blob: a01015c1864c559523435b06d213760625e6ad3c [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM64
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
// "type" holds an instance type on entry and is not clobbered.
// Generated code branch on "global_object" if type is any kind of global
// JS object.
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
Label* global_object) {
__ Cmp(type, JS_GLOBAL_OBJECT_TYPE);
__ Ccmp(type, JS_BUILTINS_OBJECT_TYPE, ZFlag, ne);
__ Ccmp(type, JS_GLOBAL_PROXY_TYPE, ZFlag, ne);
__ B(eq, global_object);
}
// Helper function used from LoadIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done.
// The scratch registers need to be different from elements, name and result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register result, Register scratch1,
Register scratch2) {
DCHECK(!AreAliased(elements, name, scratch1, scratch2));
DCHECK(!AreAliased(result, scratch1, scratch2));
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry check that the value is a normal property.
__ Bind(&done);
static const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
static const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ Ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ Tst(scratch1, Smi::FromInt(PropertyDetails::TypeField::kMask));
__ B(ne, miss);
// Get the value at the masked, scaled index and return.
__ Ldr(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store (never clobbered).
//
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register value, Register scratch1,
Register scratch2) {
DCHECK(!AreAliased(elements, name, value, scratch1, scratch2));
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ Bind(&done);
static const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
static const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
static const int kTypeAndReadOnlyMask =
PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY);
__ Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
__ Tst(scratch1, kTypeAndReadOnlyMask);
__ B(ne, miss);
// Store the value at the masked, scaled index and return.
static const int kValueOffset = kElementsStartOffset + kPointerSize;
__ Add(scratch2, scratch2, kValueOffset - kHeapObjectTag);
__ Str(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ Mov(scratch1, value);
__ RecordWrite(elements, scratch2, scratch1, kLRHasNotBeenSaved,
kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object and return the map of the
// receiver in 'map_scratch' if the receiver is not a SMI.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map_scratch,
Register scratch,
int interceptor_bit, Label* slow) {
DCHECK(!AreAliased(map_scratch, scratch));
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ Ldr(map_scratch, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ Ldrb(scratch, FieldMemOperand(map_scratch, Map::kBitFieldOffset));
__ Tbnz(scratch, Map::kIsAccessCheckNeeded, slow);
__ Tbnz(scratch, interceptor_bit, slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object, we enter the
// runtime system to make sure that indexing into string objects work
// as intended.
STATIC_ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ Ldrb(scratch, FieldMemOperand(map_scratch, Map::kInstanceTypeOffset));
__ Cmp(scratch, JS_OBJECT_TYPE);
__ B(lt, slow);
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// elements - holds the elements of the receiver on exit.
//
// elements_map - holds the elements map on exit if the not_fast_array branch is
// taken. Otherwise, this is used as a scratch register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
Register key, Register elements,
Register elements_map, Register scratch2,
Register result, Label* not_fast_array,
Label* slow) {
DCHECK(!AreAliased(receiver, key, elements, elements_map, scratch2));
// Check for fast array.
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode and writable.
__ Ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ JumpIfNotRoot(elements_map, Heap::kFixedArrayMapRootIndex,
not_fast_array);
} else {
__ AssertFastElements(elements);
}
// The elements_map register is only used for the not_fast_array path, which
// was handled above. From this point onward it is a scratch register.
Register scratch1 = elements_map;
// Check that the key (index) is within bounds.
__ Ldr(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Cmp(key, scratch1);
__ B(hs, slow);
// Fast case: Do the load.
__ Add(scratch1, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ SmiUntag(scratch2, key);
__ Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ JumpIfRoot(scratch2, Heap::kTheHoleValueRootIndex, slow);
// Move the value to the result register.
// 'result' can alias with 'receiver' or 'key' but these two must be
// preserved if we jump to 'slow'.
__ Mov(result, scratch2);
}
// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
// The map of the key is returned in 'map_scratch'.
