blob: 8fcce9fa26c0cc320d108eec9b89b17e4da0be95 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- a0 : number of arguments excluding receiver
// -- a1 : target
// -- a3 : new.target
// -- sp[0] : last argument
// -- ...
// -- sp[8 * (argc - 1)] : first argument
// -- sp[8 * agrc] : receiver
// -----------------------------------
__ AssertFunction(a1);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// JumpToExternalReference expects a0 to contain the number of arguments
// including the receiver and the extra arguments.
const int num_extra_args = 3;
__ Daddu(a0, a0, num_extra_args + 1);
// Insert extra arguments.
__ SmiTag(a0);
__ Push(a0, a1, a3);
__ SmiUntag(a0);
__ JumpToExternalReference(ExternalReference(address, masm->isolate()),
PROTECT, exit_frame_type == BUILTIN_EXIT);
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the Array function from the native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, a4,
Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction, a4,
Operand(MAP_TYPE));
}
// Run the native code for the InternalArray function called as a normal
// function.
// Tail call a stub.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code;
// Get the Array function.
GenerateLoadArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction1, a4,
Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction2, a4,
Operand(MAP_TYPE));
}
// Run the native code for the Array function called as a normal function.
// Tail call a stub.
__ mov(a3, a1);
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : function
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero-based)
// -- sp[argc * 8] : receiver
// -----------------------------------
Heap::RootListIndex const root_index =
(kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
: Heap::kMinusInfinityValueRootIndex;
// Load the accumulator with the default return value (either -Infinity or
// +Infinity), with the tagged value in t1 and the double value in f0.
__ LoadRoot(t1, root_index);
__ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset));
Label done_loop, loop, done;
__ mov(a3, a0);
__ bind(&loop);
{
// Check if all parameters done.
__ Dsubu(a3, a3, Operand(1));
__ Branch(&done_loop, lt, a3, Operand(zero_reg));
// Load the next parameter tagged value into a2.
__ Dlsa(at, sp, a3, kPointerSizeLog2);
__ ld(a2, MemOperand(at));
// Load the double value of the parameter into f2, maybe converting the
// parameter to a number first using the ToNumber builtin if necessary.
Label convert, convert_smi, convert_number, done_convert;
__ bind(&convert);
__ JumpIfSmi(a2, &convert_smi);
__ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
__ JumpIfRoot(a4, Heap::kHeapNumberMapRootIndex, &convert_number);
{
// Parameter is not a Number, use the ToNumber builtin to convert it.
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(a0);
__ SmiTag(a3);
__ EnterBuiltinFrame(cp, a1, a0);
__ Push(t1, a3);
__ mov(a0, a2);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ mov(a2, v0);
__ Pop(t1, a3);
__ LeaveBuiltinFrame(cp, a1, a0);
__ SmiUntag(a3);
__ SmiUntag(a0);
{
// Restore the double accumulator value (f0).
Label restore_smi, done_restore;
__ JumpIfSmi(t1, &restore_smi);
__ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset));
__ jmp(&done_restore);
__ bind(&restore_smi);
__ SmiToDoubleFPURegister(t1, f0, a4);
__ bind(&done_restore);
}
}
__ jmp(&convert);
__ bind(&convert_number);
__ ldc1(f2, FieldMemOperand(a2, HeapNumber::kValueOffset));
__ jmp(&done_convert);
__ bind(&convert_smi);
__ SmiToDoubleFPURegister(a2, f2, a4);
__ bind(&done_convert);
// Perform the actual comparison with using Min/Max macro instructions the
// accumulator value on the left hand side (f0) and the next parameter value
// on the right hand side (f2).
// We need to work out which HeapNumber (or smi) the result came from.
Label compare_nan, ool_min, ool_max;
__ BranchF(nullptr, &compare_nan, eq, f0, f2);
__ Move(a4, f0);
if (kind == MathMaxMinKind::kMin) {
__ Float64Min(f0, f0, f2, &ool_min);
} else {
DCHECK(kind == MathMaxMinKind::kMax);
__ Float64Max(f0, f0, f2, &ool_max);
}
__ jmp(&done);
__ bind(&ool_min);
__ Float64MinOutOfLine(f0, f0, f2);
__ jmp(&done);
__ bind(&ool_max);
__ Float64MaxOutOfLine(f0, f0, f2);
__ bind(&done);
__ Move(at, f0);
__ Branch(&loop, eq, a4, Operand(at));
__ mov(t1, a2);
__ jmp(&loop);
// At least one side is NaN, which means that the result will be NaN too.
__ bind(&compare_nan);
__ LoadRoot(t1, Heap::kNanValueRootIndex);
__ ldc1(f0, FieldMemOperand(t1, HeapNumber::kValueOffset));
__ jmp(&loop);
}
__ bind(&done_loop);
// Drop all slots, including the receiver.
__ Daddu(a0, a0, Operand(1));
__ Dlsa(sp, sp, a0, kPointerSizeLog2);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, t1); // In delay slot.
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
// 1. Load the first argument into a0 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Dsubu(t1, a0, Operand(1)); // In delay slot.
__ mov(t0, a0); // Store argc in t0.
__ Dlsa(at, sp, t1, kPointerSizeLog2);
__ ld(a0, MemOperand(at));
}
// 2a. Convert first argument to number.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
{
// Drop all arguments including the receiver.
__ Dlsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
// 2b. No arguments, return +0.
__ bind(&no_arguments);
__ Move(v0, Smi::kZero);
__ DropAndRet(1);
}
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// 2. Load the first argument into a0 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ mov(t0, a0); // Store argc in t0.
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Dsubu(a0, a0, Operand(1)); // In delay slot.
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ ld(a0, MemOperand(at));
__ jmp(&done);
__ bind(&no_arguments);
__ Move(a0, Smi::kZero);
__ bind(&done);
}
// 3. Make sure a0 is a number.
{
Label done_convert;
__ JumpIfSmi(a0, &done_convert);
__ GetObjectType(a0, a2, a2);
__ Branch(&done_convert, eq, a2, Operand(HEAP_NUMBER_TYPE));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a3);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(a0, v0);
__ Pop(a3);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ Branch(&new_object, ne, a1, Operand(a3));
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(v0, a1, a0, a2, t1, &new_object);
__ jmp(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a0);
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ Pop(a0);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset));
__ bind(&drop_frame_and_ret);
{
__ Dlsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
// 1. Load the first argument into a0 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Dsubu(t1, a0, Operand(1)); // In delay slot.
__ mov(t0, a0); // Store argc in t0.
__ Dlsa(at, sp, t1, kPointerSizeLog2);
__ ld(a0, MemOperand(at));
}
// 2a. At least one argument, return a0 if it's a string, otherwise
// dispatch to appropriate conversion.
Label drop_frame_and_ret, to_string, symbol_descriptive_string;
{
__ JumpIfSmi(a0, &to_string);
__ GetObjectType(a0, t1, t1);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ Subu(t1, t1, Operand(FIRST_NONSTRING_TYPE));
__ Branch(&symbol_descriptive_string, eq, t1, Operand(zero_reg));
__ Branch(&to_string, gt, t1, Operand(zero_reg));
__ mov(v0, a0);
__ jmp(&drop_frame_and_ret);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(v0, Heap::kempty_stringRootIndex);
__ DropAndRet(1);
}
// 3a. Convert a0 to a string.
