blob: 4549654501d5cedc2f9e8fa5e289f761a33e5388 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "src/crankshaft/hydrogen-types.h"
#include "src/types.h"
#include "test/cctest/cctest.h"
#include "test/cctest/types-fuzz.h"
using namespace v8::internal;
// Testing auxiliaries (breaking the Type abstraction).
static bool IsInteger(double x) {
return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
}
static bool IsInteger(i::Object* x) {
return x->IsNumber() && IsInteger(x->Number());
}
typedef uint32_t bitset;
struct ZoneRep {
typedef void* Struct;
static bool IsStruct(Type* t, int tag) {
return !IsBitset(t) && reinterpret_cast<intptr_t>(AsStruct(t)[0]) == tag;
}
static bool IsBitset(Type* t) { return reinterpret_cast<uintptr_t>(t) & 1; }
// HACK: the number 5 below is the value of StructuralType::kUnionTag.
static bool IsUnion(Type* t) { return t->IsUnionForTesting(); }
static Struct* AsStruct(Type* t) {
return reinterpret_cast<Struct*>(t);
}
static bitset AsBitset(Type* t) {
return static_cast<bitset>(reinterpret_cast<uintptr_t>(t) ^ 1u);
}
static Struct* AsUnion(Type* t) {
return AsStruct(t);
}
static int Length(Struct* structured) {
return static_cast<int>(reinterpret_cast<intptr_t>(structured[1]));
}
static Zone* ToRegion(Zone* zone, Isolate* isolate) { return zone; }
struct BitsetType : Type::BitsetType {
using Type::BitsetType::New;
using Type::BitsetType::Glb;
using Type::BitsetType::Lub;
using Type::BitsetType::IsInhabited;
};
};
struct HeapRep {
typedef FixedArray Struct;
static bool IsStruct(Handle<HeapType> t, int tag) {
return t->IsFixedArray() && Smi::cast(AsStruct(t)->get(0))->value() == tag;
}
static bool IsBitset(Handle<HeapType> t) { return t->IsSmi(); }
// HACK: the number 5 below is the value of StructuralType::kUnionTag.
static bool IsUnion(Handle<HeapType> t) { return t->IsUnionForTesting(); }
static Struct* AsStruct(Handle<HeapType> t) { return FixedArray::cast(*t); }
static bitset AsBitset(Handle<HeapType> t) {
return static_cast<bitset>(reinterpret_cast<uintptr_t>(*t));
}
static Struct* AsUnion(Handle<HeapType> t) { return AsStruct(t); }
static int Length(Struct* structured) { return structured->length() - 1; }
static Isolate* ToRegion(Zone* zone, Isolate* isolate) { return isolate; }
struct BitsetType : HeapType::BitsetType {
using HeapType::BitsetType::New;
using HeapType::BitsetType::Glb;
using HeapType::BitsetType::Lub;
using HeapType::BitsetType::IsInhabited;
static bitset Glb(Handle<HeapType> type) { return Glb(*type); }
static bitset Lub(Handle<HeapType> type) { return Lub(*type); }
};
};
template<class Type, class TypeHandle, class Region, class Rep>
struct Tests : Rep {
typedef Types<Type, TypeHandle, Region> TypesInstance;
typedef typename TypesInstance::TypeVector::iterator TypeIterator;
typedef typename TypesInstance::MapVector::iterator MapIterator;
typedef typename TypesInstance::ValueVector::iterator ValueIterator;
Isolate* isolate;
HandleScope scope;
Zone zone;
TypesInstance T;
Tests()
: isolate(CcTest::InitIsolateOnce()),
scope(isolate),
zone(),
T(Rep::ToRegion(&zone, isolate), isolate,
isolate->random_number_generator()) {}
bool Equal(TypeHandle type1, TypeHandle type2) {
return
type1->Equals(type2) &&
this->IsBitset(type1) == this->IsBitset(type2) &&
this->IsUnion(type1) == this->IsUnion(type2) &&
type1->NumClasses() == type2->NumClasses() &&
type1->NumConstants() == type2->NumConstants() &&
(!this->IsBitset(type1) ||
this->AsBitset(type1) == this->AsBitset(type2)) &&
(!this->IsUnion(type1) ||
this->Length(this->AsUnion(type1)) ==
this->Length(this->AsUnion(type2)));
}
void CheckEqual(TypeHandle type1, TypeHandle type2) {
CHECK(Equal(type1, type2));
}
void CheckSub(TypeHandle type1, TypeHandle type2) {
CHECK(type1->Is(type2));
CHECK(!type2->Is(type1));
if (this->IsBitset(type1) && this->IsBitset(type2)) {
CHECK(this->AsBitset(type1) != this->AsBitset(type2));
}
}
void CheckSubOrEqual(TypeHandle type1, TypeHandle type2) {
CHECK(type1->Is(type2));
if (this->IsBitset(type1) && this->IsBitset(type2)) {
CHECK((this->AsBitset(type1) | this->AsBitset(type2))
== this->AsBitset(type2));
}
}
void CheckUnordered(TypeHandle type1, TypeHandle type2) {
CHECK(!type1->Is(type2));
CHECK(!type2->Is(type1));
if (this->IsBitset(type1) && this->IsBitset(type2)) {
CHECK(this->AsBitset(type1) != this->AsBitset(type2));
}
}
void CheckOverlap(TypeHandle type1, TypeHandle type2) {
CHECK(type1->Maybe(type2));
CHECK(type2->Maybe(type1));
}
void CheckDisjoint(TypeHandle type1, TypeHandle type2) {
CHECK(!type1->Is(type2));
CHECK(!type2->Is(type1));
CHECK(!type1->Maybe(type2));
CHECK(!type2->Maybe(type1));
}
void IsSomeType() {
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle t = *it;
CHECK(1 ==
this->IsBitset(t) + t->IsClass() + t->IsConstant() + t->IsRange() +
this->IsUnion(t) + t->IsArray() + t->IsFunction() + t->IsContext());
}
}
void Bitset() {
// None and Any are bitsets.
CHECK(this->IsBitset(T.None));
CHECK(this->IsBitset(T.Any));
CHECK(bitset(0) == this->AsBitset(T.None));
CHECK(bitset(0xfffffffeu) == this->AsBitset(T.Any));
// Union(T1, T2) is bitset for bitsets T1,T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle union12 = T.Union(type1, type2);
CHECK(!(this->IsBitset(type1) && this->IsBitset(type2)) ||
this->IsBitset(union12));
}
}
// Intersect(T1, T2) is bitset for bitsets T1,T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle intersect12 = T.Intersect(type1, type2);
CHECK(!(this->IsBitset(type1) && this->IsBitset(type2)) ||
this->IsBitset(intersect12));
}
}
// Union(T1, T2) is bitset if T2 is bitset and T1->Is(T2)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle union12 = T.Union(type1, type2);
CHECK(!(this->IsBitset(type2) && type1->Is(type2)) ||
this->IsBitset(union12));
}
}
// Union(T1, T2) is bitwise disjunction for bitsets T1,T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle union12 = T.Union(type1, type2);
if (this->IsBitset(type1) && this->IsBitset(type2)) {
CHECK(
(this->AsBitset(type1) | this->AsBitset(type2)) ==
this->AsBitset(union12));
}
}
}
// Intersect(T1, T2) is bitwise conjunction for bitsets T1,T2 (modulo None)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
if (this->IsBitset(type1) && this->IsBitset(type2)) {
TypeHandle intersect12 = T.Intersect(type1, type2);
bitset bits = this->AsBitset(type1) & this->AsBitset(type2);
CHECK(bits == this->AsBitset(intersect12));
}
}
}
}
void PointwiseRepresentation() {
// Check we can decompose type into semantics and representation and
// then compose it back to get an equivalent type.
