blob: c06a3f636af9a70daa19103a6bf1acd71c04428e [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_S390
#include "src/api-arguments-inl.h"
#include "src/assembler-inl.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/objects/api-callbacks.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/s390/code-stubs-s390.h" // Cannot be the first include.
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void JSEntryStub::Generate(MacroAssembler* masm) {
// r2: code entry
// r3: function
// r4: receiver
// r5: argc
// r6: argv
Label invoke, handler_entry, exit;
{
NoRootArrayScope no_root_array(masm);
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// saving floating point registers
#if V8_TARGET_ARCH_S390X
// 64bit ABI requires f8 to f15 be saved
__ lay(sp, MemOperand(sp, -8 * kDoubleSize));
__ std(d8, MemOperand(sp));
__ std(d9, MemOperand(sp, 1 * kDoubleSize));
__ std(d10, MemOperand(sp, 2 * kDoubleSize));
__ std(d11, MemOperand(sp, 3 * kDoubleSize));
__ std(d12, MemOperand(sp, 4 * kDoubleSize));
__ std(d13, MemOperand(sp, 5 * kDoubleSize));
__ std(d14, MemOperand(sp, 6 * kDoubleSize));
__ std(d15, MemOperand(sp, 7 * kDoubleSize));
#else
// 31bit ABI requires you to store f4 and f6:
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
__ lay(sp, MemOperand(sp, -2 * kDoubleSize));
__ std(d4, MemOperand(sp));
__ std(d6, MemOperand(sp, kDoubleSize));
#endif
// zLinux ABI
// Incoming parameters:
// r2: code entry
// r3: function
// r4: receiver
// r5: argc
// r6: argv
// Requires us to save the callee-preserved registers r6-r13
// General convention is to also save r14 (return addr) and
// sp/r15 as well in a single STM/STMG
__ lay(sp, MemOperand(sp, -10 * kPointerSize));
__ StoreMultipleP(r6, sp, MemOperand(sp, 0));
// Set up the reserved register for 0.0.
// __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
// Push a frame with special values setup to mark it as an entry frame.
// Bad FP (-1)
// SMI Marker
// SMI Marker
// kCEntryFPAddress
// Frame type
__ lay(sp, MemOperand(sp, -5 * kPointerSize));
// Push a bad frame pointer to fail if it is used.
__ LoadImmP(r10, Operand(-1));
StackFrame::Type marker = type();
__ Load(r9, Operand(StackFrame::TypeToMarker(marker)));
__ Load(r8, Operand(StackFrame::TypeToMarker(marker)));
// Save copies of the top frame descriptor on the stack.
__ mov(r7, Operand(ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, isolate())));
__ LoadP(r7, MemOperand(r7));
__ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize));
// Set up frame pointer for the frame to be pushed.
// Need to add kPointerSize, because sp has one extra
// frame already for the frame type being pushed later.
__ lay(fp, MemOperand(
sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize));
__ InitializeRootRegister();
}
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp =
ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, isolate());
__ mov(r7, Operand(js_entry_sp));
__ LoadAndTestP(r8, MemOperand(r7));
__ bne(&non_outermost_js, Label::kNear);
__ StoreP(fp, MemOperand(r7));
__ Load(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont, Label::kNear);
__ bind(&non_outermost_js);
__ Load(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ StoreP(ip, MemOperand(sp)); // frame-type
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ b(&invoke, Label::kNear);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ mov(ip, Operand(ExternalReference::Create(
IsolateAddressId::kPendingExceptionAddress, isolate())));