__ bind(&to_string);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ jmp(&drop_frame_and_ret);
// 3b. Convert symbol in a0 to a string.
__ bind(&symbol_descriptive_string);
{
__ Dlsa(sp, sp, t0, kPointerSizeLog2);
__ Drop(1);
__ Push(a0);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
__ bind(&drop_frame_and_ret);
{
__ Dlsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
}
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// 2. Load the first argument into a0 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ mov(t0, a0); // Store argc in t0.
__ Branch(USE_DELAY_SLOT, &no_arguments, eq, a0, Operand(zero_reg));
__ Dsubu(a0, a0, Operand(1));
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ ld(a0, MemOperand(at));
__ jmp(&done);
__ bind(&no_arguments);
__ LoadRoot(a0, Heap::kempty_stringRootIndex);
__ bind(&done);
}
// 3. Make sure a0 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(a0, &convert);
__ GetObjectType(a0, a2, a2);
__ And(t1, a2, Operand(kIsNotStringMask));
__ Branch(&done_convert, eq, t1, Operand(zero_reg));
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a3);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ Move(a0, v0);
__ Pop(a3);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, new_object;
__ Branch(&new_object, ne, a1, Operand(a3));
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(v0, a1, a0, a2, t1, &new_object);
__ jmp(&drop_frame_and_ret);
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(t0);
__ EnterBuiltinFrame(cp, a1, t0);
__ Push(a0);
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ Pop(a0);
__ LeaveBuiltinFrame(cp, a1, t0);
__ SmiUntag(t0);
}
__ sd(a0, FieldMemOperand(v0, JSValue::kValueOffset));
__ bind(&drop_frame_and_ret);
{
__ Dlsa(sp, sp, t0, kPointerSizeLog2);
__ DropAndRet(1);
}
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
__ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a1 : target function (preserved for callee)
// -- a3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
// Push a copy of the target function and the new target.
__ SmiTag(a0);
__ Push(a0, a1, a3, a1);
__ CallRuntime(function_id, 1);
// Restore target function and new target.
__ Pop(a0, a1, a3);
__ SmiUntag(a0);
}
__ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ LoadRoot(a4, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(a4));
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
namespace {
void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
bool create_implicit_receiver,
bool check_derived_construct) {
Label post_instantiation_deopt_entry;
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a3 : new target
// -- cp : context
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(a0);
__ Push(cp, a0);
if (create_implicit_receiver) {
__ Push(a1, a3);
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ mov(t0, v0);
__ Pop(a1, a3);
// ----------- S t a t e -------------
// -- a1: constructor function
// -- a3: new target
// -- t0: newly allocated object
// -----------------------------------
__ ld(a0, MemOperand(sp));
}
__ SmiUntag(a0);
if (create_implicit_receiver) {
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(t0, t0);
} else {
__ PushRoot(Heap::kTheHoleValueRootIndex);
}
// Deoptimizer re-enters stub code here.
__ bind(&post_instantiation_deopt_entry);
// Set up pointer to last argument.
__ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
// a0: number of arguments
// a1: constructor function
// a2: address of last argument (caller sp)
// a3: new target
// t0: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: number of arguments (smi-tagged)
Label loop, entry;
__ mov(t0, a0);
__ jmp(&entry);
__ bind(&loop);
__ Dlsa(a4, a2, t0, kPointerSizeLog2);
__ ld(a5, MemOperand(a4));
__ push(a5);
__ bind(&entry);
__ Daddu(t0, t0, Operand(-1));
__ Branch(&loop, greater_equal, t0, Operand(zero_reg));
// Call the function.
// a0: number of arguments
// a1: constructor function
// a3: new target
ParameterCount actual(a0);
__ InvokeFunction(a1, a3, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
}
// Restore context from the frame.
__ ld(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: number of arguments (smi-tagged)
__ JumpIfSmi(v0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, a1, a3);
__ Branch(&exit, greater_equal, a3, Operand(FIRST_JS_RECEIVER_TYPE));
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ld(v0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: number of arguments (smi-tagged)
__ ld(a1, MemOperand(sp, 1 * kPointerSize));
} else {
__ ld(a1, MemOperand(sp));
}
// Leave construct frame.
}
// ES6 9.2.2. Step 13+
// Check that the result is not a Smi, indicating that the constructor result
// from a derived class is neither undefined nor an Object.
if (check_derived_construct) {
Label dont_throw;
__ JumpIfNotSmi(v0, &dont_throw);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
}
__ bind(&dont_throw);
}
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
__ Daddu(sp, sp, kPointerSize);
if (create_implicit_receiver) {
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
}
__ Ret();
// Store offset of trampoline address for deoptimizer. This is the bailout
// point after the receiver instantiation but before the function invocation.
// We need to restore some registers in order to continue the above code.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
// ----------- S t a t e -------------
// -- a0 : newly allocated object
// -- sp[0] : constructor function
// -----------------------------------
__ Pop(a1);
__ Push(a0, a0);
// Retrieve smi-tagged arguments count from the stack.
__ ld(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
__ SmiUntag(a0);
// Retrieve the new target value from the stack. This was placed into the
// frame description in place of the receiver by the optimizing compiler.
__ Daddu(a3, fp, Operand(StandardFrameConstants::kCallerSPOffset));
__ Dlsa(a3, a3, a0, kPointerSizeLog2);
__ ld(a3, MemOperand(a3));
// Continue with constructor function invocation.
__ jmp(&post_instantiation_deopt_entry);
}
}
} // namespace
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStubForDerived(
MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : the value to pass to the generator
// -- a1 : the JSGeneratorObject to resume
// -- a2 : the resume mode (tagged)
// -- ra : return address
// -----------------------------------
__ AssertGeneratorObject(a1);
// Store input value into generator object.
__ sd(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3,
kRAHasNotBeenSaved, kDontSaveFPRegs);
// Store resume mode into generator object.
__ sd(a2, FieldMemOperand(a1, JSGeneratorObject::kResumeModeOffset));
// Load suspended function and context.
__ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ ld(cp, FieldMemOperand(a4, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ li(a5, Operand(debug_hook));
__ lb(a5, MemOperand(a5));
__ Branch(&prepare_step_in_if_stepping, ne, a5, Operand(zero_reg));
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ li(a5, Operand(debug_suspended_generator));
__ ld(a5, MemOperand(a5));
__ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(a5));
__ bind(&stepping_prepared);
// Push receiver.
__ ld(a5, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset));
__ Push(a5);
// ----------- S t a t e -------------
// -- a1 : the JSGeneratorObject to resume
// -- a2 : the resume mode (tagged)
// -- a4 : generator function
// -- cp : generator context
// -- ra : return address
// -- sp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ lw(a3,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ Dsubu(a3, a3, Operand(1));
__ Branch(&done_loop, lt, a3, Operand(zero_reg));
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ Branch(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ ld(a3, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ ld(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset));
__ GetObjectType(a3, a3, a3);
__ Assert(eq, kMissingBytecodeArray, a3, Operand(BYTECODE_ARRAY_TYPE));
}
// Resume (Ignition/TurboFan) generator object.