int counter = 0;
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
counter++;
printf("Counter: %i\n", counter);
fflush(stdout);
TypeHandle type1 = *it1;
TypeHandle representation = T.Representation(type1);
TypeHandle semantic = T.Semantic(type1);
TypeHandle composed = T.Union(representation, semantic);
CHECK(type1->Equals(composed));
}
// Pointwiseness of Union.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle representation1 = T.Representation(type1);
TypeHandle semantic1 = T.Semantic(type1);
TypeHandle representation2 = T.Representation(type2);
TypeHandle semantic2 = T.Semantic(type2);
TypeHandle direct_union = T.Union(type1, type2);
TypeHandle representation_union =
T.Union(representation1, representation2);
TypeHandle semantic_union = T.Union(semantic1, semantic2);
TypeHandle composed_union =
T.Union(representation_union, semantic_union);
CHECK(direct_union->Equals(composed_union));
}
}
// Pointwiseness of Intersect.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle representation1 = T.Representation(type1);
TypeHandle semantic1 = T.Semantic(type1);
TypeHandle representation2 = T.Representation(type2);
TypeHandle semantic2 = T.Semantic(type2);
TypeHandle direct_intersection = T.Intersect(type1, type2);
TypeHandle representation_intersection =
T.Intersect(representation1, representation2);
TypeHandle semantic_intersection = T.Intersect(semantic1, semantic2);
TypeHandle composed_intersection =
T.Union(representation_intersection, semantic_intersection);
CHECK(direct_intersection->Equals(composed_intersection));
}
}
// Pointwiseness of Is.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle representation1 = T.Representation(type1);
TypeHandle semantic1 = T.Semantic(type1);
TypeHandle representation2 = T.Representation(type2);
TypeHandle semantic2 = T.Semantic(type2);
bool representation_is = representation1->Is(representation2);
bool semantic_is = semantic1->Is(semantic2);
bool direct_is = type1->Is(type2);
CHECK(direct_is == (semantic_is && representation_is));
}
}
}
void Class() {
// Constructor
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
Handle<i::Map> map = *mt;
TypeHandle type = T.Class(map);
CHECK(type->IsClass());
}
// Map attribute
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
Handle<i::Map> map = *mt;
TypeHandle type = T.Class(map);
CHECK(*map == *type->AsClass()->Map());
}
// Functionality & Injectivity: Class(M1) = Class(M2) iff M1 = M2
for (MapIterator mt1 = T.maps.begin(); mt1 != T.maps.end(); ++mt1) {
for (MapIterator mt2 = T.maps.begin(); mt2 != T.maps.end(); ++mt2) {
Handle<i::Map> map1 = *mt1;
Handle<i::Map> map2 = *mt2;
TypeHandle type1 = T.Class(map1);
TypeHandle type2 = T.Class(map2);
CHECK(Equal(type1, type2) == (*map1 == *map2));
}
}
}
void Constant() {
// Constructor
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Object> value = *vt;
TypeHandle type = T.Constant(value);
CHECK(type->IsConstant());
}
// Value attribute
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Object> value = *vt;
TypeHandle type = T.Constant(value);
CHECK(*value == *type->AsConstant()->Value());
}
// Functionality & Injectivity: Constant(V1) = Constant(V2) iff V1 = V2
for (ValueIterator vt1 = T.values.begin(); vt1 != T.values.end(); ++vt1) {
for (ValueIterator vt2 = T.values.begin(); vt2 != T.values.end(); ++vt2) {
Handle<i::Object> value1 = *vt1;
Handle<i::Object> value2 = *vt2;
TypeHandle type1 = T.Constant(value1);
TypeHandle type2 = T.Constant(value2);
CHECK(Equal(type1, type2) == (*value1 == *value2));
}
}
// Typing of numbers
Factory* fac = isolate->factory();
CHECK(T.Constant(fac->NewNumber(0))->Is(T.UnsignedSmall));
CHECK(T.Constant(fac->NewNumber(1))->Is(T.UnsignedSmall));
CHECK(T.Constant(fac->NewNumber(0x3fffffff))->Is(T.UnsignedSmall));
CHECK(T.Constant(fac->NewNumber(-1))->Is(T.Negative31));
CHECK(T.Constant(fac->NewNumber(-0x3fffffff))->Is(T.Negative31));
CHECK(T.Constant(fac->NewNumber(-0x40000000))->Is(T.Negative31));
CHECK(T.Constant(fac->NewNumber(0x40000000))->Is(T.Unsigned31));
CHECK(!T.Constant(fac->NewNumber(0x40000000))->Is(T.Unsigned30));
CHECK(T.Constant(fac->NewNumber(0x7fffffff))->Is(T.Unsigned31));
CHECK(!T.Constant(fac->NewNumber(0x7fffffff))->Is(T.Unsigned30));
CHECK(T.Constant(fac->NewNumber(-0x40000001))->Is(T.Negative32));
CHECK(!T.Constant(fac->NewNumber(-0x40000001))->Is(T.Negative31));
CHECK(T.Constant(fac->NewNumber(-0x7fffffff))->Is(T.Negative32));
CHECK(!T.Constant(fac->NewNumber(-0x7fffffff - 1))->Is(T.Negative31));
if (SmiValuesAre31Bits()) {
CHECK(!T.Constant(fac->NewNumber(0x40000000))->Is(T.UnsignedSmall));
CHECK(!T.Constant(fac->NewNumber(0x7fffffff))->Is(T.UnsignedSmall));
CHECK(!T.Constant(fac->NewNumber(-0x40000001))->Is(T.SignedSmall));
CHECK(!T.Constant(fac->NewNumber(-0x7fffffff - 1))->Is(T.SignedSmall));
} else {
CHECK(SmiValuesAre32Bits());
CHECK(T.Constant(fac->NewNumber(0x40000000))->Is(T.UnsignedSmall));
CHECK(T.Constant(fac->NewNumber(0x7fffffff))->Is(T.UnsignedSmall));
CHECK(T.Constant(fac->NewNumber(-0x40000001))->Is(T.SignedSmall));
CHECK(T.Constant(fac->NewNumber(-0x7fffffff - 1))->Is(T.SignedSmall));
}
CHECK(T.Constant(fac->NewNumber(0x80000000u))->Is(T.Unsigned32));
CHECK(!T.Constant(fac->NewNumber(0x80000000u))->Is(T.Unsigned31));
CHECK(T.Constant(fac->NewNumber(0xffffffffu))->Is(T.Unsigned32));
CHECK(!T.Constant(fac->NewNumber(0xffffffffu))->Is(T.Unsigned31));
CHECK(T.Constant(fac->NewNumber(0xffffffffu + 1.0))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(0xffffffffu + 1.0))->Is(T.Integral32));
CHECK(T.Constant(fac->NewNumber(-0x7fffffff - 2.0))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(-0x7fffffff - 2.0))->Is(T.Integral32));
CHECK(T.Constant(fac->NewNumber(0.1))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(0.1))->Is(T.Integral32));
CHECK(T.Constant(fac->NewNumber(-10.1))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(-10.1))->Is(T.Integral32));
CHECK(T.Constant(fac->NewNumber(10e60))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(10e60))->Is(T.Integral32));
CHECK(T.Constant(fac->NewNumber(-1.0*0.0))->Is(T.MinusZero));
CHECK(T.Constant(fac->NewNumber(std::numeric_limits<double>::quiet_NaN()))
->Is(T.NaN));
CHECK(T.Constant(fac->NewNumber(V8_INFINITY))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(V8_INFINITY))->Is(T.Integral32));
CHECK(T.Constant(fac->NewNumber(-V8_INFINITY))->Is(T.PlainNumber));
CHECK(!T.Constant(fac->NewNumber(-V8_INFINITY))->Is(T.Integral32));
}
void Range() {
// Constructor
for (ValueIterator i = T.integers.begin(); i != T.integers.end(); ++i) {
for (ValueIterator j = T.integers.begin(); j != T.integers.end(); ++j) {
double min = (*i)->Number();
double max = (*j)->Number();
if (min > max) std::swap(min, max);
TypeHandle type = T.Range(min, max);
CHECK(type->IsRange());
}
}
// Range attributes
for (ValueIterator i = T.integers.begin(); i != T.integers.end(); ++i) {
for (ValueIterator j = T.integers.begin(); j != T.integers.end(); ++j) {
double min = (*i)->Number();
double max = (*j)->Number();
if (min > max) std::swap(min, max);
TypeHandle type = T.Range(min, max);
CHECK(min == type->AsRange()->Min());
CHECK(max == type->AsRange()->Max());
}
}
// Functionality & Injectivity:
// Range(min1, max1) = Range(min2, max2) <=> min1 = min2 /\ max1 = max2
for (ValueIterator i1 = T.integers.begin();
i1 != T.integers.end(); ++i1) {
for (ValueIterator j1 = i1;
j1 != T.integers.end(); ++j1) {
for (ValueIterator i2 = T.integers.begin();
i2 != T.integers.end(); ++i2) {
for (ValueIterator j2 = i2;
j2 != T.integers.end(); ++j2) {
double min1 = (*i1)->Number();
double max1 = (*j1)->Number();
double min2 = (*i2)->Number();
double max2 = (*j2)->Number();
if (min1 > max1) std::swap(min1, max1);
if (min2 > max2) std::swap(min2, max2);
TypeHandle type1 = T.Range(min1, max1);
TypeHandle type2 = T.Range(min2, max2);
CHECK(Equal(type1, type2) == (min1 == min2 && max1 == max2));
}
}
}
}
}
void Context() {
// Constructor
for (int i = 0; i < 20; ++i) {
TypeHandle type = T.Random();
TypeHandle context = T.Context(type);
CHECK(context->Iscontext());
}
// Attributes
for (int i = 0; i < 20; ++i) {
TypeHandle type = T.Random();
TypeHandle context = T.Context(type);
CheckEqual(type, context->AsContext()->Outer());
}
// Functionality & Injectivity: Context(T1) = Context(T2) iff T1 = T2
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 20; ++j) {
TypeHandle type1 = T.Random();
TypeHandle type2 = T.Random();
TypeHandle context1 = T.Context(type1);
TypeHandle context2 = T.Context(type2);
CHECK(Equal(context1, context2) == Equal(type1, type2));
}
}
}
void Array() {
// Constructor
for (int i = 0; i < 20; ++i) {
TypeHandle type = T.Random();
TypeHandle array = T.Array1(type);
CHECK(array->IsArray());
}
// Attributes
for (int i = 0; i < 20; ++i) {
TypeHandle type = T.Random();
TypeHandle array = T.Array1(type);
CheckEqual(type, array->AsArray()->Element());
}
// Functionality & Injectivity: Array(T1) = Array(T2) iff T1 = T2
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 20; ++j) {
TypeHandle type1 = T.Random();
TypeHandle type2 = T.Random();
TypeHandle array1 = T.Array1(type1);
TypeHandle array2 = T.Array1(type2);
CHECK(Equal(array1, array2) == Equal(type1, type2));
}
}
}
void Function() {
// Constructors
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 20; ++j) {
for (int k = 0; k < 20; ++k) {
TypeHandle type1 = T.Random();
TypeHandle type2 = T.Random();
TypeHandle type3 = T.Random();
TypeHandle function0 = T.Function0(type1, type2);
TypeHandle function1 = T.Function1(type1, type2, type3);
TypeHandle function2 = T.Function2(type1, type2, type3);
CHECK(function0->IsFunction());
CHECK(function1->IsFunction());
CHECK(function2->IsFunction());
}
}
}
// Attributes
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 20; ++j) {
for (int k = 0; k < 20; ++k) {
TypeHandle type1 = T.Random();
TypeHandle type2 = T.Random();
TypeHandle type3 = T.Random();
TypeHandle function0 = T.Function0(type1, type2);
TypeHandle function1 = T.Function1(type1, type2, type3);
TypeHandle function2 = T.Function2(type1, type2, type3);
CHECK_EQ(0, function0->AsFunction()->Arity());
CHECK_EQ(1, function1->AsFunction()->Arity());
CHECK_EQ(2, function2->AsFunction()->Arity());
CheckEqual(type1, function0->AsFunction()->Result());
CheckEqual(type1, function1->AsFunction()->Result());
CheckEqual(type1, function2->AsFunction()->Result());
CheckEqual(type2, function0->AsFunction()->Receiver());
CheckEqual(type2, function1->AsFunction()->Receiver());
CheckEqual(T.Any, function2->AsFunction()->Receiver());
CheckEqual(type3, function1->AsFunction()->Parameter(0));
CheckEqual(type2, function2->AsFunction()->Parameter(0));
CheckEqual(type3, function2->AsFunction()->Parameter(1));
}
}
}
// Functionality & Injectivity: Function(Ts1) = Function(Ts2) iff Ts1 = Ts2
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 20; ++j) {
for (int k = 0; k < 20; ++k) {
TypeHandle type1 = T.Random();
TypeHandle type2 = T.Random();
TypeHandle type3 = T.Random();
TypeHandle function01 = T.Function0(type1, type2);
TypeHandle function02 = T.Function0(type1, type3);
TypeHandle function03 = T.Function0(type3, type2);
TypeHandle function11 = T.Function1(type1, type2, type2);
TypeHandle function12 = T.Function1(type1, type2, type3);
TypeHandle function21 = T.Function2(type1, type2, type2);
TypeHandle function22 = T.Function2(type1, type2, type3);
TypeHandle function23 = T.Function2(type1, type3, type2);
CHECK(Equal(function01, function02) == Equal(type2, type3));
CHECK(Equal(function01, function03) == Equal(type1, type3));
CHECK(Equal(function11, function12) == Equal(type2, type3));
CHECK(Equal(function21, function22) == Equal(type2, type3));
CHECK(Equal(function21, function23) == Equal(type2, type3));
}
}
}
}
void Of() {
// Constant(V)->Is(Of(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
TypeHandle of_type = T.Of(value);
CHECK(const_type->Is(of_type));
}
// If Of(V)->Is(T), then Constant(V)->Is(T)
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
Handle<i::Object> value = *vt;
TypeHandle type = *it;
TypeHandle const_type = T.Constant(value);
TypeHandle of_type = T.Of(value);
CHECK(!of_type->Is(type) || const_type->Is(type));
}
}
// If Constant(V)->Is(T), then Of(V)->Is(T) or T->Maybe(Constant(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
Handle<i::Object> value = *vt;
TypeHandle type = *it;
TypeHandle const_type = T.Constant(value);
TypeHandle of_type = T.Of(value);
CHECK(!const_type->Is(type) ||
of_type->Is(type) || type->Maybe(const_type));
}
}
}
void NowOf() {
// Constant(V)->NowIs(NowOf(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
TypeHandle nowof_type = T.NowOf(value);
CHECK(const_type->NowIs(nowof_type));
}
// NowOf(V)->Is(Of(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Object> value = *vt;
TypeHandle nowof_type = T.NowOf(value);
TypeHandle of_type = T.Of(value);
CHECK(nowof_type->Is(of_type));
}
// If NowOf(V)->NowIs(T), then Constant(V)->NowIs(T)
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
Handle<i::Object> value = *vt;
TypeHandle type = *it;
TypeHandle const_type = T.Constant(value);
TypeHandle nowof_type = T.NowOf(value);
CHECK(!nowof_type->NowIs(type) || const_type->NowIs(type));
}
}
// If Constant(V)->NowIs(T),
// then NowOf(V)->NowIs(T) or T->Maybe(Constant(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
Handle<i::Object> value = *vt;
TypeHandle type = *it;
TypeHandle const_type = T.Constant(value);
TypeHandle nowof_type = T.NowOf(value);
CHECK(!const_type->NowIs(type) ||
nowof_type->NowIs(type) || type->Maybe(const_type));
}
}
// If Constant(V)->Is(T),
// then NowOf(V)->Is(T) or T->Maybe(Constant(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
Handle<i::Object> value = *vt;
TypeHandle type = *it;
TypeHandle const_type = T.Constant(value);
TypeHandle nowof_type = T.NowOf(value);
CHECK(!const_type->Is(type) ||
nowof_type->Is(type) || type->Maybe(const_type));
}
}
}
void MinMax() {
// If b is regular numeric bitset, then Range(b->Min(), b->Max())->Is(b).
// TODO(neis): Need to ignore representation for this to be true.
/*
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (this->IsBitset(type) && type->Is(T.Number) &&
!type->Is(T.None) && !type->Is(T.NaN)) {
TypeHandle range = T.Range(
isolate->factory()->NewNumber(type->Min()),
isolate->factory()->NewNumber(type->Max()));
CHECK(range->Is(type));
}
}
*/
// If b is regular numeric bitset, then b->Min() and b->Max() are integers.
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (this->IsBitset(type) && type->Is(T.Number) && !type->Is(T.NaN)) {
CHECK(IsInteger(type->Min()) && IsInteger(type->Max()));
}
}
// If b1 and b2 are regular numeric bitsets with b1->Is(b2), then
// b1->Min() >= b2->Min() and b1->Max() <= b2->Max().
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
if (this->IsBitset(type1) && type1->Is(type2) && type2->Is(T.Number) &&
!type1->Is(T.NaN) && !type2->Is(T.NaN)) {
CHECK(type1->Min() >= type2->Min());
CHECK(type1->Max() <= type2->Max());
}
}
}
// Lub(Range(x,y))->Min() <= x and y <= Lub(Range(x,y))->Max()
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type->IsRange()) {
TypeHandle lub = Rep::BitsetType::New(
Rep::BitsetType::Lub(type), T.region());
CHECK(lub->Min() <= type->Min() && type->Max() <= lub->Max());
}
}
// Rangification: If T->Is(Range(-inf,+inf)) and T is inhabited, then
// T->Is(Range(T->Min(), T->Max())).
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(!type->Is(T.Integer) || !type->IsInhabited() ||
type->Is(T.Range(type->Min(), type->Max())));
}
}
void BitsetGlb() {
// Lower: (T->BitsetGlb())->Is(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle glb =
Rep::BitsetType::New(Rep::BitsetType::Glb(type), T.region());
CHECK(glb->Is(type));
}
// Greatest: If T1->IsBitset() and T1->Is(T2), then T1->Is(T2->BitsetGlb())
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle glb2 =
Rep::BitsetType::New(Rep::BitsetType::Glb(type2), T.region());
CHECK(!this->IsBitset(type1) || !type1->Is(type2) || type1->Is(glb2));
}
}
// Monotonicity: T1->Is(T2) implies (T1->BitsetGlb())->Is(T2->BitsetGlb())
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle glb1 =
Rep::BitsetType::New(Rep::BitsetType::Glb(type1), T.region());
TypeHandle glb2 =
Rep::BitsetType::New(Rep::BitsetType::Glb(type2), T.region());
CHECK(!type1->Is(type2) || glb1->Is(glb2));
}
}
}
void BitsetLub() {
// Upper: T->Is(T->BitsetLub())
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle lub =
Rep::BitsetType::New(Rep::BitsetType::Lub(type), T.region());
CHECK(type->Is(lub));
}
// Least: If T2->IsBitset() and T1->Is(T2), then (T1->BitsetLub())->Is(T2)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle lub1 =
Rep::BitsetType::New(Rep::BitsetType::Lub(type1), T.region());
CHECK(!this->IsBitset(type2) || !type1->Is(type2) || lub1->Is(type2));
}
}
// Monotonicity: T1->Is(T2) implies (T1->BitsetLub())->Is(T2->BitsetLub())
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle lub1 =
Rep::BitsetType::New(Rep::BitsetType::Lub(type1), T.region());
TypeHandle lub2 =
Rep::BitsetType::New(Rep::BitsetType::Lub(type2), T.region());
CHECK(!type1->Is(type2) || lub1->Is(lub2));
}
}
}
void Is1() {
// Least Element (Bottom): None->Is(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(T.None->Is(type));
}
// Greatest Element (Top): T->Is(Any)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(type->Is(T.Any));
}
// Bottom Uniqueness: T->Is(None) implies T = None
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type->Is(T.None)) CheckEqual(type, T.None);
}
// Top Uniqueness: Any->Is(T) implies T = Any
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (T.Any->Is(type)) CheckEqual(type, T.Any);
}
// Reflexivity: T->Is(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(type->Is(type));
}
// Transitivity: T1->Is(T2) and T2->Is(T3) implies T1->Is(T3)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
CHECK(!(type1->Is(type2) && type2->Is(type3)) || type1->Is(type3));
}
}
}
// Antisymmetry: T1->Is(T2) and T2->Is(T1) iff T1 = T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
CHECK((type1->Is(type2) && type2->Is(type1)) == Equal(type1, type2));
}
}
// (In-)Compatibilities.
for (TypeIterator i = T.types.begin(); i != T.types.end(); ++i) {
for (TypeIterator j = T.types.begin(); j != T.types.end(); ++j) {
TypeHandle type1 = *i;
TypeHandle type2 = *j;
CHECK(!type1->Is(type2) || this->IsBitset(type2) ||
this->IsUnion(type2) || this->IsUnion(type1) ||
(type1->IsClass() && type2->IsClass()) ||
(type1->IsConstant() && type2->IsConstant()) ||
(type1->IsConstant() && type2->IsRange()) ||
(this->IsBitset(type1) && type2->IsRange()) ||
(type1->IsRange() && type2->IsRange()) ||
(type1->IsContext() && type2->IsContext()) ||
(type1->IsArray() && type2->IsArray()) ||
(type1->IsFunction() && type2->IsFunction()) ||
!type1->IsInhabited());
}
}
}
void Is2() {
// Class(M1)->Is(Class(M2)) iff M1 = M2
for (MapIterator mt1 = T.maps.begin(); mt1 != T.maps.end(); ++mt1) {
for (MapIterator mt2 = T.maps.begin(); mt2 != T.maps.end(); ++mt2) {
Handle<i::Map> map1 = *mt1;
Handle<i::Map> map2 = *mt2;
TypeHandle class_type1 = T.Class(map1);
TypeHandle class_type2 = T.Class(map2);
CHECK(class_type1->Is(class_type2) == (*map1 == *map2));
}
}
// Range(X1, Y1)->Is(Range(X2, Y2)) iff X1 >= X2 /\ Y1 <= Y2
for (ValueIterator i1 = T.integers.begin();
i1 != T.integers.end(); ++i1) {
for (ValueIterator j1 = i1;
j1 != T.integers.end(); ++j1) {
for (ValueIterator i2 = T.integers.begin();
i2 != T.integers.end(); ++i2) {
for (ValueIterator j2 = i2;
j2 != T.integers.end(); ++j2) {
double min1 = (*i1)->Number();
double max1 = (*j1)->Number();
double min2 = (*i2)->Number();
double max2 = (*j2)->Number();
if (min1 > max1) std::swap(min1, max1);
if (min2 > max2) std::swap(min2, max2);
TypeHandle type1 = T.Range(min1, max1);
TypeHandle type2 = T.Range(min2, max2);
CHECK(type1->Is(type2) == (min1 >= min2 && max1 <= max2));
}
}
}
}
// Constant(V1)->Is(Constant(V2)) iff V1 = V2
for (ValueIterator vt1 = T.values.begin(); vt1 != T.values.end(); ++vt1) {
for (ValueIterator vt2 = T.values.begin(); vt2 != T.values.end(); ++vt2) {
Handle<i::Object> value1 = *vt1;
Handle<i::Object> value2 = *vt2;
TypeHandle const_type1 = T.Constant(value1);
TypeHandle const_type2 = T.Constant(value2);
CHECK(const_type1->Is(const_type2) == (*value1 == *value2));
}
}
// Context(T1)->Is(Context(T2)) iff T1 = T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle outer1 = *it1;
TypeHandle outer2 = *it2;
TypeHandle type1 = T.Context(outer1);
TypeHandle type2 = T.Context(outer2);
CHECK(type1->Is(type2) == outer1->Equals(outer2));
}
}
// Array(T1)->Is(Array(T2)) iff T1 = T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle element1 = *it1;
TypeHandle element2 = *it2;
TypeHandle type1 = T.Array1(element1);
TypeHandle type2 = T.Array1(element2);
CHECK(type1->Is(type2) == element1->Equals(element2));
}
}
// Function0(S1, T1)->Is(Function0(S2, T2)) iff S1 = S2 and T1 = T2
for (TypeIterator i = T.types.begin(); i != T.types.end(); ++i) {
for (TypeIterator j = T.types.begin(); j != T.types.end(); ++j) {
TypeHandle result1 = *i;
TypeHandle receiver1 = *j;
TypeHandle type1 = T.Function0(result1, receiver1);
TypeHandle result2 = T.Random();
TypeHandle receiver2 = T.Random();
TypeHandle type2 = T.Function0(result2, receiver2);
CHECK(type1->Is(type2) ==
(result1->Equals(result2) && receiver1->Equals(receiver2)));
}
}
// Range-specific subtyping
// If IsInteger(v) then Constant(v)->Is(Range(v, v)).
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type->IsConstant() && IsInteger(*type->AsConstant()->Value())) {
CHECK(type->Is(T.Range(type->AsConstant()->Value()->Number(),
type->AsConstant()->Value()->Number())));
}
}
// If Constant(x)->Is(Range(min,max)) then IsInteger(v) and min <= x <= max.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
if (type1->IsConstant() && type2->IsRange() && type1->Is(type2)) {
double x = type1->AsConstant()->Value()->Number();
double min = type2->AsRange()->Min();
double max = type2->AsRange()->Max();
CHECK(IsInteger(x) && min <= x && x <= max);
}
}
}
// Lub(Range(x,y))->Is(T.Union(T.Integral32, T.OtherNumber))
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type->IsRange()) {
TypeHandle lub = Rep::BitsetType::New(
Rep::BitsetType::Lub(type), T.region());
CHECK(lub->Is(T.PlainNumber));
}
}
// Subtyping between concrete basic types
CheckUnordered(T.Boolean, T.Null);
CheckUnordered(T.Undefined, T.Null);
CheckUnordered(T.Boolean, T.Undefined);
CheckSub(T.SignedSmall, T.Number);
CheckSub(T.Signed32, T.Number);
CheckSubOrEqual(T.SignedSmall, T.Signed32);
CheckUnordered(T.SignedSmall, T.MinusZero);
CheckUnordered(T.Signed32, T.Unsigned32);
CheckSub(T.UniqueName, T.Name);
CheckSub(T.String, T.Name);
CheckSub(T.InternalizedString, T.String);
CheckSub(T.InternalizedString, T.UniqueName);
CheckSub(T.InternalizedString, T.Name);
CheckSub(T.Symbol, T.UniqueName);
CheckSub(T.Symbol, T.Name);
CheckUnordered(T.String, T.UniqueName);
CheckUnordered(T.String, T.Symbol);
CheckUnordered(T.InternalizedString, T.Symbol);
CheckSub(T.Object, T.Receiver);
CheckSub(T.Proxy, T.Receiver);
CheckSub(T.OtherObject, T.Object);
CheckSub(T.Undetectable, T.Object);
CheckSub(T.OtherObject, T.Object);
CheckUnordered(T.Object, T.Proxy);
CheckUnordered(T.OtherObject, T.Undetectable);
// Subtyping between concrete structural types
CheckSub(T.ObjectClass, T.Object);
CheckSub(T.ArrayClass, T.OtherObject);
CheckSub(T.UninitializedClass, T.Internal);
CheckUnordered(T.ObjectClass, T.ArrayClass);
CheckUnordered(T.UninitializedClass, T.Null);
CheckUnordered(T.UninitializedClass, T.Undefined);
CheckSub(T.SmiConstant, T.SignedSmall);
CheckSub(T.SmiConstant, T.Signed32);
CheckSub(T.SmiConstant, T.Number);
CheckSub(T.ObjectConstant1, T.Object);
CheckSub(T.ObjectConstant2, T.Object);
CheckSub(T.ArrayConstant, T.Object);
CheckSub(T.ArrayConstant, T.OtherObject);
CheckSub(T.ArrayConstant, T.Receiver);
CheckSub(T.UninitializedConstant, T.Internal);
CheckUnordered(T.ObjectConstant1, T.ObjectConstant2);
CheckUnordered(T.ObjectConstant1, T.ArrayConstant);
CheckUnordered(T.UninitializedConstant, T.Null);
CheckUnordered(T.UninitializedConstant, T.Undefined);
CheckUnordered(T.ObjectConstant1, T.ObjectClass);
CheckUnordered(T.ObjectConstant2, T.ObjectClass);
CheckUnordered(T.ObjectConstant1, T.ArrayClass);
CheckUnordered(T.ObjectConstant2, T.ArrayClass);
CheckUnordered(T.ArrayConstant, T.ObjectClass);
CheckSub(T.NumberArray, T.OtherObject);
CheckSub(T.NumberArray, T.Receiver);
CheckSub(T.NumberArray, T.Object);
CheckUnordered(T.StringArray, T.AnyArray);
CheckSub(T.MethodFunction, T.Object);
CheckSub(T.NumberFunction1, T.Object);
CheckUnordered(T.SignedFunction1, T.NumberFunction1);
CheckUnordered(T.NumberFunction1, T.NumberFunction2);
}
void NowIs() {
// Least Element (Bottom): None->NowIs(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(T.None->NowIs(type));
}
// Greatest Element (Top): T->NowIs(Any)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(type->NowIs(T.Any));
}
// Bottom Uniqueness: T->NowIs(None) implies T = None
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type->NowIs(T.None)) CheckEqual(type, T.None);
}
// Top Uniqueness: Any->NowIs(T) implies T = Any
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (T.Any->NowIs(type)) CheckEqual(type, T.Any);
}
// Reflexivity: T->NowIs(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(type->NowIs(type));
}
// Transitivity: T1->NowIs(T2) and T2->NowIs(T3) implies T1->NowIs(T3)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
CHECK(!(type1->NowIs(type2) && type2->NowIs(type3)) ||
type1->NowIs(type3));
}
}
}
// Antisymmetry: T1->NowIs(T2) and T2->NowIs(T1) iff T1 = T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
CHECK((type1->NowIs(type2) && type2->NowIs(type1)) ==
Equal(type1, type2));
}
}
// T1->Is(T2) implies T1->NowIs(T2)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
CHECK(!type1->Is(type2) || type1->NowIs(type2));
}
}
// Constant(V1)->NowIs(Constant(V2)) iff V1 = V2
for (ValueIterator vt1 = T.values.begin(); vt1 != T.values.end(); ++vt1) {
for (ValueIterator vt2 = T.values.begin(); vt2 != T.values.end(); ++vt2) {
Handle<i::Object> value1 = *vt1;
Handle<i::Object> value2 = *vt2;
TypeHandle const_type1 = T.Constant(value1);
TypeHandle const_type2 = T.Constant(value2);
CHECK(const_type1->NowIs(const_type2) == (*value1 == *value2));
}
}
// Class(M1)->NowIs(Class(M2)) iff M1 = M2
for (MapIterator mt1 = T.maps.begin(); mt1 != T.maps.end(); ++mt1) {
for (MapIterator mt2 = T.maps.begin(); mt2 != T.maps.end(); ++mt2) {
Handle<i::Map> map1 = *mt1;
Handle<i::Map> map2 = *mt2;
TypeHandle class_type1 = T.Class(map1);
TypeHandle class_type2 = T.Class(map2);
CHECK(class_type1->NowIs(class_type2) == (*map1 == *map2));
}
}
// Constant(V)->NowIs(Class(M)) iff V has map M
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Map> map = *mt;
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
TypeHandle class_type = T.Class(map);
CHECK((value->IsHeapObject() &&
i::HeapObject::cast(*value)->map() == *map)
== const_type->NowIs(class_type));
}
}
// Class(M)->NowIs(Constant(V)) never
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Map> map = *mt;
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
TypeHandle class_type = T.Class(map);
CHECK(!class_type->NowIs(const_type));
}
}
}
void Contains() {
// T->Contains(V) iff Constant(V)->Is(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
TypeHandle type = *it;
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
CHECK(type->Contains(value) == const_type->Is(type));
}
}
}
void NowContains() {
// T->NowContains(V) iff Constant(V)->NowIs(T)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
TypeHandle type = *it;
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
CHECK(type->NowContains(value) == const_type->NowIs(type));
}
}
// T->Contains(V) implies T->NowContains(V)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
TypeHandle type = *it;
Handle<i::Object> value = *vt;
CHECK(!type->Contains(value) || type->NowContains(value));
}
}
// NowOf(V)->Is(T) implies T->NowContains(V)
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
TypeHandle type = *it;
Handle<i::Object> value = *vt;
TypeHandle nowof_type = T.Of(value);
CHECK(!nowof_type->NowIs(type) || type->NowContains(value));
}
}
}
void Maybe() {
// T->Maybe(Any) iff T inhabited
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(type->Maybe(T.Any) == type->IsInhabited());
}
// T->Maybe(None) never
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(!type->Maybe(T.None));
}
// Reflexivity upto Inhabitation: T->Maybe(T) iff T inhabited
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
CHECK(type->Maybe(type) == type->IsInhabited());
}
// Symmetry: T1->Maybe(T2) iff T2->Maybe(T1)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
CHECK(type1->Maybe(type2) == type2->Maybe(type1));
}
}
// T1->Maybe(T2) implies T1, T2 inhabited
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
CHECK(!type1->Maybe(type2) ||
(type1->IsInhabited() && type2->IsInhabited()));
}
}
// T1->Maybe(T2) implies Intersect(T1, T2) inhabited
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle intersect12 = T.Intersect(type1, type2);
CHECK(!type1->Maybe(type2) || intersect12->IsInhabited());
}
}
// T1->Is(T2) and T1 inhabited implies T1->Maybe(T2)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
CHECK(!(type1->Is(type2) && type1->IsInhabited()) ||
type1->Maybe(type2));
}
}
// Constant(V1)->Maybe(Constant(V2)) iff V1 = V2
for (ValueIterator vt1 = T.values.begin(); vt1 != T.values.end(); ++vt1) {
for (ValueIterator vt2 = T.values.begin(); vt2 != T.values.end(); ++vt2) {
Handle<i::Object> value1 = *vt1;
Handle<i::Object> value2 = *vt2;
TypeHandle const_type1 = T.Constant(value1);
TypeHandle const_type2 = T.Constant(value2);
CHECK(const_type1->Maybe(const_type2) == (*value1 == *value2));
}
}
// Class(M1)->Maybe(Class(M2)) iff M1 = M2
for (MapIterator mt1 = T.maps.begin(); mt1 != T.maps.end(); ++mt1) {
for (MapIterator mt2 = T.maps.begin(); mt2 != T.maps.end(); ++mt2) {
Handle<i::Map> map1 = *mt1;
Handle<i::Map> map2 = *mt2;
TypeHandle class_type1 = T.Class(map1);
TypeHandle class_type2 = T.Class(map2);
CHECK(class_type1->Maybe(class_type2) == (*map1 == *map2));
}
}
// Constant(V)->Maybe(Class(M)) never
// This does NOT hold!
/*
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Map> map = *mt;
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
TypeHandle class_type = T.Class(map);
CHECK(!const_type->Maybe(class_type));
}
}
*/
// Class(M)->Maybe(Constant(V)) never
// This does NOT hold!
/*
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Map> map = *mt;
Handle<i::Object> value = *vt;
TypeHandle const_type = T.Constant(value);
TypeHandle class_type = T.Class(map);
CHECK(!class_type->Maybe(const_type));
}
}
*/
// Basic types
CheckDisjoint(T.Boolean, T.Null);
CheckDisjoint(T.Undefined, T.Null);
CheckDisjoint(T.Boolean, T.Undefined);
CheckOverlap(T.SignedSmall, T.Number);
CheckOverlap(T.NaN, T.Number);
CheckDisjoint(T.Signed32, T.NaN);
CheckOverlap(T.UniqueName, T.Name);
CheckOverlap(T.String, T.Name);
CheckOverlap(T.InternalizedString, T.String);
CheckOverlap(T.InternalizedString, T.UniqueName);
CheckOverlap(T.InternalizedString, T.Name);
CheckOverlap(T.Symbol, T.UniqueName);
CheckOverlap(T.Symbol, T.Name);
CheckOverlap(T.String, T.UniqueName);
CheckDisjoint(T.String, T.Symbol);
CheckDisjoint(T.InternalizedString, T.Symbol);
CheckOverlap(T.Object, T.Receiver);
CheckOverlap(T.OtherObject, T.Object);
CheckOverlap(T.Proxy, T.Receiver);
CheckDisjoint(T.Object, T.Proxy);
// Structural types
CheckOverlap(T.ObjectClass, T.Object);
CheckOverlap(T.ArrayClass, T.Object);
CheckOverlap(T.ObjectClass, T.ObjectClass);
CheckOverlap(T.ArrayClass, T.ArrayClass);
CheckDisjoint(T.ObjectClass, T.ArrayClass);
CheckOverlap(T.SmiConstant, T.SignedSmall);
CheckOverlap(T.SmiConstant, T.Signed32);
CheckOverlap(T.SmiConstant, T.Number);
CheckOverlap(T.ObjectConstant1, T.Object);
CheckOverlap(T.ObjectConstant2, T.Object);
CheckOverlap(T.ArrayConstant, T.Object);
CheckOverlap(T.ArrayConstant, T.Receiver);
CheckOverlap(T.ObjectConstant1, T.ObjectConstant1);
CheckDisjoint(T.ObjectConstant1, T.ObjectConstant2);
CheckDisjoint(T.ObjectConstant1, T.ArrayConstant);
CheckOverlap(T.ObjectConstant1, T.ArrayClass);
CheckOverlap(T.ObjectConstant2, T.ArrayClass);
CheckOverlap(T.ArrayConstant, T.ObjectClass);
CheckOverlap(T.NumberArray, T.Receiver);
CheckDisjoint(T.NumberArray, T.AnyArray);
CheckDisjoint(T.NumberArray, T.StringArray);
CheckOverlap(T.MethodFunction, T.Object);
CheckDisjoint(T.SignedFunction1, T.NumberFunction1);
CheckDisjoint(T.SignedFunction1, T.NumberFunction2);
CheckDisjoint(T.NumberFunction1, T.NumberFunction2);
CheckDisjoint(T.SignedFunction1, T.MethodFunction);
CheckOverlap(T.ObjectConstant1, T.ObjectClass); // !!!
CheckOverlap(T.ObjectConstant2, T.ObjectClass); // !!!
CheckOverlap(T.NumberClass, T.Intersect(T.Number, T.Tagged)); // !!!
}
void Union1() {
// Identity: Union(T, None) = T
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle union_type = T.Union(type, T.None);
CheckEqual(union_type, type);
}
// Domination: Union(T, Any) = Any
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle union_type = T.Union(type, T.Any);
CheckEqual(union_type, T.Any);
}
// Idempotence: Union(T, T) = T
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle union_type = T.Union(type, type);
CheckEqual(union_type, type);
}
// Commutativity: Union(T1, T2) = Union(T2, T1)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle union12 = T.Union(type1, type2);
TypeHandle union21 = T.Union(type2, type1);
CheckEqual(union12, union21);
}
}
// Associativity: Union(T1, Union(T2, T3)) = Union(Union(T1, T2), T3)
// This does NOT hold! For example:
// (Unsigned32 \/ Range(0,5)) \/ Range(-5,0) = Unsigned32 \/ Range(-5,0)
// Unsigned32 \/ (Range(0,5) \/ Range(-5,0)) = Unsigned32 \/ Range(-5,5)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle union12 = T.Union(type1, type2);
TypeHandle union23 = T.Union(type2, type3);
TypeHandle union1_23 = T.Union(type1, union23);
TypeHandle union12_3 = T.Union(union12, type3);
CheckEqual(union1_23, union12_3);
}
}
}
*/
// Meet: T1->Is(Union(T1, T2)) and T2->Is(Union(T1, T2))
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle union12 = T.Union(type1, type2);
CHECK(type1->Is(union12));
CHECK(type2->Is(union12));
}
}
// Upper Boundedness: T1->Is(T2) implies Union(T1, T2) = T2
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle union12 = T.Union(type1, type2);
if (type1->Is(type2)) CheckEqual(union12, type2);
}
}
// Monotonicity: T1->Is(T2) implies Union(T1, T3)->Is(Union(T2, T3))
// This does NOT hold. For example:
// Range(-5,-1) <= Signed32
// Range(-5,-1) \/ Range(1,5) = Range(-5,5) </= Signed32 \/ Range(1,5)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle union13 = T.Union(type1, type3);
TypeHandle union23 = T.Union(type2, type3);
CHECK(!type1->Is(type2) || union13->Is(union23));
}
}
}
*/
}
void Union2() {
// Monotonicity: T1->Is(T3) and T2->Is(T3) implies Union(T1, T2)->Is(T3)
// This does NOT hold. For example:
// Range(-2^33, -2^33) <= OtherNumber
// Range(2^33, 2^33) <= OtherNumber
// Range(-2^33, 2^33) </= OtherNumber
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle union12 = T.Union(type1, type2);
CHECK(!(type1->Is(type3) && type2->Is(type3)) || union12->Is(type3));
}
}
}
*/
}
void Union3() {
// Monotonicity: T1->Is(T2) or T1->Is(T3) implies T1->Is(Union(T2, T3))
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
HandleScope scope(isolate);
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = it2; it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle union23 = T.Union(type2, type3);
CHECK(!(type1->Is(type2) || type1->Is(type3)) || type1->Is(union23));
}
}
}
}
void Union4() {
// Class-class
CheckSub(T.Union(T.ObjectClass, T.ArrayClass), T.Object);
CheckOverlap(T.Union(T.ObjectClass, T.ArrayClass), T.OtherObject);
CheckOverlap(T.Union(T.ObjectClass, T.ArrayClass), T.Receiver);
CheckDisjoint(T.Union(T.ObjectClass, T.ArrayClass), T.Number);
// Constant-constant
CheckSub(T.Union(T.ObjectConstant1, T.ObjectConstant2), T.Object);
CheckOverlap(T.Union(T.ObjectConstant1, T.ArrayConstant), T.OtherObject);
CheckUnordered(
T.Union(T.ObjectConstant1, T.ObjectConstant2), T.ObjectClass);
CheckOverlap(T.Union(T.ObjectConstant1, T.ArrayConstant), T.OtherObject);
CheckDisjoint(
T.Union(T.ObjectConstant1, T.ArrayConstant), T.Number);
CheckOverlap(
T.Union(T.ObjectConstant1, T.ArrayConstant), T.ObjectClass); // !!!
// Bitset-array
CHECK(this->IsBitset(T.Union(T.AnyArray, T.Receiver)));
CHECK(this->IsUnion(T.Union(T.NumberArray, T.Number)));
CheckEqual(T.Union(T.AnyArray, T.Receiver), T.Receiver);
CheckEqual(T.Union(T.AnyArray, T.OtherObject), T.OtherObject);
CheckUnordered(T.Union(T.AnyArray, T.String), T.Receiver);
CheckOverlap(T.Union(T.NumberArray, T.String), T.Object);
CheckDisjoint(T.Union(T.NumberArray, T.String), T.Number);
// Bitset-function
CHECK(this->IsBitset(T.Union(T.MethodFunction, T.Object)));
CHECK(this->IsUnion(T.Union(T.NumberFunction1, T.Number)));
CheckEqual(T.Union(T.MethodFunction, T.Object), T.Object);
CheckUnordered(T.Union(T.NumberFunction1, T.String), T.Object);
CheckOverlap(T.Union(T.NumberFunction2, T.String), T.Object);
CheckDisjoint(T.Union(T.NumberFunction1, T.String), T.Number);
// Bitset-class
CheckSub(T.Union(T.ObjectClass, T.SignedSmall),
T.Union(T.Object, T.Number));
CheckSub(T.Union(T.ObjectClass, T.OtherObject), T.Object);
CheckUnordered(T.Union(T.ObjectClass, T.String), T.OtherObject);
CheckOverlap(T.Union(T.ObjectClass, T.String), T.Object);
CheckDisjoint(T.Union(T.ObjectClass, T.String), T.Number);
// Bitset-constant
CheckSub(
T.Union(T.ObjectConstant1, T.Signed32), T.Union(T.Object, T.Number));
CheckSub(T.Union(T.ObjectConstant1, T.OtherObject), T.Object);
CheckUnordered(T.Union(T.ObjectConstant1, T.String), T.OtherObject);
CheckOverlap(T.Union(T.ObjectConstant1, T.String), T.Object);
CheckDisjoint(T.Union(T.ObjectConstant1, T.String), T.Number);
// Class-constant
CheckSub(T.Union(T.ObjectConstant1, T.ArrayClass), T.Object);
CheckUnordered(T.ObjectClass, T.Union(T.ObjectConstant1, T.ArrayClass));
CheckSub(T.Union(T.ObjectConstant1, T.ArrayClass),
T.Union(T.Receiver, T.Object));
CheckUnordered(T.Union(T.ObjectConstant1, T.ArrayClass), T.ArrayConstant);
CheckOverlap(T.Union(T.ObjectConstant1, T.ArrayClass), T.ObjectConstant2);
CheckOverlap(
T.Union(T.ObjectConstant1, T.ArrayClass), T.ObjectClass); // !!!
// Bitset-union
CheckSub(
T.NaN,
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Number));
CheckSub(
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Signed32),
T.Union(T.ObjectConstant1, T.Union(T.Number, T.ArrayClass)));
// Class-union
CheckSub(
T.Union(T.ObjectClass, T.Union(T.ObjectConstant1, T.ObjectClass)),
T.Object);
CheckEqual(
T.Union(T.Union(T.ArrayClass, T.ObjectConstant2), T.ArrayClass),
T.Union(T.ArrayClass, T.ObjectConstant2));
// Constant-union
CheckEqual(
T.Union(
T.ObjectConstant1, T.Union(T.ObjectConstant1, T.ObjectConstant2)),
T.Union(T.ObjectConstant2, T.ObjectConstant1));
CheckEqual(
T.Union(
T.Union(T.ArrayConstant, T.ObjectConstant2), T.ObjectConstant1),
T.Union(
T.ObjectConstant2, T.Union(T.ArrayConstant, T.ObjectConstant1)));
// Array-union
CheckEqual(
T.Union(T.AnyArray, T.Union(T.NumberArray, T.AnyArray)),
T.Union(T.AnyArray, T.NumberArray));
CheckSub(T.Union(T.AnyArray, T.NumberArray), T.OtherObject);
// Function-union
CheckEqual(
T.Union(T.NumberFunction1, T.NumberFunction2),
T.Union(T.NumberFunction2, T.NumberFunction1));
CheckSub(T.Union(T.SignedFunction1, T.MethodFunction), T.Object);
// Union-union
CheckEqual(
T.Union(
T.Union(T.ObjectConstant2, T.ObjectConstant1),
T.Union(T.ObjectConstant1, T.ObjectConstant2)),
T.Union(T.ObjectConstant2, T.ObjectConstant1));
CheckEqual(T.Union(T.Union(T.Number, T.ArrayClass),
T.Union(T.SignedSmall, T.Receiver)),
T.Union(T.Number, T.Receiver));
}
void Intersect() {
// Identity: Intersect(T, Any) = T
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle intersect_type = T.Intersect(type, T.Any);
CheckEqual(intersect_type, type);
}
// Domination: Intersect(T, None) = None
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle intersect_type = T.Intersect(type, T.None);
CheckEqual(intersect_type, T.None);
}
// Idempotence: Intersect(T, T) = T
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
TypeHandle intersect_type = T.Intersect(type, type);
CheckEqual(intersect_type, type);
}
// Commutativity: Intersect(T1, T2) = Intersect(T2, T1)
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle intersect12 = T.Intersect(type1, type2);
TypeHandle intersect21 = T.Intersect(type2, type1);
CheckEqual(intersect12, intersect21);
}
}
// Associativity:
// Intersect(T1, Intersect(T2, T3)) = Intersect(Intersect(T1, T2), T3)
// This does NOT hold. For example:
// (Class(..stringy1..) /\ Class(..stringy2..)) /\ Constant(..string..) =
// None
// Class(..stringy1..) /\ (Class(..stringy2..) /\ Constant(..string..)) =
// Constant(..string..)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle intersect12 = T.Intersect(type1, type2);
TypeHandle intersect23 = T.Intersect(type2, type3);
TypeHandle intersect1_23 = T.Intersect(type1, intersect23);
TypeHandle intersect12_3 = T.Intersect(intersect12, type3);
CheckEqual(intersect1_23, intersect12_3);
}
}
}
*/
// Join: Intersect(T1, T2)->Is(T1) and Intersect(T1, T2)->Is(T2)
// This does NOT hold. For example:
// Class(..stringy..) /\ Constant(..string..) = Constant(..string..)
// Currently, not even the disjunction holds:
// Class(Internal/TaggedPtr) /\ (Any/Untagged \/ Context(..)) =
// Class(Internal/TaggedPtr) \/ Context(..)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle intersect12 = T.Intersect(type1, type2);
CHECK(intersect12->Is(type1));
CHECK(intersect12->Is(type2));
}
}
*/
// Lower Boundedness: T1->Is(T2) implies Intersect(T1, T2) = T1
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle intersect12 = T.Intersect(type1, type2);
if (type1->Is(type2)) CheckEqual(intersect12, type1);
}
}
// Monotonicity: T1->Is(T2) implies Intersect(T1, T3)->Is(Intersect(T2, T3))
// This does NOT hold. For example:
// Class(OtherObject/TaggedPtr) <= Any/TaggedPtr
// Class(OtherObject/TaggedPtr) /\ Any/UntaggedInt1 = Class(..)
// Any/TaggedPtr /\ Any/UntaggedInt1 = None
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle intersect13 = T.Intersect(type1, type3);
TypeHandle intersect23 = T.Intersect(type2, type3);
CHECK(!type1->Is(type2) || intersect13->Is(intersect23));
}
}
}
*/
// Monotonicity: T1->Is(T3) or T2->Is(T3) implies Intersect(T1, T2)->Is(T3)
// This does NOT hold. For example:
// Class(..stringy..) <= Class(..stringy..)
// Class(..stringy..) /\ Constant(..string..) = Constant(..string..)
// Constant(..string..) </= Class(..stringy..)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle intersect12 = T.Intersect(type1, type2);
CHECK(!(type1->Is(type3) || type2->Is(type3)) ||
intersect12->Is(type3));
}
}
}
*/
// Monotonicity: T1->Is(T2) and T1->Is(T3) implies T1->Is(Intersect(T2, T3))
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
HandleScope scope(isolate);
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle intersect23 = T.Intersect(type2, type3);
CHECK(!(type1->Is(type2) && type1->Is(type3)) ||
type1->Is(intersect23));
}
}
}
// Bitset-class
CheckEqual(T.Intersect(T.ObjectClass, T.Object), T.ObjectClass);
CheckEqual(T.Semantic(T.Intersect(T.ObjectClass, T.Number)), T.None);
// Bitset-array
CheckEqual(T.Intersect(T.NumberArray, T.Object), T.NumberArray);
CheckEqual(T.Semantic(T.Intersect(T.AnyArray, T.Proxy)), T.None);
// Bitset-function
CheckEqual(T.Intersect(T.MethodFunction, T.Object), T.MethodFunction);
CheckEqual(T.Semantic(T.Intersect(T.NumberFunction1, T.Proxy)), T.None);
// Bitset-union
CheckEqual(
T.Intersect(T.Object, T.Union(T.ObjectConstant1, T.ObjectClass)),
T.Union(T.ObjectConstant1, T.ObjectClass));
CheckEqual(T.Semantic(T.Intersect(T.Union(T.ArrayClass, T.ObjectConstant1),
T.Number)),
T.None);
// Class-constant
CHECK(T.Intersect(T.ObjectConstant1, T.ObjectClass)->IsInhabited()); // !!!
CHECK(T.Intersect(T.ArrayClass, T.ObjectConstant2)->IsInhabited());
// Array-union
CheckEqual(
T.Intersect(T.NumberArray, T.Union(T.NumberArray, T.ArrayClass)),
T.NumberArray);
CheckEqual(
T.Intersect(T.AnyArray, T.Union(T.Object, T.SmiConstant)),
T.AnyArray);
CHECK(
!T.Intersect(T.Union(T.AnyArray, T.ArrayConstant), T.NumberArray)
->IsInhabited());
// Function-union
CheckEqual(
T.Intersect(T.MethodFunction, T.Union(T.String, T.MethodFunction)),
T.MethodFunction);
CheckEqual(
T.Intersect(T.NumberFunction1, T.Union(T.Object, T.SmiConstant)),
T.NumberFunction1);
CHECK(
!T.Intersect(T.Union(T.MethodFunction, T.Name), T.NumberFunction2)
->IsInhabited());
// Class-union
CheckEqual(
T.Intersect(T.ArrayClass, T.Union(T.ObjectConstant2, T.ArrayClass)),
T.ArrayClass);
CheckEqual(
T.Intersect(T.ArrayClass, T.Union(T.Object, T.SmiConstant)),
T.ArrayClass);
CHECK(
T.Intersect(T.Union(T.ObjectClass, T.ArrayConstant), T.ArrayClass)
->IsInhabited()); // !!!
// Constant-union
CheckEqual(
T.Intersect(
T.ObjectConstant1, T.Union(T.ObjectConstant1, T.ObjectConstant2)),
T.ObjectConstant1);
CheckEqual(
T.Intersect(T.SmiConstant, T.Union(T.Number, T.ObjectConstant2)),
T.SmiConstant);
CHECK(
T.Intersect(
T.Union(T.ArrayConstant, T.ObjectClass), T.ObjectConstant1)
->IsInhabited()); // !!!
// Union-union
CheckEqual(T.Intersect(T.Union(T.Number, T.ArrayClass),
T.Union(T.SignedSmall, T.Receiver)),
T.Union(T.SignedSmall, T.ArrayClass));
CheckEqual(T.Intersect(T.Union(T.Number, T.ObjectClass),
T.Union(T.Signed32, T.OtherObject)),
T.Union(T.Signed32, T.ObjectClass));
CheckEqual(
T.Intersect(
T.Union(T.ObjectConstant2, T.ObjectConstant1),
T.Union(T.ObjectConstant1, T.ObjectConstant2)),
T.Union(T.ObjectConstant2, T.ObjectConstant1));
CheckEqual(
T.Intersect(
T.Union(
T.ArrayClass,
T.Union(T.ObjectConstant2, T.ObjectConstant1)),
T.Union(
T.ObjectConstant1,
T.Union(T.ArrayConstant, T.ObjectConstant2))),
T.Union(
T.ArrayConstant,
T.Union(T.ObjectConstant2, T.ObjectConstant1))); // !!!
}
void Distributivity() {
// Union(T1, Intersect(T2, T3)) = Intersect(Union(T1, T2), Union(T1, T3))
// This does NOT hold. For example:
// Untagged \/ (Untagged /\ Class(../Tagged)) = Untagged \/ Class(../Tagged)
// (Untagged \/ Untagged) /\ (Untagged \/ Class(../Tagged)) =
// Untagged /\ (Untagged \/ Class(../Tagged)) = Untagged
// because Untagged <= Untagged \/ Class(../Tagged)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle union12 = T.Union(type1, type2);
TypeHandle union13 = T.Union(type1, type3);
TypeHandle intersect23 = T.Intersect(type2, type3);
TypeHandle union1_23 = T.Union(type1, intersect23);
TypeHandle intersect12_13 = T.Intersect(union12, union13);
CHECK(Equal(union1_23, intersect12_13));
}
}
}
*/
// Intersect(T1, Union(T2, T3)) = Union(Intersect(T1, T2), Intersect(T1,T3))
// This does NOT hold. For example:
// Untagged /\ (Untagged \/ Class(../Tagged)) = Untagged
// (Untagged /\ Untagged) \/ (Untagged /\ Class(../Tagged)) =
// Untagged \/ Class(../Tagged)
/*
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
for (TypeIterator it3 = T.types.begin(); it3 != T.types.end(); ++it3) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
TypeHandle type3 = *it3;
TypeHandle intersect12 = T.Intersect(type1, type2);
TypeHandle intersect13 = T.Intersect(type1, type3);
TypeHandle union23 = T.Union(type2, type3);
TypeHandle intersect1_23 = T.Intersect(type1, union23);
TypeHandle union12_13 = T.Union(intersect12, intersect13);
CHECK(Equal(intersect1_23, union12_13));
}
}
}
*/
}
void GetRange() {
// GetRange(Range(a, b)) = Range(a, b).
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
TypeHandle type1 = *it1;
if (type1->IsRange()) {
typename Type::RangeType* range = type1->GetRange();
CHECK(type1->Min() == range->Min());
CHECK(type1->Max() == range->Max());
}
}
// GetRange(Union(Constant(x), Range(min,max))) == Range(min, max).
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
if (type1->IsConstant() && type2->IsRange()) {
TypeHandle u = T.Union(type1, type2);
CHECK(type2->Min() == u->GetRange()->Min());
CHECK(type2->Max() == u->GetRange()->Max());
}
}
}
}
template<class Type2, class TypeHandle2, class Region2, class Rep2>
void Convert() {
Types<Type2, TypeHandle2, Region2> T2(Rep2::ToRegion(&zone, isolate),
isolate,
isolate->random_number_generator());
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type1 = *it;
TypeHandle2 type2 = T2.template Convert<Type>(type1);
TypeHandle type3 = T.template Convert<Type2>(type2);
CheckEqual(type1, type3);
}
}
void HTypeFromType() {
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
TypeHandle type1 = *it1;
TypeHandle type2 = *it2;
HType htype1 = HType::FromType<Type>(type1);
HType htype2 = HType::FromType<Type>(type2);
CHECK(!type1->Is(type2) || htype1.IsSubtypeOf(htype2));
}
}
}
};
typedef Tests<Type, Type*, Zone, ZoneRep> ZoneTests;
typedef Tests<HeapType, Handle<HeapType>, Isolate, HeapRep> HeapTests;
TEST(IsSomeType_zone) { ZoneTests().IsSomeType(); }
TEST(IsSomeType_heap) { HeapTests().IsSomeType(); }
TEST(PointwiseRepresentation_zone) { ZoneTests().PointwiseRepresentation(); }
TEST(PointwiseRepresentation_heap) { HeapTests().PointwiseRepresentation(); }
TEST(BitsetType_zone) { ZoneTests().Bitset(); }
TEST(BitsetType_heap) { HeapTests().Bitset(); }
TEST(ClassType_zone) { ZoneTests().Class(); }
TEST(ClassType_heap) { HeapTests().Class(); }
TEST(ConstantType_zone) { ZoneTests().Constant(); }
TEST(ConstantType_heap) { HeapTests().Constant(); }
TEST(RangeType_zone) { ZoneTests().Range(); }
TEST(RangeType_heap) { HeapTests().Range(); }
TEST(ArrayType_zone) { ZoneTests().Array(); }
TEST(ArrayType_heap) { HeapTests().Array(); }
TEST(FunctionType_zone) { ZoneTests().Function(); }
TEST(FunctionType_heap) { HeapTests().Function(); }
TEST(Of_zone) { ZoneTests().Of(); }
TEST(Of_heap) { HeapTests().Of(); }
TEST(NowOf_zone) { ZoneTests().NowOf(); }
TEST(NowOf_heap) { HeapTests().NowOf(); }
TEST(MinMax_zone) { ZoneTests().MinMax(); }
TEST(MinMax_heap) { HeapTests().MinMax(); }
TEST(BitsetGlb_zone) { ZoneTests().BitsetGlb(); }
TEST(BitsetGlb_heap) { HeapTests().BitsetGlb(); }
TEST(BitsetLub_zone) { ZoneTests().BitsetLub(); }
TEST(BitsetLub_heap) { HeapTests().BitsetLub(); }
TEST(Is1_zone) { ZoneTests().Is1(); }
TEST(Is1_heap) { HeapTests().Is1(); }
TEST(Is2_zone) { ZoneTests().Is2(); }
TEST(Is2_heap) { HeapTests().Is2(); }
TEST(NowIs_zone) { ZoneTests().NowIs(); }
TEST(NowIs_heap) { HeapTests().NowIs(); }
TEST(Contains_zone) { ZoneTests().Contains(); }
TEST(Contains_heap) { HeapTests().Contains(); }
TEST(NowContains_zone) { ZoneTests().NowContains(); }
TEST(NowContains_heap) { HeapTests().NowContains(); }
TEST(Maybe_zone) { ZoneTests().Maybe(); }
TEST(Maybe_heap) { HeapTests().Maybe(); }
TEST(Union1_zone) { ZoneTests().Union1(); }
TEST(Union1_heap) { HeapTests().Union1(); }
TEST(Union2_zone) { ZoneTests().Union2(); }
TEST(Union2_heap) { HeapTests().Union2(); }
TEST(Union3_zone) { ZoneTests().Union3(); }
TEST(Union3_heap) { HeapTests().Union3(); }
TEST(Union4_zone) { ZoneTests().Union4(); }
TEST(Union4_heap) { HeapTests().Union4(); }
TEST(Intersect_zone) { ZoneTests().Intersect(); }
TEST(Intersect_heap) { HeapTests().Intersect(); }
TEST(Distributivity_zone) { ZoneTests().Distributivity(); }
TEST(Distributivity_heap) { HeapTests().Distributivity(); }
TEST(GetRange_zone) { ZoneTests().GetRange(); }
TEST(GetRange_heap) { HeapTests().GetRange(); }
TEST(Convert_zone) {
ZoneTests().Convert<HeapType, Handle<HeapType>, Isolate, HeapRep>();
}
TEST(Convert_heap) { HeapTests().Convert<Type, Type*, Zone, ZoneRep>(); }
TEST(HTypeFromType_zone) { ZoneTests().HTypeFromType(); }
TEST(HTypeFromType_heap) { HeapTests().HTypeFromType(); }