blob: 7ac191c3956e74661e34a45fc9f2f2a3a3ae14ba [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_MIPS64
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE));
__ Branch(global_object, eq, type, Operand(JS_BUILTINS_OBJECT_TYPE));
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE));
}
// Helper function used from LoadIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done. Can be the same as elements or name clobbering
// one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register result, Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry check that the value is a normal
// property.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1,
Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
__ Branch(miss, ne, at, Operand(zero_reg));
// Get the value at the masked, scaled index and return.
__ ld(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register value, Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY));
__ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1, Operand(Smi::FromInt(kTypeAndReadOnlyMask)));
__ Branch(miss, ne, at, Operand(zero_reg));
// Store the value at the masked, scaled index and return.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ Daddu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
__ sd(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
__ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved,
kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver, Register map,
Register scratch,
int interceptor_bit, Label* slow) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(at, scratch,
Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
__ Branch(slow, ne, at, Operand(zero_reg));
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE));
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
Register key, Register elements,
Register scratch1, Register scratch2,
Register result, Label* not_fast_array,
Label* out_of_range) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// elements - holds the elements of the receiver on exit.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// scratch1 - used to hold elements map and elements length.
// Holds the elements map if not_fast_array branch is taken.
//
// scratch2 - used to hold the loaded value.
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode (not dictionary).
__ ld(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
__ Branch(not_fast_array, ne, scratch1, Operand(at));
} else {
__ AssertFastElements(elements);
}
// Check that the key (index) is within bounds.
__ ld(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(out_of_range, hs, key, Operand(scratch1));
// Fast case: Do the load.
__ Daddu(scratch1, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// The key is a smi.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ SmiScale(at, key, kPointerSizeLog2);
__ daddu(at, at, scratch1);
__ ld(scratch2, MemOperand(at));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ Branch(out_of_range, eq, scratch2, Operand(at));
__ mov(result, scratch2);
}
// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
Register map, Register hash,
Label* index_string, Label* not_unique) {
// The key is not a smi.
Label unique;
// Is it a name?
__ GetObjectType(key, map, hash);
__ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE));
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE));
// Is the string an array index, with cached numeric value?
__ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask));
__ Branch(index_string, eq, at, Operand(zero_reg));
// Is the string internalized? We know it's a string, so a single
// bit test is enough.
// map: key map
__ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0);
__ And(at, hash, Operand(kIsNotInternalizedMask));
__ Branch(not_unique, ne, at, Operand(zero_reg));
__ bind(&unique);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
Register dictionary = a0;
DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
Label slow;
__ ld(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
JSObject::kPropertiesOffset));
GenerateDictionaryLoad(masm, &slow, dictionary,
LoadDescriptor::NameRegister(), v0, a3, a4);
__ Ret();
// Dictionary load failed, go slow (but don't miss).
__ bind(&slow);
GenerateRuntimeGetProperty(masm);
}
// A register that isn't one of the parameters to the load ic.
static const Register LoadIC_TempRegister() { return a3; }
static void LoadIC_PushArgs(MacroAssembler* masm) {
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
if (FLAG_vector_ics) {
Register slot = VectorLoadICDescriptor::SlotRegister();
Register vector = VectorLoadICDescriptor::VectorRegister();
__ Push(receiver, name, slot, vector);
} else {
__ Push(receiver, name);
}
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is on the stack.
Isolate* isolate = masm->isolate();
DCHECK(!FLAG_vector_ics ||
!AreAliased(a4, a5, VectorLoadICDescriptor::SlotRegister(),
VectorLoadICDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->load_miss(), 1, a4, a5);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
int arg_count = FLAG_vector_ics ? 4 : 2;
__ TailCallExternalReference(ref, arg_count, 1);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// The return address is in ra.
__ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
__ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());
__ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}
static MemOperand GenerateMappedArgumentsLookup(
MacroAssembler* masm, Register object, Register key, Register scratch1,
Register scratch2, Register scratch3, Label* unmapped_case,
Label* slow_case) {
Heap* heap = masm->isolate()->heap();
// Check that the receiver is a JSObject. Because of the map check
// later, we do not need to check for interceptors or whether it
// requires access checks.