{
__ ld(a0, FieldMemOperand(a4, JSFunction::kSharedFunctionInfoOffset));
__ lw(a0,
FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(a3, a1);
__ Move(a1, a4);
__ ld(a2, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ Jump(a2);
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1, a2, a4);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(a1, a2);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1, a2);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(a1, a2);
}
__ Branch(USE_DELAY_SLOT, &stepping_prepared);
__ ld(a4, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset));
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers a2; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ dsubu(a2, sp, a2);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ SmiScale(a7, v0, kPointerSizeLog2);
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ dsll(a7, argc, kPointerSizeLog2);
}
__ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody
// ----------- S t a t e -------------
// -- a0: new.target
// -- a1: function
// -- a2: receiver_pointer
// -- a3: argc
// -- s0: argv
// -----------------------------------
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ li(cp, Operand(context_address));
__ ld(cp, MemOperand(cp));
// Push the function and the receiver onto the stack.
__ Push(a1, a2);
// Check if we have enough stack space to push all arguments.
// Clobbers a2.
Generate_CheckStackOverflow(masm, a3, kArgcIsUntaggedInt);
// Remember new.target.
__ mov(a5, a0);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, i.e. points to first arg
Label loop, entry;
__ Dlsa(a6, s0, a3, kPointerSizeLog2);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// a6 points past last arg.
__ bind(&loop);
__ ld(a4, MemOperand(s0)); // Read next parameter.
__ daddiu(s0, s0, kPointerSize);
__ ld(a4, MemOperand(a4)); // Dereference handle.
__ push(a4); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, s0, Operand(a6));
// Setup new.target and argc.
__ mov(a0, a3);
__ mov(a3, a5);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
__ mov(s1, a4);
__ mov(s2, a4);
__ mov(s3, a4);
__ mov(s4, a4);
__ mov(s5, a4);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ ld(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ lw(t0, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments.
__ Daddu(sp, sp, args_count);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o a1: the JS function object being called.
// o a3: the new target
// o cp: our context
// o fp: the caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ PushStandardFrame(a1);
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
__ ld(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
Label load_debug_bytecode_array, bytecode_array_loaded;
Register debug_info = kInterpreterBytecodeArrayRegister;
DCHECK(!debug_info.is(a0));
__ ld(debug_info, FieldMemOperand(a0, SharedFunctionInfo::kDebugInfoOffset));
__ JumpIfNotSmi(debug_info, &load_debug_bytecode_array);
__ ld(kInterpreterBytecodeArrayRegister,
FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
__ bind(&bytecode_array_loaded);
// Check whether we should continue to use the interpreter.
Label switch_to_different_code_kind;
__ ld(a0, FieldMemOperand(a0, SharedFunctionInfo::kCodeOffset));
__ Branch(&switch_to_different_code_kind, ne, a0,
Operand(masm->CodeObject())); // Self-reference to this code.
// Increment invocation count for the function.
__ ld(a0, FieldMemOperand(a1, JSFunction::kFeedbackVectorOffset));
__ ld(a0, FieldMemOperand(a0, Cell::kValueOffset));
__ ld(a4, FieldMemOperand(
a0, FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize));
__ Daddu(a4, a4, Operand(Smi::FromInt(1)));
__ sd(a4, FieldMemOperand(
a0, FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ SmiTst(kInterpreterBytecodeArrayRegister, a4);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
Operand(BYTECODE_ARRAY_TYPE));
}
// Reset code age.
DCHECK_EQ(0, BytecodeArray::kNoAgeBytecodeAge);
__ sb(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset));
// Load initial bytecode offset.
__ li(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push new.target, bytecode array and Smi tagged bytecode array offset.
__ SmiTag(a4, kInterpreterBytecodeOffsetRegister);
__ Push(a3, kInterpreterBytecodeArrayRegister, a4);
// Allocate the local and temporary register file on the stack.
{
// Load frame size (word) from the BytecodeArray object.
__ lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ Dsubu(a5, sp, Operand(a4));
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
__ Branch(&ok, hs, a5, Operand(a2));
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ Branch(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(a5);
// Continue loop if not done.
__ bind(&loop_check);
__ Dsubu(a4, a4, Operand(kPointerSize));
__ Branch(&loop_header, ge, a4, Operand(zero_reg));
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ li(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Dispatch to the first bytecode handler for the function.
__ Daddu(a0, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ lbu(a0, MemOperand(a0));
__ Dlsa(at, kInterpreterDispatchTableRegister, a0, kPointerSizeLog2);
__ ld(at, MemOperand(at));
__ Call(at);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in v0.
LeaveInterpreterFrame(masm, t0);
__ Jump(ra);
// Load debug copy of the bytecode array.
__ bind(&load_debug_bytecode_array);
__ ld(kInterpreterBytecodeArrayRegister,
FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex));
__ Branch(&bytecode_array_loaded);
// If the shared code is no longer this entry trampoline, then the underlying
// function has been switched to a different kind of code and we heal the
// closure by switching the code entry field over to the new code as well.
__ bind(&switch_to_different_code_kind);
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kCodeOffset));
__ Daddu(a4, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ sd(a4, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(a1, a4, a5);
__ Jump(a4);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch1, Register scratch2,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(scratch1, Heap::kRealStackLimitRootIndex);
// Make scratch1 the space we have left. The stack might already be overflowed
// here which will cause scratch1 to become negative.
__ dsubu(scratch1, sp, scratch1);
// Check if the arguments will overflow the stack.
__ dsll(scratch2, num_args, kPointerSizeLog2);
// Signed comparison.
__ Branch(stack_overflow, le, scratch1, Operand(scratch2));
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args, Register index,
Register scratch, Register scratch2,
Label* stack_overflow) {
// Generate_StackOverflowCheck(masm, num_args, scratch, scratch2,
// stack_overflow);
// Find the address of the last argument.
__ mov(scratch2, num_args);
__ dsll(scratch2, scratch2, kPointerSizeLog2);
__ Dsubu(scratch2, index, Operand(scratch2));
// Push the arguments.
Label loop_header, loop_check;
__ Branch(&loop_check);
__ bind(&loop_header);
__ ld(scratch, MemOperand(index));
__ Daddu(index, index, Operand(-kPointerSize));
__ push(scratch);
__ bind(&loop_check);
__ Branch(&loop_header, gt, index, Operand(scratch2));
}
// static
void Builtins::Generate_InterpreterPushArgsAndCallImpl(
MacroAssembler* masm, TailCallMode tail_call_mode,
InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
__ Daddu(a3, a0, Operand(1)); // Add one for receiver.
// This function modifies a2, t0 and a4.
Generate_InterpreterPushArgs(masm, a3, a2, a4, t0, &stack_overflow);
// Call the target.
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(masm->isolate()->builtins()->CallWithSpread(),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- a0 : argument count (not including receiver)
// -- a3 : new target
// -- a1 : constructor to call
// -- a2 : allocation site feedback if available, undefined otherwise.
