle<Code> ic =
CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
CallIC(ic, expr->CountStoreFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(r3);
}
break;
}
}
}
void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
DCHECK(!context()->IsEffect());
DCHECK(!context()->IsTest());
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->var()->IsUnallocated()) {
Comment cmnt(masm_, "[ Global variable");
__ LoadP(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
__ mov(LoadDescriptor::NameRegister(), Operand(proxy->name()));
if (FLAG_vector_ics) {
__ mov(VectorLoadICDescriptor::SlotRegister(),
Operand(SmiFromSlot(proxy->VariableFeedbackSlot())));
}
// Use a regular load, not a contextual load, to avoid a reference
// error.
CallLoadIC(NOT_CONTEXTUAL);
PrepareForBailout(expr, TOS_REG);
context()->Plug(r3);
} else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
Comment cmnt(masm_, "[ Lookup slot");
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
__ mov(r3, Operand(proxy->name()));
__ Push(cp, r3);
__ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
PrepareForBailout(expr, TOS_REG);
__ bind(&done);
context()->Plug(r3);
} else {
// This expression cannot throw a reference error at the top level.
VisitInDuplicateContext(expr);
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
{
AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Factory* factory = isolate()->factory();
if (String::Equals(check, factory->number_string())) {
__ JumpIfSmi(r3, if_true);
__ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r3, ip);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->string_string())) {
__ JumpIfSmi(r3, if_false);
// Check for undetectable objects => false.
__ CompareObjectType(r3, r3, r4, FIRST_NONSTRING_TYPE);
__ bge(if_false);
__ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
STATIC_ASSERT((1 << Map::kIsUndetectable) < 0x8000);
__ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
Split(eq, if_true, if_false, fall_through, cr0);
} else if (String::Equals(check, factory->symbol_string())) {
__ JumpIfSmi(r3, if_false);
__ CompareObjectType(r3, r3, r4, SYMBOL_TYPE);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->boolean_string())) {
__ CompareRoot(r3, Heap::kTrueValueRootIndex);
__ beq(if_true);
__ CompareRoot(r3, Heap::kFalseValueRootIndex);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->undefined_string())) {
__ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
__ beq(if_true);
__ JumpIfSmi(r3, if_false);
// Check for undetectable objects => true.
__ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
__ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
__ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
Split(ne, if_true, if_false, fall_through, cr0);
} else if (String::Equals(check, factory->function_string())) {
__ JumpIfSmi(r3, if_false);
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ CompareObjectType(r3, r3, r4, JS_FUNCTION_TYPE);
__ beq(if_true);
__ cmpi(r4, Operand(JS_FUNCTION_PROXY_TYPE));
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->object_string())) {
__ JumpIfSmi(r3, if_false);
__ CompareRoot(r3, Heap::kNullValueRootIndex);
__ beq(if_true);
// Check for JS objects => true.
__ CompareObjectType(r3, r3, r4, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ blt(if_false);
__ CompareInstanceType(r3, r4, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ bgt(if_false);
// Check for undetectable objects => false.
__ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
__ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
Split(eq, if_true, if_false, fall_through, cr0);
} else {
if (if_false != fall_through) __ b(if_false);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetSourcePosition(expr->position());
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
if (TryLiteralCompare(expr)) return;
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r3, ip);
Split(eq, if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForStackValue(expr->right());
InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
__ CallStub(&stub);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
// The stub returns 0 for true.
__ cmpi(r3, Operand::Zero());
Split(eq, if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
Condition cond = CompareIC::ComputeCondition(op);
__ pop(r4);
bool inline_smi_code = ShouldInlineSmiCase(op);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ orx(r5, r3, r4);
patch_site.EmitJumpIfNotSmi(r5, &slow_case);
__ cmp(r4, r3);
Split(cond, if_true, if_false, NULL);
__ bind(&slow_case);
}
// Record position and call the compare IC.
SetSourcePosition(expr->position());
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallIC(ic, expr->CompareOperationFeedbackId());
patch_site.EmitPatchInfo();
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ cmpi(r3, Operand::Zero());
Split(cond, if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
&if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
if (expr->op() == Token::EQ_STRICT) {
Heap::RootListIndex nil_value = nil == kNullValue
? Heap::kNullValueRootIndex
: Heap::kUndefinedValueRootIndex;
__ LoadRoot(r4, nil_value);
__ cmp(r3, r4);
Split(eq, if_true, if_false, fall_through);
} else {
Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
CallIC(ic, expr->CompareOperationFeedbackId());
__ cmpi(r3, Operand::Zero());
Split(ne, if_true, if_false, fall_through);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
context()->Plug(r3);
}
Register FullCodeGenerator::result_register() { return r3; }
Register FullCodeGenerator::context_register() { return cp; }
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
__ StoreP(value, MemOperand(fp, frame_offset), r0);
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ LoadP(dst, ContextOperand(cp, context_index), r0);
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
Scope* declaration_scope = scope()->DeclarationScope();
if (declaration_scope->is_script_scope() ||
declaration_scope->is_module_scope()) {
// Contexts nested in the native context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code. Pass a smi sentinel and let the runtime look up the empty
// function.
