blob: 760df807088d1eb6223056c53c3c5d13bc2c4474 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/sampler.h"
#if V8_OS_POSIX && !V8_OS_CYGWIN
#define USE_SIGNALS
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <sys/time.h>
#if !V8_OS_QNX && !V8_OS_NACL
#include <sys/syscall.h> // NOLINT
#endif
#if V8_OS_MACOSX
#include <mach/mach.h>
// OpenBSD doesn't have <ucontext.h>. ucontext_t lives in <signal.h>
// and is a typedef for struct sigcontext. There is no uc_mcontext.
#elif(!V8_OS_ANDROID || defined(__BIONIC_HAVE_UCONTEXT_T)) && \
!V8_OS_OPENBSD && !V8_OS_NACL
#include <ucontext.h>
#endif
#include <unistd.h>
// GLibc on ARM defines mcontext_t has a typedef for 'struct sigcontext'.
// Old versions of the C library <signal.h> didn't define the type.
#if V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T) && \
(defined(__arm__) || defined(__aarch64__)) && \
!defined(__BIONIC_HAVE_STRUCT_SIGCONTEXT)
#include <asm/sigcontext.h> // NOLINT
#endif
#elif V8_OS_WIN || V8_OS_CYGWIN
#include "src/base/win32-headers.h"
#endif
#include "src/v8.h"
#include "src/base/platform/platform.h"
#include "src/cpu-profiler-inl.h"
#include "src/flags.h"
#include "src/frames-inl.h"
#include "src/log.h"
#include "src/simulator.h"
#include "src/v8threads.h"
#include "src/vm-state-inl.h"
#if V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T)
// Not all versions of Android's C library provide ucontext_t.
// Detect this and provide custom but compatible definitions. Note that these
// follow the GLibc naming convention to access register values from
// mcontext_t.
//
// See http://code.google.com/p/android/issues/detail?id=34784
#if defined(__arm__)
typedef struct sigcontext mcontext_t;
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
#elif defined(__aarch64__)
typedef struct sigcontext mcontext_t;
typedef struct ucontext {
uint64_t uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
#elif defined(__mips__)
// MIPS version of sigcontext, for Android bionic.
typedef struct {
uint32_t regmask;
uint32_t status;
uint64_t pc;
uint64_t gregs[32];
uint64_t fpregs[32];
uint32_t acx;
uint32_t fpc_csr;
uint32_t fpc_eir;
uint32_t used_math;
uint32_t dsp;
uint64_t mdhi;
uint64_t mdlo;
uint32_t hi1;
uint32_t lo1;
uint32_t hi2;
uint32_t lo2;
uint32_t hi3;
uint32_t lo3;
} mcontext_t;
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
#elif defined(__i386__)
// x86 version for Android.
typedef struct {
uint32_t gregs[19];
void* fpregs;
uint32_t oldmask;
uint32_t cr2;
} mcontext_t;
typedef uint32_t kernel_sigset_t[2]; // x86 kernel uses 64-bit signal masks
typedef struct ucontext {
uint32_t uc_flags;
struct ucontext* uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };
#elif defined(__x86_64__)
// x64 version for Android.
typedef struct {
uint64_t gregs[23];
void* fpregs;
uint64_t __reserved1[8];
} mcontext_t;
typedef struct ucontext {
uint64_t uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
mcontext_t uc_mcontext;
// Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_RBP = 10, REG_RSP = 15, REG_RIP = 16 };
#endif
#endif // V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T)
namespace v8 {
namespace internal {
namespace {
class PlatformDataCommon : public Malloced {
public:
PlatformDataCommon() : profiled_thread_id_(ThreadId::Current()) {}
ThreadId profiled_thread_id() { return profiled_thread_id_; }
protected:
~PlatformDataCommon() {}
private:
ThreadId profiled_thread_id_;
};
} // namespace
#if defined(USE_SIGNALS)
class Sampler::PlatformData : public PlatformDataCommon {
public:
PlatformData() : vm_tid_(pthread_self()) {}
pthread_t vm_tid() const { return vm_tid_; }
private:
pthread_t vm_tid_;
};
#elif V8_OS_WIN || V8_OS_CYGWIN
// ----------------------------------------------------------------------------
// Win32 profiler support. On Cygwin we use the same sampler implementation as
// on Win32.
class Sampler::PlatformData : public PlatformDataCommon {
public:
// Get a handle to the calling thread. This is the thread that we are
// going to profile. We need to make a copy of the handle because we are
// going to use it in the sampler thread. Using GetThreadHandle() will
// not work in this case. We're using OpenThread because DuplicateHandle
// for some reason doesn't work in Chrome's sandbox.