// -- a4 : address of the first argument
// -----------------------------------
Label stack_overflow;
// Push a slot for the receiver.
__ push(zero_reg);
// This function modifies t0, a4 and a5.
Generate_InterpreterPushArgs(masm, a0, a4, a5, t0, &stack_overflow);
__ AssertUndefinedOrAllocationSite(a2, t0);
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ AssertFunction(a1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
__ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with a0, a1, and a3 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructArray(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call checked to be Array function.
// -- a2 : allocation site feedback.
// -- a3 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
__ Daddu(a4, a0, Operand(1)); // Add one for receiver.
// This function modifies a3, a5 and a6.
Generate_InterpreterPushArgs(masm, a4, a3, a5, a6, &stack_overflow);
// ArrayConstructor stub expects constructor in a3. Set it here.
__ mov(a3, a1);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
__ bind(&stack_overflow);
{
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// Unreachable code.
__ break_(0xCC);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ li(t0, Operand(masm->isolate()->builtins()->InterpreterEntryTrampoline()));
__ Daddu(ra, t0, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ li(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ ld(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ SmiTst(kInterpreterBytecodeArrayRegister, at);
__ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, at,
Operand(zero_reg));
__ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a1,
Operand(BYTECODE_ARRAY_TYPE));
}
// Get the target bytecode offset from the frame.
__ lw(
kInterpreterBytecodeOffsetRegister,
UntagSmiMemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
// Dispatch to the target bytecode.
__ Daddu(a1, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister);
__ lbu(a1, MemOperand(a1));
__ Dlsa(a1, kInterpreterDispatchTableRegister, a1, kPointerSizeLog2);
__ ld(a1, MemOperand(a1));
__ Jump(a1);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ ld(a1, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ld(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister, a1, a2);
__ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
__ mov(a2, v0); // Result is the new bytecode offset.
__ Pop(kInterpreterAccumulatorRegister);
}
__ sd(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a3 : new target (preserved for callee)
// -- a1 : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime, gotta_call_runtime_no_stack;
Label try_shared;
Label loop_top, loop_bottom;
Register argument_count = a0;
Register closure = a1;
Register new_target = a3;
Register map = a0;
Register index = a2;
// Do we have a valid feedback vector?
__ ld(index, FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ ld(index, FieldMemOperand(index, Cell::kValueOffset));
__ JumpIfRoot(index, Heap::kUndefinedValueRootIndex,
&gotta_call_runtime_no_stack);
__ push(argument_count);
__ push(new_target);
__ push(closure);
__ ld(map, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ ld(map, FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ ld(index, FieldMemOperand(map, FixedArray::kLengthOffset));
__ Branch(&try_shared, lt, index, Operand(Smi::FromInt(2)));
// a3 : native context
// a2 : length / index
// a0 : optimized code map
// stack[0] : new target
// stack[4] : closure
Register native_context = a3;
__ ld(native_context, NativeContextMemOperand());
__ bind(&loop_top);
Register temp = a1;
Register array_pointer = a5;
// Does the native context match?
__ SmiScale(at, index, kPointerSizeLog2);
__ Daddu(array_pointer, map, Operand(at));
__ ld(temp, FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousContext));
__ ld(temp, FieldMemOperand(temp, WeakCell::kValueOffset));
__ Branch(&loop_bottom, ne, temp, Operand(native_context));
// Code available?
Register entry = a4;
__ ld(entry,
FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousCachedCode));
__ ld(entry, FieldMemOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &try_shared);
// Found code. Get it into the closure and return.
__ pop(closure);
// Store code entry in the closure.
__ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ sd(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, a5);
// Link the closure into the optimized function list.
// a4 : code entry
// a3 : native context
// a1 : closure
__ ld(a5,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ sd(a5, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset));
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, a5, a0,
kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ sd(closure,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
// Save closure before the write barrier.
__ mov(a5, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, closure, a0,
kRAHasNotBeenSaved, kDontSaveFPRegs);
__ mov(closure, a5);
__ pop(new_target);
__ pop(argument_count);
__ Jump(entry);
__ bind(&loop_bottom);
__ Dsubu(index, index,
Operand(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
__ Branch(&loop_top, gt, index, Operand(Smi::FromInt(1)));
// We found no code.
__ bind(&try_shared);
__ pop(closure);
__ pop(new_target);
__ pop(argument_count);
__ ld(entry, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// Is the shared function marked for tier up?
__ lbu(a5, FieldMemOperand(entry,
SharedFunctionInfo::kMarkedForTierUpByteOffset));
__ And(a5, a5,
Operand(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte));
__ Branch(&gotta_call_runtime_no_stack, ne, a5, Operand(zero_reg));
// If SFI points to anything other than CompileLazy, install that.
__ ld(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
__ Move(t1, masm->CodeObject());
__ Branch(&gotta_call_runtime_no_stack, eq, entry, Operand(t1));
// Install the SFI's code entry.
__ Daddu(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ sd(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, a5);
__ Jump(entry);
__ bind(&gotta_call_runtime);
__ pop(closure);
__ pop(new_target);
__ pop(argument_count);
__ bind(&gotta_call_runtime_no_stack);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm,
Runtime::kCompileOptimized_NotConcurrent);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argument count (preserved for callee)
// -- a1 : new target (preserved for callee)
// -- a3 : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push function as parameter to the runtime call.
__ Move(t2, a0);
__ SmiTag(a0);
__ Push(a0, a1, a3, a1);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ Branch(&over, ne, t2, Operand(j));
}
for (int i = j - 1; i >= 0; --i) {
__ ld(t2, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
i * kPointerSize));
__ push(t2);
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(v0, &failed);
__ Drop(2);
__ pop(t2);
__ SmiUntag(t2);
scope.GenerateLeaveFrame();
__ Daddu(t2, t2, Operand(1));
__ Dlsa(sp, sp, t2, kPointerSizeLog2);
__ Ret();
__ bind(&failed);
// Restore target function and new target.
__ Pop(a0, a1, a3);
__ SmiUntag(a0);
}
// On failure, tail call back to regular js.
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
// a3 - new target
RegList saved_regs =
(a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ MultiPop(saved_regs);
__ Jump(a0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
// a3 - new target
RegList saved_regs =
(a0.bit() | a1.bit() | a3.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ MultiPop(saved_regs);
// Perform prologue operations usually performed by the young code stub.
__ PushStandardFrame(a1);
// Jump to point after the code-age stub.
__ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
__ Jump(a0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ MultiPush(kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
__ MultiPop(kJSCallerSaved | kCalleeSaved);
}
__ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state
__ Jump(ra); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(a0);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Get the full codegen state from the stack and untag it -> a6.
__ lw(a6, UntagSmiMemOperand(sp, 0 * kPointerSize));
// Switch on the state.
Label with_tos_register, unknown_state;
__ Branch(
&with_tos_register, ne, a6,
Operand(static_cast<int64_t>(Deoptimizer::BailoutState::NO_REGISTERS)));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ bind(&with_tos_register);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code());
__ ld(v0, MemOperand(sp, 1 * kPointerSize));
__ Branch(
&unknown_state, ne, a6,
Operand(static_cast<int64_t>(Deoptimizer::BailoutState::TOS_REGISTER)));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// Clobbers {t2, t3, a4, a5}.
static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Label* receiver_check_failed) {
Register signature = t2;
Register map = t3;
Register constructor = a4;
Register scratch = a5;
// If there is no signature, return the holder.