__ JumpIfSmi(object, slow_case);
// Check that the object is some kind of JSObject.
__ GetObjectType(object, scratch1, scratch2);
__ Branch(slow_case, lt, scratch2, Operand(FIRST_JS_RECEIVER_TYPE));
// Check that the key is a positive smi.
__ NonNegativeSmiTst(key, scratch1);
__ Branch(slow_case, ne, scratch1, Operand(zero_reg));
// Load the elements into scratch1 and check its map.
Handle<Map> arguments_map(heap->sloppy_arguments_elements_map());
__ ld(scratch1, FieldMemOperand(object, JSObject::kElementsOffset));
__ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK);
// Check if element is in the range of mapped arguments. If not, jump
// to the unmapped lookup with the parameter map in scratch1.
__ ld(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset));
__ Dsubu(scratch2, scratch2, Operand(Smi::FromInt(2)));
__ Branch(unmapped_case, Ugreater_equal, key, Operand(scratch2));
// Load element index and check whether it is the hole.
const int kOffset =
FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;
__ SmiUntag(scratch3, key);
__ dsll(scratch3, scratch3, kPointerSizeLog2);
__ Daddu(scratch3, scratch3, Operand(kOffset));
__ Daddu(scratch2, scratch1, scratch3);
__ ld(scratch2, MemOperand(scratch2));
__ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
__ Branch(unmapped_case, eq, scratch2, Operand(scratch3));
// Load value from context and return it. We can reuse scratch1 because
// we do not jump to the unmapped lookup (which requires the parameter
// map in scratch1).
__ ld(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ SmiUntag(scratch3, scratch2);
__ dsll(scratch3, scratch3, kPointerSizeLog2);
__ Daddu(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag));
__ Daddu(scratch2, scratch1, scratch3);
return MemOperand(scratch2);
}
static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
Register key,
Register parameter_map,
Register scratch,
Label* slow_case) {
// Element is in arguments backing store, which is referenced by the
// second element of the parameter_map. The parameter_map register
// must be loaded with the parameter map of the arguments object and is
// overwritten.
const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
Register backing_store = parameter_map;
__ ld(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
__ CheckMap(backing_store, scratch, Heap::kFixedArrayMapRootIndex, slow_case,
DONT_DO_SMI_CHECK);
__ ld(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
__ Branch(slow_case, Ugreater_equal, key, Operand(scratch));
__ SmiUntag(scratch, key);
__ dsll(scratch, scratch, kPointerSizeLog2);
__ Daddu(scratch, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Daddu(scratch, backing_store, scratch);
return MemOperand(scratch);
}
void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) {
Register receiver = StoreDescriptor::ReceiverRegister();
Register key = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
DCHECK(value.is(a0));
Label slow, notin;
// Store address is returned in register (of MemOperand) mapped_location.
MemOperand mapped_location = GenerateMappedArgumentsLookup(
masm, receiver, key, a3, a4, a5, &notin, &slow);
__ sd(value, mapped_location);
__ mov(t1, value);
DCHECK_EQ(mapped_location.offset(), 0);
__ RecordWrite(a3, mapped_location.rm(), t1, kRAHasNotBeenSaved,
kDontSaveFPRegs);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, value); // (In delay slot) return the value stored in v0.
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in a3.
// Store address is returned in register (of MemOperand) unmapped_location.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, key, a3, a4, &slow);
__ sd(value, unmapped_location);
__ mov(t1, value);
DCHECK_EQ(unmapped_location.offset(), 0);
__ RecordWrite(a3, unmapped_location.rm(), t1, kRAHasNotBeenSaved,
kDontSaveFPRegs);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // (In delay slot) return the value stored in v0.
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is in ra.
Isolate* isolate = masm->isolate();
DCHECK(!FLAG_vector_ics ||
!AreAliased(a4, a5, VectorLoadICDescriptor::SlotRegister(),
VectorLoadICDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a4, a5);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);
int arg_count = FLAG_vector_ics ? 4 : 2;
__ TailCallExternalReference(ref, arg_count, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// The return address is in ra.
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// The return address is in ra.