__ LoadSmiLiteral(ip, Smi::FromInt(0));
} else if (declaration_scope->is_eval_scope()) {
// Contexts created by a call to eval have the same closure as the
// context calling eval, not the anonymous closure containing the eval
// code. Fetch it from the context.
__ LoadP(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
} else {
DCHECK(declaration_scope->is_function_scope());
__ LoadP(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
__ push(ip);
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
DCHECK(!result_register().is(r4));
// Store result register while executing finally block.
__ push(result_register());
// Cook return address in link register to stack (smi encoded Code* delta)
__ mflr(r4);
__ mov(ip, Operand(masm_->CodeObject()));
__ sub(r4, r4, ip);
__ SmiTag(r4);
// Store result register while executing finally block.
__ push(r4);
// Store pending message while executing finally block.
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(ip, Operand(pending_message_obj));
__ LoadP(r4, MemOperand(ip));
__ push(r4);
ExternalReference has_pending_message =
ExternalReference::address_of_has_pending_message(isolate());
__ mov(ip, Operand(has_pending_message));
__ lbz(r4, MemOperand(ip));
__ SmiTag(r4);
__ push(r4);
ExternalReference pending_message_script =
ExternalReference::address_of_pending_message_script(isolate());
__ mov(ip, Operand(pending_message_script));
__ LoadP(r4, MemOperand(ip));
__ push(r4);
}
void FullCodeGenerator::ExitFinallyBlock() {
DCHECK(!result_register().is(r4));
// Restore pending message from stack.
__ pop(r4);
ExternalReference pending_message_script =
ExternalReference::address_of_pending_message_script(isolate());
__ mov(ip, Operand(pending_message_script));
__ StoreP(r4, MemOperand(ip));
__ pop(r4);
__ SmiUntag(r4);
ExternalReference has_pending_message =
ExternalReference::address_of_has_pending_message(isolate());
__ mov(ip, Operand(has_pending_message));
__ stb(r4, MemOperand(ip));
__ pop(r4);
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ mov(ip, Operand(pending_message_obj));
__ StoreP(r4, MemOperand(ip));
// Restore result register from stack.
__ pop(r4);
// Uncook return address and return.
__ pop(result_register());
__ SmiUntag(r4);
__ mov(ip, Operand(masm_->CodeObject()));
__ add(ip, ip, r4);
__ mtctr(ip);
__ bctr();
}
#undef __
#define __ ACCESS_MASM(masm())
FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
int* stack_depth, int* context_length) {
// The macros used here must preserve the result register.
// Because the handler block contains the context of the finally
// code, we can restore it directly from there for the finally code
// rather than iteratively unwinding contexts via their previous
// links.
__ Drop(*stack_depth); // Down to the handler block.
if (*context_length > 0) {
// Restore the context to its dedicated register and the stack.
__ LoadP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
__ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
__ PopTryHandler();
__ b(finally_entry_, SetLK);
*stack_depth = 0;
*context_length = 0;
return previous_;
}
#undef __
void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc,
BackEdgeState target_state,
Code* replacement_code) {
Address mov_address = Assembler::target_address_from_return_address(pc);
Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
CodePatcher patcher(cmp_address, 1);
switch (target_state) {
case INTERRUPT: {
// <decrement profiling counter>
// cmpi r6, 0
// bge <ok> ;; not changed
// mov r12, <interrupt stub address>
// mtlr r12
// blrl
// <reset profiling counter>
// ok-label
patcher.masm()->cmpi(r6, Operand::Zero());
break;
}
case ON_STACK_REPLACEMENT:
case OSR_AFTER_STACK_CHECK:
// <decrement profiling counter>
// crset
// bge <ok> ;; not changed
// mov r12, <on-stack replacement address>
// mtlr r12
// blrl
// <reset profiling counter>
// ok-label ----- pc_after points here
// Set the LT bit such that bge is a NOP
patcher.masm()->crset(Assembler::encode_crbit(cr7, CR_LT));
break;
}
// Replace the stack check address in the mov sequence with the
// entry address of the replacement code.
Assembler::set_target_address_at(mov_address, unoptimized_code,
replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, mov_address, replacement_code);
}
BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
Isolate* isolate, Code* unoptimized_code, Address pc) {
Address mov_address = Assembler::target_address_from_return_address(pc);
Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
Address interrupt_address =
Assembler::target_address_at(mov_address, unoptimized_code);
if (Assembler::IsCmpImmediate(Assembler::instr_at(cmp_address))) {
DCHECK(interrupt_address == isolate->builtins()->InterruptCheck()->entry());
return INTERRUPT;
}
DCHECK(Assembler::IsCrSet(Assembler::instr_at(cmp_address)));
if (interrupt_address == isolate->builtins()->OnStackReplacement()->entry()) {
return ON_STACK_REPLACEMENT;
}
DCHECK(interrupt_address ==
isolate->builtins()->OsrAfterStackCheck()->entry());
return OSR_AFTER_STACK_CHECK;
}
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_PPC