__ ld(signature, FieldMemOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
Label receiver_check_passed;
__ JumpIfRoot(signature, Heap::kUndefinedValueRootIndex,
&receiver_check_passed);
// Walk the prototype chain.
__ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// Get the constructor, if any.
__ GetMapConstructor(constructor, map, scratch, scratch);
Label next_prototype;
__ Branch(&next_prototype, ne, scratch, Operand(JS_FUNCTION_TYPE));
Register type = constructor;
__ ld(type,
FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ ld(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ Branch(&receiver_check_passed, eq, signature, Operand(type),
USE_DELAY_SLOT);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype);
__ GetObjectType(type, scratch, scratch);
__ Branch(&next_prototype, ne, scratch, Operand(FUNCTION_TEMPLATE_INFO_TYPE));
// Otherwise load the parent function template and iterate.
__ ld(type,
FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
__ Branch(&function_template_loop);
// Load the next prototype.
__ bind(&next_prototype);
__ lwu(scratch, FieldMemOperand(map, Map::kBitField3Offset));
__ DecodeField<Map::HasHiddenPrototype>(scratch);
__ Branch(receiver_check_failed, eq, scratch, Operand(zero_reg));
__ ld(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
__ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Iterate.
__ Branch(&prototype_loop_start);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments excluding receiver
// -- a1 : callee
// -- ra : return address
// -- sp[0] : last argument
// -- ...
// -- sp[8 * (argc - 1)] : first argument
// -- sp[8 * argc] : receiver
// -----------------------------------
// Load the FunctionTemplateInfo.
__ ld(t1, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(t1, FieldMemOperand(t1, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check
Label receiver_check_failed;
__ Dlsa(t8, sp, a0, kPointerSizeLog2);
__ ld(t0, MemOperand(t8));
CompatibleReceiverCheck(masm, t0, t1, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ ld(t2, FieldMemOperand(t1, FunctionTemplateInfo::kCallCodeOffset));
__ ld(t2, FieldMemOperand(t2, CallHandlerInfo::kFastHandlerOffset));
__ Daddu(t2, t2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(t2);
// Compatible receiver check failed: throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
// Drop the arguments (including the receiver);
__ Daddu(t8, t8, Operand(kPointerSize));
__ daddu(sp, t8, zero_reg);
__ TailCallRuntime(Runtime::kThrowIllegalInvocation);
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ld(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(a0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
__ Ret(eq, v0, Operand(Smi::kZero));
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ lw(a1,
UntagSmiMemOperand(a1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) -
kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ daddu(v0, v0, a1);
__ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : argArray
// -- sp[4] : thisArg
// -- sp[8] : receiver
// -----------------------------------
Register argc = a0;
Register arg_array = a0;
Register receiver = a1;
Register this_arg = a2;
Register undefined_value = a3;
Register scratch = a4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load receiver into a1, argArray into a0 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
// Claim (2 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Dsubu(sp, sp, Operand(2 * kPointerSize));
__ Dlsa(sp, sp, argc, kPointerSizeLog2);
__ mov(scratch, argc);
__ Pop(this_arg, arg_array); // Overwrite argc
__ Movz(arg_array, undefined_value, scratch); // if argc == 0
__ Movz(this_arg, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arg_array, undefined_value, scratch); // if argc == 1
__ ld(receiver, MemOperand(sp));
__ sd(this_arg, MemOperand(sp));
}
// ----------- S t a t e -------------
// -- a0 : argArray
// -- a1 : receiver
// -- a3 : undefined root value
// -- sp[0] : thisArg
// -----------------------------------
// 2. Make sure the receiver is actually callable.
Label receiver_not_callable;
__ JumpIfSmi(receiver, &receiver_not_callable);
__ ld(a4, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
__ And(a4, a4, Operand(1 << Map::kIsCallable));
__ Branch(&receiver_not_callable, eq, a4, Operand(zero_reg));
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(arg_array, Heap::kNullValueRootIndex, &no_arguments);
__ Branch(&no_arguments, eq, arg_array, Operand(undefined_value));
// 4a. Apply the receiver to the given argArray (passing undefined for
// new.target).
DCHECK(undefined_value.is(a3));
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ mov(a0, zero_reg);
DCHECK(receiver.is(a1));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// 4c. The receiver is not callable, throw an appropriate TypeError.
__ bind(&receiver_not_callable);
{
__ sd(receiver, MemOperand(sp));
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// a0: actual number of arguments
{
Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ Daddu(a0, a0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack.
// a0: actual number of arguments
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ ld(a1, MemOperand(at));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// a0: actual number of arguments
// a1: function
{
Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ Dlsa(a2, sp, a0, kPointerSizeLog2);
__ bind(&loop);
__ ld(at, MemOperand(a2, -kPointerSize));
__ sd(at, MemOperand(a2));
__ Dsubu(a2, a2, Operand(kPointerSize));
__ Branch(&loop, ne, a2, Operand(sp));
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Dsubu(a0, a0, Operand(1));
__ Pop();
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : argumentsList (if argc ==3)
// -- sp[4] : thisArgument (if argc >=2)
// -- sp[8] : target (if argc >=1)
// -- sp[12] : receiver
// -----------------------------------
Register argc = a0;
Register arguments_list = a0;
Register target = a1;
Register this_argument = a2;
Register undefined_value = a3;
Register scratch = a4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into a1 (if present), argumentsList into a0 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
// Claim (3 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Dsubu(sp, sp, Operand(3 * kPointerSize));
__ Dlsa(sp, sp, argc, kPointerSizeLog2);
__ mov(scratch, argc);
__ Pop(target, this_argument, arguments_list);
__ Movz(arguments_list, undefined_value, scratch); // if argc == 0
__ Movz(this_argument, undefined_value, scratch); // if argc == 0
__ Movz(target, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 1
__ Movz(this_argument, undefined_value, scratch); // if argc == 1
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 2
__ sd(this_argument, MemOperand(sp, 0)); // Overwrite receiver
}
// ----------- S t a t e -------------
// -- a0 : argumentsList
// -- a1 : target
// -- a3 : undefined root value
// -- sp[0] : thisArgument
// -----------------------------------
// 2. Make sure the target is actually callable.
Label target_not_callable;
__ JumpIfSmi(target, &target_not_callable);
__ ld(a4, FieldMemOperand(target, HeapObject::kMapOffset));
__ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
__ And(a4, a4, Operand(1 << Map::kIsCallable));
__ Branch(&target_not_callable, eq, a4, Operand(zero_reg));
// 3a. Apply the target to the given argumentsList (passing undefined for
// new.target).
DCHECK(undefined_value.is(a3));
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 3b. The target is not callable, throw an appropriate TypeError.
__ bind(&target_not_callable);
{
__ sd(target, MemOperand(sp));
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- sp[0] : new.target (optional) (dummy value if argc <= 2)
// -- sp[4] : argumentsList (dummy value if argc <= 1)
// -- sp[8] : target (dummy value if argc == 0)
// -- sp[12] : receiver
// -----------------------------------
Register argc = a0;
Register arguments_list = a0;
Register target = a1;
Register new_target = a3;
Register undefined_value = a4;
Register scratch = a5;
// 1. Load target into a1 (if present), argumentsList into a0 (if present),
// new.target into a3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
// Claim (3 - argc) dummy arguments form the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Dsubu(sp, sp, Operand(3 * kPointerSize));
__ Dlsa(sp, sp, argc, kPointerSizeLog2);
__ mov(scratch, argc);
__ Pop(target, arguments_list, new_target);
__ Movz(arguments_list, undefined_value, scratch); // if argc == 0
__ Movz(new_target, undefined_value, scratch); // if argc == 0
__ Movz(target, undefined_value, scratch); // if argc == 0
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(arguments_list, undefined_value, scratch); // if argc == 1
__ Movz(new_target, target, scratch); // if argc == 1
__ Dsubu(scratch, scratch, Operand(1));
__ Movz(new_target, target, scratch); // if argc == 2
__ sd(undefined_value, MemOperand(sp, 0)); // Overwrite receiver
}
// ----------- S t a t e -------------
// -- a0 : argumentsList
// -- a1 : target
// -- a3 : new.target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. Make sure the target is actually a constructor.
Label target_not_constructor;
__ JumpIfSmi(target, &target_not_constructor);
__ ld(a4, FieldMemOperand(target, HeapObject::kMapOffset));
__ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
__ And(a4, a4, Operand(1 << Map::kIsConstructor));
__ Branch(&target_not_constructor, eq, a4, Operand(zero_reg));
// 3. Make sure the target is actually a constructor.
Label new_target_not_constructor;
__ JumpIfSmi(new_target, &new_target_not_constructor);
__ ld(a4, FieldMemOperand(new_target, HeapObject::kMapOffset));
__ lbu(a4, FieldMemOperand(a4, Map::kBitFieldOffset));
__ And(a4, a4, Operand(1 << Map::kIsConstructor));
__ Branch(&new_target_not_constructor, eq, a4, Operand(zero_reg));
// 4a. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The target is not a constructor, throw an appropriate TypeError.
__ bind(&target_not_constructor);
{
__ sd(target, MemOperand(sp));
__ TailCallRuntime(Runtime::kThrowNotConstructor);
}
// 4c. The new.target is not a constructor, throw an appropriate TypeError.
__ bind(&new_target_not_constructor);
{
__ sd(new_target, MemOperand(sp));
__ TailCallRuntime(Runtime::kThrowNotConstructor);
}
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
// __ sll(a0, a0, kSmiTagSize);
__ dsll32(a0, a0, 0);
__ li(a4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
__ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
// Adjust for the receiver.
__ Daddu(sp, sp, Operand(kPointerSize));
}
// static
void Builtins::Generate_Apply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argumentsList
// -- a1 : target
// -- a3 : new.target (checked to be constructor or undefined)
// -- sp[0] : thisArgument
// -----------------------------------
Register arguments_list = a0;
Register target = a1;
Register new_target = a3;
Register args = a0;
Register len = a2;
// Create the list of arguments from the array-like argumentsList.
{
Label create_arguments, create_array, create_holey_array, create_runtime,
done_create;
__ JumpIfSmi(arguments_list, &create_runtime);
// Load the map of argumentsList into a2.
Register arguments_list_map = a2;
__ ld(arguments_list_map,
FieldMemOperand(arguments_list, HeapObject::kMapOffset));
// Load native context into a4.
Register native_context = a4;
__ ld(native_context, NativeContextMemOperand());
// Check if argumentsList is an (unmodified) arguments object.
__ ld(at, ContextMemOperand(native_context,
Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ Branch(&create_arguments, eq, arguments_list_map, Operand(at));
__ ld(at, ContextMemOperand(native_context,
Context::STRICT_ARGUMENTS_MAP_INDEX));
__ Branch(&create_arguments, eq, arguments_list_map, Operand(at));
// Check if argumentsList is a fast JSArray.
__ lbu(v0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
__ Branch(&create_array, eq, v0, Operand(JS_ARRAY_TYPE));
// Ask the runtime to create the list (actually a FixedArray).
__ bind(&create_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(target, new_target, arguments_list);
__ CallRuntime(Runtime::kCreateListFromArrayLike);
__ mov(arguments_list, v0);
__ Pop(target, new_target);
__ lw(len, UntagSmiFieldMemOperand(v0, FixedArray::kLengthOffset));
}
__ Branch(&done_create);
// Try to create the list from an arguments object.
__ bind(&create_arguments);
__ lw(len, UntagSmiFieldMemOperand(arguments_list,
JSArgumentsObject::kLengthOffset));
__ ld(a4, FieldMemOperand(arguments_list, JSObject::kElementsOffset));
__ lw(at, UntagSmiFieldMemOperand(a4, FixedArray::kLengthOffset));
__ Branch(&create_runtime, ne, len, Operand(at));
__ mov(args, a4);
__ Branch(&done_create);
// For holey JSArrays we need to check that the array prototype chain
// protector is intact and our prototype is the Array.prototype actually.
__ bind(&create_holey_array);
__ ld(a2, FieldMemOperand(a2, Map::kPrototypeOffset));
__ ld(at, ContextMemOperand(native_context,
Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ Branch(&create_runtime, ne, a2, Operand(at));
__ LoadRoot(at, Heap::kArrayProtectorRootIndex);
__ lw(a2, FieldMemOperand(at, PropertyCell::kValueOffset));
__ Branch(&create_runtime, ne, a2,
Operand(Smi::FromInt(Isolate::kProtectorValid)));
__ lw(a2, UntagSmiFieldMemOperand(a0, JSArray::kLengthOffset));
__ ld(a0, FieldMemOperand(a0, JSArray::kElementsOffset));
__ Branch(&done_create);
// Try to create the list from a JSArray object.
__ bind(&create_array);
__ lbu(t1, FieldMemOperand(a2, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(t1);
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
__ Branch(&create_holey_array, eq, t1, Operand(FAST_HOLEY_SMI_ELEMENTS));
__ Branch(&create_holey_array, eq, t1, Operand(FAST_HOLEY_ELEMENTS));
__ Branch(&create_runtime, hi, t1, Operand(FAST_ELEMENTS));
__ lw(a2, UntagSmiFieldMemOperand(arguments_list, JSArray::kLengthOffset));
__ ld(a0, FieldMemOperand(arguments_list, JSArray::kElementsOffset));
__ bind(&done_create);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(a4, Heap::kRealStackLimitRootIndex);
// Make ip the space we have left. The stack might already be overflowed
// here which will cause ip to become negative.
__ Dsubu(a4, sp, a4);
// Check if the arguments will overflow the stack.
__ dsll(at, len, kPointerSizeLog2);
__ Branch(&done, gt, a4, Operand(at)); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// ----------- S t a t e -------------
// -- a1 : target
// -- a0 : args (a FixedArray built from argumentsList)
// -- a2 : len (number of elements to push from args)
// -- a3 : new.target (checked to be constructor or undefined)
// -- sp[0] : thisArgument
// -----------------------------------
// Push arguments onto the stack (thisArgument is already on the stack).
{
Label done, push, loop;
Register src = a4;
Register scratch = len;
__ daddiu(src, args, FixedArray::kHeaderSize - kHeapObjectTag);
__ Branch(&done, eq, len, Operand(zero_reg), i::USE_DELAY_SLOT);
__ mov(a0, len); // The 'len' argument for Call() or Construct().
__ dsll(scratch, len, kPointerSizeLog2);
__ Dsubu(scratch, sp, Operand(scratch));
__ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
__ bind(&loop);
__ ld(a5, MemOperand(src));
__ Branch(&push, ne, a5, Operand(t1));
__ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ daddiu(src, src, kPointerSize);
__ Push(a5);
__ Branch(&loop, ne, scratch, Operand(sp));
__ bind(&done);
}
// ----------- S t a t e -------------
// -- a0 : argument count (len)
// -- a1 : target
// -- a3 : new.target (checked to be constructor or undefinded)
// -- sp[0] : args[len-1]
// -- sp[8] : args[len-2]
// ... : ...
// -- sp[8*(len-2)] : args[1]
// -- sp[8*(len-1)] : args[0]
// ----------------------------------
// Dispatch to Call or Construct depending on whether new.target is undefined.
{
Label construct;
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(&construct, ne, a3, Operand(at));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
__ bind(&construct);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- a1 : the target to call (can be any Object)
// -- a2 : start index (to support rest parameters)
// -- ra : return address.
// -- sp[0] : thisArgument
// -----------------------------------
// Check if we have an arguments adaptor frame below the function frame.
Label arguments_adaptor, arguments_done;
__ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ld(a0, MemOperand(a3, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Branch(&arguments_adaptor, eq, a0,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
{
__ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ld(a0, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset));
__ lw(a0,
FieldMemOperand(a0, SharedFunctionInfo::kFormalParameterCountOffset));
__ mov(a3, fp);
}
__ Branch(&arguments_done);
__ bind(&arguments_adaptor);
{
// Just get the length from the ArgumentsAdaptorFrame.
__ lw(a0, UntagSmiMemOperand(
a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ bind(&arguments_done);
Label stack_empty, stack_done, stack_overflow;
__ Subu(a0, a0, a2);
__ Branch(&stack_empty, le, a0, Operand(zero_reg));
{
// Check for stack overflow.
Generate_StackOverflowCheck(masm, a0, a4, a5, &stack_overflow);
// Forward the arguments from the caller frame.
{
Label loop;
__ mov(a2, a0);
__ bind(&loop);
{
__ Dlsa(at, a3, a2, kPointerSizeLog2);
__ ld(at, MemOperand(at, 1 * kPointerSize));
__ push(at);
__ Subu(a2, a2, Operand(1));
__ Branch(&loop, ne, a2, Operand(zero_reg));
}
}
}
__ Branch(&stack_done);
__ bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&stack_empty);
{
// We just pass the receiver, which is already on the stack.
__ mov(a0, zero_reg);
}
__ bind(&stack_done);
__ Jump(code, RelocInfo::CODE_TARGET);
}
namespace {
// Drops top JavaScript frame and an arguments adaptor frame below it (if
// present) preserving all the arguments prepared for current call.
// Does nothing if debugger is currently active.
// ES6 14.6.3. PrepareForTailCall
//
// Stack structure for the function g() tail calling f():
//
// ------- Caller frame: -------
// | ...
// | g()'s arg M
// | ...
// | g()'s arg 1
// | g()'s receiver arg
// | g()'s caller pc
// ------- g()'s frame: -------
// | g()'s caller fp <- fp
// | g()'s context
// | function pointer: g
// | -------------------------
// | ...
// | ...
// | f()'s arg N
// | ...
// | f()'s arg 1
// | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!)
// ----------------------
//
void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
Register scratch1, Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Comment cmnt(masm, "[ PrepareForTailCall");
// Prepare for tail call only if ES2015 tail call elimination is enabled.
Label done;
ExternalReference is_tail_call_elimination_enabled =
ExternalReference::is_tail_call_elimination_enabled_address(
masm->isolate());
__ li(at, Operand(is_tail_call_elimination_enabled));
__ lb(scratch1, MemOperand(at));
__ Branch(&done, eq, scratch1, Operand(zero_reg));
// Drop possible interpreter handler/stub frame.
{
Label no_interpreter_frame;
__ ld(scratch3,
MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Branch(&no_interpreter_frame, ne, scratch3,
Operand(StackFrame::TypeToMarker(StackFrame::STUB)));
__ ld(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ bind(&no_interpreter_frame);
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ ld(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ ld(scratch3,
MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Branch(&no_arguments_adaptor, ne, scratch3,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
// Drop current frame and load arguments count from arguments adaptor frame.
__ mov(fp, scratch2);
__ lw(caller_args_count_reg,
UntagSmiMemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Branch(&formal_parameter_count_loaded);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ ld(scratch1,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
__ ld(scratch1,
FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
__ lw(caller_args_count_reg,
FieldMemOperand(scratch1,
SharedFunctionInfo::kFormalParameterCountOffset));
__ bind(&formal_parameter_count_loaded);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3);
__ bind(&done);
}
} // namespace
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(a1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kFunctionKindByteOffset));
__ And(at, a3, Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte));
__ Branch(&class_constructor, ne, at, Operand(zero_reg));
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
__ And(at, a3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ Branch(&done_convert, ne, at, Operand(zero_reg));
{
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
} else {
Label convert_to_object, convert_receiver;
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ ld(a3, MemOperand(at));
__ JumpIfSmi(a3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ GetObjectType(a3, a4, a4);
__ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(a3);
}
__ Branch(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(a0);
__ Push(a0, a1);
__ mov(a0, a3);
__ Push(cp);
__ Call(masm->isolate()->builtins()->ToObject(),
RelocInfo::CODE_TARGET);
__ Pop(cp);
__ mov(a3, v0);
__ Pop(a0, a1);
__ SmiUntag(a0);
}
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ sd(a3, MemOperand(at));
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSFunction)
// -- a2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, a0, t0, t1, t2);
}
__ lw(a2,
FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(a0);
ParameterCount expected(a2);
__ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(a1);
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, a0, t0, t1, t2);
}
// Patch the receiver to [[BoundThis]].
{
__ ld(at, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset));
__ Dlsa(a4, sp, a0, kPointerSizeLog2);
__ sd(at, MemOperand(a4));
}
// Load [[BoundArguments]] into a2 and length of that into a4.
__ ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ dsll(a5, a4, kPointerSizeLog2);
__ Dsubu(sp, sp, Operand(a5));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadRoot(at, Heap::kRealStackLimitRootIndex);
__ Branch(&done, gt, sp, Operand(at)); // Signed comparison.
// Restore the stack pointer.