// If the jump to 'index_string' is done the hash of the key is left
// in 'hash_scratch'.
static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
Register map_scratch, Register hash_scratch,
Label* index_string, Label* not_unique) {
DCHECK(!AreAliased(key, map_scratch, hash_scratch));
// Is the key a name?
Label unique;
__ JumpIfObjectType(key, map_scratch, hash_scratch, LAST_UNIQUE_NAME_TYPE,
not_unique, hi);
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ B(eq, &unique);
// Is the string an array index with cached numeric value?
__ Ldr(hash_scratch.W(), FieldMemOperand(key, Name::kHashFieldOffset));
__ TestAndBranchIfAllClear(hash_scratch, Name::kContainsCachedArrayIndexMask,
index_string);
// Is the string internalized? We know it's a string, so a single bit test is
// enough.
__ Ldrb(hash_scratch, FieldMemOperand(map_scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0);
__ TestAndBranchIfAnySet(hash_scratch, kIsNotInternalizedMask, not_unique);
__ Bind(&unique);
// Fall through if the key is a unique name.
}
// Neither 'object' nor 'key' are modified by this function.
//
// If the 'unmapped_case' or 'slow_case' exit is taken, the 'map' register is
// left with the object's elements map. Otherwise, it is used as a scratch
// register.
static MemOperand GenerateMappedArgumentsLookup(MacroAssembler* masm,
Register object, Register key,
Register map, Register scratch1,
Register scratch2,
Label* unmapped_case,
Label* slow_case) {
DCHECK(!AreAliased(object, key, map, scratch1, scratch2));
Heap* heap = masm->isolate()->heap();
// Check that the receiver is a JSObject. Because of the elements
// map check later, we do not need to check for interceptors or
// whether it requires access checks.
__ JumpIfSmi(object, slow_case);
// Check that the object is some kind of JSObject.
__ JumpIfObjectType(object, map, scratch1, FIRST_JS_RECEIVER_TYPE, slow_case,
lt);
// Check that the key is a positive smi.
__ JumpIfNotSmi(key, slow_case);
__ Tbnz(key, kXSignBit, slow_case);
// Load the elements object and check its map.
Handle<Map> arguments_map(heap->sloppy_arguments_elements_map());
__ Ldr(map, FieldMemOperand(object, JSObject::kElementsOffset));
__ CheckMap(map, scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK);
// Check if element is in the range of mapped arguments. If not, jump
// to the unmapped lookup.
__ Ldr(scratch1, FieldMemOperand(map, FixedArray::kLengthOffset));
__ Sub(scratch1, scratch1, Smi::FromInt(2));
__ Cmp(key, scratch1);
__ B(hs, unmapped_case);
// Load element index and check whether it is the hole.
static const int offset =
FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;
__ Add(scratch1, map, offset);
__ SmiUntag(scratch2, key);
__ Ldr(scratch1, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
__ JumpIfRoot(scratch1, Heap::kTheHoleValueRootIndex, unmapped_case);
// Load value from context and return it.
__ Ldr(scratch2, FieldMemOperand(map, FixedArray::kHeaderSize));
__ SmiUntag(scratch1);
__ Lsl(scratch1, scratch1, kPointerSizeLog2);
__ Add(scratch1, scratch1, Context::kHeaderSize - kHeapObjectTag);
// The base of the result (scratch2) is passed to RecordWrite in
// KeyedStoreIC::GenerateSloppyArguments and it must be a HeapObject.
return MemOperand(scratch2, scratch1);
}
// The 'parameter_map' register must be loaded with the parameter map of the
// arguments object and is overwritten.
static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
Register key,
Register parameter_map,
Register scratch,
Label* slow_case) {
DCHECK(!AreAliased(key, parameter_map, scratch));
// Element is in arguments backing store, which is referenced by the
// second element of the parameter_map.
const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
Register backing_store = parameter_map;
__ Ldr(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map());
__ CheckMap(backing_store, scratch, fixed_array_map, slow_case,
DONT_DO_SMI_CHECK);
__ Ldr(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
__ Cmp(key, scratch);
__ B(hs, slow_case);
__ Add(backing_store, backing_store,
FixedArray::kHeaderSize - kHeapObjectTag);
__ SmiUntag(scratch, key);
return MemOperand(backing_store, scratch, LSL, kPointerSizeLog2);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
Register dictionary = x0;
DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
Label slow;
__ Ldr(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
JSObject::kPropertiesOffset));
GenerateDictionaryLoad(masm, &slow, dictionary,
LoadDescriptor::NameRegister(), x0, x3, x4);
__ Ret();
// Dictionary load failed, go slow (but don't miss).