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
Register key = LoadDescriptor::NameRegister();
Register receiver = LoadDescriptor::ReceiverRegister();
DCHECK(key.is(a2));
DCHECK(receiver.is(a1));
Isolate* isolate = masm->isolate();
// Check that the key is a smi.
__ JumpIfNotSmi(key, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(a0, a3, &check_number_dictionary);
GenerateFastArrayLoad(masm, receiver, key, a0, a3, a4, v0, NULL, &slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, a4, a3);
__ Ret();
__ bind(&check_number_dictionary);
__ ld(a4, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ld(a3, FieldMemOperand(a4, JSObject::kMapOffset));
// Check whether the elements is a number dictionary.
// a3: elements map
// a4: elements
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&slow, ne, a3, Operand(at));
__ dsra32(a0, key, 0);
__ LoadFromNumberDictionary(&slow, a4, key, v0, a0, a3, a5);
__ Ret();
// Slow case, key and receiver still in a2 and a1.
__ bind(&slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, a4,
a3);
GenerateRuntimeGetProperty(masm);
__ bind(&check_name);
GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ ld(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ ld(a4, FieldMemOperand(a3, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&probe_dictionary, eq, a4, Operand(at));
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the name hash.
__ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ dsll32(a3, a0, 0);
__ dsrl32(a3, a3, 0);
__ dsra(a3, a3, KeyedLookupCache::kMapHashShift);
__ lwu(a4, FieldMemOperand(key, Name::kHashFieldOffset));
__ dsra(at, a4, Name::kHashShift);
__ xor_(a3, a3, at);
int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
__ And(a3, a3, Operand(mask));
// Load the key (consisting of map and unique name) from the cache and
// check for match.
Label load_in_object_property;
static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
Label hit_on_nth_entry[kEntriesPerBucket];
ExternalReference cache_keys =
ExternalReference::keyed_lookup_cache_keys(isolate);
__ li(a4, Operand(cache_keys));
__ dsll(at, a3, kPointerSizeLog2 + 1);
__ daddu(a4, a4, at);
for (int i = 0; i < kEntriesPerBucket - 1; i++) {
Label try_next_entry;
__ ld(a5, MemOperand(a4, kPointerSize * i * 2));
__ Branch(&try_next_entry, ne, a0, Operand(a5));
__ ld(a5, MemOperand(a4, kPointerSize * (i * 2 + 1)));
__ Branch(&hit_on_nth_entry[i], eq, key, Operand(a5));
__ bind(&try_next_entry);
}
__ ld(a5, MemOperand(a4, kPointerSize * (kEntriesPerBucket - 1) * 2));
__ Branch(&slow, ne, a0, Operand(a5));
__ ld(a5, MemOperand(a4, kPointerSize * ((kEntriesPerBucket - 1) * 2 + 1)));
__ Branch(&slow, ne, key, Operand(a5));
// Get field offset.
// a0 : receiver's map
// a3 : lookup cache index
ExternalReference cache_field_offsets =
ExternalReference::keyed_lookup_cache_field_offsets(isolate);
// Hit on nth entry.
for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
__ bind(&hit_on_nth_entry[i]);
__ li(a4, Operand(cache_field_offsets));
// TODO(yy) This data structure does NOT follow natural pointer size.
__ dsll(at, a3, kPointerSizeLog2 - 1);
__ daddu(at, a4, at);
__ lwu(a5, MemOperand(at, kPointerSize / 2 * i));
__ lbu(a6, FieldMemOperand(a0, Map::kInObjectPropertiesOffset));
__ Dsubu(a5, a5, a6);
__ Branch(&property_array_property, ge, a5, Operand(zero_reg));
if (i != 0) {
__ Branch(&load_in_object_property);
}
}
// Load in-object property.
__ bind(&load_in_object_property);
__ lbu(a6, FieldMemOperand(a0, Map::kInstanceSizeOffset));
// Index from start of object.
__ daddu(a6, a6, a5);
// Remove the heap tag.
__ Dsubu(receiver, receiver, Operand(kHeapObjectTag));
__ dsll(at, a6, kPointerSizeLog2);
__ daddu(at, receiver, at);
__ ld(v0, MemOperand(at));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
a4, a3);
__ Ret();
// Load property array property.
__ bind(&property_array_property);
__ ld(receiver, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ Daddu(receiver, receiver, FixedArray::kHeaderSize - kHeapObjectTag);
__ dsll(v0, a5, kPointerSizeLog2);
__ Daddu(v0, v0, a1);
__ ld(v0, MemOperand(v0));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
a4, a3);
__ Ret();
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// a3: elements
__ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, a0, &slow);
// Load the property to v0.
GenerateDictionaryLoad(masm, &slow, a3, key, v0, a5, a4);
__ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, a4,
a3);
__ Ret();
__ bind(&index_name);
__ IndexFromHash(a3, key);
// Now jump to the place where smi keys are handled.
__ Branch(&index_smi);
}
static void KeyedStoreGenerateMegamorphicHelper(
MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
Register value, Register key, Register receiver, Register receiver_map,
Register elements_map, Register elements) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// Fast case: Do the store, could be either Object or double.
__ bind(fast_object);
Register scratch_value = a4;
Register address = a5;
if (check_map == kCheckMap) {
__ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(fast_double, ne, elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because
// there may be a callback on the element.
Label holecheck_passed1;
__ Daddu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ SmiScale(at, key, kPointerSizeLog2);
__ daddu(address, address, at);
__ ld(scratch_value, MemOperand(address));
__ Branch(&holecheck_passed1, ne, scratch_value,
Operand(masm->isolate()->factory()->the_hole_value()));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
slow);
__ bind(&holecheck_passed1);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Daddu(scratch_value, key, Operand(Smi::FromInt(1)));
__ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ Daddu(address, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ SmiScale(scratch_value, key, kPointerSizeLog2);
__ Daddu(address, address, scratch_value);
__ sd(value, MemOperand(address));
__ Ret();
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ CheckFastObjectElements(receiver_map, scratch_value,
&transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Daddu(scratch_value, key, Operand(Smi::FromInt(1)));
__ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Daddu(address, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ SmiScale(scratch_value, key, kPointerSizeLog2);
__ Daddu(address, address, scratch_value);
__ sd(value, MemOperand(address));
// Update write barrier for the elements array address.
__ mov(scratch_value, value); // Preserve the value which is returned.
__ RecordWrite(elements, address, scratch_value, kRAHasNotBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Ret();
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
__ Branch(slow, ne, elements_map, Operand(at));
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so
// go to the runtime.
__ Daddu(address, elements,
Operand(FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32) -
kHeapObjectTag));
__ SmiScale(at, key, kPointerSizeLog2);
__ daddu(address, address, at);
__ lw(scratch_value, MemOperand(address));
__ Branch(&fast_double_without_map_check, ne, scratch_value,
Operand(kHoleNanUpper32));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
slow);
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value, key,
elements, // Overwritten.
a3, // Scratch regs...
a4, a5, &transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Daddu(scratch_value, key, Operand(Smi::FromInt(1)));
__ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Ret();
__ bind(&transition_smi_elements);
// Transition the array appropriately depending on the value type.
__ ld(a4, FieldMemOperand(value, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&non_double_value, ne, a4, Operand(at));
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(
FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, a4, slow);
AllocationSiteMode mode =
AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
receiver_map, mode, slow);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
receiver_map, a4, slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
masm, receiver, key, value, receiver_map, mode, slow);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
receiver_map, a4, slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(
masm, receiver, key, value, receiver_map, mode, slow);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
StrictMode strict_mode) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array, maybe_name_key, miss;
// Register usage.
Register value = StoreDescriptor::ValueRegister();
Register key = StoreDescriptor::NameRegister();
Register receiver = StoreDescriptor::ReceiverRegister();
DCHECK(value.is(a0));
Register receiver_map = a3;
Register elements_map = a6;
Register elements = a7; // Elements array of the receiver.
// a4 and a5 are used as general scratch registers.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &maybe_name_key);
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map of the object.
__ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks and is not observed.
// The generic stub does not perform map checks or handle observed objects.
__ lbu(a4, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ And(a4, a4,
Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved));
__ Branch(&slow, ne, a4, Operand(zero_reg));
// Check if the object is a JS array or not.
__ lbu(a4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
__ Branch(&array, eq, a4, Operand(JS_ARRAY_TYPE));
// Check that the object is some kind of JSObject.
__ Branch(&slow, lt, a4, Operand(FIRST_JS_OBJECT_TYPE));
// Object case: Check key against length in the elements array.
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&fast_object, lo, key, Operand(a4));
// Slow case, handle jump to runtime.
__ bind(&slow);
// Entry registers are intact.
// a0: value.
// a1: key.
// a2: receiver.
PropertyICCompiler::GenerateRuntimeSetProperty(masm, strict_mode);
// Never returns to here.
__ bind(&maybe_name_key);
__ ld(a4, FieldMemOperand(key, HeapObject::kMapOffset));
__ lb(a4, FieldMemOperand(a4, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(a4, &slow);
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(
masm, Code::STORE_IC, flags, false, receiver, key, a3, a4, a5, a6);
// Cache miss.
__ Branch(&miss);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// Condition code from comparing key and array length is still available.
// Only support writing to array[array.length].
__ Branch(&slow, ne, key, Operand(a4));
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&slow, hs, key, Operand(a4));
__ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(&check_if_double_array, ne, elements_map,
Heap::kFixedArrayMapRootIndex);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array.
__ ld(a4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Branch(&extra, hs, key, Operand(a4));
KeyedStoreGenerateMegamorphicHelper(
masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
value, key, receiver, receiver_map, elements_map, elements);
KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
&fast_double_grow, &slow, kDontCheckMap,
kIncrementLength, value, key, receiver,
receiver_map, elements_map, elements);
__ bind(&miss);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// Push receiver, key and value for runtime call.
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister());
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
DCHECK(receiver.is(a1));
DCHECK(name.is(a2));
DCHECK(StoreDescriptor::ValueRegister().is(a0));
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(
masm, Code::STORE_IC, flags, false, receiver, name, a3, a4, a5, a6);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister());
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
Label miss;
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
Register dictionary = a3;
DCHECK(!AreAliased(value, receiver, name, dictionary, a4, a5));
__ ld(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
GenerateDictionaryStore(masm, &miss, a3, name, value, a4, a5);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(), 1, a4, a5);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1, a4, a5);
GenerateMiss(masm);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
return Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code());
}
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
if (!(Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code()))) {
return;
}
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int delta = Assembler::GetImmediate16(instr);
delta += Assembler::GetRs(instr) * kImm16Mask;
// If the delta is 0 the instruction is andi at, zero_reg, #0 which also
// signals that nothing was inlined.
if (delta == 0) {
return;
}
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, andi=%p, delta=%d\n", address,
andi_instruction_address, delta);
}
Address patch_address =
andi_instruction_address - delta * Instruction::kInstrSize;
Instr instr_at_patch = Assembler::instr_at(patch_address);
Instr branch_instr =
Assembler::instr_at(patch_address + Instruction::kInstrSize);
// This is patching a conditional "jump if not smi/jump if smi" site.
// Enabling by changing from
// andi at, rx, 0
// Branch <target>, eq, at, Operand(zero_reg)
// to:
// andi at, rx, #kSmiTagMask
// Branch <target>, ne, at, Operand(zero_reg)
// and vice-versa to be disabled again.
CodePatcher patcher(patch_address, 2);
Register reg = Register::from_code(Assembler::GetRs(instr_at_patch));
if (check == ENABLE_INLINED_SMI_CHECK) {
DCHECK(Assembler::IsAndImmediate(instr_at_patch));
DCHECK_EQ(0, Assembler::GetImmediate16(instr_at_patch));
patcher.masm()->andi(at, reg, kSmiTagMask);
} else {
DCHECK(check == DISABLE_INLINED_SMI_CHECK);
DCHECK(Assembler::IsAndImmediate(instr_at_patch));
patcher.masm()->andi(at, reg, 0);
}
DCHECK(Assembler::IsBranch(branch_instr));
if (Assembler::IsBeq(branch_instr)) {
patcher.ChangeBranchCondition(ne);
} else {
DCHECK(Assembler::IsBne(branch_instr));
patcher.ChangeBranchCondition(eq);
}
}
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS64