blob: f87778596ad44dedb0280b6c84743f931cdce954 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGEXP_REGEXP_AST_H_
#define V8_REGEXP_REGEXP_AST_H_
#include "src/utils.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
VISIT(Disjunction) \
VISIT(Alternative) \
VISIT(Assertion) \
VISIT(CharacterClass) \
VISIT(Atom) \
VISIT(Quantifier) \
VISIT(Capture) \
VISIT(Lookaround) \
VISIT(BackReference) \
VISIT(Empty) \
VISIT(Text)
#define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
#undef FORWARD_DECLARE
class RegExpCompiler;
class RegExpNode;
class RegExpTree;
class RegExpVisitor BASE_EMBEDDED {
public:
virtual ~RegExpVisitor() {}
#define MAKE_CASE(Name) \
virtual void* Visit##Name(RegExp##Name*, void* data) = 0;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
};
// A simple closed interval.
class Interval {
public:
Interval() : from_(kNone), to_(kNone) {}
Interval(int from, int to) : from_(from), to_(to) {}
Interval Union(Interval that) {
if (that.from_ == kNone)
return *this;
else if (from_ == kNone)
return that;
else
return Interval(Min(from_, that.from_), Max(to_, that.to_));
}
bool Contains(int value) { return (from_ <= value) && (value <= to_); }
bool is_empty() { return from_ == kNone; }
int from() const { return from_; }
int to() const { return to_; }
static Interval Empty() { return Interval(); }
static const int kNone = -1;
private:
int from_;
int to_;
};
// Represents code units in the range from from_ to to_, both ends are
// inclusive.
class CharacterRange {
public:
CharacterRange() : from_(0), to_(0) {}
// For compatibility with the CHECK_OK macro
CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT
CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) {}
static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
Zone* zone);
static Vector<const int> GetWordBounds();
static inline CharacterRange Singleton(uc16 value) {
return CharacterRange(value, value);
}
static inline CharacterRange Range(uc16 from, uc16 to) {
DCHECK(from <= to);
return CharacterRange(from, to);
}
static inline CharacterRange Everything() {
return CharacterRange(0, 0xFFFF);
}
bool Contains(uc16 i) { return from_ <= i && i <= to_; }
uc16 from() const { return from_; }
void set_from(uc16 value) { from_ = value; }
uc16 to() const { return to_; }
void set_to(uc16 value) { to_ = value; }
bool is_valid() { return from_ <= to_; }
bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
bool IsSingleton() { return (from_ == to_); }
void AddCaseEquivalents(Isolate* isolate, Zone* zone,
ZoneList<CharacterRange>* ranges, bool is_one_byte);
static void Split(ZoneList<CharacterRange>* base, Vector<const int> overlay,
ZoneList<CharacterRange>** included,
ZoneList<CharacterRange>** excluded, Zone* zone);
// Whether a range list is in canonical form: Ranges ordered by from value,
// and ranges non-overlapping and non-adjacent.
static bool IsCanonical(ZoneList<CharacterRange>* ranges);
// Convert range list to canonical form. The characters covered by the ranges
// will still be the same, but no character is in more than one range, and
// adjacent ranges are merged. The resulting list may be shorter than the
// original, but cannot be longer.
static void Canonicalize(ZoneList<CharacterRange>* ranges);
// Negate the contents of a character range in canonical form.
static void Negate(ZoneList<CharacterRange>* src,
ZoneList<CharacterRange>* dst, Zone* zone);
static const int kStartMarker = (1 << 24);
static const int kPayloadMask = (1 << 24) - 1;
private:
uc16 from_;
uc16 to_;
};
class CharacterSet final BASE_EMBEDDED {
public:
explicit CharacterSet(uc16 standard_set_type)
: ranges_(NULL), standard_set_type_(standard_set_type) {}
explicit CharacterSet(ZoneList<CharacterRange>* ranges)
: ranges_(ranges), standard_set_type_(0) {}
ZoneList<CharacterRange>* ranges(Zone* zone);
uc16 standard_set_type() { return standard_set_type_; }
void set_standard_set_type(uc16 special_set_type) {
standard_set_type_ = special_set_type;
}
bool is_standard() { return standard_set_type_ != 0; }
void Canonicalize();
private:
ZoneList<CharacterRange>* ranges_;
// If non-zero, the value represents a standard set (e.g., all whitespace
// characters) without having to expand the ranges.
uc16 standard_set_type_;
};
class TextElement final BASE_EMBEDDED {
public:
enum TextType { ATOM, CHAR_CLASS };
static TextElement Atom(RegExpAtom* atom);
static TextElement CharClass(RegExpCharacterClass* char_class);
int cp_offset() const { return cp_offset_; }
void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
int length() const;
TextType text_type() const { return text_type_; }
RegExpTree* tree() const { return tree_; }
RegExpAtom* atom() const {
DCHECK(text_type() == ATOM);
return reinterpret_cast<RegExpAtom*>(tree());
}
RegExpCharacterClass* char_class() const {
DCHECK(text_type() == CHAR_CLASS);
return reinterpret_cast<RegExpCharacterClass*>(tree());
}
private:
TextElement(TextType text_type, RegExpTree* tree)
: cp_offset_(-1), text_type_(text_type), tree_(tree) {}
int cp_offset_;
TextType text_type_;
RegExpTree* tree_;
};
class RegExpTree : public ZoneObject {
public:
static const int kInfinity = kMaxInt;
virtual ~RegExpTree() {}
virtual void* Accept(RegExpVisitor* visitor, void* data) = 0;
virtual RegExpNode* ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) = 0;
virtual bool IsTextElement() { return false; }
virtual bool IsAnchoredAtStart() { return false; }
virtual bool IsAnchoredAtEnd() { return false; }
virtual int min_match() = 0;
virtual int max_match() = 0;
// Returns the interval of registers used for captures within this
// expression.
virtual Interval CaptureRegisters() { return Interval::Empty(); }
virtual void AppendToText(RegExpText* text, Zone* zone);
std::ostream& Print(std::ostream& os, Zone* zone); // NOLINT
#define MAKE_ASTYPE(Name) \
virtual RegExp##Name* As##Name(); \
virtual bool Is##Name();
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ASTYPE)
#undef MAKE_ASTYPE
};
class RegExpDisjunction final : public RegExpTree {
public:
explicit RegExpDisjunction(ZoneList<RegExpTree*>* alternatives);
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpDisjunction* AsDisjunction() override;
Interval CaptureRegisters() override;
bool IsDisjunction() override;
bool IsAnchoredAtStart() override;
bool IsAnchoredAtEnd() override;
int min_match() override { return min_match_; }
int max_match() override { return max_match_; }
ZoneList<RegExpTree*>* alternatives() { return alternatives_; }
private:
bool SortConsecutiveAtoms(RegExpCompiler* compiler);
void RationalizeConsecutiveAtoms(RegExpCompiler* compiler);
void FixSingleCharacterDisjunctions(RegExpCompiler* compiler);
ZoneList<RegExpTree*>* alternatives_;
int min_match_;
int max_match_;
};
class RegExpAlternative final : public RegExpTree {
public:
explicit RegExpAlternative(ZoneList<RegExpTree*>* nodes);
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpAlternative* AsAlternative() override;
Interval CaptureRegisters() override;
bool IsAlternative() override;
bool IsAnchoredAtStart() override;
bool IsAnchoredAtEnd() override;
int min_match() override { return min_match_; }
int max_match() override { return max_match_; }
ZoneList<RegExpTree*>* nodes() { return nodes_; }
private:
ZoneList<RegExpTree*>* nodes_;
int min_match_;
int max_match_;
};
class RegExpAssertion final : public RegExpTree {
public:
enum AssertionType {
START_OF_LINE,
START_OF_INPUT,
END_OF_LINE,
END_OF_INPUT,
BOUNDARY,
NON_BOUNDARY
};
explicit RegExpAssertion(AssertionType type) : assertion_type_(type) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpAssertion* AsAssertion() override;
bool IsAssertion() override;
bool IsAnchoredAtStart() override;
bool IsAnchoredAtEnd() override;
int min_match() override { return 0; }
int max_match() override { return 0; }
AssertionType assertion_type() { return assertion_type_; }
private:
AssertionType assertion_type_;
};
class RegExpCharacterClass final : public RegExpTree {
public:
RegExpCharacterClass(ZoneList<CharacterRange>* ranges, bool is_negated)
: set_(ranges), is_negated_(is_negated) {}
explicit RegExpCharacterClass(uc16 type) : set_(type), is_negated_(false) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpCharacterClass* AsCharacterClass() override;
bool IsCharacterClass() override;
bool IsTextElement() override { return true; }
int min_match() override { return 1; }
int max_match() override { return 1; }
void AppendToText(RegExpText* text, Zone* zone) override;
CharacterSet character_set() { return set_; }
// TODO(lrn): Remove need for complex version if is_standard that
// recognizes a mangled standard set and just do { return set_.is_special(); }
bool is_standard(Zone* zone);
// Returns a value representing the standard character set if is_standard()
// returns true.
// Currently used values are:
// s : unicode whitespace
// S : unicode non-whitespace
// w : ASCII word character (digit, letter, underscore)
// W : non-ASCII word character
// d : ASCII digit
// D : non-ASCII digit
// . : non-unicode non-newline
// * : All characters
uc16 standard_type() { return set_.standard_set_type(); }
ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
bool is_negated() { return is_negated_; }
private:
CharacterSet set_;
bool is_negated_;
};
class RegExpAtom final : public RegExpTree {
public:
explicit RegExpAtom(Vector<const uc16> data) : data_(data) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpAtom* AsAtom() override;
bool IsAtom() override;
bool IsTextElement() override { return true; }
int min_match() override { return data_.length(); }
int max_match() override { return data_.length(); }
void AppendToText(RegExpText* text, Zone* zone) override;
Vector<const uc16> data() { return data_; }
int length() { return data_.length(); }
private:
Vector<const uc16> data_;
};
class RegExpText final : public RegExpTree {
public:
explicit RegExpText(Zone* zone) : elements_(2, zone), length_(0) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpText* AsText() override;
bool IsText() override;
bool IsTextElement() override { return true; }
int min_match() override { return length_; }
int max_match() override { return length_; }
void AppendToText(RegExpText* text, Zone* zone) override;
void AddElement(TextElement elm, Zone* zone) {
elements_.Add(elm, zone);
length_ += elm.length();
}
ZoneList<TextElement>* elements() { return &elements_; }
private:
ZoneList<TextElement> elements_;
int length_;
};
class RegExpQuantifier final : public RegExpTree {
public:
enum QuantifierType { GREEDY, NON_GREEDY, POSSESSIVE };
RegExpQuantifier(int min, int max, QuantifierType type, RegExpTree* body)
: body_(body),
min_(min),
max_(max),
min_match_(min * body->min_match()),
quantifier_type_(type) {
if (max > 0 && body->max_match() > kInfinity / max) {
max_match_ = kInfinity;
} else {
max_match_ = max * body->max_match();
}
}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
static RegExpNode* ToNode(int min, int max, bool is_greedy, RegExpTree* body,
RegExpCompiler* compiler, RegExpNode* on_success,
bool not_at_start = false);
RegExpQuantifier* AsQuantifier() override;
Interval CaptureRegisters() override;
bool IsQuantifier() override;
int min_match() override { return min_match_; }
int max_match() override { return max_match_; }
int min() { return min_; }
int max() { return max_; }
bool is_possessive() { return quantifier_type_ == POSSESSIVE; }
bool is_non_greedy() { return quantifier_type_ == NON_GREEDY; }
bool is_greedy() { return quantifier_type_ == GREEDY; }
RegExpTree* body() { return body_; }
private:
RegExpTree* body_;
int min_;
int max_;
int min_match_;
int max_match_;
QuantifierType quantifier_type_;
};
class RegExpCapture final : public RegExpTree {
public:
explicit RegExpCapture(int index) : body_(NULL), index_(index) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
static RegExpNode* ToNode(RegExpTree* body, int index,
RegExpCompiler* compiler, RegExpNode* on_success);
RegExpCapture* AsCapture() override;
bool IsAnchoredAtStart() override;
bool IsAnchoredAtEnd() override;
Interval CaptureRegisters() override;
bool IsCapture() override;
int min_match() override { return body_->min_match(); }
int max_match() override { return body_->max_match(); }
RegExpTree* body() { return body_; }
void set_body(RegExpTree* body) { body_ = body; }
int index() { return index_; }
static int StartRegister(int index) { return index * 2; }
static int EndRegister(int index) { return index * 2 + 1; }
private:
RegExpTree* body_;
int index_;
};
class RegExpLookaround final : public RegExpTree {
public:
enum Type { LOOKAHEAD, LOOKBEHIND };
RegExpLookaround(RegExpTree* body, bool is_positive, int capture_count,
int capture_from, Type type)
: body_(body),
is_positive_(is_positive),
capture_count_(capture_count),
capture_from_(capture_from),
type_(type) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpLookaround* AsLookaround() override;
Interval CaptureRegisters() override;
bool IsLookaround() override;
bool IsAnchoredAtStart() override;
int min_match() override { return 0; }
int max_match() override { return 0; }
RegExpTree* body() { return body_; }
bool is_positive() { return is_positive_; }
int capture_count() { return capture_count_; }
int capture_from() { return capture_from_; }
Type type() { return type_; }
private:
RegExpTree* body_;
bool is_positive_;
int capture_count_;
int capture_from_;
Type type_;
};
class RegExpBackReference final : public RegExpTree {
public:
explicit RegExpBackReference(RegExpCapture* capture) : capture_(capture) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpBackReference* AsBackReference() override;
bool IsBackReference() override;
int min_match() override { return 0; }
// The back reference may be recursive, e.g. /(\2)(\1)/. To avoid infinite
// recursion, we give up. Ignorance is bliss.
int max_match() override { return kInfinity; }
int index() { return capture_->index(); }
RegExpCapture* capture() { return capture_; }
private:
RegExpCapture* capture_;
};
class RegExpEmpty final : public RegExpTree {
public:
RegExpEmpty() {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
RegExpEmpty* AsEmpty() override;
bool IsEmpty() override;
int min_match() override { return 0; }
int max_match() override { return 0; }
};
} // namespace internal
} // namespace v8
#endif // V8_REGEXP_REGEXP_AST_H_