__ Bind(&slow);
GenerateRuntimeGetProperty(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is in lr.
Isolate* isolate = masm->isolate();
ASM_LOCATION("LoadIC::GenerateMiss");
DCHECK(!FLAG_vector_ics ||
!AreAliased(x4, x5, VectorLoadICDescriptor::SlotRegister(),
VectorLoadICDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->load_miss(), 1, x4, x5);
// Perform tail call to the entry.
if (FLAG_vector_ics) {
__ Push(VectorLoadICDescriptor::ReceiverRegister(),
VectorLoadICDescriptor::NameRegister(),
VectorLoadICDescriptor::SlotRegister(),
VectorLoadICDescriptor::VectorRegister());
} else {
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
}
ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
int arg_count = FLAG_vector_ics ? 4 : 2;
__ TailCallExternalReference(ref, arg_count, 1);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// The return address is in lr.
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
__ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}
void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) {
ASM_LOCATION("KeyedStoreIC::GenerateSloppyArguments");
Label slow, notin;
Register value = StoreDescriptor::ValueRegister();
Register key = StoreDescriptor::NameRegister();
Register receiver = StoreDescriptor::ReceiverRegister();
DCHECK(receiver.is(x1));
DCHECK(key.is(x2));
DCHECK(value.is(x0));
Register map = x3;
// These registers are used by GenerateMappedArgumentsLookup to build a
// MemOperand. They are live for as long as the MemOperand is live.
Register mapped1 = x4;
Register mapped2 = x5;
MemOperand mapped = GenerateMappedArgumentsLookup(
masm, receiver, key, map, mapped1, mapped2, &notin, &slow);
Operand mapped_offset = mapped.OffsetAsOperand();
__ Str(value, mapped);
__ Add(x10, mapped.base(), mapped_offset);
__ Mov(x11, value);
__ RecordWrite(mapped.base(), x10, x11, kLRHasNotBeenSaved, kDontSaveFPRegs);
__ Ret();
__ Bind(&notin);
// These registers are used by GenerateMappedArgumentsLookup to build a
// MemOperand. They are live for as long as the MemOperand is live.
Register unmapped1 = map; // This is assumed to alias 'map'.
Register unmapped2 = x4;
MemOperand unmapped =
GenerateUnmappedArgumentsLookup(masm, key, unmapped1, unmapped2, &slow);
Operand unmapped_offset = unmapped.OffsetAsOperand();
__ Str(value, unmapped);
__ Add(x10, unmapped.base(), unmapped_offset);
__ Mov(x11, value);
__ RecordWrite(unmapped.base(), x10, x11, kLRHasNotBeenSaved,
kDontSaveFPRegs);
__ Ret();
__ Bind(&slow);
GenerateMiss(masm);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is in lr.
Isolate* isolate = masm->isolate();
DCHECK(!FLAG_vector_ics ||
!AreAliased(x10, x11, VectorLoadICDescriptor::SlotRegister(),
VectorLoadICDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, x10, x11);
if (FLAG_vector_ics) {
__ Push(VectorLoadICDescriptor::ReceiverRegister(),
VectorLoadICDescriptor::NameRegister(),
VectorLoadICDescriptor::SlotRegister(),
VectorLoadICDescriptor::VectorRegister());
} else {
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
}
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);
int arg_count = FLAG_vector_ics ? 4 : 2;
__ TailCallExternalReference(ref, arg_count, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// The return address is in lr.
