blob: b5ace13db9b2d357b8e3e33650439e700b4371eb [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_S390_ASSEMBLER_S390_INL_H_
#define V8_S390_ASSEMBLER_S390_INL_H_
#include "src/s390/assembler-s390.h"
#include "src/assembler.h"
#include "src/debug/debug.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsCrankshaft() { return true; }
void RelocInfo::apply(intptr_t delta) {
// Absolute code pointer inside code object moves with the code object.
if (IsInternalReference(rmode_)) {
// Jump table entry
Address target = Memory::Address_at(pc_);
Memory::Address_at(pc_) = target + delta;
} else if (IsCodeTarget(rmode_)) {
SixByteInstr instr =
Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords
- static_cast<int32_t>(delta);
instr >>= 32; // Clear the 4-byte displacement field.
instr <<= 32;
instr |= static_cast<uint32_t>(dis / 2);
Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
instr);
} else {
// mov sequence
DCHECK(IsInternalReferenceEncoded(rmode_));
Address target = Assembler::target_address_at(pc_, host_);
Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
SKIP_ICACHE_FLUSH);
}
}
Address RelocInfo::target_internal_reference() {
if (IsInternalReference(rmode_)) {
// Jump table entry
return Memory::Address_at(pc_);
} else {
// mov sequence
DCHECK(IsInternalReferenceEncoded(rmode_));
return Assembler::target_address_at(pc_, host_);
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LIS/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written.
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::constant_pool_entry_address() {
UNREACHABLE();
return NULL;
}
int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
void RelocInfo::set_target_address(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
Assembler::set_target_address_at(isolate_, pc_, host_, target,
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
IsCodeTarget(rmode_)) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
Address Assembler::target_address_from_return_address(Address pc) {
// Returns the address of the call target from the return address that will
// be returned to after a call.
// Sequence is:
// BRASL r14, RI
return pc - kCallTargetAddressOffset;
}
Address Assembler::return_address_from_call_start(Address pc) {
// Sequence is:
// BRASL r14, RI
return pc + kCallTargetAddressOffset;
}
Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
SixByteInstr instr =
Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
int index = instr & 0xFFFFFFFF;
return code_targets_[index];
}
Object* RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
if (rmode_ == EMBEDDED_OBJECT) {
return Handle<Object>(
reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
} else {
return origin->code_target_object_handle_at(pc_);
}
}
void RelocInfo::set_target_object(Object* target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(isolate_, pc_, host_,
reinterpret_cast<Address>(target),
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
target->IsHeapObject()) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target));
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
Handle<Cell> RelocInfo::target_cell_handle() {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = Memory::Address_at(pc_);
return Handle<Cell>(reinterpret_cast<Cell**>(address));
}
Cell* RelocInfo::target_cell() {
DCHECK(rmode_ == RelocInfo::CELL);
return Cell::FromValueAddress(Memory::Address_at(pc_));
}
void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = cell->address() + Cell::kValueOffset;
Memory::Address_at(pc_) = address;
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
cell);
}
}
#if V8_TARGET_ARCH_S390X
// NOP(2byte) + PUSH + MOV + BASR =
// NOP + LAY + STG + IIHF + IILF + BASR
static const int kCodeAgingSequenceLength = 28;
static const int kCodeAgingTargetDelta = 14; // Jump past NOP + PUSH to IIHF
// LAY + 4 * STG + LA
static const int kNoCodeAgeSequenceLength = 34;
#else
#if (V8_HOST_ARCH_S390)
// NOP + NILH + LAY + ST + IILF + BASR
static const int kCodeAgingSequenceLength = 24;
static const int kCodeAgingTargetDelta = 16; // Jump past NOP to IILF
// NILH + LAY + 4 * ST + LA
static const int kNoCodeAgeSequenceLength = 30;
#else
// NOP + LAY + ST + IILF + BASR
static const int kCodeAgingSequenceLength = 20;
static const int kCodeAgingTargetDelta = 12; // Jump past NOP to IILF
// LAY + 4 * ST + LA
static const int kNoCodeAgeSequenceLength = 26;
#endif
#endif
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
UNREACHABLE(); // This should never be reached on S390.