PlatformData()
: profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
THREAD_SUSPEND_RESUME |
THREAD_QUERY_INFORMATION,
false,
GetCurrentThreadId())) {}
~PlatformData() {
if (profiled_thread_ != NULL) {
CloseHandle(profiled_thread_);
profiled_thread_ = NULL;
}
}
HANDLE profiled_thread() { return profiled_thread_; }
private:
HANDLE profiled_thread_;
};
#endif
#if defined(USE_SIMULATOR)
class SimulatorHelper {
public:
inline bool Init(Isolate* isolate) {
simulator_ = isolate->thread_local_top()->simulator_;
// Check if there is active simulator.
return simulator_ != NULL;
}
inline void FillRegisters(v8::RegisterState* state) {
#if V8_TARGET_ARCH_ARM
state->pc = reinterpret_cast<Address>(simulator_->get_pc());
state->sp = reinterpret_cast<Address>(simulator_->get_register(
Simulator::sp));
state->fp = reinterpret_cast<Address>(simulator_->get_register(
Simulator::r11));
#elif V8_TARGET_ARCH_ARM64
if (simulator_->sp() == 0 || simulator_->fp() == 0) {
// It's possible that the simulator is interrupted while it is updating
// the sp or fp register. ARM64 simulator does this in two steps:
// first setting it to zero and then setting it to a new value.
// Bailout if sp/fp doesn't contain the new value.
return;
}
state->pc = reinterpret_cast<Address>(simulator_->pc());
state->sp = reinterpret_cast<Address>(simulator_->sp());
state->fp = reinterpret_cast<Address>(simulator_->fp());
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
state->pc = reinterpret_cast<Address>(simulator_->get_pc());
state->sp = reinterpret_cast<Address>(simulator_->get_register(
Simulator::sp));
state->fp = reinterpret_cast<Address>(simulator_->get_register(
Simulator::fp));
#endif
}
private:
Simulator* simulator_;
};
#endif // USE_SIMULATOR
#if defined(USE_SIGNALS)
class SignalHandler : public AllStatic {
public:
static void SetUp() { if (!mutex_) mutex_ = new base::Mutex(); }
static void TearDown() { delete mutex_; mutex_ = NULL; }
static void IncreaseSamplerCount() {
base::LockGuard<base::Mutex> lock_guard(mutex_);
if (++client_count_ == 1) Install();
}
static void DecreaseSamplerCount() {
base::LockGuard<base::Mutex> lock_guard(mutex_);
if (--client_count_ == 0) Restore();
}
static bool Installed() {
return signal_handler_installed_;
}
private:
static void Install() {
#if !V8_OS_NACL
struct sigaction sa;
sa.sa_sigaction = &HandleProfilerSignal;
sigemptyset(&sa.sa_mask);
#if V8_OS_QNX
sa.sa_flags = SA_SIGINFO;
#else
sa.sa_flags = SA_RESTART | SA_SIGINFO;
#endif
signal_handler_installed_ =
(sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
#endif
}
static void Restore() {
#if !V8_OS_NACL
if (signal_handler_installed_) {
sigaction(SIGPROF, &old_signal_handler_, 0);
signal_handler_installed_ = false;
}
#endif
}
#if !V8_OS_NACL
static void HandleProfilerSignal(int signal, siginfo_t* info, void* context);
#endif
// Protects the process wide state below.
static base::Mutex* mutex_;
static int client_count_;
static bool signal_handler_installed_;
static struct sigaction old_signal_handler_;
};
base::Mutex* SignalHandler::mutex_ = NULL;
int SignalHandler::client_count_ = 0;
struct sigaction SignalHandler::old_signal_handler_;
bool SignalHandler::signal_handler_installed_ = false;
// As Native Client does not support signal handling, profiling is disabled.
#if !V8_OS_NACL
void SignalHandler::HandleProfilerSignal(int signal, siginfo_t* info,
void* context) {
USE(info);
if (signal != SIGPROF) return;
Isolate* isolate = Isolate::UnsafeCurrent();
if (isolate == NULL || !isolate->IsInUse()) {
// We require a fully initialized and entered isolate.
return;
}
if (v8::Locker::IsActive() &&
!isolate->thread_manager()->IsLockedByCurrentThread()) {
return;
}
Sampler* sampler = isolate->logger()->sampler();
if (sampler == NULL) return;
v8::RegisterState state;
#if defined(USE_SIMULATOR)
SimulatorHelper helper;
if (!helper.Init(isolate)) return;
helper.FillRegisters(&state);
// It possible that the simulator is interrupted while it is updating
// the sp or fp register. ARM64 simulator does this in two steps:
// first setting it to zero and then setting it to the new value.
// Bailout if sp/fp doesn't contain the new value.
if (state.sp == 0 || state.fp == 0) return;
#else
// Extracting the sample from the context is extremely machine dependent.
ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
#if !V8_OS_OPENBSD
mcontext_t& mcontext = ucontext->uc_mcontext;
#endif
#if V8_OS_LINUX
#if V8_HOST_ARCH_IA32
state.pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
state.sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
state.fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
#elif V8_HOST_ARCH_X64
state.pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
state.sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
state.fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
#elif V8_HOST_ARCH_ARM
#if V8_LIBC_GLIBC && !V8_GLIBC_PREREQ(2, 4)
// Old GLibc ARM versions used a gregs[] array to access the register
// values from mcontext_t.
state.pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
state.sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
state.fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
#else
state.pc = reinterpret_cast<Address>(mcontext.arm_pc);
state.sp = reinterpret_cast<Address>(mcontext.arm_sp);
state.fp = reinterpret_cast<Address>(mcontext.arm_fp);
#endif // V8_LIBC_GLIBC && !V8_GLIBC_PREREQ(2, 4)
#elif V8_HOST_ARCH_ARM64
state.pc = reinterpret_cast<Address>(mcontext.pc);
state.sp = reinterpret_cast<Address>(mcontext.sp);
// FP is an alias for x29.
state.fp = reinterpret_cast<Address>(mcontext.regs[29]);
#elif V8_HOST_ARCH_MIPS
state.pc = reinterpret_cast<Address>(mcontext.pc);
state.sp = reinterpret_cast<Address>(mcontext.gregs[29]);
state.fp = reinterpret_cast<Address>(mcontext.gregs[30]);
#elif V8_HOST_ARCH_MIPS64
state.pc = reinterpret_cast<Address>(mcontext.pc);
state.sp = reinterpret_cast<Address>(mcontext.gregs[29]);
state.fp = reinterpret_cast<Address>(mcontext.gregs[30]);
#endif // V8_HOST_ARCH_*
#elif V8_OS_MACOSX
#if V8_HOST_ARCH_X64
#if __DARWIN_UNIX03
state.pc = reinterpret_cast<Address>(mcontext->__ss.__rip);
state.sp = reinterpret_cast<Address>(mcontext->__ss.__rsp);
state.fp = reinterpret_cast<Address>(mcontext->__ss.__rbp);
#else // !__DARWIN_UNIX03
state.pc = reinterpret_cast<Address>(mcontext->ss.rip);
state.sp = reinterpret_cast<Address>(mcontext->ss.rsp);
state.fp = reinterpret_cast<Address>(mcontext->ss.rbp);
#endif // __DARWIN_UNIX03
#elif V8_HOST_ARCH_IA32
#if __DARWIN_UNIX03
state.pc = reinterpret_cast<Address>(mcontext->__ss.__eip);
state.sp = reinterpret_cast<Address>(mcontext->__ss.__esp);
state.fp = reinterpret_cast<Address>(mcontext->__ss.__ebp);
#else // !__DARWIN_UNIX03
state.pc = reinterpret_cast<Address>(mcontext->ss.eip);
state.sp = reinterpret_cast<Address>(mcontext->ss.esp);
state.fp = reinterpret_cast<Address>(mcontext->ss.ebp);
#endif // __DARWIN_UNIX03
#endif // V8_HOST_ARCH_IA32
#elif V8_OS_FREEBSD
#if V8_HOST_ARCH_IA32
state.pc = reinterpret_cast<Address>(mcontext.mc_eip);
state.sp = reinterpret_cast<Address>(mcontext.mc_esp);
state.fp = reinterpret_cast<Address>(mcontext.mc_ebp);
#elif V8_HOST_ARCH_X64
state.pc = reinterpret_cast<Address>(mcontext.mc_rip);
state.sp = reinterpret_cast<Address>(mcontext.mc_rsp);
state.fp = reinterpret_cast<Address>(mcontext.mc_rbp);
#elif V8_HOST_ARCH_ARM
state.pc = reinterpret_cast<Address>(mcontext.mc_r15);
state.sp = reinterpret_cast<Address>(mcontext.mc_r13);
state.fp = reinterpret_cast<Address>(mcontext.mc_r11);
#endif // V8_HOST_ARCH_*
#elif V8_OS_NETBSD
#if V8_HOST_ARCH_IA32
state.pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_EIP]);
state.sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_ESP]);
state.fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_EBP]);
#elif V8_HOST_ARCH_X64
state.pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_RIP]);
state.sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RSP]);
state.fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RBP]);
#endif // V8_HOST_ARCH_*
#elif V8_OS_OPENBSD
#if V8_HOST_ARCH_IA32
state.pc = reinterpret_cast<Address>(ucontext->sc_eip);
state.sp = reinterpret_cast<Address>(ucontext->sc_esp);
state.fp = reinterpret_cast<Address>(ucontext->sc_ebp);
#elif V8_HOST_ARCH_X64
state.pc = reinterpret_cast<Address>(ucontext->sc_rip);
state.sp = reinterpret_cast<Address>(ucontext->sc_rsp);
state.fp = reinterpret_cast<Address>(ucontext->sc_rbp);
#endif // V8_HOST_ARCH_*
#elif V8_OS_SOLARIS
state.pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
state.sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
state.fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
#elif V8_OS_QNX
#if V8_HOST_ARCH_IA32
state.pc = reinterpret_cast<Address>(mcontext.cpu.eip);
state.sp = reinterpret_cast<Address>(mcontext.cpu.esp);
state.fp = reinterpret_cast<Address>(mcontext.cpu.ebp);
#elif V8_HOST_ARCH_ARM
state.pc = reinterpret_cast<Address>(mcontext.cpu.gpr[ARM_REG_PC]);
state.sp = reinterpret_cast<Address>(mcontext.cpu.gpr[ARM_REG_SP]);
state.fp = reinterpret_cast<Address>(mcontext.cpu.gpr[ARM_REG_FP]);
#endif // V8_HOST_ARCH_*
#endif // V8_OS_QNX
#endif // USE_SIMULATOR
sampler->SampleStack(state);
}
#endif // V8_OS_NACL
#endif
class SamplerThread : public base::Thread {
public:
static const int kSamplerThreadStackSize = 64 * KB;
explicit SamplerThread(int interval)
: Thread(base::Thread::Options("SamplerThread", kSamplerThreadStackSize)),
interval_(interval) {}
static void SetUp() { if (!mutex_) mutex_ = new base::Mutex(); }
static void TearDown() { delete mutex_; mutex_ = NULL; }
static void AddActiveSampler(Sampler* sampler) {
bool need_to_start = false;
base::LockGuard<base::Mutex> lock_guard(mutex_);
if (instance_ == NULL) {
// Start a thread that will send SIGPROF signal to VM threads,
// when CPU profiling will be enabled.
instance_ = new SamplerThread(sampler->interval());
need_to_start = true;
}
DCHECK(sampler->IsActive());
DCHECK(!instance_->active_samplers_.Contains(sampler));
DCHECK(instance_->interval_ == sampler->interval());
instance_->active_samplers_.Add(sampler);
if (need_to_start) instance_->StartSynchronously();
}
static void RemoveActiveSampler(Sampler* sampler) {
SamplerThread* instance_to_remove = NULL;
{
base::LockGuard<base::Mutex> lock_guard(mutex_);
DCHECK(sampler->IsActive());
bool removed = instance_->active_samplers_.RemoveElement(sampler);
DCHECK(removed);
USE(removed);
// We cannot delete the instance immediately as we need to Join() the
// thread but we are holding mutex_ and the thread may try to acquire it.
if (instance_->active_samplers_.is_empty()) {
instance_to_remove = instance_;
instance_ = NULL;
}
}
if (!instance_to_remove) return;
instance_to_remove->Join();
delete instance_to_remove;
}
// Implement Thread::Run().
virtual void Run() {
while (true) {
{
base::LockGuard<base::Mutex> lock_guard(mutex_);
if (active_samplers_.is_empty()) break;
// When CPU profiling is enabled both JavaScript and C++ code is
// profiled. We must not suspend.
for (int i = 0; i < active_samplers_.length(); ++i) {
Sampler* sampler = active_samplers_.at(i);
if (!sampler->IsProfiling()) continue;
sampler->DoSample();
}
}
base::OS::Sleep(interval_);
}
}
private:
// Protects the process wide state below.
static base::Mutex* mutex_;
static SamplerThread* instance_;
const int interval_;
List<Sampler*> active_samplers_;
DISALLOW_COPY_AND_ASSIGN(SamplerThread);
};
base::Mutex* SamplerThread::mutex_ = NULL;
SamplerThread* SamplerThread::instance_ = NULL;
//
// StackTracer implementation
//
DISABLE_ASAN void TickSample::Init(Isolate* isolate,
const v8::RegisterState& regs,
RecordCEntryFrame record_c_entry_frame) {
timestamp = base::TimeTicks::HighResolutionNow();
pc = reinterpret_cast<Address>(regs.pc);
state = isolate->current_vm_state();
// Avoid collecting traces while doing GC.
if (state == GC) return;
Address js_entry_sp = isolate->js_entry_sp();
if (js_entry_sp == 0) return; // Not executing JS now.
ExternalCallbackScope* scope = isolate->external_callback_scope();
Address handler = Isolate::handler(isolate->thread_local_top());
// If there is a handler on top of the external callback scope then
// we have already entrered JavaScript again and the external callback
// is not the top function.
if (scope && scope->scope_address() < handler) {
external_callback = scope->callback();
has_external_callback = true;
} else {
// Sample potential return address value for frameless invocation of
// stubs (we'll figure out later, if this value makes sense).
tos = Memory::Address_at(reinterpret_cast<Address>(regs.sp));
has_external_callback = false;
}
SafeStackFrameIterator it(isolate, reinterpret_cast<Address>(regs.fp),
reinterpret_cast<Address>(regs.sp), js_entry_sp);
top_frame_type = it.top_frame_type();
SampleInfo info;
GetStackSample(isolate, regs, record_c_entry_frame,
reinterpret_cast<void**>(&stack[0]), kMaxFramesCount, &info);
frames_count = static_cast<unsigned>(info.frames_count);
}
void TickSample::GetStackSample(Isolate* isolate, const v8::RegisterState& regs,
RecordCEntryFrame record_c_entry_frame,
void** frames, size_t frames_limit,
v8::SampleInfo* sample_info) {
sample_info->frames_count = 0;
sample_info->vm_state = isolate->current_vm_state();
if (sample_info->vm_state == GC) return;
Address js_entry_sp = isolate->js_entry_sp();
if (js_entry_sp == 0) return; // Not executing JS now.
SafeStackFrameIterator it(isolate, reinterpret_cast<Address>(regs.fp),
reinterpret_cast<Address>(regs.sp), js_entry_sp);
size_t i = 0;
if (record_c_entry_frame == kIncludeCEntryFrame && !it.done() &&
it.top_frame_type() == StackFrame::EXIT) {
frames[i++] = isolate->c_function();
}
while (!it.done() && i < frames_limit) {
frames[i++] = it.frame()->pc();
it.Advance();
}
sample_info->frames_count = i;
}
void Sampler::SetUp() {
#if defined(USE_SIGNALS)
SignalHandler::SetUp();
#endif
SamplerThread::SetUp();
}
void Sampler::TearDown() {
SamplerThread::TearDown();
#if defined(USE_SIGNALS)
SignalHandler::TearDown();
#endif
}
Sampler::Sampler(Isolate* isolate, int interval)
: isolate_(isolate),
interval_(interval),
profiling_(false),
has_processing_thread_(false),
active_(false),
is_counting_samples_(false),
js_and_external_sample_count_(0) {
data_ = new PlatformData;
}
Sampler::~Sampler() {
DCHECK(!IsActive());
delete data_;
}
void Sampler::Start() {
DCHECK(!IsActive());
SetActive(true);
SamplerThread::AddActiveSampler(this);
}
void Sampler::Stop() {
DCHECK(IsActive());
SamplerThread::RemoveActiveSampler(this);
SetActive(false);
}
void Sampler::IncreaseProfilingDepth() {
base::NoBarrier_AtomicIncrement(&profiling_, 1);
#if defined(USE_SIGNALS)
SignalHandler::IncreaseSamplerCount();
#endif
}
void Sampler::DecreaseProfilingDepth() {
#if defined(USE_SIGNALS)
SignalHandler::DecreaseSamplerCount();
#endif
base::NoBarrier_AtomicIncrement(&profiling_, -1);
}
void Sampler::SampleStack(const v8::RegisterState& state) {
TickSample* sample = isolate_->cpu_profiler()->StartTickSample();
TickSample sample_obj;
if (sample == NULL) sample = &sample_obj;
sample->Init(isolate_, state, TickSample::kIncludeCEntryFrame);
if (is_counting_samples_) {
if (sample->state == JS || sample->state == EXTERNAL) {
++js_and_external_sample_count_;
}
}
Tick(sample);
if (sample != &sample_obj) {
isolate_->cpu_profiler()->FinishTickSample();
}
}
#if defined(USE_SIGNALS)
void Sampler::DoSample() {
if (!SignalHandler::Installed()) return;
pthread_kill(platform_data()->vm_tid(), SIGPROF);
}
#elif V8_OS_WIN || V8_OS_CYGWIN
void Sampler::DoSample() {
HANDLE profiled_thread = platform_data()->profiled_thread();
if (profiled_thread == NULL) return;
#if defined(USE_SIMULATOR)
SimulatorHelper helper;
if (!helper.Init(isolate())) return;
#endif
const DWORD kSuspendFailed = static_cast<DWORD>(-1);
if (SuspendThread(profiled_thread) == kSuspendFailed) return;
// Context used for sampling the register state of the profiled thread.
CONTEXT context;
memset(&context, 0, sizeof(context));
context.ContextFlags = CONTEXT_FULL;
if (GetThreadContext(profiled_thread, &context) != 0) {
v8::RegisterState state;
#if defined(USE_SIMULATOR)
helper.FillRegisters(&state);
#else
#if V8_HOST_ARCH_X64
state.pc = reinterpret_cast<Address>(context.Rip);
state.sp = reinterpret_cast<Address>(context.Rsp);
state.fp = reinterpret_cast<Address>(context.Rbp);
#else
state.pc = reinterpret_cast<Address>(context.Eip);
state.sp = reinterpret_cast<Address>(context.Esp);
state.fp = reinterpret_cast<Address>(context.Ebp);
#endif
#endif // USE_SIMULATOR
SampleStack(state);
}
ResumeThread(profiled_thread);
}
#endif // USE_SIGNALS
} } // namespace v8::internal