__ Daddu(sp, sp, Operand(a5));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ mov(a5, zero_reg);
__ bind(&loop);
__ Branch(&done_loop, gt, a5, Operand(a0));
__ Dlsa(a6, sp, a4, kPointerSizeLog2);
__ ld(at, MemOperand(a6));
__ Dlsa(a6, sp, a5, kPointerSizeLog2);
__ sd(at, MemOperand(a6));
__ Daddu(a4, a4, Operand(1));
__ Daddu(a5, a5, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop, done_loop;
__ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
__ Daddu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
__ Dsubu(a4, a4, Operand(1));
__ Branch(&done_loop, lt, a4, Operand(zero_reg));
__ Dlsa(a5, a2, a4, kPointerSizeLog2);
__ ld(at, MemOperand(a5));
__ Dlsa(a5, sp, a0, kPointerSizeLog2);
__ sd(at, MemOperand(a5));
__ Daddu(a0, a0, Operand(1));
__ Branch(&loop);
__ bind(&done_loop);
}
// Call the [[BoundTargetFunction]] via the Call builtin.
__ ld(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset));
__ li(at, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny,
masm->isolate())));
__ ld(at, MemOperand(at));
__ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(a1, &non_callable);
__ bind(&non_smi);
__ GetObjectType(a1, t1, t2);
__ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE));
__ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE));
// Check if target has a [[Call]] internal method.
__ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset));
__ And(t1, t1, Operand(1 << Map::kIsCallable));
__ Branch(&non_callable, eq, t1, Operand(zero_reg));
__ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE));
// 0. Prepare for tail call if necessary.
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, a0, t0, t1, t2);
}
// 1. Runtime fallback for Proxy [[Call]].
__ Push(a1);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ Daddu(a0, a0, 2);
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ sd(a1, MemOperand(at));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
static void CheckSpreadAndPushToStack(MacroAssembler* masm) {
Register argc = a0;
Register constructor = a1;
Register new_target = a3;
Register scratch = t0;
Register scratch2 = t1;
Register spread = a2;
Register spread_map = a4;
Register spread_len = a4;
Register native_context = a5;
Label runtime_call, push_args;
__ ld(spread, MemOperand(sp, 0));
__ JumpIfSmi(spread, &runtime_call);
__ ld(spread_map, FieldMemOperand(spread, HeapObject::kMapOffset));
__ ld(native_context, NativeContextMemOperand());
// Check that the spread is an array.
__ lbu(scratch, FieldMemOperand(spread_map, Map::kInstanceTypeOffset));
__ Branch(&runtime_call, ne, scratch, Operand(JS_ARRAY_TYPE));
// Check that we have the original ArrayPrototype.
__ ld(scratch, FieldMemOperand(spread_map, Map::kPrototypeOffset));
__ ld(scratch2, ContextMemOperand(native_context,
Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ Branch(&runtime_call, ne, scratch, Operand(scratch2));
// Check that the ArrayPrototype hasn't been modified in a way that would
// affect iteration.
__ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex);
__ ld(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
__ Branch(&runtime_call, ne, scratch,
Operand(Smi::FromInt(Isolate::kProtectorValid)));
// Check that the map of the initial array iterator hasn't changed.
__ ld(scratch,
ContextMemOperand(native_context,
Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX));
__ ld(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
__ ld(scratch2,
ContextMemOperand(native_context,
Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX));
__ Branch(&runtime_call, ne, scratch, Operand(scratch2));
// For FastPacked kinds, iteration will have the same effect as simply
// accessing each property in order.
Label no_protector_check;
__ lbu(scratch, FieldMemOperand(spread_map, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(scratch);
__ Branch(&runtime_call, hi, scratch, Operand(FAST_HOLEY_ELEMENTS));
// For non-FastHoley kinds, we can skip the protector check.
__ Branch(&no_protector_check, eq, scratch, Operand(FAST_SMI_ELEMENTS));
__ Branch(&no_protector_check, eq, scratch, Operand(FAST_ELEMENTS));
// Check the ArrayProtector cell.
__ LoadRoot(scratch, Heap::kArrayProtectorRootIndex);
__ ld(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
__ Branch(&runtime_call, ne, scratch,
Operand(Smi::FromInt(Isolate::kProtectorValid)));
__ bind(&no_protector_check);
// Load the FixedArray backing store, but use the length from the array.
__ lw(spread_len, UntagSmiFieldMemOperand(spread, JSArray::kLengthOffset));
__ ld(spread, FieldMemOperand(spread, JSArray::kElementsOffset));
__ Branch(&push_args);
__ bind(&runtime_call);
{
// Call the builtin for the result of the spread.
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(argc);
__ Push(constructor, new_target, argc, spread);
__ CallRuntime(Runtime::kSpreadIterableFixed);
__ mov(spread, v0);
__ Pop(constructor, new_target, argc);
__ SmiUntag(argc);
}
{
// Calculate the new nargs including the result of the spread.
__ lw(spread_len,
UntagSmiFieldMemOperand(spread, FixedArray::kLengthOffset));
__ bind(&push_args);
// argc += spread_len - 1. Subtract 1 for the spread itself.
__ Daddu(argc, argc, spread_len);
__ Dsubu(argc, argc, Operand(1));
// Pop the spread argument off the stack.
__ Pop(scratch);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be
// overflowed here which will cause ip to become negative.
__ Dsubu(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
__ dsll(at, spread_len, kPointerSizeLog2);
__ Branch(&done, gt, scratch, Operand(at)); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Put the evaluated spread onto the stack as additional arguments.
{
__ mov(scratch, zero_reg);
Label done, push, loop;
__ bind(&loop);
__ Branch(&done, eq, scratch, Operand(spread_len));
__ Dlsa(scratch2, spread, scratch, kPointerSizeLog2);
__ ld(scratch2, FieldMemOperand(scratch2, FixedArray::kHeaderSize));
__ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push);
__ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(scratch2);
__ Daddu(scratch, scratch, Operand(1));
__ Branch(&loop);
__ bind(&done);
}
}
// static
void Builtins::Generate_CallWithSpread(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the target to call (can be any Object).
// -----------------------------------
// CheckSpreadAndPushToStack will push a3 to save it.
__ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
CheckSpreadAndPushToStack(masm);
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
TailCallMode::kDisallow),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the constructor to call (checked to be a JSFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(a1);
// Calling convention for function specific ConstructStubs require
// a2 to contain either an AllocationSite or undefined.
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset));
__ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertBoundFunction(a1);
// Load [[BoundArguments]] into a2 and length of that into a4.
__ ld(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset));
__ lw(a4, UntagSmiFieldMemOperand(a2, FixedArray::kLengthOffset));
// ----------- S t a t e -------------
// -- a0 : the number of arguments (not including the receiver)
// -- a1 : the function to call (checked to be a JSBoundFunction)
// -- a2 : the [[BoundArguments]] (implemented as FixedArray)
// -- a3 : the new target (checked to be a constructor)
// -- a4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ dsll(a5, a4, kPointerSizeLog2);
__ Dsubu(sp, sp, Operand(a5));
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
__ LoadRoot(at, Heap::kRealStackLimitRootIndex);
__ Branch(&done, gt, sp, Operand(at)); // Signed comparison.
// Restore the stack pointer.
__ Daddu(sp, sp, Operand(a5));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL