blob: 52e85831c54b4070559f2df16a7bd95119b30dfe [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODE_STUB_ASSEMBLER_H_
#define V8_CODE_STUB_ASSEMBLER_H_
#include <functional>
#include "src/compiler/code-assembler.h"
#include "src/globals.h"
#include "src/objects.h"
namespace v8 {
namespace internal {
class CallInterfaceDescriptor;
class CodeStubArguments;
class StatsCounter;
class StubCache;
enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
#define HEAP_CONSTANT_LIST(V) \
V(AccessorInfoMap, AccessorInfoMap) \
V(AllocationSiteMap, AllocationSiteMap) \
V(BooleanMap, BooleanMap) \
V(CodeMap, CodeMap) \
V(empty_string, EmptyString) \
V(EmptyFixedArray, EmptyFixedArray) \
V(FalseValue, False) \
V(FixedArrayMap, FixedArrayMap) \
V(FixedCOWArrayMap, FixedCOWArrayMap) \
V(FixedDoubleArrayMap, FixedDoubleArrayMap) \
V(FunctionTemplateInfoMap, FunctionTemplateInfoMap) \
V(has_instance_symbol, HasInstanceSymbol) \
V(HeapNumberMap, HeapNumberMap) \
V(NoClosuresCellMap, NoClosuresCellMap) \
V(OneClosureCellMap, OneClosureCellMap) \
V(ManyClosuresCellMap, ManyClosuresCellMap) \
V(MinusZeroValue, MinusZero) \
V(NanValue, Nan) \
V(NullValue, Null) \
V(SymbolMap, SymbolMap) \
V(TheHoleValue, TheHole) \
V(TrueValue, True) \
V(Tuple2Map, Tuple2Map) \
V(Tuple3Map, Tuple3Map) \
V(UndefinedValue, Undefined)
// Provides JavaScript-specific "macro-assembler" functionality on top of the
// CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
// it's possible to add JavaScript-specific useful CodeAssembler "macros"
// without modifying files in the compiler directory (and requiring a review
// from a compiler directory OWNER).
class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler {
public:
typedef compiler::Node Node;
CodeStubAssembler(compiler::CodeAssemblerState* state);
enum AllocationFlag : uint8_t {
kNone = 0,
kDoubleAlignment = 1,
kPretenured = 1 << 1,
kAllowLargeObjectAllocation = 1 << 2,
};
typedef base::Flags<AllocationFlag> AllocationFlags;
enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
// On 32-bit platforms, there is a slight performance advantage to doing all
// of the array offset/index arithmetic with SMIs, since it's possible
// to save a few tag/untag operations without paying an extra expense when
// calculating array offset (the smi math can be folded away) and there are
// fewer live ranges. Thus only convert indices to untagged value on 64-bit
// platforms.
ParameterMode OptimalParameterMode() const {
return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
}
MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
: MachineRepresentation::kTaggedSigned;
}
MachineRepresentation OptimalParameterRepresentation() const {
return ParameterRepresentation(OptimalParameterMode());
}
Node* ParameterToWord(Node* value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) value = SmiUntag(value);
return value;
}
Node* WordToParameter(Node* value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) value = SmiTag(value);
return value;
}
Node* ParameterToTagged(Node* value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) value = SmiTag(value);
return value;
}
Node* TaggedToParameter(Node* value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) value = SmiUntag(value);
return value;
}
#define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
Node* OpName(Node* a, Node* b, ParameterMode mode) { \
if (mode == SMI_PARAMETERS) { \
return SmiOpName(a, b); \
} else { \
DCHECK_EQ(INTPTR_PARAMETERS, mode); \
return IntPtrOpName(a, b); \
} \
}
PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
SmiLessThanOrEqual)
PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
SmiGreaterThanOrEqual)
PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
SmiAboveOrEqual)
#undef PARAMETER_BINOP
Node* NoContextConstant();
#define HEAP_CONSTANT_ACCESSOR(rootName, name) Node* name##Constant();
HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_TEST(rootName, name) Node* Is##name(Node* value);
HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST
Node* HashSeed();
Node* StaleRegisterConstant();
Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
bool IsIntPtrOrSmiConstantZero(Node* test);
// Round the 32bits payload of the provided word up to the next power of two.
Node* IntPtrRoundUpToPowerOfTwo32(Node* value);
// Select the maximum of the two provided IntPtr values.
Node* IntPtrMax(Node* left, Node* right);
// Select the minimum of the two provided IntPtr values.
Node* IntPtrMin(Node* left, Node* right);
// Float64 operations.
Node* Float64Ceil(Node* x);
Node* Float64Floor(Node* x);
Node* Float64Round(Node* x);
Node* Float64RoundToEven(Node* x);
Node* Float64Trunc(Node* x);
// Tag a Word as a Smi value.
Node* SmiTag(Node* value);
// Untag a Smi value as a Word.
Node* SmiUntag(Node* value);
// Smi conversions.
Node* SmiToFloat64(Node* value);
Node* SmiFromWord(Node* value) { return SmiTag(value); }
Node* SmiFromWord32(Node* value);
Node* SmiToWord(Node* value) { return SmiUntag(value); }
Node* SmiToWord32(Node* value);
// Smi operations.
#define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName) \
Node* SmiOpName(Node* a, Node* b) { \
return BitcastWordToTaggedSigned( \
IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
}
SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd)
SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub)
SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd)
SMI_ARITHMETIC_BINOP(SmiOr, WordOr)
#undef SMI_ARITHMETIC_BINOP
Node* SmiShl(Node* a, int shift) {
return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
}
Node* SmiShr(Node* a, int shift) {
return BitcastWordToTaggedSigned(
WordAnd(WordShr(BitcastTaggedToWord(a), shift),
BitcastTaggedToWord(SmiConstant(-1))));
}
Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiShl(a, shift);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return WordShl(a, shift);
}
}
Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiShr(a, shift);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return WordShr(a, shift);
}
}
#define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName) \
Node* SmiOpName(Node* a, Node* b) { \
return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
}
SMI_COMPARISON_OP(SmiEqual, WordEqual)
SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual)
SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan)
SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual)
SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan)
SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan)
SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual)
SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan)
SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual)
#undef SMI_COMPARISON_OP
Node* SmiMax(Node* a, Node* b);
Node* SmiMin(Node* a, Node* b);
// Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
Node* SmiMod(Node* a, Node* b);
// Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
Node* SmiMul(Node* a, Node* b);
// Smi | HeapNumber operations.
Node* NumberInc(Node* value);
void GotoIfNotNumber(Node* value, Label* is_not_number);
void GotoIfNumber(Node* value, Label* is_number);
// Allocate an object of the given size.
Node* Allocate(Node* size, AllocationFlags flags = kNone);
Node* Allocate(int size, AllocationFlags flags = kNone);
Node* InnerAllocate(Node* previous, int offset);
Node* InnerAllocate(Node* previous, Node* offset);
Node* IsRegularHeapObjectSize(Node* size);
typedef std::function<Node*()> NodeGenerator;
void Assert(const NodeGenerator& condition_body, const char* string = nullptr,
const char* file = nullptr, int line = 0);
Node* Select(Node* condition, const NodeGenerator& true_body,
const NodeGenerator& false_body, MachineRepresentation rep);
Node* SelectConstant(Node* condition, Node* true_value, Node* false_value,
MachineRepresentation rep);
Node* SelectInt32Constant(Node* condition, int true_value, int false_value);
Node* SelectIntPtrConstant(Node* condition, int true_value, int false_value);
Node* SelectBooleanConstant(Node* condition);
Node* SelectTaggedConstant(Node* condition, Node* true_value,
Node* false_value);
Node* SelectSmiConstant(Node* condition, Smi* true_value, Smi* false_value);
Node* SelectSmiConstant(Node* condition, int true_value, Smi* false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
}
Node* SelectSmiConstant(Node* condition, Smi* true_value, int false_value) {
return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
}
Node* SelectSmiConstant(Node* condition, int true_value, int false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value),
Smi::FromInt(false_value));
}
Node* TruncateWordToWord32(Node* value);
// Check a value for smi-ness
Node* TaggedIsSmi(Node* a);
Node* TaggedIsNotSmi(Node* a);
// Check that the value is a non-negative smi.
Node* TaggedIsPositiveSmi(Node* a);
// Check that a word has a word-aligned address.
Node* WordIsWordAligned(Node* word);
Node* WordIsPowerOfTwo(Node* value);
void BranchIfSmiEqual(Node* a, Node* b, Label* if_true, Label* if_false) {
Branch(SmiEqual(a, b), if_true, if_false);
}
void BranchIfSmiLessThan(Node* a, Node* b, Label* if_true, Label* if_false) {
Branch(SmiLessThan(a, b), if_true, if_false);
}
void BranchIfSmiLessThanOrEqual(Node* a, Node* b, Label* if_true,
Label* if_false) {
Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
}
void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
Branch(Float64Equal(value, value), if_false, if_true);
}
// Branches to {if_true} if ToBoolean applied to {value} yields true,
// otherwise goes to {if_false}.
void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
void BranchIfJSObject(Node* object, Label* if_true, Label* if_false);
enum class FastJSArrayAccessMode { INBOUNDS_READ, ANY_ACCESS };
void BranchIfFastJSArray(Node* object, Node* context,
FastJSArrayAccessMode mode, Label* if_true,
Label* if_false);
// Load value from current frame by given offset in bytes.
Node* LoadFromFrame(int offset, MachineType rep = MachineType::AnyTagged());
// Load value from current parent frame by given offset in bytes.
Node* LoadFromParentFrame(int offset,
MachineType rep = MachineType::AnyTagged());
// Load an object pointer from a buffer that isn't in the heap.
Node* LoadBufferObject(Node* buffer, int offset,
MachineType rep = MachineType::AnyTagged());
// Load a field from an object on the heap.
Node* LoadObjectField(Node* object, int offset,
MachineType rep = MachineType::AnyTagged());
Node* LoadObjectField(Node* object, Node* offset,
MachineType rep = MachineType::AnyTagged());
// Load a SMI field and untag it.
Node* LoadAndUntagObjectField(Node* object, int offset);
// Load a SMI field, untag it, and convert to Word32.
Node* LoadAndUntagToWord32ObjectField(Node* object, int offset);
// Load a SMI and untag it.
Node* LoadAndUntagSmi(Node* base, int index);
// Load a SMI root, untag it, and convert to Word32.
Node* LoadAndUntagToWord32Root(Heap::RootListIndex root_index);
// Tag a smi and store it.
Node* StoreAndTagSmi(Node* base, int offset, Node* value);
// Load the floating point value of a HeapNumber.
Node* LoadHeapNumberValue(Node* object);
// Load the Map of an HeapObject.
Node* LoadMap(Node* object);
// Load the instance type of an HeapObject.
Node* LoadInstanceType(Node* object);
// Compare the instance the type of the object against the provided one.
Node* HasInstanceType(Node* object, InstanceType type);
Node* DoesntHaveInstanceType(Node* object, InstanceType type);
// Load the properties backing store of a JSObject.
Node* LoadProperties(Node* object);
// Load the elements backing store of a JSObject.
Node* LoadElements(Node* object);
// Load the length of a JSArray instance.
Node* LoadJSArrayLength(Node* array);
// Load the length of a fixed array base instance.
Node* LoadFixedArrayBaseLength(Node* array);
// Load the length of a fixed array base instance.
Node* LoadAndUntagFixedArrayBaseLength(Node* array);
// Load the bit field of a Map.
Node* LoadMapBitField(Node* map);
// Load bit field 2 of a map.
Node* LoadMapBitField2(Node* map);
// Load bit field 3 of a map.
Node* LoadMapBitField3(Node* map);
// Load the instance type of a map.
Node* LoadMapInstanceType(Node* map);
// Load the ElementsKind of a map.
Node* LoadMapElementsKind(Node* map);
// Load the instance descriptors of a map.
Node* LoadMapDescriptors(Node* map);
// Load the prototype of a map.
Node* LoadMapPrototype(Node* map);
// Load the prototype info of a map. The result has to be checked if it is a
// prototype info object or not.
Node* LoadMapPrototypeInfo(Node* map, Label* if_has_no_proto_info);
// Load the instance size of a Map.
Node* LoadMapInstanceSize(Node* map);
// Load the inobject properties count of a Map (valid only for JSObjects).
Node* LoadMapInobjectProperties(Node* map);
// Load the constructor function index of a Map (only for primitive maps).
Node* LoadMapConstructorFunctionIndex(Node* map);
// Load the constructor of a Map (equivalent to Map::GetConstructor()).
Node* LoadMapConstructor(Node* map);
// Loads a value from the specially encoded integer fields in the
// SharedFunctionInfo object.
// TODO(danno): This currently only works for the integer fields that are
// mapped to the upper part of 64-bit words. We should customize
// SFI::BodyDescriptor and store int32 values directly.
Node* LoadSharedFunctionInfoSpecialField(Node* shared, int offset,
ParameterMode param_mode);
// Check if the map is set for slow properties.
Node* IsDictionaryMap(Node* map);
// Load the hash field of a name as an uint32 value.
Node* LoadNameHashField(Node* name);
// Load the hash value of a name as an uint32 value.
// If {if_hash_not_computed} label is specified then it also checks if
// hash is actually computed.
Node* LoadNameHash(Node* name, Label* if_hash_not_computed = nullptr);
// Load length field of a String object.
Node* LoadStringLength(Node* object);
// Load value field of a JSValue object.
Node* LoadJSValueValue(Node* object);
// Load value field of a WeakCell object.
Node* LoadWeakCellValueUnchecked(Node* weak_cell);
Node* LoadWeakCellValue(Node* weak_cell, Label* if_cleared = nullptr);
// Load an array element from a FixedArray.
Node* LoadFixedArrayElement(Node* object, Node* index,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
Node* LoadFixedArrayElement(Node* object, int index,
int additional_offset = 0) {
return LoadFixedArrayElement(object, IntPtrConstant(index),
additional_offset);
}
// Load an array element from a FixedArray, untag it and return it as Word32.
Node* LoadAndUntagToWord32FixedArrayElement(
Node* object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Load an array element from a FixedDoubleArray.
Node* LoadFixedDoubleArrayElement(
Node* object, Node* index, MachineType machine_type,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
Label* if_hole = nullptr);
// Load Float64 value by |base| + |offset| address. If the value is a double
// hole then jump to |if_hole|. If |machine_type| is None then only the hole
// check is generated.
Node* LoadDoubleWithHoleCheck(
Node* base, Node* offset, Label* if_hole,
MachineType machine_type = MachineType::Float64());
Node* LoadFixedTypedArrayElement(
Node* data_pointer, Node* index_node, ElementsKind elements_kind,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Context manipulation
Node* LoadContextElement(Node* context, int slot_index);
Node* LoadContextElement(Node* context, Node* slot_index);
Node* StoreContextElement(Node* context, int slot_index, Node* value);
Node* StoreContextElement(Node* context, Node* slot_index, Node* value);
Node* StoreContextElementNoWriteBarrier(Node* context, int slot_index,
Node* value);
Node* LoadNativeContext(Node* context);
Node* LoadJSArrayElementsMap(ElementsKind kind, Node* native_context);
// Store the floating point value of a HeapNumber.
Node* StoreHeapNumberValue(Node* object, Node* value);
// Store a field to an object on the heap.
Node* StoreObjectField(Node* object, int offset, Node* value);
Node* StoreObjectField(Node* object, Node* offset, Node* value);
Node* StoreObjectFieldNoWriteBarrier(
Node* object, int offset, Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
Node* StoreObjectFieldNoWriteBarrier(
Node* object, Node* offset, Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
// Store the Map of an HeapObject.
Node* StoreMap(Node* object, Node* map);
Node* StoreMapNoWriteBarrier(Node* object,
Heap::RootListIndex map_root_index);
Node* StoreMapNoWriteBarrier(Node* object, Node* map);
Node* StoreObjectFieldRoot(Node* object, int offset,
Heap::RootListIndex root);
// Store an array element to a FixedArray.
Node* StoreFixedArrayElement(
Node* object, int index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
barrier_mode);
}
Node* StoreFixedArrayElement(
Node* object, Node* index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
Node* StoreFixedDoubleArrayElement(
Node* object, Node* index, Node* value,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
Node* BuildAppendJSArray(ElementsKind kind, Node* context, Node* array,
CodeStubArguments& args, Variable& arg_index,
Label* bailout);
void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
Node* value);
// Allocate a HeapNumber without initializing its value.
Node* AllocateHeapNumber(MutableMode mode = IMMUTABLE);
// Allocate a HeapNumber with a specific value.
Node* AllocateHeapNumberWithValue(Node* value, MutableMode mode = IMMUTABLE);
// Allocate a SeqOneByteString with the given length.
Node* AllocateSeqOneByteString(int length, AllocationFlags flags = kNone);
Node* AllocateSeqOneByteString(Node* context, Node* length,
ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone);
// Allocate a SeqTwoByteString with the given length.
Node* AllocateSeqTwoByteString(int length, AllocationFlags flags = kNone);
Node* AllocateSeqTwoByteString(Node* context, Node* length,
ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone);
// Allocate a SlicedOneByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
Node* AllocateSlicedOneByteString(Node* length, Node* parent, Node* offset);
// Allocate a SlicedTwoByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
Node* AllocateSlicedTwoByteString(Node* length, Node* parent, Node* offset);
// Allocate a one-byte ConsString with the given length, first and second
// parts. |length| is expected to be tagged, and |first| and |second| are
// expected to be one-byte strings.
Node* AllocateOneByteConsString(Node* length, Node* first, Node* second,
AllocationFlags flags = kNone);
// Allocate a two-byte ConsString with the given length, first and second
// parts. |length| is expected to be tagged, and |first| and |second| are
// expected to be two-byte strings.
Node* AllocateTwoByteConsString(Node* length, Node* first, Node* second,
AllocationFlags flags = kNone);
// Allocate an appropriate one- or two-byte ConsString with the first and
// second parts specified by |first| and |second|.
Node* NewConsString(Node* context, Node* length, Node* left, Node* right,
AllocationFlags flags = kNone);
// Allocate a RegExpResult with the given length (the number of captures,
// including the match itself), index (the index where the match starts),
// and input string. |length| and |index| are expected to be tagged, and
// |input| must be a string.
Node* AllocateRegExpResult(Node* context, Node* length, Node* index,
Node* input);
Node* AllocateNameDictionary(int capacity);
Node* AllocateNameDictionary(Node* capacity);
Node* AllocateJSObjectFromMap(Node* map, Node* properties = nullptr,
Node* elements = nullptr,
AllocationFlags flags = kNone);
void InitializeJSObjectFromMap(Node* object, Node* map, Node* size,
Node* properties = nullptr,
Node* elements = nullptr);
void InitializeJSObjectBody(Node* object, Node* map, Node* size,
int start_offset = JSObject::kHeaderSize);
// Allocate a JSArray without elements and initialize the header fields.
Node* AllocateUninitializedJSArrayWithoutElements(ElementsKind kind,
Node* array_map,
Node* length,
Node* allocation_site);
// Allocate and return a JSArray with initialized header fields and its
// uninitialized elements.
// The ParameterMode argument is only used for the capacity parameter.
std::pair<Node*, Node*> AllocateUninitializedJSArrayWithElements(
ElementsKind kind, Node* array_map, Node* length, Node* allocation_site,
Node* capacity, ParameterMode capacity_mode = INTPTR_PARAMETERS);
// Allocate a JSArray and fill elements with the hole.
// The ParameterMode argument is only used for the capacity parameter.
Node* AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity,
Node* length, Node* allocation_site = nullptr,
ParameterMode capacity_mode = INTPTR_PARAMETERS);
Node* AllocateFixedArray(ElementsKind kind, Node* capacity,
ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone);
// Perform CreateArrayIterator (ES6 #sec-createarrayiterator).
Node* CreateArrayIterator(Node* array, Node* array_map, Node* array_type,
Node* context, IterationKind mode);
Node* AllocateJSArrayIterator(Node* array, Node* array_map, Node* map);
void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
Node* to_index,
Heap::RootListIndex value_root_index,
ParameterMode mode = INTPTR_PARAMETERS);
// Copies all elements from |from_array| of |length| size to
// |to_array| of the same size respecting the elements kind.
void CopyFixedArrayElements(
ElementsKind kind, Node* from_array, Node* to_array, Node* length,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS) {
CopyFixedArrayElements(kind, from_array, kind, to_array, length, length,
barrier_mode, mode);
}
// Copies |element_count| elements from |from_array| to |to_array| of
// |capacity| size respecting both array's elements kinds.
void CopyFixedArrayElements(
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
Node* to_array, Node* element_count, Node* capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS);
// Copies |character_count| elements from |from_string| to |to_string|
// starting at the |from_index|'th character. |from_string| and |to_string|
// can either be one-byte strings or two-byte strings, although if
// |from_string| is two-byte, then |to_string| must be two-byte.
// |from_index|, |to_index| and |character_count| must be either Smis or
// intptr_ts depending on |mode| s.t. 0 <= |from_index| <= |from_index| +
// |character_count| <= from_string.length and 0 <= |to_index| <= |to_index| +
// |character_count| <= to_string.length.
void CopyStringCharacters(Node* from_string, Node* to_string,
Node* from_index, Node* to_index,
Node* character_count,
String::Encoding from_encoding,
String::Encoding to_encoding, ParameterMode mode);
// Loads an element from |array| of |from_kind| elements by given |offset|
// (NOTE: not index!), does a hole check if |if_hole| is provided and
// converts the value so that it becomes ready for storing to array of
// |to_kind| elements.
Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
ElementsKind from_kind,
ElementsKind to_kind, Label* if_hole);
Node* CalculateNewElementsCapacity(Node* old_capacity,
ParameterMode mode = INTPTR_PARAMETERS);
// Tries to grow the |elements| array of given |object| to store the |key|
// or bails out if the growing gap is too big. Returns new elements.
Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
Node* key, Label* bailout);
// Tries to grow the |capacity|-length |elements| array of given |object|
// to store the |key| or bails out if the growing gap is too big. Returns
// new elements.
Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
Node* key, Node* capacity, ParameterMode mode,
Label* bailout);
// Grows elements capacity of given object. Returns new elements.
Node* GrowElementsCapacity(Node* object, Node* elements,
ElementsKind from_kind, ElementsKind to_kind,
Node* capacity, Node* new_capacity,
ParameterMode mode, Label* bailout);
// Allocation site manipulation
void InitializeAllocationMemento(Node* base_allocation,
int base_allocation_size,
Node* allocation_site);
Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
Node* TruncateTaggedToFloat64(Node* context, Node* value);
Node* TruncateTaggedToWord32(Node* context, Node* value);
// Truncate the floating point value of a HeapNumber to an Int32.
Node* TruncateHeapNumberValueToWord32(Node* object);
// Conversions.
Node* ChangeFloat64ToTagged(Node* value);
Node* ChangeInt32ToTagged(Node* value);
Node* ChangeUint32ToTagged(Node* value);
Node* ChangeNumberToFloat64(Node* value);
// Type conversions.
// Throws a TypeError for {method_name} if {value} is not coercible to Object,
// or returns the {value} converted to a String otherwise.
Node* ToThisString(Node* context, Node* value, char const* method_name);
// Throws a TypeError for {method_name} if {value} is neither of the given
// {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
// returns the {value} (or wrapped value) otherwise.
Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is not of the given
// instance type. Returns {value}'s map.
Node* ThrowIfNotInstanceType(Node* context, Node* value,
InstanceType instance_type,
char const* method_name);
// Type checks.
// Check whether the map is for an object with special properties, such as a
// JSProxy or an object with interceptors.
Node* InstanceTypeEqual(Node* instance_type, int type);
Node* IsSpecialReceiverMap(Node* map);
Node* IsSpecialReceiverInstanceType(Node* instance_type);
Node* IsStringInstanceType(Node* instance_type);
Node* IsString(Node* object);
Node* IsJSObject(Node* object);
Node* IsJSGlobalProxy(Node* object);
Node* IsJSReceiverInstanceType(Node* instance_type);
Node* IsJSReceiver(Node* object);
Node* IsJSReceiverMap(Node* map);
Node* IsMap(Node* object);
Node* IsCallableMap(Node* map);
Node* IsCallable(Node* object);
Node* IsBoolean(Node* object);
Node* IsHeapNumber(Node* object);
Node* IsName(Node* object);
Node* IsSymbol(Node* object);
Node* IsPrivateSymbol(Node* object);
Node* IsJSValue(Node* object);
Node* IsJSArray(Node* object);
Node* IsNativeContext(Node* object);
Node* IsWeakCell(Node* object);
Node* IsFixedDoubleArray(Node* object);
Node* IsHashTable(Node* object);
Node* IsDictionary(Node* object);
Node* IsUnseededNumberDictionary(Node* object);
Node* IsConstructorMap(Node* map);
Node* IsJSFunction(Node* object);
// ElementsKind helpers:
Node* IsFastElementsKind(Node* elements_kind);
Node* IsHoleyFastElementsKind(Node* elements_kind);
// String helpers.
// Load a character from a String (might flatten a ConsString).
Node* StringCharCodeAt(Node* string, Node* index,
ParameterMode parameter_mode = SMI_PARAMETERS);
// Return the single character string with only {code}.
Node* StringFromCharCode(Node* code);
// Return a new string object which holds a substring containing the range
// [from,to[ of string. |from| and |to| are expected to be tagged.
Node* SubString(Node* context, Node* string, Node* from, Node* to);
// Return a new string object produced by concatenating |first| with |second|.
Node* StringAdd(Node* context, Node* first, Node* second,
AllocationFlags flags = kNone);
// Unpack the external string, returning a pointer that (offset-wise) looks
// like a sequential string.
// Note that this pointer is not tagged and does not point to a real
// sequential string instance, and may only be used to access the string
// data. The pointer is GC-safe as long as a reference to the container
// ExternalString is live.
// |string| must be an external string. Bailout for short external strings.
Node* TryDerefExternalString(Node* const string, Node* const instance_type,
Label* if_bailout);
// Check if |var_string| has an indirect (thin or flat cons) string type,
// and unpack it if so.
void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
Variable* var_did_something);
// Check if |var_left| or |var_right| has an indirect (thin or flat cons)
// string type, and unpack it/them if so. Fall through if nothing was done.
void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
Variable* var_right, Node* right_instance_type,
Label* did_something);
Node* StringFromCodePoint(Node* codepoint, UnicodeEncoding encoding);
// Type conversion helpers.
// Convert a String to a Number.
Node* StringToNumber(Node* context, Node* input);
Node* NumberToString(Node* context, Node* input);
// Convert an object to a name.
Node* ToName(Node* context, Node* input);
// Convert a Non-Number object to a Number.
Node* NonNumberToNumber(Node* context, Node* input);
// Convert any object to a Number.
Node* ToNumber(Node* context, Node* input);
// Converts |input| to one of 2^32 integer values in the range 0 through
// 2^32-1, inclusive.
// ES#sec-touint32
compiler::Node* ToUint32(compiler::Node* context, compiler::Node* input);
// Convert any object to a String.
Node* ToString(Node* context, Node* input);
// Convert any object to a Primitive.
Node* JSReceiverToPrimitive(Node* context, Node* input);
enum ToIntegerTruncationMode {
kNoTruncation,
kTruncateMinusZero,
};
// Convert any object to an Integer.
Node* ToInteger(Node* context, Node* input,
ToIntegerTruncationMode mode = kNoTruncation);
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word32|. Returns result as an uint32 node.
template <typename T>
Node* DecodeWord32(Node* word32) {
return DecodeWord32(word32, T::kShift, T::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word|. Returns result as a word-size node.
template <typename T>
Node* DecodeWord(Node* word) {
return DecodeWord(word, T::kShift, T::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word32|. Returns result as a word-size node.
template <typename T>
Node* DecodeWordFromWord32(Node* word32) {
return DecodeWord<T>(ChangeUint32ToWord(word32));
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |T| in |word|. Returns result as an uint32 node.
template <typename T>
Node* DecodeWord32FromWord(Node* word) {
return TruncateWordToWord32(DecodeWord<T>(word));
}
// Decodes an unsigned (!) value from |word32| to an uint32 node.
Node* DecodeWord32(Node* word32, uint32_t shift, uint32_t mask);
// Decodes an unsigned (!) value from |word| to a word-size node.
Node* DecodeWord(Node* word, uint32_t shift, uint32_t mask);
// Returns true if any of the |T|'s bits in given |word32| are set.
template <typename T>
Node* IsSetWord32(Node* word32) {
return IsSetWord32(word32, T::kMask);
}
// Returns true if any of the mask's bits in given |word32| are set.
Node* IsSetWord32(Node* word32, uint32_t mask) {
return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if any of the |T|'s bits in given |word| are set.
template <typename T>
Node* IsSetWord(Node* word) {
return IsSetWord(word, T::kMask);
}
// Returns true if any of the mask's bits in given |word| are set.
Node* IsSetWord(Node* word, uint32_t mask) {
return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
}
// Returns true if any of the mask's bit are set in the given Smi.
// Smi-encoding of the mask is performed implicitly!
Node* IsSetSmi(Node* smi, int untagged_mask) {
intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
return WordNotEqual(
WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
IntPtrConstant(0));
}
// Returns true if all of the |T|'s bits in given |word32| are clear.
template <typename T>
Node* IsClearWord32(Node* word32) {
return IsClearWord32(word32, T::kMask);
}
// Returns true if all of the mask's bits in given |word32| are clear.
Node* IsClearWord32(Node* word32, uint32_t mask) {
return Word32Equal(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if all of the |T|'s bits in given |word| are clear.
template <typename T>
Node* IsClearWord(Node* word) {
return IsClearWord(word, T::kMask);
}
// Returns true if all of the mask's bits in given |word| are clear.
Node* IsClearWord(Node* word, uint32_t mask) {
return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
}
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int delta);
void DecrementCounter(StatsCounter* counter, int delta);
void Increment(Variable& variable, int value = 1,
ParameterMode mode = INTPTR_PARAMETERS);
// Generates "if (false) goto label" code. Useful for marking a label as
// "live" to avoid assertion failures during graph building. In the resulting
// code this check will be eliminated.
void Use(Label* label);
// Various building blocks for stubs doing property lookups.
void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
Label* if_keyisunique, Variable* var_unique,
Label* if_bailout);
// Calculates array index for given dictionary entry and entry field.
// See Dictionary::EntryToIndex().
template <typename Dictionary>
Node* EntryToIndex(Node* entry, int field_index);
template <typename Dictionary>
Node* EntryToIndex(Node* entry) {
return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
}
// Loads the details for the entry with the given key_index.
// Returns an untagged int32.
template <class ContainerType>
Node* LoadDetailsByKeyIndex(Node* container, Node* key_index) {
const int kKeyToDetailsOffset =
(ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
return LoadAndUntagToWord32FixedArrayElement(container, key_index,
kKeyToDetailsOffset);
}
// Loads the value for the entry with the given key_index.
// Returns a tagged value.
template <class ContainerType>
Node* LoadValueByKeyIndex(Node* container, Node* key_index) {
const int kKeyToValueOffset =
(ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
return LoadFixedArrayElement(container, key_index, kKeyToValueOffset);
}
// Stores the details for the entry with the given key_index.
// |details| must be a Smi.
template <class ContainerType>
void StoreDetailsByKeyIndex(Node* container, Node* key_index, Node* details) {
const int kKeyToDetailsOffset =
(ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
kKeyToDetailsOffset);
}
// Stores the value for the entry with the given key_index.
template <class ContainerType>
void StoreValueByKeyIndex(Node* container, Node* key_index, Node* value) {
const int kKeyToValueOffset =
(ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
StoreFixedArrayElement(container, key_index, value, UPDATE_WRITE_BARRIER,
kKeyToValueOffset);
}
// Calculate a valid size for the a hash table.
Node* HashTableComputeCapacity(Node* at_least_space_for);
template <class Dictionary>
Node* GetNumberOfElements(Node* dictionary);
template <class Dictionary>
void SetNumberOfElements(Node* dictionary, Node* num_elements_smi);
template <class Dictionary>
Node* GetNumberOfDeletedElements(Node* dictionary);
template <class Dictionary>
Node* GetCapacity(Node* dictionary);
template <class Dictionary>
Node* GetNextEnumerationIndex(Node* dictionary);
template <class Dictionary>
void SetNextEnumerationIndex(Node* dictionary, Node* next_enum_index_smi);
// Looks up an entry in a NameDictionaryBase successor. If the entry is found
// control goes to {if_found} and {var_name_index} contains an index of the
// key field of the entry found. If the key is not found control goes to
// {if_not_found}.
static const int kInlinedDictionaryProbes = 4;
enum LookupMode { kFindExisting, kFindInsertionIndex };
template <typename Dictionary>
void NameDictionaryLookup(Node* dictionary, Node* unique_name,
Label* if_found, Variable* var_name_index,
Label* if_not_found,
int inlined_probes = kInlinedDictionaryProbes,
LookupMode mode = kFindExisting);
Node* ComputeIntegerHash(Node* key, Node* seed);
template <typename Dictionary>
void NumberDictionaryLookup(Node* dictionary, Node* intptr_index,
Label* if_found, Variable* var_entry,
Label* if_not_found);
template <class Dictionary>
void FindInsertionEntry(Node* dictionary, Node* key, Variable* var_key_index);
template <class Dictionary>
void InsertEntry(Node* dictionary, Node* key, Node* value, Node* index,
Node* enum_index);
template <class Dictionary>
void Add(Node* dictionary, Node* key, Node* value, Label* bailout);
// Tries to check if {object} has own {unique_name} property.
void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found,
Label* if_not_found, Label* if_bailout);
// Tries to get {object}'s own {unique_name} property value. If the property
// is an accessor then it also calls a getter. If the property is a double
// field it re-wraps value in an immutable heap number.
void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
Node* instance_type, Node* unique_name,
Label* if_found, Variable* var_value,
Label* if_not_found, Label* if_bailout);
Node* GetProperty(Node* context, Node* receiver, Handle<Name> name) {
return CallStub(CodeFactory::GetProperty(isolate()), context, receiver,
HeapConstant(name));
}
void LoadPropertyFromFastObject(Node* object, Node* map, Node* descriptors,
Node* name_index, Variable* var_details,
Variable* var_value);
void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
Variable* var_details,
Variable* var_value);
void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
Variable* var_details,
Variable* var_value, Label* if_deleted);
// Generic property lookup generator. If the {object} is fast and
// {unique_name} property is found then the control goes to {if_found_fast}
// label and {var_meta_storage} and {var_name_index} will contain
// DescriptorArray and an index of the descriptor's name respectively.
// If the {object} is slow or global then the control goes to {if_found_dict}
// or {if_found_global} and the {var_meta_storage} and {var_name_index} will
// contain a dictionary and an index of the key field of the found entry.
// If property is not found or given lookup is not supported then
// the control goes to {if_not_found} or {if_bailout} respectively.
//
// Note: this code does not check if the global dictionary points to deleted
// entry! This has to be done by the caller.
void TryLookupProperty(Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found_fast,
Label* if_found_dict, Label* if_found_global,
Variable* var_meta_storage, Variable* var_name_index,
Label* if_not_found, Label* if_bailout);
void TryLookupElement(Node* object, Node* map, Node* instance_type,
Node* intptr_index, Label* if_found,
Label* if_not_found, Label* if_bailout);
// This is a type of a lookup in holder generator function. In case of a
// property lookup the {key} is guaranteed to be an unique name and in case of
// element lookup the key is an Int32 index.
typedef std::function<void(Node* receiver, Node* holder, Node* map,
Node* instance_type, Node* key, Label* next_holder,
Label* if_bailout)>
LookupInHolder;
// Generic property prototype chain lookup generator.
// For properties it generates lookup using given {lookup_property_in_holder}
// and for elements it uses {lookup_element_in_holder}.
// Upon reaching the end of prototype chain the control goes to {if_end}.
// If it can't handle the case {receiver}/{key} case then the control goes
// to {if_bailout}.
void TryPrototypeChainLookup(Node* receiver, Node* key,
const LookupInHolder& lookup_property_in_holder,
const LookupInHolder& lookup_element_in_holder,
Label* if_end, Label* if_bailout);
// Instanceof helpers.
// ES6 section 7.3.19 OrdinaryHasInstance (C, O)
Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
// Load type feedback vector from the stub caller's frame.
Node* LoadFeedbackVectorForStub();
// Update the type feedback vector.
void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
Node* LoadReceiverMap(Node* receiver);
// Emits keyed sloppy arguments load. Returns either the loaded value.
Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
}
// Emits keyed sloppy arguments store.
void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
Label* bailout) {
DCHECK_NOT_NULL(value);
EmitKeyedSloppyArguments(receiver, key, value, bailout);
}
// Loads script context from the script context table.
Node* LoadScriptContext(Node* context, int context_index);
Node* Int32ToUint8Clamped(Node* int32_value);
Node* Float64ToUint8Clamped(Node* float64_value);
Node* PrepareValueForWriteToTypedArray(Node* key, ElementsKind elements_kind,
Label* bailout);
// Store value to an elements array with given elements kind.
void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
ParameterMode mode);
void EmitElementStore(Node* object, Node* key, Node* value, bool is_jsarray,
ElementsKind elements_kind,
KeyedAccessStoreMode store_mode, Label* bailout);
Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
Node* length, Node* key, ParameterMode mode,
bool is_js_array, Label* bailout);
Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
Node* length, ParameterMode mode, Label* bailout);
void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
ElementsKind to_kind, bool is_jsarray,
Label* bailout);
void TrapAllocationMemento(Node* object, Label* memento_found);
Node* PageFromAddress(Node* address);
// Get the enumerable length from |map| and return the result as a Smi.
Node* EnumLength(Node* map);
// Check the cache validity for |receiver|. Branch to |use_cache| if
// the cache is valid, otherwise branch to |use_runtime|.
void CheckEnumCache(Node* receiver, CodeStubAssembler::Label* use_cache,
CodeStubAssembler::Label* use_runtime);
// Create a new weak cell with a specified value and install it into a
// feedback vector.
Node* CreateWeakCellInFeedbackVector(Node* feedback_vector, Node* slot,
Node* value);
// Create a new AllocationSite and install it into a feedback vector.
Node* CreateAllocationSiteInFeedbackVector(Node* feedback_vector, Node* slot);
enum class IndexAdvanceMode { kPre, kPost };
typedef std::function<void(Node* index)> FastLoopBody;
Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
Node* end_index, const FastLoopBody& body, int increment,
ParameterMode parameter_mode,
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
Node* BuildFastLoop(Node* start_index, Node* end_index,
const FastLoopBody& body, int increment,
ParameterMode parameter_mode,
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
increment, parameter_mode, advance_mode);
}
enum class ForEachDirection { kForward, kReverse };
typedef std::function<void(Node* fixed_array, Node* offset)>
FastFixedArrayForEachBody;
void BuildFastFixedArrayForEach(
const CodeStubAssembler::VariableList& vars, Node* fixed_array,
ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse);
void BuildFastFixedArrayForEach(
Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse) {
CodeStubAssembler::VariableList list(0, zone());
BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
last_element_exclusive, body, mode, direction);
}
Node* GetArrayAllocationSize(Node* element_count, ElementsKind kind,
ParameterMode mode, int header_size) {
return ElementOffsetFromIndex(element_count, kind, mode, header_size);
}
Node* GetFixedArrayAllocationSize(Node* element_count, ElementsKind kind,
ParameterMode mode) {
return GetArrayAllocationSize(element_count, kind, mode,
FixedArray::kHeaderSize);
}
void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
Label* doesnt_fit, int base_size,
ParameterMode mode);
void InitializeFieldsWithRoot(Node* object, Node* start_offset,
Node* end_offset, Heap::RootListIndex root);
enum RelationalComparisonMode {
kLessThan,
kLessThanOrEqual,
kGreaterThan,
kGreaterThanOrEqual
};
Node* RelationalComparison(RelationalComparisonMode mode, Node* lhs,
Node* rhs, Node* context);
void BranchIfNumericRelationalComparison(RelationalComparisonMode mode,
Node* lhs, Node* rhs, Label* if_true,
Label* if_false);
void GotoUnlessNumberLessThan(Node* lhs, Node* rhs, Label* if_false);
enum ResultMode { kDontNegateResult, kNegateResult };
Node* Equal(ResultMode mode, Node* lhs, Node* rhs, Node* context);
Node* StrictEqual(ResultMode mode, Node* lhs, Node* rhs, Node* context);
// ECMA#sec-samevalue
// Similar to StrictEqual except that NaNs are treated as equal and minus zero
// differs from positive zero.
// Unlike Equal and StrictEqual, returns a value suitable for use in Branch
// instructions, e.g. Branch(SameValue(...), &label).
Node* SameValue(Node* lhs, Node* rhs, Node* context);
Node* HasProperty(
Node* object, Node* key, Node* context,
Runtime::FunctionId fallback_runtime_function_id = Runtime::kHasProperty);
Node* ForInFilter(Node* key, Node* object, Node* context);
Node* ClassOf(Node* object);
Node* Typeof(Node* value, Node* context);
Node* GetSuperConstructor(Node* value, Node* context);
Node* InstanceOf(Node* object, Node* callable, Node* context);
// Debug helpers
Node* IsDebugActive();
// TypedArray/ArrayBuffer helpers
Node* IsDetachedBuffer(Node* buffer);
Node* ElementOffsetFromIndex(Node* index, ElementsKind kind,
ParameterMode mode, int base_size = 0);
Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
Node* context);
// Promise helpers
Node* IsPromiseHookEnabledOrDebugIsActive();
Node* AllocatePromiseReactionJobInfo(Node* value, Node* tasks,
Node* deferred_promise,
Node* deferred_on_resolve,
Node* deferred_on_reject, Node* context);
// Helpers for StackFrame markers.
Node* MarkerIsFrameType(Node* marker_or_function,
StackFrame::Type frame_type);
Node* MarkerIsNotFrameType(Node* marker_or_function,
StackFrame::Type frame_type);
// Support for printf-style debugging
void Print(const char* s);
void Print(const char* prefix, Node* tagged_value);
inline void Print(Node* tagged_value) { return Print(nullptr, tagged_value); }
template <class... TArgs>
Node* MakeTypeError(MessageTemplate::Template message, Node* context,
TArgs... args) {
STATIC_ASSERT(sizeof...(TArgs) <= 3);
Node* const make_type_error = LoadContextElement(
LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
UndefinedConstant(), SmiConstant(message), args...);
}
protected:
void DescriptorLookup(Node* unique_name, Node* descriptors, Node* bitfield3,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
void DescriptorLookupLinear(Node* unique_name, Node* descriptors, Node* nof,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
void DescriptorLookupBinary(Node* unique_name, Node* descriptors, Node* nof,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
Node* CallGetterIfAccessor(Node* value, Node* details, Node* context,
Node* receiver, Label* if_bailout);
Node* TryToIntptr(Node* key, Label* miss);
void BranchIfPrototypesHaveNoElements(Node* receiver_map,
Label* definitely_no_elements,
Label* possibly_elements);
private:
friend class CodeStubArguments;
void HandleBreakOnNode();
Node* AllocateRawAligned(Node* size_in_bytes, AllocationFlags flags,
Node* top_address, Node* limit_address);
Node* AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags,
Node* top_adddress, Node* limit_address);
// Allocate and return a JSArray of given total size in bytes with header
// fields initialized.
Node* AllocateUninitializedJSArray(ElementsKind kind, Node* array_map,
Node* length, Node* allocation_site,
Node* size_in_bytes);
Node* SmiShiftBitsConstant();
// Emits keyed sloppy arguments load if the |value| is nullptr or store
// otherwise. Returns either the loaded value or |value|.
Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
Label* bailout);
Node* AllocateSlicedString(Heap::RootListIndex map_root_index, Node* length,
Node* parent, Node* offset);
Node* AllocateConsString(Heap::RootListIndex map_root_index, Node* length,
Node* first, Node* second, AllocationFlags flags);
// Implements DescriptorArray::number_of_entries.
// Returns an untagged int32.
Node* DescriptorArrayNumberOfEntries(Node* descriptors);
// Implements DescriptorArray::ToKeyIndex.
// Returns an untagged IntPtr.
Node* DescriptorArrayToKeyIndex(Node* descriptor_number);
// Implements DescriptorArray::GetSortedKeyIndex.
// Returns an untagged int32.
Node* DescriptorArrayGetSortedKeyIndex(Node* descriptors,
Node* descriptor_number);
// Implements DescriptorArray::GetKey.
Node* DescriptorArrayGetKey(Node* descriptors, Node* descriptor_number);
static const int kElementLoopUnrollThreshold = 8;
};
class CodeStubArguments {
public:
typedef compiler::Node Node;
// |argc| is an uint32 value which specifies the number of arguments passed
// to the builtin excluding the receiver.
CodeStubArguments(CodeStubAssembler* assembler, Node* argc)
: CodeStubArguments(assembler, argc, nullptr,
CodeStubAssembler::INTPTR_PARAMETERS) {}
CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
CodeStubAssembler::ParameterMode param_mode);
Node* GetReceiver() const;
Node* AtIndexPtr(Node* index, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) const;
// |index| is zero-based and does not include the receiver
Node* AtIndex(Node* index, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) const;
Node* AtIndex(int index) const;
Node* GetLength() const { return argc_; }
typedef std::function<void(Node* arg)> ForEachBodyFunction;
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
Node* last = nullptr, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) {
CodeStubAssembler::VariableList list(0, assembler_->zone());
ForEach(list, body, first, last);
}
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const CodeStubAssembler::VariableList& vars,
const ForEachBodyFunction& body, Node* first = nullptr,
Node* last = nullptr, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS);
void PopAndReturn(Node* value);
private:
Node* GetArguments();
CodeStubAssembler* assembler_;
CodeStubAssembler::ParameterMode argc_mode_;
Node* argc_;
Node* arguments_;
Node* fp_;
};
#ifdef DEBUG
#define CSA_ASSERT(csa, x) \
(csa)->Assert([&] { return (x); }, #x, __FILE__, __LINE__)
#define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \
(csa)->Assert( \
[&] { \
const CodeAssemblerState* state = (csa)->state(); \
/* See Linkage::GetJSCallDescriptor(). */ \
int argc_index = state->parameter_count() - 2; \
compiler::Node* const argc = (csa)->Parameter(argc_index); \
return (csa)->Op(argc, (csa)->Int32Constant(expected)); \
}, \
"argc " #op " " #expected, __FILE__, __LINE__)
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
#else
#define CSA_ASSERT(csa, x) ((void)0)
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
#endif
#ifdef ENABLE_SLOW_DCHECKS
#define CSA_SLOW_ASSERT(csa, x) \
if (FLAG_enable_slow_asserts) { \
(csa)->Assert([&] { return (x); }, #x, __FILE__, __LINE__); \
}
#else
#define CSA_SLOW_ASSERT(csa, x) ((void)0)
#endif
DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags);
} // namespace internal
} // namespace v8
#endif // V8_CODE_STUB_ASSEMBLER_H_