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
static void GenerateKeyedLoadWithSmiKey(MacroAssembler* masm, Register key,
Register receiver, Register scratch1,
Register scratch2, Register scratch3,
Register scratch4, Register scratch5,
Label* slow) {
DCHECK(!AreAliased(key, receiver, scratch1, scratch2, scratch3, scratch4,
scratch5));
Isolate* isolate = masm->isolate();
Label check_number_dictionary;
// If we can load the value, it should be returned in x0.
Register result = x0;
GenerateKeyedLoadReceiverCheck(masm, receiver, scratch1, scratch2,
Map::kHasIndexedInterceptor, slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(scratch1, scratch2, &check_number_dictionary);
GenerateFastArrayLoad(masm, receiver, key, scratch3, scratch2, scratch1,
result, NULL, slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1,
scratch1, scratch2);
__ Ret();
__ Bind(&check_number_dictionary);
__ Ldr(scratch3, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ Ldr(scratch2, FieldMemOperand(scratch3, JSObject::kMapOffset));
// Check whether we have a number dictionary.
__ JumpIfNotRoot(scratch2, Heap::kHashTableMapRootIndex, slow);
__ LoadFromNumberDictionary(slow, scratch3, key, result, scratch1, scratch2,
scratch4, scratch5);
__ Ret();
}
static void GenerateKeyedLoadWithNameKey(MacroAssembler* masm, Register key,
Register receiver, Register scratch1,
Register scratch2, Register scratch3,
Register scratch4, Register scratch5,
Label* slow) {
DCHECK(!AreAliased(key, receiver, scratch1, scratch2, scratch3, scratch4,
scratch5));
Isolate* isolate = masm->isolate();
Label probe_dictionary, property_array_property;
// If we can load the value, it should be returned in x0.
Register result = x0;
GenerateKeyedLoadReceiverCheck(masm, receiver, scratch1, scratch2,
Map::kHasNamedInterceptor, slow);
// If the receiver is a fast-case object, check the keyed lookup cache.
// Otherwise probe the dictionary.
__ Ldr(scratch2, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
__ JumpIfRoot(scratch3, Heap::kHashTableMapRootIndex, &probe_dictionary);
// We keep the map of the receiver in scratch1.
Register receiver_map = scratch1;
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the name hash.
__ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Mov(scratch2, Operand(receiver_map, ASR, KeyedLookupCache::kMapHashShift));
__ Ldr(scratch3.W(), FieldMemOperand(key, Name::kHashFieldOffset));
__ Eor(scratch2, scratch2, Operand(scratch3, ASR, Name::kHashShift));
int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
__ And(scratch2, scratch2, mask);
// Load the key (consisting of map and unique name) from the cache and
// check for match.
Label load_in_object_property;
static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
Label hit_on_nth_entry[kEntriesPerBucket];
ExternalReference cache_keys =
ExternalReference::keyed_lookup_cache_keys(isolate);
__ Mov(scratch3, cache_keys);
__ Add(scratch3, scratch3, Operand(scratch2, LSL, kPointerSizeLog2 + 1));
for (int i = 0; i < kEntriesPerBucket - 1; i++) {
Label try_next_entry;
// Load map and make scratch3 pointing to the next entry.
__ Ldr(scratch4, MemOperand(scratch3, kPointerSize * 2, PostIndex));
__ Cmp(receiver_map, scratch4);
__ B(ne, &try_next_entry);
__ Ldr(scratch4, MemOperand(scratch3, -kPointerSize)); // Load name
__ Cmp(key, scratch4);
__ B(eq, &hit_on_nth_entry[i]);
__ Bind(&try_next_entry);
}
// Last entry.
__ Ldr(scratch4, MemOperand(scratch3, kPointerSize, PostIndex));
__ Cmp(receiver_map, scratch4);
__ B(ne, slow);
__ Ldr(scratch4, MemOperand(scratch3));
__ Cmp(key, scratch4);
__ B(ne, slow);
// Get field offset.
ExternalReference cache_field_offsets =
ExternalReference::keyed_lookup_cache_field_offsets(isolate);
// Hit on nth entry.
for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
__ Bind(&hit_on_nth_entry[i]);
__ Mov(scratch3, cache_field_offsets);
if (i != 0) {
__ Add(scratch2, scratch2, i);
}
__ Ldr(scratch4.W(), MemOperand(scratch3, scratch2, LSL, 2));
__ Ldrb(scratch5,
FieldMemOperand(receiver_map, Map::kInObjectPropertiesOffset));
__ Subs(scratch4, scratch4, scratch5);
__ B(ge, &property_array_property);
if (i != 0) {
__ B(&load_in_object_property);
}
}
// Load in-object property.
__ Bind(&load_in_object_property);
__ Ldrb(scratch5, FieldMemOperand(receiver_map, Map::kInstanceSizeOffset));
__ Add(scratch5, scratch5, scratch4); // Index from start of object.
__ Sub(receiver, receiver, kHeapObjectTag); // Remove the heap tag.
__ Ldr(result, MemOperand(receiver, scratch5, LSL, kPointerSizeLog2));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
scratch1, scratch2);
__ Ret();
// Load property array property.
__ Bind(&property_array_property);
__ Ldr(scratch1, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
__ Ldr(result, MemOperand(scratch1, scratch4, LSL, kPointerSizeLog2));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
scratch1, scratch2);
__ Ret();
// Do a quick inline probe of the receiver's dictionary, if it exists.
__ Bind(&probe_dictionary);
__ Ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, scratch1, slow);
// Load the property.
GenerateDictionaryLoad(masm, slow, scratch2, key, result, scratch1, scratch3);
__ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1,
scratch1, scratch2);
__ Ret();
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// The return address is in lr.
Label slow, check_name, index_smi, index_name;
Register key = LoadDescriptor::NameRegister();
Register receiver = LoadDescriptor::ReceiverRegister();
DCHECK(key.is(x2));
DCHECK(receiver.is(x1));
__ JumpIfNotSmi(key, &check_name);
__ Bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadWithSmiKey(masm, key, receiver, x7, x3, x4, x5, x6, &slow);
// Slow case.
__ Bind(&slow);
__ IncrementCounter(masm->isolate()->counters()->keyed_load_generic_slow(), 1,
x4, x3);
GenerateRuntimeGetProperty(masm);
__ Bind(&check_name);
GenerateKeyNameCheck(masm, key, x0, x3, &index_name, &slow);
GenerateKeyedLoadWithNameKey(masm, key, receiver, x7, x3, x4, x5, x6, &slow);
__ Bind(&index_name);
__ IndexFromHash(x3, key);
// Now jump to the place where smi keys are handled.
__ B(&index_smi);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
ASM_LOCATION("KeyedStoreIC::GenerateMiss");
// Push receiver, key and value for runtime call.
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister());
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
static void KeyedStoreGenerateMegamorphicHelper(
MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
Register value, Register key, Register receiver, Register receiver_map,
Register elements_map, Register elements) {
DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements,
x10, x11));
Label transition_smi_elements;
Label transition_double_elements;
Label fast_double_without_map_check;
Label non_double_value;
Label finish_store;
__ Bind(fast_object);
if (check_map == kCheckMap) {
__ Ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
__ B(ne, fast_double);
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because there
// may be a callback on the element.
Label holecheck_passed;
__ Add(x10, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Add(x10, x10, Operand::UntagSmiAndScale(key, kPointerSizeLog2));
__ Ldr(x11, MemOperand(x10));
__ JumpIfNotRoot(x11, Heap::kTheHoleValueRootIndex, &holecheck_passed);
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, x10, slow);
__ bind(&holecheck_passed);
// Smi stores don't require further checks.
__ JumpIfSmi(value, &finish_store);
// Escape to elements kind transition case.
__ CheckFastObjectElements(receiver_map, x10, &transition_smi_elements);
__ Bind(&finish_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Add(x10, key, Smi::FromInt(1));
__ Str(x10, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
Register address = x11;
__ Add(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Add(address, address, Operand::UntagSmiAndScale(key, kPointerSizeLog2));
__ Str(value, MemOperand(address));
Label dont_record_write;
__ JumpIfSmi(value, &dont_record_write);
// Update write barrier for the elements array address.
__ Mov(x10, value); // Preserve the value which is returned.
__ RecordWrite(elements, address, x10, kLRHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Bind(&dont_record_write);
__ Ret();
__ Bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ JumpIfNotRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex, slow);
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so go to
// the runtime.
__ Add(x10, elements, FixedDoubleArray::kHeaderSize - kHeapObjectTag);
__ Add(x10, x10, Operand::UntagSmiAndScale(key, kPointerSizeLog2));
__ Ldr(x11, MemOperand(x10));
__ CompareAndBranch(x11, kHoleNanInt64, ne, &fast_double_without_map_check);
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, x10, slow);
__ Bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value, key, elements, x10, d0,
&transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Add(x10, key, Smi::FromInt(1));
__ Str(x10, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Ret();
__ Bind(&transition_smi_elements);
// Transition the array appropriately depending on the value type.
__ Ldr(x10, FieldMemOperand(value, HeapObject::kMapOffset));
__ JumpIfNotRoot(x10, Heap::kHeapNumberMapRootIndex, &non_double_value);
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(
FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, x10, x11, slow);
AllocationSiteMode mode =
AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
receiver_map, mode, slow);
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ B(&fast_double_without_map_check);
__ Bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS.
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
receiver_map, x10, x11, slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
masm, receiver, key, value, receiver_map, mode, slow);
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ B(&finish_store);
__ Bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
receiver_map, x10, x11, slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(
masm, receiver, key, value, receiver_map, mode, slow);
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ B(&finish_store);
}
void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
StrictMode strict_mode) {
ASM_LOCATION("KeyedStoreIC::GenerateMegamorphic");
Label slow;
Label array;
Label fast_object;
Label extra;
Label fast_object_grow;
Label fast_double_grow;
Label fast_double;
Label maybe_name_key;
Label miss;
Register value = StoreDescriptor::ValueRegister();
Register key = StoreDescriptor::NameRegister();
Register receiver = StoreDescriptor::ReceiverRegister();
DCHECK(receiver.is(x1));
DCHECK(key.is(x2));
DCHECK(value.is(x0));
Register receiver_map = x3;
Register elements = x4;
Register elements_map = x5;
__ JumpIfNotSmi(key, &maybe_name_key);
__ JumpIfSmi(receiver, &slow);
__ Ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks and is not observed.
// The generic stub does not perform map checks or handle observed objects.
__ Ldrb(x10, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ TestAndBranchIfAnySet(
x10, (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kIsObserved), &slow);
// Check if the object is a JS array or not.
Register instance_type = x10;
__ CompareInstanceType(receiver_map, instance_type, JS_ARRAY_TYPE);
__ B(eq, &array);
// Check that the object is some kind of JSObject.
__ Cmp(instance_type, FIRST_JS_OBJECT_TYPE);
__ B(lt, &slow);
// Object case: Check key against length in the elements array.
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ Ldrsw(x10, UntagSmiFieldMemOperand(elements, FixedArray::kLengthOffset));
__ Cmp(x10, Operand::UntagSmi(key));
__ B(hi, &fast_object);
__ Bind(&slow);
// Slow case, handle jump to runtime.
// Live values:
// x0: value
// x1: key
// x2: receiver
PropertyICCompiler::GenerateRuntimeSetProperty(masm, strict_mode);
// Never returns to here.
__ bind(&maybe_name_key);
__ Ldr(x10, FieldMemOperand(key, HeapObject::kMapOffset));
__ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(x10, &slow);
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(
masm, Code::STORE_IC, flags, false, receiver, key, x3, x4, x5, x6);
// Cache miss.
__ B(&miss);
__ Bind(&extra);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ Ldrsw(x10, UntagSmiFieldMemOperand(elements, FixedArray::kLengthOffset));
__ Cmp(x10, Operand::UntagSmi(key));
__ B(ls, &slow);
__ Ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Cmp(elements_map, Operand(masm->isolate()->factory()->fixed_array_map()));
__ B(eq, &fast_object_grow);
__ Cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_double_array_map()));
__ B(eq, &fast_double_grow);
__ B(&slow);
__ Bind(&array);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ Ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array.
__ Ldrsw(x10, UntagSmiFieldMemOperand(receiver, JSArray::kLengthOffset));
__ Cmp(x10, Operand::UntagSmi(key));
__ B(eq, &extra); // We can handle the case where we are appending 1 element.
__ B(lo, &slow);
KeyedStoreGenerateMegamorphicHelper(
masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
value, key, receiver, receiver_map, elements_map, elements);
KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
&fast_double_grow, &slow, kDontCheckMap,
kIncrementLength, value, key, receiver,
receiver_map, elements_map, elements);
__ bind(&miss);
GenerateMiss(masm);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
DCHECK(!AreAliased(receiver, name, StoreDescriptor::ValueRegister(), x3, x4,
x5, x6));
// Probe the stub cache.
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(
masm, Code::STORE_IC, flags, false, receiver, name, x3, x4, x5, x6);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister());
// Tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
Label miss;
Register value = StoreDescriptor::ValueRegister();
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register dictionary = x3;
DCHECK(!AreAliased(value, receiver, name, x3, x4, x5));
__ Ldr(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
GenerateDictionaryStore(masm, &miss, dictionary, name, value, x4, x5);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(), 1, x4, x5);
__ Ret();
// Cache miss: Jump to runtime.
__ Bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1, x4, x5);
GenerateMiss(masm);
}
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return al;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address info_address = Assembler::return_address_from_call_start(address);
InstructionSequence* patch_info = InstructionSequence::At(info_address);
return patch_info->IsInlineData();
}
// Activate a SMI fast-path by patching the instructions generated by
// JumpPatchSite::EmitJumpIf(Not)Smi(), using the information encoded by
// JumpPatchSite::EmitPatchInfo().
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
// The patch information is encoded in the instruction stream using
// instructions which have no side effects, so we can safely execute them.
// The patch information is encoded directly after the call to the helper
// function which is requesting this patch operation.
Address info_address = Assembler::return_address_from_call_start(address);
InlineSmiCheckInfo info(info_address);
// Check and decode the patch information instruction.
if (!info.HasSmiCheck()) {
return;
}
if (FLAG_trace_ic) {
PrintF("[ Patching ic at %p, marker=%p, SMI check=%p\n", address,
info_address, reinterpret_cast<void*>(info.SmiCheck()));
}
// Patch and activate code generated by JumpPatchSite::EmitJumpIfNotSmi()
// and JumpPatchSite::EmitJumpIfSmi().
// Changing
// tb(n)z xzr, #0, <target>
// to
// tb(!n)z test_reg, #0, <target>
Instruction* to_patch = info.SmiCheck();
PatchingAssembler patcher(to_patch, 1);
DCHECK(to_patch->IsTestBranch());
DCHECK(to_patch->ImmTestBranchBit5() == 0);
DCHECK(to_patch->ImmTestBranchBit40() == 0);
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
int branch_imm = to_patch->ImmTestBranch();
Register smi_reg;
if (check == ENABLE_INLINED_SMI_CHECK) {
DCHECK(to_patch->Rt() == xzr.code());
smi_reg = info.SmiRegister();
} else {
DCHECK(check == DISABLE_INLINED_SMI_CHECK);
DCHECK(to_patch->Rt() != xzr.code());
smi_reg = xzr;
}
if (to_patch->Mask(TestBranchMask) == TBZ) {
// This is JumpIfNotSmi(smi_reg, branch_imm).
patcher.tbnz(smi_reg, 0, branch_imm);
} else {
DCHECK(to_patch->Mask(TestBranchMask) == TBNZ);
// This is JumpIfSmi(smi_reg, branch_imm).
patcher.tbz(smi_reg, 0, branch_imm);
}
}
}
} // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM64