blob: 70d461b62785391181c5b25a7d847ea75d70ac2e [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "src/wasm/wasm-macro-gen.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "test/cctest/wasm/test-signatures.h"
#include "test/cctest/wasm/wasm-run-utils.h"
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
// for even shorter tests.
#define B2(a, b) kExprBlock, 2, a, b
#define B1(a) kExprBlock, 1, a
#define RET(x) kExprReturn, x
#define RET_I8(x) kExprReturn, kExprI8Const, x
TEST(Run_WasmInt8Const) {
WasmRunner<int32_t> r;
const byte kExpectedValue = 121;
// return(kExpectedValue)
BUILD(r, WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_fallthru1) {
WasmRunner<int32_t> r;
const byte kExpectedValue = 122;
// kExpectedValue
BUILD(r, WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_fallthru2) {
WasmRunner<int32_t> r;
const byte kExpectedValue = 123;
// -99 kExpectedValue
BUILD(r, WASM_I8(-99), WASM_I8(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt8Const_all) {
for (int value = -128; value <= 127; value++) {
WasmRunner<int32_t> r;
// return(value)
BUILD(r, WASM_I8(value));
int32_t result = r.Call();
CHECK_EQ(value, result);
}
}
TEST(Run_WasmInt32Const) {
WasmRunner<int32_t> r;
const int32_t kExpectedValue = 0x11223344;
// return(kExpectedValue)
BUILD(r, WASM_I32V_5(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
TEST(Run_WasmInt32Const_many) {
FOR_INT32_INPUTS(i) {
WasmRunner<int32_t> r;
const int32_t kExpectedValue = *i;
// return(kExpectedValue)
BUILD(r, WASM_I32V(kExpectedValue));
CHECK_EQ(kExpectedValue, r.Call());
}
}
TEST(Run_WasmMemorySize) {
TestingModule module;
WasmRunner<int32_t> r(&module);
module.AddMemory(1024);
BUILD(r, kExprMemorySize);
CHECK_EQ(1024, r.Call());
}
TEST(Run_WasmInt32Param0) {
WasmRunner<int32_t> r(MachineType::Int32());
// return(local[0])
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_WasmInt32Param0_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// local[0]
BUILD(r, WASM_GET_LOCAL(0));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_WasmInt32Param1) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// local[1]
BUILD(r, WASM_GET_LOCAL(1));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(-111, *i)); }
}
TEST(Run_WasmInt32Add) {
WasmRunner<int32_t> r;
// 11 + 44
BUILD(r, WASM_I32_ADD(WASM_I8(11), WASM_I8(44)));
CHECK_EQ(55, r.Call());
}
TEST(Run_WasmInt32Add_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); }
}
TEST(Run_WasmInt32Add_P_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 + 13
BUILD(r, WASM_I32_ADD(WASM_I8(13), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i + 13, r.Call(*i)); }
}
TEST(Run_WasmInt32Add_P2) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// p0 + p1
BUILD(r, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) +
static_cast<uint32_t>(*j));
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmFloat32Add) {
WasmRunner<int32_t> r;
// int(11.5f + 44.5f)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_F32_ADD(WASM_F32(11.5f), WASM_F32(44.5f))));
CHECK_EQ(56, r.Call());
}
TEST(Run_WasmFloat64Add) {
WasmRunner<int32_t> r;
// return int(13.5d + 43.5d)
BUILD(r, WASM_I32_SCONVERT_F64(WASM_F64_ADD(WASM_F64(13.5), WASM_F64(43.5))));
CHECK_EQ(57, r.Call());
}
void TestInt32Binop(WasmOpcode opcode, int32_t expected, int32_t a, int32_t b) {
{
WasmRunner<int32_t> r;
// K op K
BUILD(r, WASM_BINOP(opcode, WASM_I32V(a), WASM_I32V(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
// a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
TEST(Run_WasmInt32Binops) {
TestInt32Binop(kExprI32Add, 88888888, 33333333, 55555555);
TestInt32Binop(kExprI32Sub, -1111111, 7777777, 8888888);
TestInt32Binop(kExprI32Mul, 65130756, 88734, 734);
TestInt32Binop(kExprI32DivS, -66, -4777344, 72384);
TestInt32Binop(kExprI32DivU, 805306368, 0xF0000000, 5);
TestInt32Binop(kExprI32RemS, -3, -3003, 1000);
TestInt32Binop(kExprI32RemU, 4, 4004, 1000);
TestInt32Binop(kExprI32And, 0xEE, 0xFFEE, 0xFF0000FF);
TestInt32Binop(kExprI32Ior, 0xF0FF00FF, 0xF0F000EE, 0x000F0011);
TestInt32Binop(kExprI32Xor, 0xABCDEF01, 0xABCDEFFF, 0xFE);
TestInt32Binop(kExprI32Shl, 0xA0000000, 0xA, 28);
TestInt32Binop(kExprI32ShrU, 0x07000010, 0x70000100, 4);
TestInt32Binop(kExprI32ShrS, 0xFF000000, 0x80000000, 7);
TestInt32Binop(kExprI32Ror, 0x01000000, 0x80000000, 7);
TestInt32Binop(kExprI32Ror, 0x01000000, 0x80000000, 39);
TestInt32Binop(kExprI32Rol, 0x00000040, 0x80000000, 7);
TestInt32Binop(kExprI32Rol, 0x00000040, 0x80000000, 39);
TestInt32Binop(kExprI32Eq, 1, -99, -99);
TestInt32Binop(kExprI32Ne, 0, -97, -97);
TestInt32Binop(kExprI32LtS, 1, -4, 4);
TestInt32Binop(kExprI32LeS, 0, -2, -3);
TestInt32Binop(kExprI32LtU, 1, 0, -6);
TestInt32Binop(kExprI32LeU, 1, 98978, 0xF0000000);
TestInt32Binop(kExprI32GtS, 1, 4, -4);
TestInt32Binop(kExprI32GeS, 0, -3, -2);
TestInt32Binop(kExprI32GtU, 1, -6, 0);
TestInt32Binop(kExprI32GeU, 1, 0xF0000000, 98978);
}
void TestInt32Unop(WasmOpcode opcode, int32_t expected, int32_t a) {
{
WasmRunner<int32_t> r;
// return op K
BUILD(r, WASM_UNOP(opcode, WASM_I32V(a)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Int32());
// return op a
BUILD(r, WASM_UNOP(opcode, WASM_GET_LOCAL(0)));
CHECK_EQ(expected, r.Call(a));
}
}
TEST(Run_WasmInt32Clz) {
TestInt32Unop(kExprI32Clz, 0, 0x80001000);
TestInt32Unop(kExprI32Clz, 1, 0x40000500);
TestInt32Unop(kExprI32Clz, 2, 0x20000300);
TestInt32Unop(kExprI32Clz, 3, 0x10000003);
TestInt32Unop(kExprI32Clz, 4, 0x08050000);
TestInt32Unop(kExprI32Clz, 5, 0x04006000);
TestInt32Unop(kExprI32Clz, 6, 0x02000000);
TestInt32Unop(kExprI32Clz, 7, 0x010000a0);
TestInt32Unop(kExprI32Clz, 8, 0x00800c00);
TestInt32Unop(kExprI32Clz, 9, 0x00400000);
TestInt32Unop(kExprI32Clz, 10, 0x0020000d);
TestInt32Unop(kExprI32Clz, 11, 0x00100f00);
TestInt32Unop(kExprI32Clz, 12, 0x00080000);
TestInt32Unop(kExprI32Clz, 13, 0x00041000);
TestInt32Unop(kExprI32Clz, 14, 0x00020020);
TestInt32Unop(kExprI32Clz, 15, 0x00010300);
TestInt32Unop(kExprI32Clz, 16, 0x00008040);
TestInt32Unop(kExprI32Clz, 17, 0x00004005);
TestInt32Unop(kExprI32Clz, 18, 0x00002050);
TestInt32Unop(kExprI32Clz, 19, 0x00001700);
TestInt32Unop(kExprI32Clz, 20, 0x00000870);
TestInt32Unop(kExprI32Clz, 21, 0x00000405);
TestInt32Unop(kExprI32Clz, 22, 0x00000203);
TestInt32Unop(kExprI32Clz, 23, 0x00000101);
TestInt32Unop(kExprI32Clz, 24, 0x00000089);
TestInt32Unop(kExprI32Clz, 25, 0x00000041);
TestInt32Unop(kExprI32Clz, 26, 0x00000022);
TestInt32Unop(kExprI32Clz, 27, 0x00000013);
TestInt32Unop(kExprI32Clz, 28, 0x00000008);
TestInt32Unop(kExprI32Clz, 29, 0x00000004);
TestInt32Unop(kExprI32Clz, 30, 0x00000002);
TestInt32Unop(kExprI32Clz, 31, 0x00000001);
TestInt32Unop(kExprI32Clz, 32, 0x00000000);
}
TEST(Run_WasmInt32Ctz) {
TestInt32Unop(kExprI32Ctz, 32, 0x00000000);
TestInt32Unop(kExprI32Ctz, 31, 0x80000000);
TestInt32Unop(kExprI32Ctz, 30, 0x40000000);
TestInt32Unop(kExprI32Ctz, 29, 0x20000000);
TestInt32Unop(kExprI32Ctz, 28, 0x10000000);
TestInt32Unop(kExprI32Ctz, 27, 0xa8000000);
TestInt32Unop(kExprI32Ctz, 26, 0xf4000000);
TestInt32Unop(kExprI32Ctz, 25, 0x62000000);
TestInt32Unop(kExprI32Ctz, 24, 0x91000000);
TestInt32Unop(kExprI32Ctz, 23, 0xcd800000);
TestInt32Unop(kExprI32Ctz, 22, 0x09400000);
TestInt32Unop(kExprI32Ctz, 21, 0xaf200000);
TestInt32Unop(kExprI32Ctz, 20, 0xac100000);
TestInt32Unop(kExprI32Ctz, 19, 0xe0b80000);
TestInt32Unop(kExprI32Ctz, 18, 0x9ce40000);
TestInt32Unop(kExprI32Ctz, 17, 0xc7920000);
TestInt32Unop(kExprI32Ctz, 16, 0xb8f10000);
TestInt32Unop(kExprI32Ctz, 15, 0x3b9f8000);
TestInt32Unop(kExprI32Ctz, 14, 0xdb4c4000);
