blob: cca087fe83bf6ede706f19847366657ba9807bcf [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
#define V8_COMPILER_CONTROL_EQUIVALENCE_H_
#include "src/v8.h"
#include "src/compiler/graph.h"
#include "src/compiler/node.h"
#include "src/compiler/node-properties.h"
#include "src/zone-containers.h"
namespace v8 {
namespace internal {
namespace compiler {
// Determines control dependence equivalence classes for control nodes. Any two
// nodes having the same set of control dependences land in one class. These
// classes can in turn be used to:
// - Build a program structure tree (PST) for controls in the graph.
// - Determine single-entry single-exit (SESE) regions within the graph.
//
// Note that this implementation actually uses cycle equivalence to establish
// class numbers. Any two nodes are cycle equivalent if they occur in the same
// set of cycles. It can be shown that control dependence equivalence reduces
// to undirected cycle equivalence for strongly connected control flow graphs.
//
// The algorithm is based on the paper, "The program structure tree: computing
// control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
// also contains proofs for the aforementioned equivalence. References to line
// numbers in the algorithm from figure 4 have been added [line:x].
class ControlEquivalence : public ZoneObject {
public:
ControlEquivalence(Zone* zone, Graph* graph)
: zone_(zone),
graph_(graph),
dfs_number_(0),
class_number_(1),
node_data_(graph->NodeCount(), EmptyData(), zone) {}
// Run the main algorithm starting from the {exit} control node. This causes
// the following iterations over control edges of the graph:
// 1) A breadth-first backwards traversal to determine the set of nodes that
// participate in the next step. Takes O(E) time and O(N) space.
// 2) An undirected depth-first backwards traversal that determines class
// numbers for all participating nodes. Takes O(E) time and O(N) space.
void Run(Node* exit) {
if (GetClass(exit) != kInvalidClass) return;
DetermineParticipation(exit);
RunUndirectedDFS(exit);
}
// Retrieves a previously computed class number.
size_t ClassOf(Node* node) {
DCHECK(GetClass(node) != kInvalidClass);
return GetClass(node);
}
private:
static const size_t kInvalidClass = static_cast<size_t>(-1);
typedef enum { kInputDirection, kUseDirection } DFSDirection;
struct Bracket {
DFSDirection direction; // Direction in which this bracket was added.
size_t recent_class; // Cached class when bracket was topmost.
size_t recent_size; // Cached set-size when bracket was topmost.
Node* from; // Node that this bracket originates from.
Node* to; // Node that this bracket points to.
};
// The set of brackets for each node during the DFS walk.
typedef ZoneLinkedList<Bracket> BracketList;
struct DFSStackEntry {
DFSDirection direction; // Direction currently used in DFS walk.
Node::InputEdges::iterator input; // Iterator used for "input" direction.
Node::UseEdges::iterator use; // Iterator used for "use" direction.
Node* parent_node; // Parent node of entry during DFS walk.
Node* node; // Node that this stack entry belongs to.
};
// The stack is used during the undirected DFS walk.
typedef ZoneStack<DFSStackEntry> DFSStack;
struct NodeData {
size_t class_number; // Equivalence class number assigned to node.
size_t dfs_number; // Pre-order DFS number assigned to node.
bool visited; // Indicates node has already been visited.
bool on_stack; // Indicates node is on DFS stack during walk.
bool participates; // Indicates node participates in DFS walk.
BracketList blist; // List of brackets per node.
};
// The per-node data computed during the DFS walk.
typedef ZoneVector<NodeData> Data;
// Called at pre-visit during DFS walk.
void VisitPre(Node* node) {
Trace("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
// Dispense a new pre-order number.
SetNumber(node, NewDFSNumber());
Trace(" Assigned DFS number is %d\n", GetNumber(node));
}
// Called at mid-visit during DFS walk.
void VisitMid(Node* node, DFSDirection direction) {
Trace("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
BracketList& blist = GetBracketList(node);
// Remove brackets pointing to this node [line:19].
BracketListDelete(blist, node, direction);
// Potentially introduce artificial dependency from start to end.
if (blist.empty()) {
DCHECK_EQ(kInputDirection, direction);
VisitBackedge(node, graph_->end(), kInputDirection);
}
// Potentially start a new equivalence class [line:37].
BracketListTrace(blist);
Bracket* recent = &blist.back();
if (recent->recent_size != blist.size()) {
recent->recent_size = blist.size();
recent->recent_class = NewClassNumber();
}
// Assign equivalence class to node.
SetClass(node, recent->recent_class);
Trace(" Assigned class number is %d\n", GetClass(node));
}
// Called at post-visit during DFS walk.
void VisitPost(Node* node, Node* parent_node, DFSDirection direction) {
Trace("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
BracketList& blist = GetBracketList(node);
// Remove brackets pointing to this node [line:19].
BracketListDelete(blist, node, direction);
// Propagate bracket list up the DFS tree [line:13].
if (parent_node != NULL) {
BracketList& parent_blist = GetBracketList(parent_node);
parent_blist.splice(parent_blist.end(), blist);
}
}
// Called when hitting a back edge in the DFS walk.
void VisitBackedge(Node* from, Node* to, DFSDirection direction) {
Trace("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(),
from->op()->mnemonic(), to->id(), to->op()->mnemonic());
// Push backedge onto the bracket list [line:25].
Bracket bracket = {direction, kInvalidClass, 0, from, to};
GetBracketList(from).push_back(bracket);
}
// Performs and undirected DFS walk of the graph. Conceptually all nodes are
// expanded, splitting "input" and "use" out into separate nodes. During the
// traversal, edges towards the representative nodes are preferred.
//
// \ / - Pre-visit: When N1 is visited in direction D the preferred
// x N1 edge towards N is taken next, calling VisitPre(N).
// | - Mid-visit: After all edges out of N2 in direction D have
// | N been visited, we switch the direction and start considering
// | edges out of N1 now, and we call VisitMid(N).
// x N2 - Post-visit: After all edges out of N1 in direction opposite
// / \ to D have been visited, we pop N and call VisitPost(N).
//
// This will yield a true spanning tree (without cross or forward edges) and
// also discover proper back edges in both directions.
void RunUndirectedDFS(Node* exit) {
ZoneStack<DFSStackEntry> stack(zone_);
DFSPush(stack, exit, NULL, kInputDirection);
VisitPre(exit);
while (!stack.empty()) { // Undirected depth-first backwards traversal.
DFSStackEntry& entry = stack.top();
Node* node = entry.node;
if (entry.direction == kInputDirection) {
if (entry.input != node->input_edges().end()) {
Edge edge = *entry.input;
Node* input = edge.to();
++(entry.input);
if (NodeProperties::IsControlEdge(edge) &&
NodeProperties::IsControl(input)) {
// Visit next control input.
if (!GetData(input)->participates) continue;
if (GetData(input)->visited) continue;
if (GetData(input)->on_stack) {
// Found backedge if input is on stack.
if (input != entry.parent_node) {
VisitBackedge(node, input, kInputDirection);
}
} else {
// Push input onto stack.
DFSPush(stack, input, node, kInputDirection);
VisitPre(input);
}
}
continue;
}
if (entry.use != node->use_edges().end()) {
// Switch direction to uses.
entry.direction = kUseDirection;
VisitMid(node, kInputDirection);
continue;
}
}
if (entry.direction == kUseDirection) {
if (entry.use != node->use_edges().end()) {
Edge edge = *entry.use;
Node* use = edge.from();
++(entry.use);
if (NodeProperties::IsControlEdge(edge) &&
NodeProperties::IsControl(use)) {
// Visit next control use.
if (!GetData(use)->participates) continue;
if (GetData(use)->visited) continue;
if (GetData(use)->on_stack) {
// Found backedge if use is on stack.
if (use != entry.parent_node) {
VisitBackedge(node, use, kUseDirection);
}
} else {
// Push use onto stack.
DFSPush(stack, use, node, kUseDirection);
VisitPre(use);
}
}
continue;
}
if (entry.input != node->input_edges().end()) {
// Switch direction to inputs.
entry.direction = kInputDirection;
VisitMid(node, kUseDirection);
continue;
}
}
// Pop node from stack when done with all inputs and uses.
DCHECK(entry.input == node->input_edges().end());
DCHECK(entry.use == node->use_edges().end());
DFSPop(stack, node);
VisitPost(node, entry.parent_node, entry.direction);
}
}
void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node) {
if (!GetData(node)->participates) {
GetData(node)->participates = true;
queue.push(node);
}
}
void DetermineParticipation(Node* exit) {
ZoneQueue<Node*> queue(zone_);
DetermineParticipationEnqueue(queue, exit);
while (!queue.empty()) { // Breadth-first backwards traversal.
Node* node = queue.front();
queue.pop();
int max = NodeProperties::PastControlIndex(node);
for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) {
DetermineParticipationEnqueue(queue, node->InputAt(i));
}
}
}
private:
NodeData* GetData(Node* node) { return &node_data_[node->id()]; }
int NewClassNumber() { return class_number_++; }
int NewDFSNumber() { return dfs_number_++; }
// Template used to initialize per-node data.
NodeData EmptyData() {
return {kInvalidClass, 0, false, false, false, BracketList(zone_)};
}
// Accessors for the DFS number stored within the per-node data.
size_t GetNumber(Node* node) { return GetData(node)->dfs_number; }
void SetNumber(Node* node, size_t number) {
GetData(node)->dfs_number = number;
}
// Accessors for the equivalence class stored within the per-node data.
size_t GetClass(Node* node) { return GetData(node)->class_number; }
void SetClass(Node* node, size_t number) {
GetData(node)->class_number = number;
}
// Accessors for the bracket list stored within the per-node data.
BracketList& GetBracketList(Node* node) { return GetData(node)->blist; }
void SetBracketList(Node* node, BracketList& list) {
GetData(node)->blist = list;
}
// Mutates the DFS stack by pushing an entry.
void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) {
DCHECK(GetData(node)->participates);
DCHECK(!GetData(node)->visited);
GetData(node)->on_stack = true;
Node::InputEdges::iterator input = node->input_edges().begin();
Node::UseEdges::iterator use = node->use_edges().begin();
stack.push({dir, input, use, from, node});
}
// Mutates the DFS stack by popping an entry.
void DFSPop(DFSStack& stack, Node* node) {
DCHECK_EQ(stack.top().node, node);
GetData(node)->on_stack = false;
GetData(node)->visited = true;
stack.pop();
}
// TODO(mstarzinger): Optimize this to avoid linear search.
void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) {
for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) {
if (i->to == to && i->direction != direction) {
Trace(" BList erased: {%d->%d}\n", i->from->id(), i->to->id());
i = blist.erase(i);
} else {
++i;
}
}
}
void BracketListTrace(BracketList& blist) {
if (FLAG_trace_turbo_scheduler) {
Trace(" BList: ");
for (Bracket bracket : blist) {
Trace("{%d->%d} ", bracket.from->id(), bracket.to->id());
}
Trace("\n");
}
}
void Trace(const char* msg, ...) {
if (FLAG_trace_turbo_scheduler) {
va_list arguments;
va_start(arguments, msg);
base::OS::VPrint(msg, arguments);
va_end(arguments);
}
}
Zone* zone_;
Graph* graph_;
int dfs_number_; // Generates new DFS pre-order numbers on demand.
int class_number_; // Generates new equivalence class numbers on demand.
Data node_data_; // Per-node data stored as a side-table.
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_