return Handle<Object>();
}
Code* RelocInfo::code_age_stub() {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
return Code::GetCodeFromTargetAddress(
Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
}
void RelocInfo::set_code_age_stub(Code* stub,
ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
stub->instruction_start(),
icache_flush_mode);
}
Address RelocInfo::debug_call_address() {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_debug_call_address(Address target) {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
Assembler::set_target_address_at(isolate_, pc_, host_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
void RelocInfo::WipeOut() {
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
if (IsInternalReference(rmode_)) {
// Jump table entry
Memory::Address_at(pc_) = NULL;
} else if (IsInternalReferenceEncoded(rmode_)) {
// mov sequence
// Currently used only by deserializer, no need to flush.
Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
SKIP_ICACHE_FLUSH);
} else {
Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
}
}
template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(this);
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::CELL) {
visitor->VisitCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
visitor->VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
visitor->VisitCodeAgeSequence(this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
visitor->VisitDebugTarget(this);
} else if (IsRuntimeEntry(mode)) {
visitor->VisitRuntimeEntry(this);
}
}
template <typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitEmbeddedPointer(heap, this);
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::CELL) {
StaticVisitor::VisitCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE) {
StaticVisitor::VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
StaticVisitor::VisitCodeAgeSequence(heap, this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
StaticVisitor::VisitDebugTarget(heap, this);
} else if (IsRuntimeEntry(mode)) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
// Operand constructors
Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
rm_ = no_reg;
imm_ = immediate;
rmode_ = rmode;
}
Operand::Operand(const ExternalReference& f) {
rm_ = no_reg;
imm_ = reinterpret_cast<intptr_t>(f.address());
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}
Operand::Operand(Smi* value) {
rm_ = no_reg;
imm_ = reinterpret_cast<intptr_t>(value);
rmode_ = kRelocInfo_NONEPTR;
}
Operand::Operand(Register rm) {
rm_ = rm;
rmode_ = kRelocInfo_NONEPTR; // S390 -why doesn't ARM do this?
}
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
TypeFeedbackId ast_id) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
SetRecordedAstId(ast_id);
RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
} else {
RecordRelocInfo(rmode);
}
int current = code_targets_.length();
if (current > 0 && code_targets_.last().is_identical_to(target)) {
// Optimization if we keep jumping to the same code target.
current--;
} else {
code_targets_.Add(target);
}
return current;
}
// Helper to emit the binary encoding of a 2 byte instruction
void Assembler::emit2bytes(uint16_t x) {
CheckBuffer();
#if V8_TARGET_LITTLE_ENDIAN
// We need to emit instructions in big endian format as disassembler /
// simulator require the first byte of the instruction in order to decode
// the instruction length. Swap the bytes.
x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
#endif
*reinterpret_cast<uint16_t*>(pc_) = x;
pc_ += 2;
}
// Helper to emit the binary encoding of a 4 byte instruction
void Assembler::emit4bytes(uint32_t x) {
CheckBuffer();
#if V8_TARGET_LITTLE_ENDIAN
// We need to emit instructions in big endian format as disassembler /
// simulator require the first byte of the instruction in order to decode
// the instruction length. Swap the bytes.
x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
#endif
*reinterpret_cast<uint32_t*>(pc_) = x;
pc_ += 4;
}
// Helper to emit the binary encoding of a 6 byte instruction
void Assembler::emit6bytes(uint64_t x) {
CheckBuffer();
#if V8_TARGET_LITTLE_ENDIAN
// We need to emit instructions in big endian format as disassembler /
// simulator require the first byte of the instruction in order to decode
// the instruction length. Swap the bytes.
x = (static_cast<uint64_t>(x & 0xFF) << 40) |
(static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
(static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
(static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
(static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
(static_cast<uint64_t>((x >> 40) & 0xFF));
x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
#else
// We need to pad two bytes of zeros in order to get the 6-bytes
// stored from low address.
x = x << 16;
x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
#endif
// It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
// space left over.
*reinterpret_cast<uint64_t*>(pc_) = x;
pc_ += 6;
}
bool Operand::is_reg() const { return rm_.is_valid(); }
// Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
Address Assembler::target_address_at(Address pc, Address constant_pool) {
// S390 Instruction!
// We want to check for instructions generated by Asm::mov()
Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
SixByteInstr instr_1 =
Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
if (BRASL == op1 || BRCL == op1) {
int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
}
#if V8_TARGET_ARCH_S390X
int instr1_length =
Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
Opcode op2 = Instruction::S390OpcodeValue(
reinterpret_cast<const byte*>(pc + instr1_length));
SixByteInstr instr_2 = Instruction::InstructionBits(
reinterpret_cast<const byte*>(pc + instr1_length));
// IIHF for hi_32, IILF for lo_32
if (IIHF == op1 && IILF == op2) {
return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
((instr_2 & 0xFFFFFFFF)));
}
#else
// IILF loads 32-bits
if (IILF == op1 || CFI == op1) {
return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
}
#endif
UNIMPLEMENTED();
return (Address)0;
}
// This sets the branch destination (which gets loaded at the call address).
// This is for calls and branches within generated code. The serializer
// has already deserialized the mov instructions etc.
// There is a FIXED_SEQUENCE assumption here
void Assembler::deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code, Address target) {
set_target_address_at(isolate, instruction_payload, code, target);
}
void Assembler::deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
if (RelocInfo::IsInternalReferenceEncoded(mode)) {
Code* code = NULL;
set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
} else {
Memory::Address_at(pc) = target;
}
}
// This code assumes the FIXED_SEQUENCE of IIHF/IILF
void Assembler::set_target_address_at(Isolate* isolate, Address pc,
Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode) {
// Check for instructions generated by Asm::mov()
Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
SixByteInstr instr_1 =
Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
bool patched = false;
if (BRASL == op1 || BRCL == op1) {
instr_1 >>= 32; // Zero out the lower 32-bits
instr_1 <<= 32;
int32_t halfwords = (target - pc) / 2; // number of halfwords
instr_1 |= static_cast<uint32_t>(halfwords);
Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
instr_1);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate, pc, 6);
}
patched = true;
} else {
#if V8_TARGET_ARCH_S390X
int instr1_length =
Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
Opcode op2 = Instruction::S390OpcodeValue(
reinterpret_cast<const byte*>(pc + instr1_length));
SixByteInstr instr_2 = Instruction::InstructionBits(
reinterpret_cast<const byte*>(pc + instr1_length));
// IIHF for hi_32, IILF for lo_32
if (IIHF == op1 && IILF == op2) {
// IIHF
instr_1 >>= 32; // Zero out the lower 32-bits
instr_1 <<= 32;
instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
instr_1);
// IILF
instr_2 >>= 32;
instr_2 <<= 32;
instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
Instruction::SetInstructionBits<SixByteInstr>(
reinterpret_cast<byte*>(pc + instr1_length), instr_2);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate, pc, 12);
}
patched = true;
}
#else
// IILF loads 32-bits
if (IILF == op1 || CFI == op1) {
instr_1 >>= 32; // Zero out the lower 32-bits
instr_1 <<= 32;
instr_1 |= reinterpret_cast<uint32_t>(target);
Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
instr_1);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
Assembler::FlushICache(isolate, pc, 6);
}
patched = true;
}
#endif
}
if (!patched) UNREACHABLE();
}
} // namespace internal
} // namespace v8
#endif // V8_S390_ASSEMBLER_S390_INL_H_