TestInt32Unop(kExprI32Ctz, 13, 0xe9a32000);
TestInt32Unop(kExprI32Ctz, 12, 0xfca61000);
TestInt32Unop(kExprI32Ctz, 11, 0x6c8a7800);
TestInt32Unop(kExprI32Ctz, 10, 0x8ce5a400);
TestInt32Unop(kExprI32Ctz, 9, 0xcb7d0200);
TestInt32Unop(kExprI32Ctz, 8, 0xcb4dc100);
TestInt32Unop(kExprI32Ctz, 7, 0xdfbec580);
TestInt32Unop(kExprI32Ctz, 6, 0x27a9db40);
TestInt32Unop(kExprI32Ctz, 5, 0xde3bcb20);
TestInt32Unop(kExprI32Ctz, 4, 0xd7e8a610);
TestInt32Unop(kExprI32Ctz, 3, 0x9afdbc88);
TestInt32Unop(kExprI32Ctz, 2, 0x9afdbc84);
TestInt32Unop(kExprI32Ctz, 1, 0x9afdbc82);
TestInt32Unop(kExprI32Ctz, 0, 0x9afdbc81);
}
TEST(Run_WasmInt32Popcnt) {
TestInt32Unop(kExprI32Popcnt, 32, 0xffffffff);
TestInt32Unop(kExprI32Popcnt, 0, 0x00000000);
TestInt32Unop(kExprI32Popcnt, 1, 0x00008000);
TestInt32Unop(kExprI32Popcnt, 13, 0x12345678);
TestInt32Unop(kExprI32Popcnt, 19, 0xfedcba09);
}
TEST(Run_WasmI32Eqz) {
TestInt32Unop(kExprI32Eqz, 0, 1);
TestInt32Unop(kExprI32Eqz, 0, -1);
TestInt32Unop(kExprI32Eqz, 0, -827343);
TestInt32Unop(kExprI32Eqz, 0, 8888888);
TestInt32Unop(kExprI32Eqz, 1, 0);
}
TEST(Run_WasmI32Shl) {
WasmRunner<uint32_t> r(MachineType::Uint32(), MachineType::Uint32());
BUILD(r, WASM_I32_SHL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i) << (*j & 0x1f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmI32Shr) {
WasmRunner<uint32_t> r(MachineType::Uint32(), MachineType::Uint32());
BUILD(r, WASM_I32_SHR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_UINT32_INPUTS(i) {
FOR_UINT32_INPUTS(j) {
uint32_t expected = (*i) >> (*j & 0x1f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmI32Sar) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_SAR(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = (*i) >> (*j & 0x1f);
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WASM_Int32DivS_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, -1));
CHECK_TRAP(r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemS_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(33, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
TEST(Run_WASM_Int32DivU_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemU_trap) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(17, r.Call(217, 100));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
}
TEST(Run_WASM_Int32DivS_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemS_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(33, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(0, r.Call(kMin, 0));
}
TEST(Run_WASM_Int32DivU_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(0, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(0, r.Call(kMin, 0));
}
TEST(Run_WASM_Int32RemU_asmjs) {
TestingModule module;
module.origin = kAsmJsOrigin;
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMU(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(17, r.Call(217, 100));
CHECK_EQ(0, r.Call(100, 0));
CHECK_EQ(0, r.Call(-1001, 0));
CHECK_EQ(0, r.Call(kMin, 0));
CHECK_EQ(kMin, r.Call(kMin, -1));
}
TEST(Run_WASM_Int32DivS_byzero_const) {
for (int8_t denom = -2; denom < 8; denom++) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_I32_DIVS(WASM_GET_LOCAL(0), WASM_I8(denom)));
for (int32_t val = -7; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int32DivU_byzero_const) {
for (uint32_t denom = 0xfffffffe; denom < 8; denom++) {
WasmRunner<uint32_t> r(MachineType::Uint32());
BUILD(r, WASM_I32_DIVU(WASM_GET_LOCAL(0), WASM_I32V_1(denom)));
for (uint32_t val = 0xfffffff0; val < 8; val++) {
if (denom == 0) {
CHECK_TRAP(r.Call(val));
} else {
CHECK_EQ(val / denom, r.Call(val));
}
}
}
}
TEST(Run_WASM_Int32DivS_trap_effect) {
TestingModule module;
module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r,
WASM_IF_ELSE(WASM_GET_LOCAL(0),
WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(),
WASM_ZERO, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1)),
WASM_I32_DIVS(WASM_STORE_MEM(MachineType::Int8(),
WASM_ZERO, WASM_GET_LOCAL(0)),
WASM_GET_LOCAL(1))));
CHECK_EQ(0, r.Call(0, 100));
CHECK_TRAP(r.Call(8, 0));
CHECK_TRAP(r.Call(4, 0));
CHECK_TRAP(r.Call(0, 0));
}
void TestFloat32Binop(WasmOpcode opcode, int32_t expected, float a, float b) {
{
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float32(), MachineType::Float32());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat32BinopWithConvert(WasmOpcode opcode, int32_t expected, float a,
float b) {
{
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r,
WASM_I32_SCONVERT_F32(WASM_BINOP(opcode, WASM_F32(a), WASM_F32(b))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float32(), MachineType::Float32());
// return int(a op b)
BUILD(r, WASM_I32_SCONVERT_F32(
WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat32UnopWithConvert(WasmOpcode opcode, int32_t expected, float a) {
{
WasmRunner<int32_t> r;
// return int(op(K))
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_F32(a))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float32());
// return int(op(a))
BUILD(r, WASM_I32_SCONVERT_F32(WASM_UNOP(opcode, WASM_GET_LOCAL(0))));
CHECK_EQ(expected, r.Call(a));
}
}
void TestFloat64Binop(WasmOpcode opcode, int32_t expected, double a, double b) {
{
WasmRunner<int32_t> r;
// return K op K
BUILD(r, WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b)));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float64(), MachineType::Float64());
// return a op b
BUILD(r, WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat64BinopWithConvert(WasmOpcode opcode, int32_t expected, double a,
double b) {
{
WasmRunner<int32_t> r;
// return int(K op K)
BUILD(r,
WASM_I32_SCONVERT_F64(WASM_BINOP(opcode, WASM_F64(a), WASM_F64(b))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_I32_SCONVERT_F64(
WASM_BINOP(opcode, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))));
CHECK_EQ(expected, r.Call(a, b));
}
}
void TestFloat64UnopWithConvert(WasmOpcode opcode, int32_t expected, double a) {
{
WasmRunner<int32_t> r;
// return int(op(K))
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_F64(a))));
CHECK_EQ(expected, r.Call());
}
{
WasmRunner<int32_t> r(MachineType::Float64());
// return int(op(a))
BUILD(r, WASM_I32_SCONVERT_F64(WASM_UNOP(opcode, WASM_GET_LOCAL(0))));
CHECK_EQ(expected, r.Call(a));
}
}
TEST(Run_WasmFloat32Binops) {
TestFloat32Binop(kExprF32Eq, 1, 8.125f, 8.125f);
TestFloat32Binop(kExprF32Ne, 1, 8.125f, 8.127f);
TestFloat32Binop(kExprF32Lt, 1, -9.5f, -9.0f);
TestFloat32Binop(kExprF32Le, 1, -1111.0f, -1111.0f);
TestFloat32Binop(kExprF32Gt, 1, -9.0f, -9.5f);
TestFloat32Binop(kExprF32Ge, 1, -1111.0f, -1111.0f);
TestFloat32BinopWithConvert(kExprF32Add, 10, 3.5f, 6.5f);
TestFloat32BinopWithConvert(kExprF32Sub, 2, 44.5f, 42.5f);
TestFloat32BinopWithConvert(kExprF32Mul, -66, -132.1f, 0.5f);
TestFloat32BinopWithConvert(kExprF32Div, 11, 22.1f, 2.0f);
}
TEST(Run_WasmFloat32Unops) {
TestFloat32UnopWithConvert(kExprF32Abs, 8, 8.125f);
TestFloat32UnopWithConvert(kExprF32Abs, 9, -9.125f);
TestFloat32UnopWithConvert(kExprF32Neg, -213, 213.125f);
TestFloat32UnopWithConvert(kExprF32Sqrt, 12, 144.4f);
}
TEST(Run_WasmFloat64Binops) {
TestFloat64Binop(kExprF64Eq, 1, 16.25, 16.25);
TestFloat64Binop(kExprF64Ne, 1, 16.25, 16.15);
TestFloat64Binop(kExprF64Lt, 1, -32.4, 11.7);
TestFloat64Binop(kExprF64Le, 1, -88.9, -88.9);
TestFloat64Binop(kExprF64Gt, 1, 11.7, -32.4);
TestFloat64Binop(kExprF64Ge, 1, -88.9, -88.9);
TestFloat64BinopWithConvert(kExprF64Add, 100, 43.5, 56.5);
TestFloat64BinopWithConvert(kExprF64Sub, 200, 12200.1, 12000.1);
TestFloat64BinopWithConvert(kExprF64Mul, -33, 134, -0.25);
TestFloat64BinopWithConvert(kExprF64Div, -1111, -2222.3, 2);
}
TEST(Run_WasmFloat64Unops) {
TestFloat64UnopWithConvert(kExprF64Abs, 108, 108.125);
TestFloat64UnopWithConvert(kExprF64Abs, 209, -209.125);
TestFloat64UnopWithConvert(kExprF64Neg, -209, 209.125);
TestFloat64UnopWithConvert(kExprF64Sqrt, 13, 169.4);
}
TEST(Run_WasmFloat32Neg) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
CHECK_EQ(0x80000000,
bit_cast<uint32_t>(*i) ^ bit_cast<uint32_t>(r.Call(*i)));
}
}
TEST(Run_WasmFloat64Neg) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_NEG(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
CHECK_EQ(0x8000000000000000,
bit_cast<uint64_t>(*i) ^ bit_cast<uint64_t>(r.Call(*i)));
}
}
TEST(Run_Wasm_IfElse_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// if (p0) return 11; else return 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_IfElse_Unreachable1) {
WasmRunner<int32_t> r;
// if (0) unreachable; else return 22;
BUILD(r, WASM_IF_ELSE(WASM_ZERO, // --
WASM_UNREACHABLE, // --
WASM_I8(27))); // --
CHECK_EQ(27, r.Call());
}
TEST(Run_Wasm_Return12) {
WasmRunner<int32_t> r;
BUILD(r, RET_I8(12));
CHECK_EQ(12, r.Call());
}
TEST(Run_Wasm_Return17) {
WasmRunner<int32_t> r;
BUILD(r, B1(RET_I8(17)));
CHECK_EQ(17, r.Call());
}
TEST(Run_Wasm_Return_I32) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(*i, r.Call(*i)); }
}
TEST(Run_Wasm_Return_F32) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
float expect = *i;
float result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
TEST(Run_Wasm_Return_F64) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, RET(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
double expect = *i;
double result = r.Call(expect);
if (std::isnan(expect)) {
CHECK(std::isnan(result));
} else {
CHECK_EQ(expect, result);
}
}
}
TEST(Run_Wasm_Select) {
WasmRunner<int32_t> r(MachineType::Int32());
// return select(11, 22, a);
BUILD(r, WASM_SELECT(WASM_I8(11), WASM_I8(22), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Select_strict1) {
WasmRunner<int32_t> r(MachineType::Int32());
// select(a=0, a=1, a=2); return a
BUILD(r, B2(WASM_SELECT(WASM_SET_LOCAL(0, WASM_I8(0)),
WASM_SET_LOCAL(0, WASM_I8(1)),
WASM_SET_LOCAL(0, WASM_I8(2))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(2, r.Call(*i)); }
}
TEST(Run_Wasm_Select_strict2) {
WasmRunner<int32_t> r(MachineType::Int32());
r.AllocateLocal(kAstI32);
r.AllocateLocal(kAstI32);
// select(b=5, c=6, a)
BUILD(r, WASM_SELECT(WASM_SET_LOCAL(1, WASM_I8(5)),
WASM_SET_LOCAL(2, WASM_I8(6)), WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 5 : 6;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Select_strict3) {
WasmRunner<int32_t> r(MachineType::Int32());
r.AllocateLocal(kAstI32);
r.AllocateLocal(kAstI32);
// select(b=5, c=6, a=b)
BUILD(r, WASM_SELECT(WASM_SET_LOCAL(1, WASM_I8(5)),
WASM_SET_LOCAL(2, WASM_I8(6)),
WASM_SET_LOCAL(0, WASM_GET_LOCAL(1))));
FOR_INT32_INPUTS(i) {
int32_t expected = 5;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_BrIf_strict) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(
r,
B2(B1(WASM_BRV_IF(0, WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(99)))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) { CHECK_EQ(99, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable0a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), WASM_I8(91)));
FOR_INT32_INPUTS(i) { CHECK_EQ(91, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable0b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(0))),
WASM_I8(92)));
FOR_INT32_INPUTS(i) { CHECK_EQ(92, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable0c) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(
r,
B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(0), BR_TARGET(1))),
RET_I8(76)),
WASM_I8(77)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i == 0 ? 76 : 77;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_BrTable1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 0, BR_TARGET(0))), RET_I8(93));
FOR_INT32_INPUTS(i) { CHECK_EQ(93, r.Call(*i)); }
}
TEST(Run_Wasm_BrTable_loop) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(WASM_LOOP(1, WASM_BR_TABLE(WASM_INC_LOCAL_BY(0, 1), 2, BR_TARGET(2),
BR_TARGET(1), BR_TARGET(0))),
RET_I8(99)),
WASM_I8(98));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(98, r.Call(-1));
CHECK_EQ(98, r.Call(-2));
CHECK_EQ(98, r.Call(-3));
CHECK_EQ(98, r.Call(-100));
}
TEST(Run_Wasm_BrTable_br) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 1, BR_TARGET(1), BR_TARGET(0))),
RET_I8(91)),
WASM_I8(99));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(91, r.Call(1));
CHECK_EQ(91, r.Call(2));
CHECK_EQ(91, r.Call(3));
}
TEST(Run_Wasm_BrTable_br2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(1),
BR_TARGET(2), BR_TARGET(3), BR_TARGET(0))),
RET_I8(85)),
RET_I8(86)),
RET_I8(87)),
WASM_I8(88));
CHECK_EQ(86, r.Call(0));
CHECK_EQ(87, r.Call(1));
CHECK_EQ(88, r.Call(2));
CHECK_EQ(85, r.Call(3));
CHECK_EQ(85, r.Call(4));
CHECK_EQ(85, r.Call(5));
}
TEST(Run_Wasm_BrTable4) {
for (int i = 0; i < 4; i++) {
for (int t = 0; t < 4; t++) {
uint32_t cases[] = {0, 1, 2, 3};
cases[i] = t;
byte code[] = {B2(B2(B2(B2(B1(WASM_BR_TABLE(
WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]),
BR_TARGET(cases[1]), BR_TARGET(cases[2]),
BR_TARGET(cases[3]))),
RET_I8(70)),
RET_I8(71)),
RET_I8(72)),
RET_I8(73)),
WASM_I8(75)};
WasmRunner<int32_t> r(MachineType::Int32());
r.Build(code, code + arraysize(code));
for (int x = -3; x < 50; x++) {
int index = (x > 3 || x < 0) ? 3 : x;
int32_t expected = 70 + cases[index];
CHECK_EQ(expected, r.Call(x));
}
}
}
}
TEST(Run_Wasm_BrTable4x4) {
for (byte a = 0; a < 4; a++) {
for (byte b = 0; b < 4; b++) {
for (byte c = 0; c < 4; c++) {
for (byte d = 0; d < 4; d++) {
for (int i = 0; i < 4; i++) {
uint32_t cases[] = {a, b, c, d};
byte code[] = {
B2(B2(B2(B2(B1(WASM_BR_TABLE(
WASM_GET_LOCAL(0), 3, BR_TARGET(cases[0]),
BR_TARGET(cases[1]), BR_TARGET(cases[2]),
BR_TARGET(cases[3]))),
RET_I8(50)),
RET_I8(51)),
RET_I8(52)),
RET_I8(53)),
WASM_I8(55)};
WasmRunner<int32_t> r(MachineType::Int32());
r.Build(code, code + arraysize(code));
for (int x = -6; x < 47; x++) {
int index = (x > 3 || x < 0) ? 3 : x;
int32_t expected = 50 + cases[index];
CHECK_EQ(expected, r.Call(x));
}
}
}
}
}
}
}
TEST(Run_Wasm_BrTable4_fallthru) {
byte code[] = {
B2(B2(B2(B2(B1(WASM_BR_TABLE(WASM_GET_LOCAL(0), 3, BR_TARGET(0),
BR_TARGET(1), BR_TARGET(2), BR_TARGET(3))),
WASM_INC_LOCAL_BY(1, 1)),
WASM_INC_LOCAL_BY(1, 2)),
WASM_INC_LOCAL_BY(1, 4)),
WASM_INC_LOCAL_BY(1, 8)),
WASM_GET_LOCAL(1)};
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
r.Build(code, code + arraysize(code));
CHECK_EQ(15, r.Call(0, 0));
CHECK_EQ(14, r.Call(1, 0));
CHECK_EQ(12, r.Call(2, 0));
CHECK_EQ(8, r.Call(3, 0));
CHECK_EQ(8, r.Call(4, 0));
CHECK_EQ(115, r.Call(0, 100));
CHECK_EQ(114, r.Call(1, 100));
CHECK_EQ(112, r.Call(2, 100));
CHECK_EQ(108, r.Call(3, 100));
CHECK_EQ(108, r.Call(4, 100));
}
TEST(Run_Wasm_F32ReinterpretI32) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_I32_REINTERPRET_F32(
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_I32ReinterpretF32) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_F32_REINTERPRET_I32(WASM_GET_LOCAL(0))),
WASM_I8(107)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
CHECK_EQ(107, r.Call(expected));
CHECK_EQ(expected, memory[0]);
}
}
TEST(Run_Wasm_ReturnStore) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO,
WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i;
memory[0] = expected;
CHECK_EQ(expected, r.Call());
}
}
TEST(Run_Wasm_VoidReturn1) {
// We use a wrapper function because WasmRunner<void> does not exist.
// Build the test function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.v_v(), &module);
BUILD(t, kExprNop);
uint32_t index = t.CompileAndAdd();
const int32_t kExpected = -414444;
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, B2(WASM_CALL_FUNCTION0(index), WASM_I32V_3(kExpected)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_Wasm_VoidReturn2) {
// We use a wrapper function because WasmRunner<void> does not exist.
// Build the test function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.v_v(), &module);
BUILD(t, WASM_RETURN0);
uint32_t index = t.CompileAndAdd();
const int32_t kExpected = -414444;
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, B2(WASM_CALL_FUNCTION0(index), WASM_I32V_3(kExpected)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_Wasm_Block_If_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) return 51; return 52; }
BUILD(r, B2( // --
WASM_IF(WASM_GET_LOCAL(0), // --
WASM_BRV(0, WASM_I8(51))), // --
WASM_I8(52))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 51 : 52;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_BrIf_P) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(51), WASM_GET_LOCAL(0)), WASM_I8(52)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 51 : 52;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_IfElse_P_assign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) p0 = 71; else p0 = 72; return p0; }
BUILD(r, B2( // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_SET_LOCAL(0, WASM_I8(71)), // --
WASM_SET_LOCAL(0, WASM_I8(72))), // --
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 71 : 72;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_IfElse_P_return) {
WasmRunner<int32_t> r(MachineType::Int32());
// if (p0) return 81; else return 82;
BUILD(r, // --
WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
RET_I8(81), // --
RET_I8(82))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 81 : 82;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_Block_If_P_assign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { if (p0) p0 = 61; p0; }
BUILD(r, WASM_BLOCK(
2, WASM_IF(WASM_GET_LOCAL(0), WASM_SET_LOCAL(0, WASM_I8(61))),
WASM_GET_LOCAL(0)));
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 61 : *i;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_DanglingAssign) {
WasmRunner<int32_t> r(MachineType::Int32());
// { return 0; p0 = 0; }
BUILD(r, B2(RET_I8(99), WASM_SET_LOCAL(0, WASM_ZERO)));
CHECK_EQ(99, r.Call(1));
}
TEST(Run_Wasm_ExprIf_P) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_ExprIf_P_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
// p0 ? 11 : 22;
BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), // --
WASM_I8(11), // --
WASM_I8(22))); // --
FOR_INT32_INPUTS(i) {
int32_t expected = *i ? 11 : 22;
CHECK_EQ(expected, r.Call(*i));
}
}
TEST(Run_Wasm_CountDown) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(
2, WASM_LOOP(
1, WASM_IF(WASM_GET_LOCAL(0),
WASM_BRV(0, WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))))),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_CountDown_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(
2, WASM_LOOP(3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)), WASM_BREAK(0)),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_CONTINUE(0)),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_WhileCountDown) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(WASM_GET_LOCAL(0),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0),
WASM_I8(1)))),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_Loop_if_break1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(0)),
WASM_SET_LOCAL(0, WASM_I8(99))),
WASM_GET_LOCAL(0)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10000, r.Call(10000));
CHECK_EQ(-29, r.Call(-29));
}
TEST(Run_Wasm_Loop_if_break2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_LOOP(2, WASM_BR_IF(1, WASM_GET_LOCAL(0)),
WASM_SET_LOCAL(0, WASM_I8(99))),
WASM_GET_LOCAL(0)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10000, r.Call(10000));
CHECK_EQ(-29, r.Call(-29));
}
TEST(Run_Wasm_Loop_if_break_fallthru) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_LOOP(2, WASM_IF(WASM_GET_LOCAL(0), WASM_BREAK(1)),
WASM_SET_LOCAL(0, WASM_I8(93)))),
WASM_GET_LOCAL(0));
CHECK_EQ(93, r.Call(0));
CHECK_EQ(3, r.Call(3));
CHECK_EQ(10001, r.Call(10001));
CHECK_EQ(-22, r.Call(-22));
}
TEST(Run_Wasm_LoadMemI32) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Int32());
module.RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(0)));
memory[0] = 99999999;
CHECK_EQ(99999999, r.Call(0));
memory[0] = 88888888;
CHECK_EQ(88888888, r.Call(0));
memory[0] = 77777777;
CHECK_EQ(77777777, r.Call(0));
}
TEST(Run_Wasm_LoadMemI32_oob) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Uint32());
module.RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
memory[0] = 88888888;
CHECK_EQ(88888888, r.Call(0u));
for (uint32_t offset = 29; offset < 40; offset++) {
CHECK_TRAP(r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) {
CHECK_TRAP(r.Call(offset));
}
}
TEST(Run_Wasm_LoadMemI32_oob_asm) {
TestingModule module;
module.origin = kAsmJsOrigin;
int32_t* memory = module.AddMemoryElems<int32_t>(8);
WasmRunner<int32_t> r(&module, MachineType::Uint32());
module.RandomizeMemory(1112);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
memory[0] = 999999;
CHECK_EQ(999999, r.Call(0u));
// TODO(titzer): offset 29-31 should also be OOB.
for (uint32_t offset = 32; offset < 40; offset++) {
CHECK_EQ(0, r.Call(offset));
}
for (uint32_t offset = 0x80000000; offset < 0x80000010; offset++) {
CHECK_EQ(0, r.Call(offset));
}
}
TEST(Run_Wasm_LoadMem_offset_oob) {
TestingModule module;
module.AddMemoryElems<int32_t>(8);
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1116 + static_cast<int>(m));
WasmRunner<int32_t> r(&module, MachineType::Uint32());
uint32_t boundary = 24 - WasmOpcodes::MemSize(machineTypes[m]);
BUILD(r, WASM_LOAD_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0)),
WASM_ZERO);
CHECK_EQ(0, r.Call(boundary)); // in bounds.
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
TEST(Run_Wasm_LoadMemI32_offset) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(4);
WasmRunner<int32_t> r(&module, MachineType::Int32());
module.RandomizeMemory(1111);
BUILD(r, WASM_LOAD_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0)));
memory[0] = 66666666;
memory[1] = 77777777;
memory[2] = 88888888;
memory[3] = 99999999;
CHECK_EQ(77777777, r.Call(0));
CHECK_EQ(88888888, r.Call(4));
CHECK_EQ(99999999, r.Call(8));
memory[0] = 11111111;
memory[1] = 22222222;
memory[2] = 33333333;
memory[3] = 44444444;
CHECK_EQ(22222222, r.Call(0));
CHECK_EQ(33333333, r.Call(4));
CHECK_EQ(44444444, r.Call(8));
}
#if !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64
TEST(Run_Wasm_LoadMemI32_const_oob_misaligned) {
const int kMemSize = 12;
// TODO(titzer): Fix misaligned accesses on MIPS and re-enable.
for (int offset = 0; offset < kMemSize + 5; offset++) {
for (int index = 0; index < kMemSize + 5; index++) {
TestingModule module;
module.AddMemoryElems<byte>(kMemSize);
WasmRunner<int32_t> r(&module);
module.RandomizeMemory();
BUILD(r,
WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index)));
if ((offset + index) <= (kMemSize - sizeof(int32_t))) {
CHECK_EQ(module.raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
#endif
TEST(Run_Wasm_LoadMemI32_const_oob) {
const int kMemSize = 24;
for (int offset = 0; offset < kMemSize + 5; offset += 4) {
for (int index = 0; index < kMemSize + 5; index += 4) {
TestingModule module;
module.AddMemoryElems<byte>(kMemSize);
WasmRunner<int32_t> r(&module);
module.RandomizeMemory();
BUILD(r,
WASM_LOAD_MEM_OFFSET(MachineType::Int32(), offset, WASM_I8(index)));
if ((offset + index) <= (kMemSize - sizeof(int32_t))) {
CHECK_EQ(module.raw_val_at<int32_t>(offset + index), r.Call());
} else {
CHECK_TRAP(r.Call());
}
}
}
}
TEST(Run_Wasm_StoreMemI32_offset) {
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(4);
WasmRunner<int32_t> r(&module, MachineType::Int32());
const int32_t kWritten = 0xaabbccdd;
BUILD(r, WASM_STORE_MEM_OFFSET(MachineType::Int32(), 4, WASM_GET_LOCAL(0),
WASM_I32V_5(kWritten)));
for (int i = 0; i < 2; i++) {
module.RandomizeMemory(1111);
memory[0] = 66666666;
memory[1] = 77777777;
memory[2] = 88888888;
memory[3] = 99999999;
CHECK_EQ(kWritten, r.Call(i * 4));
CHECK_EQ(66666666, memory[0]);
CHECK_EQ(i == 0 ? kWritten : 77777777, memory[1]);
CHECK_EQ(i == 1 ? kWritten : 88888888, memory[2]);
CHECK_EQ(i == 2 ? kWritten : 99999999, memory[3]);
}
}
TEST(Run_Wasm_StoreMem_offset_oob) {
TestingModule module;
byte* memory = module.AddMemoryElems<byte>(32);
#if WASM_64
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(),
MachineType::Float64()};
#else
static const MachineType machineTypes[] = {
MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(),
MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(),
MachineType::Float32(), MachineType::Float64()};
#endif
for (size_t m = 0; m < arraysize(machineTypes); m++) {
module.RandomizeMemory(1119 + static_cast<int>(m));
WasmRunner<int32_t> r(&module, MachineType::Uint32());
BUILD(r, WASM_STORE_MEM_OFFSET(machineTypes[m], 8, WASM_GET_LOCAL(0),
WASM_LOAD_MEM(machineTypes[m], WASM_ZERO)),
WASM_ZERO);
byte memsize = WasmOpcodes::MemSize(machineTypes[m]);
uint32_t boundary = 24 - memsize;
CHECK_EQ(0, r.Call(boundary)); // in bounds.