__ StoreP(r2, MemOperand(ip));
__ LoadRoot(r2, Heap::kExceptionRootIndex);
__ b(&exit, Label::kNear);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r2-r6.
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the b(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r2: code entry
// r3: function
// r4: receiver
// r5: argc
// r6: argv
__ Call(EntryTrampoline(), RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // r2 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(r7);
__ CmpP(r7, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ bne(&non_outermost_js_2, Label::kNear);
__ mov(r8, Operand::Zero());
__ mov(r7, Operand(js_entry_sp));
__ StoreP(r8, MemOperand(r7));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(r5);
__ mov(ip, Operand(ExternalReference::Create(
IsolateAddressId::kCEntryFPAddress, isolate())));
__ StoreP(r5, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset));
// Reload callee-saved preserved regs, return address reg (r14) and sp
__ LoadMultipleP(r6, sp, MemOperand(sp, 0));
__ la(sp, MemOperand(sp, 10 * kPointerSize));
// saving floating point registers
#if V8_TARGET_ARCH_S390X
// 64bit ABI requires f8 to f15 be saved
__ ld(d8, MemOperand(sp));
__ ld(d9, MemOperand(sp, 1 * kDoubleSize));
__ ld(d10, MemOperand(sp, 2 * kDoubleSize));
__ ld(d11, MemOperand(sp, 3 * kDoubleSize));
__ ld(d12, MemOperand(sp, 4 * kDoubleSize));
__ ld(d13, MemOperand(sp, 5 * kDoubleSize));
__ ld(d14, MemOperand(sp, 6 * kDoubleSize));
__ ld(d15, MemOperand(sp, 7 * kDoubleSize));
__ la(sp, MemOperand(sp, 8 * kDoubleSize));
#else
// 31bit ABI requires you to store f4 and f6:
// http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
__ ld(d4, MemOperand(sp));
__ ld(d6, MemOperand(sp, kDoubleSize));
__ la(sp, MemOperand(sp, 2 * kDoubleSize));
#endif
__ b(r14);
}
// This stub is paired with DirectCEntryStub::GenerateCall
void DirectCEntryStub::Generate(MacroAssembler* masm) {
__ CleanseP(r14);
__ b(ip); // Callee will return to R14 directly
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
if (FLAG_embedded_builtins) {
if (masm->root_array_available() &&
isolate()->ShouldLoadConstantsFromRootList()) {
// This is basically an inlined version of Call(Handle<Code>) that loads
// the code object into lr instead of ip.
__ Move(ip, target);
__ IndirectLoadConstant(r1, GetCode());
__ AddP(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(r1);
return;
}
}
#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
// Native AIX/S390X Linux use a function descriptor.
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
__ LoadP(target, MemOperand(target, 0)); // Instruction address
#else
// ip needs to be set for DirectCEentryStub::Generate, and also
// for ABI_CALL_VIA_IP.
__ Move(ip, target);
#endif
__ call(GetCode(), RelocInfo::CODE_TARGET); // Call the stub.
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != nullptr) {
PredictableCodeSizeScope predictable(tasm,
#if V8_TARGET_ARCH_S390X
40);
#elif V8_HOST_ARCH_S390
36);
#else
32);
#endif
tasm->CleanseP(r14);
tasm->Push(r14, ip);
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
tasm->Pop(r14, ip);
}
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != nullptr) {
PredictableCodeSizeScope predictable(masm,
#if V8_TARGET_ARCH_S390X
40);
#elif V8_HOST_ARCH_S390
36);
#else
32);
#endif
ProfileEntryHookStub stub(masm->isolate());
__ CleanseP(r14);
__ Push(r14, ip);
__ CallStub(&stub); // BRASL
__ Pop(r14, ip);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call.
#if V8_TARGET_ARCH_S390X
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 18; // LAY + STG * 2
#elif V8_HOST_ARCH_S390
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 18; // NILH + LAY + ST * 2
#else
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 14; // LAY + ST * 2
#endif
// This should contain all kJSCallerSaved registers.
const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
r7.bit(); // Saved stack pointer.
// We also save r14+ip, so count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = kNumJSCallerSaved + 3;
// Save all caller-save registers as this may be called from anywhere.
__ CleanseP(r14);
__ LoadRR(ip, r14);
__ MultiPush(kSavedRegs | ip.bit());
// Compute the function's address for the first argument.
__ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is two slots above the saved temporaries.
// Grab that for the second argument to the hook.
__ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ LoadRR(r7, sp);
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
}
#if !defined(USE_SIMULATOR)
uintptr_t entry_hook =
reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
__ mov(ip, Operand(entry_hook));
#if ABI_USES_FUNCTION_DESCRIPTORS
// Function descriptor
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
__ LoadP(ip, MemOperand(ip, 0));
// ip already set.
#endif
#endif
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
__ LoadImmP(r0, Operand::Zero());
__ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize -
kNumRequiredStackFrameSlots * kPointerSize));
__ StoreP(r0, MemOperand(sp));
#if defined(USE_SIMULATOR)
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter
__ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ mov(ip, Operand(ExternalReference::Create(
&dispatcher, ExternalReference::BUILTIN_CALL)));
#endif
__ Call(ip);
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
__ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize +
kNumRequiredStackFrameSlots * kPointerSize));
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ LoadRR(sp, r7);
}
// Also pop lr to get Ret(0).
__ MultiPop(kSavedRegs | ip.bit());
__ LoadRR(r14, ip);
__ Ret();
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand* stack_space_operand,
MemOperand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
// Additional parameter is the address of the actual callback.
DCHECK(function_address == r3 || function_address == r4);
Register scratch = r5;
__ Move(scratch, ExternalReference::is_profiling_address(isolate));
__ LoadlB(scratch, MemOperand(scratch, 0));
__ CmpP(scratch, Operand::Zero());
Label profiler_disabled;
Label end_profiler_check;
__ beq(&profiler_disabled, Label::kNear);
__ Move(scratch, thunk_ref);
__ b(&end_profiler_check, Label::kNear);
__ bind(&profiler_disabled);
__ LoadRR(scratch, function_address);
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
// r9 - next_address
// r6 - next_address->kNextOffset
// r7 - next_address->kLimitOffset
// r8 - next_address->kLevelOffset
__ Move(r9, next_address);
__ LoadP(r6, MemOperand(r9, kNextOffset));
__ LoadP(r7, MemOperand(r9, kLimitOffset));
__ LoadlW(r8, MemOperand(r9, kLevelOffset));
__ AddP(r8, Operand(1));
__ StoreW(r8, MemOperand(r9, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, r2);
__ Move(r2, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_enter_external_function(), 1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, scratch);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, r2);
__ Move(r2, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_leave_external_function(), 1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// load value from ReturnValue
__ LoadP(r2, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ StoreP(r6, MemOperand(r9, kNextOffset));
if (__ emit_debug_code()) {
__ LoadlW(r3, MemOperand(r9, kLevelOffset));
__ CmpP(r3, r8);
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
}
__ SubP(r8, Operand(1));
__ StoreW(r8, MemOperand(r9, kLevelOffset));
__ CmpP(r7, MemOperand(r9, kLimitOffset));
__ bne(&delete_allocated_handles, Label::kNear);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
// LeaveExitFrame expects unwind space to be in a register.
if (stack_space_operand != nullptr) {
__ l(r6, *stack_space_operand);
} else {
__ mov(r6, Operand(stack_space));
}
__ LeaveExitFrame(false, r6, stack_space_operand != nullptr);
// Check if the function scheduled an exception.
__ Move(r7, ExternalReference::scheduled_exception_address(isolate));
__ LoadP(r7, MemOperand(r7));
__ CompareRoot(r7, Heap::kTheHoleValueRootIndex);
__ bne(&promote_scheduled_exception, Label::kNear);
__ b(r14);
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ StoreP(r7, MemOperand(r9, kLimitOffset));
__ LoadRR(r6, r2);
__ PrepareCallCFunction(1, r7);
__ Move(r2, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
__ LoadRR(r2, r6);
__ b(&leave_exit_frame, Label::kNear);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r6 : call_data
// -- r4 : holder
// -- r3 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1) * 4] : first argument
// -- sp[argc * 4] : receiver
// -----------------------------------
Register call_data = r6;
Register holder = r4;
Register api_function_address = r3;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// call data
__ push(call_data);
Register scratch = call_data;
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
// return value
__ push(scratch);
// return value default
__ push(scratch);
// isolate
__ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
__ push(scratch);
// holder
__ push(holder);
// Prepare arguments.
__ LoadRR(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
// S390 LINUX ABI:
//
// Create 4 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1-3] FunctionCallbackInfo
const int kApiStackSpace = 4;
const int kFunctionCallbackInfoOffset =
(kStackFrameExtraParamSlot + 1) * kPointerSize;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(api_function_address != r2 && scratch != r2);
// r2 = FunctionCallbackInfo&
// Arguments is after the return address.
__ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset));
// FunctionCallbackInfo::implicit_args_
__ StoreP(scratch, MemOperand(r2, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ StoreP(ip, MemOperand(r2, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ LoadImmP(ip, Operand(argc()));
__ StoreW(ip, MemOperand(r2, 2 * kPointerSize));
ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
AllowExternalCallThatCantCauseGC scope(masm);
// Stores return the first js argument
int return_value_offset = 2 + FCA::kReturnValueOffset;
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
const int stack_space = argc() + FCA::kArgsLength + 1;
MemOperand* stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_operand, return_value_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
int arg0Slot = 0;
int accessorInfoSlot = 0;
int apiStackSpace = 0;
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = r6;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = r4;
__ push(receiver);
// Push data from AccessorInfo.
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ push(scratch);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ Push(scratch, scratch);
__ Move(scratch, ExternalReference::isolate_address(isolate()));
__ Push(scratch, holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ LoadRR(r2, sp); // r2 = Handle<Name>
__ AddP(r3, r2, Operand(1 * kPointerSize)); // r3 = v8::PCI::args_
// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] copy of Handle (first arg)
// [2] AccessorInfo&
if (ABI_PASSES_HANDLES_IN_REGS) {
accessorInfoSlot = kStackFrameExtraParamSlot + 1;
apiStackSpace = 2;
} else {
arg0Slot = kStackFrameExtraParamSlot + 1;
accessorInfoSlot = arg0Slot + 1;
apiStackSpace = 3;
}
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, apiStackSpace);
if (!ABI_PASSES_HANDLES_IN_REGS) {
// pass 1st arg by reference
__ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize));
__ AddP(r2, sp, Operand(arg0Slot * kPointerSize));
}
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize));
__ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize));
// r3 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback();
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ LoadP(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, nullptr, return_value_operand);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_S390