CHECK_EQ(0, memcmp(&memory[0], &memory[8 + boundary], memsize));
for (uint32_t offset = boundary + 1; offset < boundary + 19; offset++) {
CHECK_TRAP(r.Call(offset)); // out of bounds.
}
}
}
TEST(Run_Wasm_LoadMemI32_P) {
const int kNumElems = 8;
TestingModule module;
int32_t* memory = module.AddMemoryElems<int32_t>(kNumElems);
WasmRunner<int32_t> r(&module, MachineType::Int32());
module.RandomizeMemory(2222);
BUILD(r, WASM_LOAD_MEM(MachineType::Int32(), WASM_GET_LOCAL(0)));
for (int i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(i * 4));
}
}
TEST(Run_Wasm_MemI32_Sum) {
const int kNumElems = 20;
TestingModule module;
uint32_t* memory = module.AddMemoryElems<uint32_t>(kNumElems);
WasmRunner<uint32_t> r(&module, MachineType::Int32());
const byte kSum = r.AllocateLocal(kAstI32);
BUILD(r, WASM_BLOCK(
2, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_I32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Int32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))),
WASM_GET_LOCAL(1)));
// Run 4 trials.
for (int i = 0; i < 3; i++) {
module.RandomizeMemory(i * 33);
uint32_t expected = 0;
for (size_t j = kNumElems - 1; j > 0; j--) {
expected += memory[j];
}
uint32_t result = r.Call(static_cast<int>(4 * (kNumElems - 1)));
CHECK_EQ(expected, result);
}
}
TEST(Run_Wasm_CheckMachIntsZero) {
const int kNumElems = 55;
TestingModule module;
module.AddMemoryElems<uint32_t>(kNumElems);
WasmRunner<uint32_t> r(&module, MachineType::Int32());
BUILD(r, kExprBlock, 2, kExprLoop, 1, kExprIf, kExprGetLocal, 0, kExprBr, 0,
kExprIfElse, kExprI32LoadMem, ZERO_ALIGNMENT, ZERO_OFFSET,
kExprGetLocal, 0, kExprBr, 2, kExprI8Const, 255, kExprSetLocal, 0,
kExprI32Sub, kExprGetLocal, 0, kExprI8Const, 4, kExprI8Const, 0);
module.BlankMemory();
CHECK_EQ(0, r.Call((kNumElems - 1) * 4));
}
TEST(Run_Wasm_MemF32_Sum) {
const int kSize = 5;
TestingModule module;
module.AddMemoryElems<float>(kSize);
float* buffer = module.raw_mem_start<float>();
buffer[0] = -99.25;
buffer[1] = -888.25;
buffer[2] = -77.25;
buffer[3] = 66666.25;
buffer[4] = 5555.25;
WasmRunner<int32_t> r(&module, MachineType::Int32());
const byte kSum = r.AllocateLocal(kAstF32);
BUILD(r, WASM_BLOCK(
3, WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kSum, WASM_F32_ADD(
WASM_GET_LOCAL(kSum),
WASM_LOAD_MEM(MachineType::Float32(),
WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(4))))),
WASM_STORE_MEM(MachineType::Float32(), WASM_ZERO,
WASM_GET_LOCAL(kSum)),
WASM_GET_LOCAL(0)));
CHECK_EQ(0, r.Call(4 * (kSize - 1)));
CHECK_NE(-99.25, buffer[0]);
CHECK_EQ(71256.0f, buffer[0]);
}
template <typename T>
T GenerateAndRunFold(WasmOpcode binop, T* buffer, size_t size,
LocalType astType, MachineType memType) {
TestingModule module;
module.AddMemoryElems<T>(size);
for (size_t i = 0; i < size; i++) {
module.raw_mem_start<T>()[i] = buffer[i];
}
WasmRunner<int32_t> r(&module, MachineType::Int32());
const byte kAccum = r.AllocateLocal(astType);
BUILD(
r,
WASM_BLOCK(
4, WASM_SET_LOCAL(kAccum, WASM_LOAD_MEM(memType, WASM_ZERO)),
WASM_WHILE(
WASM_GET_LOCAL(0),
WASM_BLOCK(
2, WASM_SET_LOCAL(
kAccum,
WASM_BINOP(binop, WASM_GET_LOCAL(kAccum),
WASM_LOAD_MEM(memType, WASM_GET_LOCAL(0)))),
WASM_SET_LOCAL(
0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(sizeof(T)))))),
WASM_STORE_MEM(memType, WASM_ZERO, WASM_GET_LOCAL(kAccum)),
WASM_GET_LOCAL(0)));
r.Call(static_cast<int>(sizeof(T) * (size - 1)));
return module.raw_mem_at<double>(0);
}
TEST(Run_Wasm_MemF64_Mul) {
const size_t kSize = 6;
double buffer[kSize] = {1, 2, 2, 2, 2, 2};
double result = GenerateAndRunFold<double>(kExprF64Mul, buffer, kSize,
kAstF64, MachineType::Float64());
CHECK_EQ(32, result);
}
TEST(Build_Wasm_Infinite_Loop) {
WasmRunner<int32_t> r(MachineType::Int32());
// Only build the graph and compile, don't run.
BUILD(r, WASM_INFINITE_LOOP);
}
TEST(Build_Wasm_Infinite_Loop_effect) {
TestingModule module;
module.AddMemoryElems<int8_t>(16);
WasmRunner<int32_t> r(&module, MachineType::Int32());
// Only build the graph and compile, don't run.
BUILD(r, WASM_LOOP(1, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)));
}
TEST(Run_Wasm_Unreachable0a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV(0, WASM_I8(9)), RET(WASM_GET_LOCAL(0))));
CHECK_EQ(9, r.Call(0));
CHECK_EQ(9, r.Call(1));
}
TEST(Run_Wasm_Unreachable0b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV(0, WASM_I8(7)), WASM_UNREACHABLE));
CHECK_EQ(7, r.Call(0));
CHECK_EQ(7, r.Call(1));
}
TEST(Build_Wasm_Unreachable1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE);
}
TEST(Build_Wasm_Unreachable2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
TEST(Build_Wasm_Unreachable3) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_UNREACHABLE, WASM_UNREACHABLE);
}
TEST(Build_Wasm_UnreachableIf1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE, WASM_IF(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0)));
}
TEST(Build_Wasm_UnreachableIf2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_UNREACHABLE,
WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_GET_LOCAL(0), WASM_UNREACHABLE));
}
TEST(Run_Wasm_Unreachable_Load) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV(0, WASM_GET_LOCAL(0)),
WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0))));
CHECK_EQ(11, r.Call(11));
CHECK_EQ(21, r.Call(21));
}
TEST(Run_Wasm_Infinite_Loop_not_taken1) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_INFINITE_LOOP), WASM_I8(45)));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(0));
}
TEST(Run_Wasm_Infinite_Loop_not_taken2) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(45)),
WASM_INFINITE_LOOP)));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
TEST(Run_Wasm_Infinite_Loop_not_taken2_brif) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
B2(WASM_BRV_IF(0, WASM_I8(45), WASM_GET_LOCAL(0)), WASM_INFINITE_LOOP));
// Run the code, but don't go into the infinite loop.
CHECK_EQ(45, r.Call(1));
}
static void TestBuildGraphForSimpleExpression(WasmOpcode opcode) {
if (!WasmOpcodes::IsSupported(opcode)) return;
Isolate* isolate = CcTest::InitIsolateOnce();
Zone zone(isolate->allocator());
HandleScope scope(isolate);
// Enable all optional operators.
CommonOperatorBuilder common(&zone);
MachineOperatorBuilder machine(&zone, MachineType::PointerRepresentation(),
MachineOperatorBuilder::kAllOptionalOps);
Graph graph(&zone);
JSGraph jsgraph(isolate, &graph, &common, nullptr, nullptr, &machine);
FunctionSig* sig = WasmOpcodes::Signature(opcode);
if (sig->parameter_count() == 1) {
byte code[] = {WASM_NO_LOCALS, static_cast<byte>(opcode), kExprGetLocal, 0};
TestBuildingGraph(&zone, &jsgraph, nullptr, sig, code,
code + arraysize(code));
} else {
CHECK_EQ(2, sig->parameter_count());
byte code[] = {WASM_NO_LOCALS, static_cast<byte>(opcode),
kExprGetLocal, 0,
kExprGetLocal, 1};
TestBuildingGraph(&zone, &jsgraph, nullptr, sig, code,
code + arraysize(code));
}
}
TEST(Build_Wasm_SimpleExprs) {
// Test that the decoder can build a graph for all supported simple expressions.
#define GRAPH_BUILD_TEST(name, opcode, sig) \
TestBuildGraphForSimpleExpression(kExpr##name);
FOREACH_SIMPLE_OPCODE(GRAPH_BUILD_TEST);
#undef GRAPH_BUILD_TEST
}
TEST(Run_Wasm_Int32LoadInt8_signext) {
TestingModule module;
const int kNumElems = 16;
int8_t* memory = module.AddMemoryElems<int8_t>(kNumElems);
module.RandomizeMemory();
memory[0] = -1;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Int8(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt8_zeroext) {
TestingModule module;
const int kNumElems = 16;
byte* memory = module.AddMemory(kNumElems);
module.RandomizeMemory(77);
memory[0] = 255;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Uint8(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumElems; i++) {
CHECK_EQ(memory[i], r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt16_signext) {
TestingModule module;
const int kNumBytes = 16;
byte* memory = module.AddMemory(kNumBytes);
module.RandomizeMemory(888);
memory[1] = 200;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Int16(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (static_cast<int8_t>(memory[i + 1]) << 8);
CHECK_EQ(expected, r.Call(static_cast<int>(i)));
}
}
TEST(Run_Wasm_Int32LoadInt16_zeroext) {
TestingModule module;
const int kNumBytes = 16;
byte* memory = module.AddMemory(kNumBytes);
module.RandomizeMemory(9999);
memory[1] = 204;
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_LOAD_MEM(MachineType::Uint16(), WASM_GET_LOCAL(0)));
for (size_t i = 0; i < kNumBytes; i += 2) {
int32_t expected = memory[i] | (memory[i + 1] << 8);
CHECK_EQ(expected, r.Call(static_cast<int>(i)));
}
}
TEST(Run_WasmInt32Global) {
TestingModule module;
int32_t* global = module.AddGlobal<int32_t>(MachineType::Int32());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, WASM_STORE_GLOBAL(
0, WASM_I32_ADD(WASM_LOAD_GLOBAL(0), WASM_GET_LOCAL(0))));
*global = 116;
for (int i = 9; i < 444444; i += 111111) {
int32_t expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmInt32Globals_DontAlias) {
const int kNumGlobals = 3;
TestingModule module;
int32_t* globals[] = {module.AddGlobal<int32_t>(MachineType::Int32()),
module.AddGlobal<int32_t>(MachineType::Int32()),
module.AddGlobal<int32_t>(MachineType::Int32())};
for (int g = 0; g < kNumGlobals; g++) {
// global = global + p0
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_STORE_GLOBAL(
g, WASM_I32_ADD(WASM_LOAD_GLOBAL(g), WASM_GET_LOCAL(0))));
// Check that reading/writing global number {g} doesn't alter the others.
*globals[g] = 116 * g;
int32_t before[kNumGlobals];
for (int i = 9; i < 444444; i += 111113) {
int32_t sum = *globals[g] + i;
for (int j = 0; j < kNumGlobals; j++) before[j] = *globals[j];
r.Call(i);
for (int j = 0; j < kNumGlobals; j++) {
int32_t expected = j == g ? sum : before[j];
CHECK_EQ(expected, *globals[j]);
}
}
}
}
TEST(Run_WasmFloat32Global) {
TestingModule module;
float* global = module.AddGlobal<float>(MachineType::Float32());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, B2(WASM_STORE_GLOBAL(
0, WASM_F32_ADD(WASM_LOAD_GLOBAL(0),
WASM_F32_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 1.25;
for (int i = 9; i < 4444; i += 1111) {
volatile float expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmFloat64Global) {
TestingModule module;
double* global = module.AddGlobal<double>(MachineType::Float64());
WasmRunner<int32_t> r(&module, MachineType::Int32());
// global = global + p0
BUILD(r, B2(WASM_STORE_GLOBAL(
0, WASM_F64_ADD(WASM_LOAD_GLOBAL(0),
WASM_F64_SCONVERT_I32(WASM_GET_LOCAL(0)))),
WASM_ZERO));
*global = 1.25;
for (int i = 9; i < 4444; i += 1111) {
volatile double expected = *global + i;
r.Call(i);
CHECK_EQ(expected, *global);
}
}
TEST(Run_WasmMixedGlobals) {
TestingModule module;
int32_t* unused = module.AddGlobal<int32_t>(MachineType::Int32());
byte* memory = module.AddMemory(32);
int8_t* var_int8 = module.AddGlobal<int8_t>(MachineType::Int8());
uint8_t* var_uint8 = module.AddGlobal<uint8_t>(MachineType::Uint8());
int16_t* var_int16 = module.AddGlobal<int16_t>(MachineType::Int16());
uint16_t* var_uint16 = module.AddGlobal<uint16_t>(MachineType::Uint16());
int32_t* var_int32 = module.AddGlobal<int32_t>(MachineType::Int32());
uint32_t* var_uint32 = module.AddGlobal<uint32_t>(MachineType::Uint32());
float* var_float = module.AddGlobal<float>(MachineType::Float32());
double* var_double = module.AddGlobal<double>(MachineType::Float64());
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(
r,
WASM_BLOCK(
9,
WASM_STORE_GLOBAL(1, WASM_LOAD_MEM(MachineType::Int8(), WASM_ZERO)),
WASM_STORE_GLOBAL(2, WASM_LOAD_MEM(MachineType::Uint8(), WASM_ZERO)),
WASM_STORE_GLOBAL(3, WASM_LOAD_MEM(MachineType::Int16(), WASM_ZERO)),
WASM_STORE_GLOBAL(4, WASM_LOAD_MEM(MachineType::Uint16(), WASM_ZERO)),
WASM_STORE_GLOBAL(5, WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)),
WASM_STORE_GLOBAL(6, WASM_LOAD_MEM(MachineType::Uint32(), WASM_ZERO)),
WASM_STORE_GLOBAL(7,
WASM_LOAD_MEM(MachineType::Float32(), WASM_ZERO)),
WASM_STORE_GLOBAL(8,
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO)),
WASM_ZERO));
memory[0] = 0xaa;
memory[1] = 0xcc;
memory[2] = 0x55;
memory[3] = 0xee;
memory[4] = 0x33;
memory[5] = 0x22;
memory[6] = 0x11;
memory[7] = 0x99;
r.Call(1);
CHECK(static_cast<int8_t>(0xaa) == *var_int8);
CHECK(static_cast<uint8_t>(0xaa) == *var_uint8);
CHECK(static_cast<int16_t>(0xccaa) == *var_int16);
CHECK(static_cast<uint16_t>(0xccaa) == *var_uint16);
CHECK(static_cast<int32_t>(0xee55ccaa) == *var_int32);
CHECK(static_cast<uint32_t>(0xee55ccaa) == *var_uint32);
CHECK(bit_cast<float>(0xee55ccaa) == *var_float);
CHECK(bit_cast<double>(0x99112233ee55ccaaULL) == *var_double);
USE(unused);
}
TEST(Run_WasmCallEmpty) {
const int32_t kExpected = -414444;
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.i_v(), &module);
BUILD(t, WASM_I32V_3(kExpected));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_CALL_FUNCTION0(index));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
}
TEST(Run_WasmCallF32StackParameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstF32;
FunctionSig sig(1, 19, param_types);
TestingModule module;
WasmFunctionCompiler t(&sig, &module);
BUILD(t, WASM_GET_LOCAL(17));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<float> r(&module);
BUILD(r, WASM_CALL_FUNCTION(
index, WASM_F32(1.0f), WASM_F32(2.0f), WASM_F32(4.0f),
WASM_F32(8.0f), WASM_F32(16.0f), WASM_F32(32.0f),
WASM_F32(64.0f), WASM_F32(128.0f), WASM_F32(256.0f),
WASM_F32(1.5f), WASM_F32(2.5f), WASM_F32(4.5f), WASM_F32(8.5f),
WASM_F32(16.5f), WASM_F32(32.5f), WASM_F32(64.5f),
WASM_F32(128.5f), WASM_F32(256.5f), WASM_F32(512.5f)));
float result = r.Call();
CHECK_EQ(256.5f, result);
}
TEST(Run_WasmCallF64StackParameter) {
// Build the target function.
LocalType param_types[20];
for (int i = 0; i < 20; i++) param_types[i] = kAstF64;
FunctionSig sig(1, 19, param_types);
TestingModule module;
WasmFunctionCompiler t(&sig, &module);
BUILD(t, WASM_GET_LOCAL(17));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<double> r(&module);
BUILD(r, WASM_CALL_FUNCTION(index, WASM_F64(1.0), WASM_F64(2.0),
WASM_F64(4.0), WASM_F64(8.0), WASM_F64(16.0),
WASM_F64(32.0), WASM_F64(64.0), WASM_F64(128.0),
WASM_F64(256.0), WASM_F64(1.5), WASM_F64(2.5),
WASM_F64(4.5), WASM_F64(8.5), WASM_F64(16.5),
WASM_F64(32.5), WASM_F64(64.5), WASM_F64(128.5),
WASM_F64(256.5), WASM_F64(512.5)));
float result = r.Call();
CHECK_EQ(256.5, result);
}
TEST(Run_WasmCallVoid) {
const byte kMemOffset = 8;
const int32_t kElemNum = kMemOffset / sizeof(int32_t);
const int32_t kExpected = -414444;
// Build the target function.
TestSignatures sigs;
TestingModule module;
module.AddMemory(16);
module.RandomizeMemory();
WasmFunctionCompiler t(sigs.v_v(), &module);
BUILD(t, WASM_STORE_MEM(MachineType::Int32(), WASM_I8(kMemOffset),
WASM_I32V_3(kExpected)));
uint32_t index = t.CompileAndAdd();
// Build the calling function.
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_CALL_FUNCTION0(index),
WASM_LOAD_MEM(MachineType::Int32(), WASM_I8(kMemOffset)));
int32_t result = r.Call();
CHECK_EQ(kExpected, result);
CHECK_EQ(kExpected, module.raw_mem_start<int32_t>()[kElemNum]);
}
TEST(Run_WasmCall_Int32Add) {
// Build the target function.
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.i_ii(), &module);
BUILD(t, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd();
// Build the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_INT32_INPUTS(i) {
FOR_INT32_INPUTS(j) {
int32_t expected = static_cast<int32_t>(static_cast<uint32_t>(*i) +
static_cast<uint32_t>(*j));
CHECK_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_WasmCall_Float32Sub) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t(sigs.f_ff(), &module);
// Build the target function.
BUILD(t, WASM_F32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
uint32_t index = t.CompileAndAdd();
// Builder the caller function.
WasmRunner<float> r(&module, MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_CALL_FUNCTION(index, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(*i - *j, r.Call(*i, *j)); }
}
}
TEST(Run_WasmCall_Float64Sub) {
TestingModule module;
double* memory = module.AddMemoryElems<double>(16);
WasmRunner<int32_t> r(&module);
BUILD(r, WASM_BLOCK(
2, WASM_STORE_MEM(
MachineType::Float64(), WASM_ZERO,
WASM_F64_SUB(
WASM_LOAD_MEM(MachineType::Float64(), WASM_ZERO),
WASM_LOAD_MEM(MachineType::Float64(), WASM_I8(8)))),
WASM_I8(107)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
memory[0] = *i;
memory[1] = *j;
double expected = *i - *j;
CHECK_EQ(107, r.Call());
if (expected != expected) {
CHECK(memory[0] != memory[0]);
} else {
CHECK_EQ(expected, memory[0]);
}
}
}
}
#define ADD_CODE(vec, ...) \
do { \
byte __buf[] = {__VA_ARGS__}; \
for (size_t i = 0; i < sizeof(__buf); i++) vec.push_back(__buf[i]); \
} while (false)
static void Run_WasmMixedCall_N(int start) {
const int kExpected = 6333;
const int kElemSize = 8;
TestSignatures sigs;
#if WASM_64
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Int64(),
MachineType::Float64(), MachineType::Float32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Float64(), MachineType::Float32(),
MachineType::Float64(), MachineType::Int32(), MachineType::Int64(),
MachineType::Int32(), MachineType::Int32()};
#else
static MachineType mixed[] = {
MachineType::Int32(), MachineType::Float32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Int32(), MachineType::Float64(),
MachineType::Float32(), MachineType::Float64(), MachineType::Int32(),
MachineType::Int32(), MachineType::Int32()};
#endif
int num_params = static_cast<int>(arraysize(mixed)) - start;
for (int which = 0; which < num_params; which++) {
v8::base::AccountingAllocator allocator;
Zone zone(&allocator);
TestingModule module;
module.AddMemory(1024);
MachineType* memtypes = &mixed[start];
MachineType result = memtypes[which];
// =========================================================================
// Build the selector function.
// =========================================================================
uint32_t index;
FunctionSig::Builder b(&zone, 1, num_params);
b.AddReturn(WasmOpcodes::LocalTypeFor(result));
for (int i = 0; i < num_params; i++) {
b.AddParam(WasmOpcodes::LocalTypeFor(memtypes[i]));
}
WasmFunctionCompiler t(b.Build(), &module);
BUILD(t, WASM_GET_LOCAL(which));
index = t.CompileAndAdd();
// =========================================================================
// Build the calling function.
// =========================================================================
WasmRunner<int32_t> r(&module);
std::vector<byte> code;
ADD_CODE(code,
static_cast<byte>(WasmOpcodes::LoadStoreOpcodeOf(result, true)),
ZERO_ALIGNMENT, ZERO_OFFSET);
ADD_CODE(code, WASM_ZERO);
ADD_CODE(code, kExprCallFunction, static_cast<byte>(index));
for (int i = 0; i < num_params; i++) {
int offset = (i + 1) * kElemSize;
ADD_CODE(code, WASM_LOAD_MEM(memtypes[i], WASM_I8(offset)));
}
ADD_CODE(code, WASM_I32V_2(kExpected));
size_t end = code.size();
code.push_back(0);
r.Build(&code[0], &code[end]);
// Run the code.
for (int t = 0; t < 10; t++) {
module.RandomizeMemory();
CHECK_EQ(kExpected, r.Call());
int size = WasmOpcodes::MemSize(result);
for (int i = 0; i < size; i++) {
int base = (which + 1) * kElemSize;
byte expected = module.raw_mem_at<byte>(base + i);
byte result = module.raw_mem_at<byte>(i);
CHECK_EQ(expected, result);
}
}
}
}
TEST(Run_WasmMixedCall_0) { Run_WasmMixedCall_N(0); }
TEST(Run_WasmMixedCall_1) { Run_WasmMixedCall_N(1); }
TEST(Run_WasmMixedCall_2) { Run_WasmMixedCall_N(2); }
TEST(Run_WasmMixedCall_3) { Run_WasmMixedCall_N(3); }
TEST(Run_Wasm_AddCall) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd();
WasmRunner<int32_t> r(&module, MachineType::Int32());
byte local = r.AllocateLocal(kAstI32);
BUILD(r, B2(WASM_SET_LOCAL(local, WASM_I8(99)),
WASM_I32_ADD(
WASM_CALL_FUNCTION(t1.function_index_, WASM_GET_LOCAL(0),
WASM_GET_LOCAL(0)),
WASM_CALL_FUNCTION(t1.function_index_, WASM_GET_LOCAL(1),
WASM_GET_LOCAL(local)))));
CHECK_EQ(198, r.Call(0));
CHECK_EQ(200, r.Call(1));
CHECK_EQ(100, r.Call(-49));
}
TEST(Run_Wasm_CountDown_expr) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_LOOP(
3, WASM_IF(WASM_NOT(WASM_GET_LOCAL(0)),
WASM_BREAKV(0, WASM_GET_LOCAL(0))),
WASM_SET_LOCAL(0, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_CONTINUE(0)));
CHECK_EQ(0, r.Call(1));
CHECK_EQ(0, r.Call(10));
CHECK_EQ(0, r.Call(100));
}
TEST(Run_Wasm_ExprBlock2a) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))), WASM_I8(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2b) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_IF(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(1))), WASM_I8(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2c) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(1), WASM_GET_LOCAL(0)), WASM_I8(1)));
CHECK_EQ(1, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock2d) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B2(WASM_BRV_IF(0, WASM_I8(1), WASM_GET_LOCAL(0)), WASM_I8(2)));
CHECK_EQ(2, r.Call(0));
CHECK_EQ(1, r.Call(1));
}
TEST(Run_Wasm_ExprBlock_ManualSwitch) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, WASM_BLOCK(6, WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1)),
WASM_BRV(0, WASM_I8(11))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2)),
WASM_BRV(0, WASM_I8(12))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3)),
WASM_BRV(0, WASM_I8(13))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4)),
WASM_BRV(0, WASM_I8(14))),
WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5)),
WASM_BRV(0, WASM_I8(15))),
WASM_I8(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
TEST(Run_Wasm_ExprBlock_ManualSwitch_brif) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r,
WASM_BLOCK(6, WASM_BRV_IF(0, WASM_I8(11),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(1))),
WASM_BRV_IF(0, WASM_I8(12),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(2))),
WASM_BRV_IF(0, WASM_I8(13),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(3))),
WASM_BRV_IF(0, WASM_I8(14),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(4))),
WASM_BRV_IF(0, WASM_I8(15),
WASM_I32_EQ(WASM_GET_LOCAL(0), WASM_I8(5))),
WASM_I8(99)));
CHECK_EQ(99, r.Call(0));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(12, r.Call(2));
CHECK_EQ(13, r.Call(3));
CHECK_EQ(14, r.Call(4));
CHECK_EQ(15, r.Call(5));
CHECK_EQ(99, r.Call(6));
}
TEST(Run_Wasm_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(11), WASM_I8(12)),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(13), WASM_I8(14))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_ExprBlock_if) {
WasmRunner<int32_t> r(MachineType::Int32());
BUILD(r, B1(WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_BRV(0, WASM_I8(11)),
WASM_BRV(0, WASM_I8(14)))));
CHECK_EQ(11, r.Call(1));
CHECK_EQ(14, r.Call(0));
}
TEST(Run_Wasm_ExprBlock_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_BLOCK(
1, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(11)),
WASM_BRV(0, WASM_I8(12))),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(0, WASM_I8(13)),
WASM_BRV(0, WASM_I8(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_ExprLoop_nested_ifs) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_LOOP(
1, WASM_IF_ELSE(
WASM_GET_LOCAL(0),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(11)),
WASM_BRV(1, WASM_I8(12))),
WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_BRV(1, WASM_I8(13)),
WASM_BRV(1, WASM_I8(14))))));
CHECK_EQ(11, r.Call(1, 1));
CHECK_EQ(12, r.Call(1, 0));
CHECK_EQ(13, r.Call(0, 1));
CHECK_EQ(14, r.Call(0, 0));
}
TEST(Run_Wasm_SimpleCallIndirect) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(/*sig_index*/ 1);
WasmFunctionCompiler t2(sigs.i_ii(), &module);
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.CompileAndAdd(/*sig_index*/ 1);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
module.AddSignature(sigs.d_dd());
// Function table.
int table[] = {0, 1};
module.AddIndirectFunctionTable(table, 2);
module.PopulateIndirectFunctionTable();
// Builder the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22)));
CHECK_EQ(88, r.Call(0));
CHECK_EQ(44, r.Call(1));
CHECK_TRAP(r.Call(2));
}
TEST(Run_Wasm_MultipleCallIndirect) {
TestSignatures sigs;
TestingModule module;
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(/*sig_index*/ 1);
WasmFunctionCompiler t2(sigs.i_ii(), &module);
BUILD(t2, WASM_I32_SUB(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t2.CompileAndAdd(/*sig_index*/ 1);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
module.AddSignature(sigs.d_dd());
// Function table.
int table[] = {0, 1};
module.AddIndirectFunctionTable(table, 2);
module.PopulateIndirectFunctionTable();
// Builder the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32(), MachineType::Int32(),
MachineType::Int32());
BUILD(r,
WASM_I32_ADD(WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_GET_LOCAL(1),
WASM_GET_LOCAL(2)),
WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(1), WASM_GET_LOCAL(2),
WASM_GET_LOCAL(0))));
CHECK_EQ(5, r.Call(0, 1, 2));
CHECK_EQ(19, r.Call(0, 1, 9));
CHECK_EQ(1, r.Call(1, 0, 2));
CHECK_EQ(1, r.Call(1, 0, 9));
CHECK_TRAP(r.Call(0, 2, 1));
CHECK_TRAP(r.Call(1, 2, 0));
CHECK_TRAP(r.Call(2, 0, 1));
CHECK_TRAP(r.Call(2, 1, 0));
}
TEST(Run_Wasm_CallIndirect_NoTable) {
TestSignatures sigs;
TestingModule module;
// One function.
WasmFunctionCompiler t1(sigs.i_ii(), &module);
BUILD(t1, WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
t1.CompileAndAdd(/*sig_index*/ 1);
// Signature table.
module.AddSignature(sigs.f_ff());
module.AddSignature(sigs.i_ii());
// Builder the caller function.
WasmRunner<int32_t> r(&module, MachineType::Int32());
BUILD(r, WASM_CALL_INDIRECT(1, WASM_GET_LOCAL(0), WASM_I8(66), WASM_I8(22)));
CHECK_TRAP(r.Call(0));
CHECK_TRAP(r.Call(1));
CHECK_TRAP(r.Call(2));
}
TEST(Run_Wasm_F32Floor) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(floorf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Ceil) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(ceilf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Trunc) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(truncf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32NearestInt) {
WasmRunner<float> r(MachineType::Float32());
BUILD(r, WASM_F32_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) { CHECK_FLOAT_EQ(nearbyintf(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Floor) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_FLOOR(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(floor(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Ceil) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_CEIL(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(ceil(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64Trunc) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_TRUNC(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(trunc(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F64NearestInt) {
WasmRunner<double> r(MachineType::Float64());
BUILD(r, WASM_F64_NEARESTINT(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) { CHECK_DOUBLE_EQ(nearbyint(*i), r.Call(*i)); }
}
TEST(Run_Wasm_F32Min) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
float expected;
if (*i < *j) {
expected = *i;
} else if (*j < *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_FLOAT_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F64Min) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_MIN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected;
if (*i < *j) {
expected = *i;
} else if (*j < *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_DOUBLE_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F32Max) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) {
float expected;
if (*i > *j) {
expected = *i;
} else if (*j > *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_FLOAT_EQ(expected, r.Call(*i, *j));
}
}
}
TEST(Run_Wasm_F64Max) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_MAX(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) {
double expected;
if (*i > *j) {
expected = *i;
} else if (*j > *i) {
expected = *j;
} else if (*i != *i) {
// If *i or *j is NaN, then the result is NaN.
expected = *i;
} else {
expected = *j;
}
CHECK_DOUBLE_EQ(expected, r.Call(*i, *j));
}
}
}
// TODO(ahaas): Fix on arm and mips and reenable.
#if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \
!V8_TARGET_ARCH_MIPS64
TEST(Run_Wasm_F32Min_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MIN(WASM_F32(bit_cast<float>(0xff80f1e2)), WASM_F32(57.67)));
CHECK_EQ(0xffc0f1e2, bit_cast<uint32_t>(r.Call()));
}
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MIN(WASM_F32(45.73), WASM_F32(bit_cast<float>(0x7f80f1e2))));
CHECK_EQ(0x7fc0f1e2, bit_cast<uint32_t>(r.Call()));
}
}
TEST(Run_Wasm_F32Max_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MAX(WASM_F32(bit_cast<float>(0xff80f1e2)), WASM_F32(57.67)));
CHECK_EQ(0xffc0f1e2, bit_cast<uint32_t>(r.Call()));
}
{
WasmRunner<float> r;
BUILD(r,
WASM_F32_MAX(WASM_F32(45.73), WASM_F32(bit_cast<float>(0x7f80f1e2))));
CHECK_EQ(0x7fc0f1e2, bit_cast<uint32_t>(r.Call()));
}
}
TEST(Run_Wasm_F64Min_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MIN(WASM_F64(bit_cast<double>(0xfff000000000f1e2)),
WASM_F64(57.67)));
CHECK_EQ(0xfff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MIN(WASM_F64(45.73),
WASM_F64(bit_cast<double>(0x7ff000000000f1e2))));
CHECK_EQ(0x7ff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
}
TEST(Run_Wasm_F64Max_Snan) {
// Test that the instruction does not return a signalling NaN.
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MAX(WASM_F64(bit_cast<double>(0xfff000000000f1e2)),
WASM_F64(57.67)));
CHECK_EQ(0xfff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
{
WasmRunner<double> r;
BUILD(r, WASM_F64_MAX(WASM_F64(45.73),
WASM_F64(bit_cast<double>(0x7ff000000000f1e2))));
CHECK_EQ(0x7ff800000000f1e2, bit_cast<uint64_t>(r.Call()));
}
}
#endif
TEST(Run_Wasm_I32SConvertF32) {
WasmRunner<int32_t> r(MachineType::Float32());
BUILD(r, WASM_I32_SCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < static_cast<float>(INT32_MAX) &&
*i >= static_cast<float>(INT32_MIN)) {
CHECK_EQ(static_cast<int32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32SConvertF64) {
WasmRunner<int32_t> r(MachineType::Float64());
BUILD(r, WASM_I32_SCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < (static_cast<double>(INT32_MAX) + 1.0) &&
*i > (static_cast<double>(INT32_MIN) - 1.0)) {
CHECK_EQ(static_cast<int64_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32UConvertF32) {
WasmRunner<uint32_t> r(MachineType::Float32());
BUILD(r, WASM_I32_UCONVERT_F32(WASM_GET_LOCAL(0)));
FOR_FLOAT32_INPUTS(i) {
if (*i < (static_cast<float>(UINT32_MAX) + 1.0) && *i > -1) {
CHECK_EQ(static_cast<uint32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_I32UConvertF64) {
WasmRunner<uint32_t> r(MachineType::Float64());
BUILD(r, WASM_I32_UCONVERT_F64(WASM_GET_LOCAL(0)));
FOR_FLOAT64_INPUTS(i) {
if (*i < (static_cast<float>(UINT32_MAX) + 1.0) && *i > -1) {
CHECK_EQ(static_cast<uint32_t>(*i), r.Call(*i));
} else {
CHECK_TRAP32(r.Call(*i));
}
}
}
TEST(Run_Wasm_F64CopySign) {
WasmRunner<double> r(MachineType::Float64(), MachineType::Float64());
BUILD(r, WASM_F64_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT64_INPUTS(i) {
FOR_FLOAT64_INPUTS(j) { CHECK_DOUBLE_EQ(copysign(*i, *j), r.Call(*i, *j)); }
}
}
TEST(Run_Wasm_F32CopySign) {
WasmRunner<float> r(MachineType::Float32(), MachineType::Float32());
BUILD(r, WASM_F32_COPYSIGN(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)));
FOR_FLOAT32_INPUTS(i) {
FOR_FLOAT32_INPUTS(j) { CHECK_FLOAT_EQ(copysignf(*i, *j), r.Call(*i, *j)); }
}
}
void CompileCallIndirectMany(LocalType param) {
// Make sure we don't run out of registers when compiling indirect calls
// with many many parameters.
TestSignatures sigs;
for (byte num_params = 0; num_params < 40; num_params++) {
v8::base::AccountingAllocator allocator;
Zone zone(&allocator);
HandleScope scope(CcTest::InitIsolateOnce());
TestingModule module;
FunctionSig* sig = sigs.many(&zone, kAstStmt, param, num_params);
module.AddSignature(sig);
module.AddSignature(sig);
module.AddIndirectFunctionTable(nullptr, 0);
WasmFunctionCompiler t(sig, &module);
std::vector<byte> code;
ADD_CODE(code, kExprCallIndirect, 1);
ADD_CODE(code, kExprI8Const, 0);
for (byte p = 0; p < num_params; p++) {
ADD_CODE(code, kExprGetLocal, p);
}
t.Build(&code[0], &code[0] + code.size());
t.Compile();
}
}
TEST(Compile_Wasm_CallIndirect_Many_i32) { CompileCallIndirectMany(kAstI32); }
#if WASM_64
TEST(Compile_Wasm_CallIndirect_Many_i64) { CompileCallIndirectMany(kAstI64); }
#endif
TEST(Compile_Wasm_CallIndirect_Many_f32) { CompileCallIndirectMany(kAstF32); }
TEST(Compile_Wasm_CallIndirect_Many_f64) { CompileCallIndirectMany(kAstF64); }
TEST(Run_WASM_Int32RemS_dead) {
WasmRunner<int32_t> r(MachineType::Int32(), MachineType::Int32());
BUILD(r, WASM_I32_REMS(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1)), WASM_ZERO);
const int32_t kMin = std::numeric_limits<int32_t>::min();
CHECK_EQ(0, r.Call(133, 100));
CHECK_EQ(0, r.Call(kMin, -1));
CHECK_EQ(0, r.Call(0, 1));
CHECK_TRAP(r.Call(100, 0));
CHECK_TRAP(r.Call(-1001, 0));
CHECK_TRAP(r.Call(kMin, 0));
}