blob: a5d0b5370f8083f0230921e820f030777a87241a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017 NXP
* Copyright 2014-2015 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <env.h>
#include <fsl_ddr_sdram.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <asm/system.h>
#include <fm_eth.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include <asm/arch/cpu.h>
#include <asm/arch/speed.h>
#include <fsl_immap.h>
#include <asm/arch/mp.h>
#include <efi_loader.h>
#include <fsl-mc/fsl_mc.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
#include <asm/armv8/sec_firmware.h>
#ifdef CONFIG_SYS_FSL_DDR
#include <fsl_ddr.h>
#endif
#include <asm/arch/clock.h>
#include <hwconfig.h>
#include <fsl_qbman.h>
#ifdef CONFIG_TFABOOT
#include <env_internal.h>
#ifdef CONFIG_CHAIN_OF_TRUST
#include <fsl_validate.h>
#endif
#endif
DECLARE_GLOBAL_DATA_PTR;
static struct cpu_type cpu_type_list[] = {
CPU_TYPE_ENTRY(LS2080A, LS2080A, 8),
CPU_TYPE_ENTRY(LS2085A, LS2085A, 8),
CPU_TYPE_ENTRY(LS2045A, LS2045A, 4),
CPU_TYPE_ENTRY(LS2088A, LS2088A, 8),
CPU_TYPE_ENTRY(LS2084A, LS2084A, 8),
CPU_TYPE_ENTRY(LS2048A, LS2048A, 4),
CPU_TYPE_ENTRY(LS2044A, LS2044A, 4),
CPU_TYPE_ENTRY(LS2081A, LS2081A, 8),
CPU_TYPE_ENTRY(LS2041A, LS2041A, 4),
CPU_TYPE_ENTRY(LS1043A, LS1043A, 4),
CPU_TYPE_ENTRY(LS1043A, LS1043A_P23, 4),
CPU_TYPE_ENTRY(LS1023A, LS1023A, 2),
CPU_TYPE_ENTRY(LS1023A, LS1023A_P23, 2),
CPU_TYPE_ENTRY(LS1046A, LS1046A, 4),
CPU_TYPE_ENTRY(LS1026A, LS1026A, 2),
CPU_TYPE_ENTRY(LS2040A, LS2040A, 4),
CPU_TYPE_ENTRY(LS1012A, LS1012A, 1),
CPU_TYPE_ENTRY(LS1028A, LS1028A, 2),
CPU_TYPE_ENTRY(LS1088A, LS1088A, 8),
CPU_TYPE_ENTRY(LS1084A, LS1084A, 8),
CPU_TYPE_ENTRY(LS1048A, LS1048A, 4),
CPU_TYPE_ENTRY(LS1044A, LS1044A, 4),
CPU_TYPE_ENTRY(LX2160A, LX2160A, 16),
CPU_TYPE_ENTRY(LX2120A, LX2120A, 12),
CPU_TYPE_ENTRY(LX2080A, LX2080A, 8),
};
#define EARLY_PGTABLE_SIZE 0x5000
static struct mm_region early_map[] = {
#ifdef CONFIG_FSL_LSCH3
{ CONFIG_SYS_FSL_CCSR_BASE, CONFIG_SYS_FSL_CCSR_BASE,
CONFIG_SYS_FSL_CCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_OCRAM_BASE, CONFIG_SYS_FSL_OCRAM_BASE,
SYS_FSL_OCRAM_SPACE_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE
},
{ CONFIG_SYS_FSL_QSPI_BASE1, CONFIG_SYS_FSL_QSPI_BASE1,
CONFIG_SYS_FSL_QSPI_SIZE1,
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE},
#ifdef CONFIG_FSL_IFC
/* For IFC Region #1, only the first 4MB is cache-enabled */
{ CONFIG_SYS_FSL_IFC_BASE1, CONFIG_SYS_FSL_IFC_BASE1,
CONFIG_SYS_FSL_IFC_SIZE1_1,
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE
},
{ CONFIG_SYS_FSL_IFC_BASE1 + CONFIG_SYS_FSL_IFC_SIZE1_1,
CONFIG_SYS_FSL_IFC_BASE1 + CONFIG_SYS_FSL_IFC_SIZE1_1,
CONFIG_SYS_FSL_IFC_SIZE1 - CONFIG_SYS_FSL_IFC_SIZE1_1,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE
},
{ CONFIG_SYS_FLASH_BASE, CONFIG_SYS_FSL_IFC_BASE1,
CONFIG_SYS_FSL_IFC_SIZE1,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE
},
#endif
{ CONFIG_SYS_FSL_DRAM_BASE1, CONFIG_SYS_FSL_DRAM_BASE1,
CONFIG_SYS_FSL_DRAM_SIZE1,
#if defined(CONFIG_TFABOOT) || \
(defined(CONFIG_SPL) && !defined(CONFIG_SPL_BUILD))
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
#else /* Start with nGnRnE and PXN and UXN to prevent speculative access */
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN |
#endif
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#ifdef CONFIG_FSL_IFC
/* Map IFC region #2 up to CONFIG_SYS_FLASH_BASE for NAND boot */
{ CONFIG_SYS_FSL_IFC_BASE2, CONFIG_SYS_FSL_IFC_BASE2,
CONFIG_SYS_FLASH_BASE - CONFIG_SYS_FSL_IFC_BASE2,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE
},
#endif
{ CONFIG_SYS_FSL_DCSR_BASE, CONFIG_SYS_FSL_DCSR_BASE,
CONFIG_SYS_FSL_DCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_DRAM_BASE2, CONFIG_SYS_FSL_DRAM_BASE2,
CONFIG_SYS_FSL_DRAM_SIZE2,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#ifdef CONFIG_SYS_FSL_DRAM_BASE3
{ CONFIG_SYS_FSL_DRAM_BASE3, CONFIG_SYS_FSL_DRAM_BASE3,
CONFIG_SYS_FSL_DRAM_SIZE3,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#endif
#elif defined(CONFIG_FSL_LSCH2)
{ CONFIG_SYS_FSL_CCSR_BASE, CONFIG_SYS_FSL_CCSR_BASE,
CONFIG_SYS_FSL_CCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_OCRAM_BASE, CONFIG_SYS_FSL_OCRAM_BASE,
SYS_FSL_OCRAM_SPACE_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE
},
{ CONFIG_SYS_FSL_DCSR_BASE, CONFIG_SYS_FSL_DCSR_BASE,
CONFIG_SYS_FSL_DCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_QSPI_BASE, CONFIG_SYS_FSL_QSPI_BASE,
CONFIG_SYS_FSL_QSPI_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE
},
#ifdef CONFIG_FSL_IFC
{ CONFIG_SYS_FSL_IFC_BASE, CONFIG_SYS_FSL_IFC_BASE,
CONFIG_SYS_FSL_IFC_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE
},
#endif
{ CONFIG_SYS_FSL_DRAM_BASE1, CONFIG_SYS_FSL_DRAM_BASE1,
CONFIG_SYS_FSL_DRAM_SIZE1,
#if defined(CONFIG_TFABOOT) || \
(defined(CONFIG_SPL) && !defined(CONFIG_SPL_BUILD))
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
#else /* Start with nGnRnE and PXN and UXN to prevent speculative access */
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN |
#endif
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
{ CONFIG_SYS_FSL_DRAM_BASE2, CONFIG_SYS_FSL_DRAM_BASE2,
CONFIG_SYS_FSL_DRAM_SIZE2,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_PXN | PTE_BLOCK_UXN |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#endif
{}, /* list terminator */
};
static struct mm_region final_map[] = {
#ifdef CONFIG_FSL_LSCH3
{ CONFIG_SYS_FSL_CCSR_BASE, CONFIG_SYS_FSL_CCSR_BASE,
CONFIG_SYS_FSL_CCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_OCRAM_BASE, CONFIG_SYS_FSL_OCRAM_BASE,
SYS_FSL_OCRAM_SPACE_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE
},
{ CONFIG_SYS_FSL_DRAM_BASE1, CONFIG_SYS_FSL_DRAM_BASE1,
CONFIG_SYS_FSL_DRAM_SIZE1,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
{ CONFIG_SYS_FSL_QSPI_BASE1, CONFIG_SYS_FSL_QSPI_BASE1,
CONFIG_SYS_FSL_QSPI_SIZE1,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_QSPI_BASE2, CONFIG_SYS_FSL_QSPI_BASE2,
CONFIG_SYS_FSL_QSPI_SIZE2,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#ifdef CONFIG_FSL_IFC
{ CONFIG_SYS_FSL_IFC_BASE2, CONFIG_SYS_FSL_IFC_BASE2,
CONFIG_SYS_FSL_IFC_SIZE2,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#endif
{ CONFIG_SYS_FSL_DCSR_BASE, CONFIG_SYS_FSL_DCSR_BASE,
CONFIG_SYS_FSL_DCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_MC_BASE, CONFIG_SYS_FSL_MC_BASE,
CONFIG_SYS_FSL_MC_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_NI_BASE, CONFIG_SYS_FSL_NI_BASE,
CONFIG_SYS_FSL_NI_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
/* For QBMAN portal, only the first 64MB is cache-enabled */
{ CONFIG_SYS_FSL_QBMAN_BASE, CONFIG_SYS_FSL_QBMAN_BASE,
CONFIG_SYS_FSL_QBMAN_SIZE_1,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN | PTE_BLOCK_NS
},
{ CONFIG_SYS_FSL_QBMAN_BASE + CONFIG_SYS_FSL_QBMAN_SIZE_1,
CONFIG_SYS_FSL_QBMAN_BASE + CONFIG_SYS_FSL_QBMAN_SIZE_1,
CONFIG_SYS_FSL_QBMAN_SIZE - CONFIG_SYS_FSL_QBMAN_SIZE_1,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_PCIE1_PHYS_ADDR, CONFIG_SYS_PCIE1_PHYS_ADDR,
CONFIG_SYS_PCIE1_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_PCIE2_PHYS_ADDR, CONFIG_SYS_PCIE2_PHYS_ADDR,
CONFIG_SYS_PCIE2_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#ifdef CONFIG_SYS_PCIE3_PHYS_ADDR
{ CONFIG_SYS_PCIE3_PHYS_ADDR, CONFIG_SYS_PCIE3_PHYS_ADDR,
CONFIG_SYS_PCIE3_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#endif
#ifdef CONFIG_SYS_PCIE4_PHYS_ADDR
{ CONFIG_SYS_PCIE4_PHYS_ADDR, CONFIG_SYS_PCIE4_PHYS_ADDR,
CONFIG_SYS_PCIE4_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#endif
#ifdef SYS_PCIE5_PHYS_ADDR
{ SYS_PCIE5_PHYS_ADDR, SYS_PCIE5_PHYS_ADDR,
SYS_PCIE5_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#endif
#ifdef SYS_PCIE6_PHYS_ADDR
{ SYS_PCIE6_PHYS_ADDR, SYS_PCIE6_PHYS_ADDR,
SYS_PCIE6_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#endif
{ CONFIG_SYS_FSL_WRIOP1_BASE, CONFIG_SYS_FSL_WRIOP1_BASE,
CONFIG_SYS_FSL_WRIOP1_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_AIOP1_BASE, CONFIG_SYS_FSL_AIOP1_BASE,
CONFIG_SYS_FSL_AIOP1_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_PEBUF_BASE, CONFIG_SYS_FSL_PEBUF_BASE,
CONFIG_SYS_FSL_PEBUF_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_DRAM_BASE2, CONFIG_SYS_FSL_DRAM_BASE2,
CONFIG_SYS_FSL_DRAM_SIZE2,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#ifdef CONFIG_SYS_FSL_DRAM_BASE3
{ CONFIG_SYS_FSL_DRAM_BASE3, CONFIG_SYS_FSL_DRAM_BASE3,
CONFIG_SYS_FSL_DRAM_SIZE3,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#endif
#elif defined(CONFIG_FSL_LSCH2)
{ CONFIG_SYS_FSL_BOOTROM_BASE, CONFIG_SYS_FSL_BOOTROM_BASE,
CONFIG_SYS_FSL_BOOTROM_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_CCSR_BASE, CONFIG_SYS_FSL_CCSR_BASE,
CONFIG_SYS_FSL_CCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_OCRAM_BASE, CONFIG_SYS_FSL_OCRAM_BASE,
SYS_FSL_OCRAM_SPACE_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_NON_SHARE
},
{ CONFIG_SYS_FSL_DCSR_BASE, CONFIG_SYS_FSL_DCSR_BASE,
CONFIG_SYS_FSL_DCSR_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_QSPI_BASE, CONFIG_SYS_FSL_QSPI_BASE,
CONFIG_SYS_FSL_QSPI_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#ifdef CONFIG_FSL_IFC
{ CONFIG_SYS_FSL_IFC_BASE, CONFIG_SYS_FSL_IFC_BASE,
CONFIG_SYS_FSL_IFC_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE
},
#endif
{ CONFIG_SYS_FSL_DRAM_BASE1, CONFIG_SYS_FSL_DRAM_BASE1,
CONFIG_SYS_FSL_DRAM_SIZE1,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
{ CONFIG_SYS_FSL_QBMAN_BASE, CONFIG_SYS_FSL_QBMAN_BASE,
CONFIG_SYS_FSL_QBMAN_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_FSL_DRAM_BASE2, CONFIG_SYS_FSL_DRAM_BASE2,
CONFIG_SYS_FSL_DRAM_SIZE2,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
{ CONFIG_SYS_PCIE1_PHYS_ADDR, CONFIG_SYS_PCIE1_PHYS_ADDR,
CONFIG_SYS_PCIE1_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
{ CONFIG_SYS_PCIE2_PHYS_ADDR, CONFIG_SYS_PCIE2_PHYS_ADDR,
CONFIG_SYS_PCIE2_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#ifdef CONFIG_SYS_PCIE3_PHYS_ADDR
{ CONFIG_SYS_PCIE3_PHYS_ADDR, CONFIG_SYS_PCIE3_PHYS_ADDR,
CONFIG_SYS_PCIE3_PHYS_SIZE,
PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN
},
#endif
{ CONFIG_SYS_FSL_DRAM_BASE3, CONFIG_SYS_FSL_DRAM_BASE3,
CONFIG_SYS_FSL_DRAM_SIZE3,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
},
#endif
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
{}, /* space holder for secure mem */
#endif
{},
};
struct mm_region *mem_map = early_map;
void cpu_name(char *name)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
unsigned int i, svr, ver;
svr = gur_in32(&gur->svr);
ver = SVR_SOC_VER(svr);
for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
strcpy(name, cpu_type_list[i].name);
#ifdef CONFIG_ARCH_LX2160A
if (IS_C_PROCESSOR(svr))
strcat(name, "C");
#endif
if (IS_E_PROCESSOR(svr))
strcat(name, "E");
sprintf(name + strlen(name), " Rev%d.%d",
SVR_MAJ(svr), SVR_MIN(svr));
break;
}
if (i == ARRAY_SIZE(cpu_type_list))
strcpy(name, "unknown");
}
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
/*
* To start MMU before DDR is available, we create MMU table in SRAM.
* The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
* levels of translation tables here to cover 40-bit address space.
* We use 4KB granule size, with 40 bits physical address, T0SZ=24
* Address above EARLY_PGTABLE_SIZE (0x5000) is free for other purpose.
* Note, the debug print in cache_v8.c is not usable for debugging
* these early MMU tables because UART is not yet available.
*/
static inline void early_mmu_setup(void)
{
unsigned int el = current_el();
/* global data is already setup, no allocation yet */
if (el == 3)
gd->arch.tlb_addr = CONFIG_SYS_FSL_OCRAM_BASE;
else
gd->arch.tlb_addr = CONFIG_SYS_DDR_SDRAM_BASE;
gd->arch.tlb_fillptr = gd->arch.tlb_addr;
gd->arch.tlb_size = EARLY_PGTABLE_SIZE;
/* Create early page tables */
setup_pgtables();
/* point TTBR to the new table */
set_ttbr_tcr_mair(el, gd->arch.tlb_addr,
get_tcr(el, NULL, NULL) &
~(TCR_ORGN_MASK | TCR_IRGN_MASK),
MEMORY_ATTRIBUTES);
set_sctlr(get_sctlr() | CR_M);
}
static void fix_pcie_mmu_map(void)
{
#ifdef CONFIG_ARCH_LS2080A
unsigned int i;
u32 svr, ver;
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
svr = gur_in32(&gur->svr);
ver = SVR_SOC_VER(svr);
/* Fix PCIE base and size for LS2088A */
if ((ver == SVR_LS2088A) || (ver == SVR_LS2084A) ||
(ver == SVR_LS2048A) || (ver == SVR_LS2044A) ||
(ver == SVR_LS2081A) || (ver == SVR_LS2041A)) {
for (i = 0; i < ARRAY_SIZE(final_map); i++) {
switch (final_map[i].phys) {
case CONFIG_SYS_PCIE1_PHYS_ADDR:
final_map[i].phys = 0x2000000000ULL;
final_map[i].virt = 0x2000000000ULL;
final_map[i].size = 0x800000000ULL;
break;
case CONFIG_SYS_PCIE2_PHYS_ADDR:
final_map[i].phys = 0x2800000000ULL;
final_map[i].virt = 0x2800000000ULL;
final_map[i].size = 0x800000000ULL;
break;
#ifdef CONFIG_SYS_PCIE3_PHYS_ADDR
case CONFIG_SYS_PCIE3_PHYS_ADDR:
final_map[i].phys = 0x3000000000ULL;
final_map[i].virt = 0x3000000000ULL;
final_map[i].size = 0x800000000ULL;
break;
#endif
#ifdef CONFIG_SYS_PCIE4_PHYS_ADDR
case CONFIG_SYS_PCIE4_PHYS_ADDR:
final_map[i].phys = 0x3800000000ULL;
final_map[i].virt = 0x3800000000ULL;
final_map[i].size = 0x800000000ULL;
break;
#endif
default:
break;
}
}
}
#endif
}
/*
* The final tables look similar to early tables, but different in detail.
* These tables are in DRAM. Sub tables are added to enable cache for
* QBMan and OCRAM.
*
* Put the MMU table in secure memory if gd->arch.secure_ram is valid.
* OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0.
*/
static inline void final_mmu_setup(void)
{
u64 tlb_addr_save = gd->arch.tlb_addr;
unsigned int el = current_el();
int index;
/* fix the final_map before filling in the block entries */
fix_pcie_mmu_map();
mem_map = final_map;
/* Update mapping for DDR to actual size */
for (index = 0; index < ARRAY_SIZE(final_map) - 2; index++) {
/*
* Find the entry for DDR mapping and update the address and
* size. Zero-sized mapping will be skipped when creating MMU
* table.
*/
switch (final_map[index].virt) {
case CONFIG_SYS_FSL_DRAM_BASE1:
final_map[index].virt = gd->bd->bi_dram[0].start;
final_map[index].phys = gd->bd->bi_dram[0].start;
final_map[index].size = gd->bd->bi_dram[0].size;
break;
#ifdef CONFIG_SYS_FSL_DRAM_BASE2
case CONFIG_SYS_FSL_DRAM_BASE2:
#if (CONFIG_NR_DRAM_BANKS >= 2)
final_map[index].virt = gd->bd->bi_dram[1].start;
final_map[index].phys = gd->bd->bi_dram[1].start;
final_map[index].size = gd->bd->bi_dram[1].size;
#else
final_map[index].size = 0;
#endif
break;
#endif
#ifdef CONFIG_SYS_FSL_DRAM_BASE3
case CONFIG_SYS_FSL_DRAM_BASE3:
#if (CONFIG_NR_DRAM_BANKS >= 3)
final_map[index].virt = gd->bd->bi_dram[2].start;
final_map[index].phys = gd->bd->bi_dram[2].start;
final_map[index].size = gd->bd->bi_dram[2].size;
#else
final_map[index].size = 0;
#endif
break;
#endif
default:
break;
}
}
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
if (el == 3) {
/*
* Only use gd->arch.secure_ram if the address is
* recalculated. Align to 4KB for MMU table.
*/
/* put page tables in secure ram */
index = ARRAY_SIZE(final_map) - 2;
gd->arch.tlb_addr = gd->arch.secure_ram & ~0xfff;
final_map[index].virt = gd->arch.secure_ram & ~0x3;
final_map[index].phys = final_map[index].virt;
final_map[index].size = CONFIG_SYS_MEM_RESERVE_SECURE;
final_map[index].attrs = PTE_BLOCK_OUTER_SHARE;
gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED;
tlb_addr_save = gd->arch.tlb_addr;
} else {
/* Use allocated (board_f.c) memory for TLB */
tlb_addr_save = gd->arch.tlb_allocated;
gd->arch.tlb_addr = tlb_addr_save;
}
}
#endif
/* Reset the fill ptr */
gd->arch.tlb_fillptr = tlb_addr_save;
/* Create normal system page tables */
setup_pgtables();
/* Create emergency page tables */
gd->arch.tlb_addr = gd->arch.tlb_fillptr;
gd->arch.tlb_emerg = gd->arch.tlb_addr;
setup_pgtables();
gd->arch.tlb_addr = tlb_addr_save;
/* Disable cache and MMU */
dcache_disable(); /* TLBs are invalidated */
invalidate_icache_all();
/* point TTBR to the new table */
set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL),
MEMORY_ATTRIBUTES);
set_sctlr(get_sctlr() | CR_M);
}
u64 get_page_table_size(void)
{
return 0x10000;
}
int arch_cpu_init(void)
{
/*
* This function is called before U-Boot relocates itself to speed up
* on system running. It is not necessary to run if performance is not
* critical. Skip if MMU is already enabled by SPL or other means.
*/
if (get_sctlr() & CR_M)
return 0;
icache_enable();
__asm_invalidate_dcache_all();
__asm_invalidate_tlb_all();
early_mmu_setup();
set_sctlr(get_sctlr() | CR_C);
return 0;
}
void mmu_setup(void)
{
final_mmu_setup();
}
/*
* This function is called from common/board_r.c.
* It recreates MMU table in main memory.
*/
void enable_caches(void)
{
mmu_setup();
__asm_invalidate_tlb_all();
icache_enable();
dcache_enable();
}
#endif /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
#ifdef CONFIG_TFABOOT
enum boot_src __get_boot_src(u32 porsr1)
{
enum boot_src src = BOOT_SOURCE_RESERVED;
u32 rcw_src = (porsr1 & RCW_SRC_MASK) >> RCW_SRC_BIT;
#if !defined(CONFIG_NXP_LSCH3_2)
u32 val;
#endif
debug("%s: rcw_src 0x%x\n", __func__, rcw_src);
#if defined(CONFIG_FSL_LSCH3)
#if defined(CONFIG_NXP_LSCH3_2)
switch (rcw_src) {
case RCW_SRC_SDHC1_VAL:
src = BOOT_SOURCE_SD_MMC;
break;
case RCW_SRC_SDHC2_VAL:
src = BOOT_SOURCE_SD_MMC2;
break;
case RCW_SRC_I2C1_VAL:
src = BOOT_SOURCE_I2C1_EXTENDED;
break;
case RCW_SRC_FLEXSPI_NAND2K_VAL:
src = BOOT_SOURCE_XSPI_NAND;
break;
case RCW_SRC_FLEXSPI_NAND4K_VAL:
src = BOOT_SOURCE_XSPI_NAND;
break;
case RCW_SRC_RESERVED_1_VAL:
src = BOOT_SOURCE_RESERVED;
break;
case RCW_SRC_FLEXSPI_NOR_24B:
src = BOOT_SOURCE_XSPI_NOR;
break;
default:
src = BOOT_SOURCE_RESERVED;
}
#else
val = rcw_src & RCW_SRC_TYPE_MASK;
if (val == RCW_SRC_NOR_VAL) {
val = rcw_src & NOR_TYPE_MASK;
switch (val) {
case NOR_16B_VAL:
case NOR_32B_VAL:
src = BOOT_SOURCE_IFC_NOR;
break;
default:
src = BOOT_SOURCE_RESERVED;
}
} else {
/* RCW SRC Serial Flash */
val = rcw_src & RCW_SRC_SERIAL_MASK;
switch (val) {
case RCW_SRC_QSPI_VAL:
/* RCW SRC Serial NOR (QSPI) */
src = BOOT_SOURCE_QSPI_NOR;
break;
case RCW_SRC_SD_CARD_VAL:
/* RCW SRC SD Card */
src = BOOT_SOURCE_SD_MMC;
break;
case RCW_SRC_EMMC_VAL:
/* RCW SRC EMMC */
src = BOOT_SOURCE_SD_MMC;
break;
case RCW_SRC_I2C1_VAL:
/* RCW SRC I2C1 Extended */
src = BOOT_SOURCE_I2C1_EXTENDED;
break;
default:
src = BOOT_SOURCE_RESERVED;
}
}
#endif
#elif defined(CONFIG_FSL_LSCH2)
/* RCW SRC NAND */
val = rcw_src & RCW_SRC_NAND_MASK;
if (val == RCW_SRC_NAND_VAL) {
val = rcw_src & NAND_RESERVED_MASK;
if (val != NAND_RESERVED_1 && val != NAND_RESERVED_2)
src = BOOT_SOURCE_IFC_NAND;
} else {
/* RCW SRC NOR */
val = rcw_src & RCW_SRC_NOR_MASK;
if (val == NOR_8B_VAL || val == NOR_16B_VAL) {
src = BOOT_SOURCE_IFC_NOR;
} else {
switch (rcw_src) {
case QSPI_VAL1:
case QSPI_VAL2:
src = BOOT_SOURCE_QSPI_NOR;
break;
case SD_VAL:
src = BOOT_SOURCE_SD_MMC;
break;
default:
src = BOOT_SOURCE_RESERVED;
}
}
}
#endif
if (CONFIG_IS_ENABLED(SYS_FSL_ERRATUM_A010539) && !rcw_src)
src = BOOT_SOURCE_QSPI_NOR;
debug("%s: src 0x%x\n", __func__, src);
return src;
}
enum boot_src get_boot_src(void)
{
struct pt_regs regs;
u32 porsr1 = 0;
#if defined(CONFIG_FSL_LSCH3)
u32 __iomem *dcfg_ccsr = (u32 __iomem *)DCFG_BASE;
#elif defined(CONFIG_FSL_LSCH2)
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
#endif
if (current_el() == 2) {
regs.regs[0] = SIP_SVC_RCW;
smc_call(&regs);
if (!regs.regs[0])
porsr1 = regs.regs[1];
}
if (current_el() == 3 || !porsr1) {
#ifdef CONFIG_FSL_LSCH3
porsr1 = in_le32(dcfg_ccsr + DCFG_PORSR1 / 4);
#elif defined(CONFIG_FSL_LSCH2)
porsr1 = in_be32(&gur->porsr1);
#endif
}
debug("%s: porsr1 0x%x\n", __func__, porsr1);
return __get_boot_src(porsr1);
}
#ifdef CONFIG_ENV_IS_IN_MMC
int mmc_get_env_dev(void)
{
enum boot_src src = get_boot_src();
int dev = CONFIG_SYS_MMC_ENV_DEV;
switch (src) {
case BOOT_SOURCE_SD_MMC:
dev = 0;
break;
case BOOT_SOURCE_SD_MMC2:
dev = 1;
break;
default:
break;
}
return dev;
}
#endif
enum env_location env_get_location(enum env_operation op, int prio)
{
enum boot_src src = get_boot_src();
enum env_location env_loc = ENVL_NOWHERE;
if (prio)
return ENVL_UNKNOWN;
#ifdef CONFIG_ENV_IS_NOWHERE
return env_loc;
#endif
switch (src) {
case BOOT_SOURCE_IFC_NOR:
env_loc = ENVL_FLASH;
break;
case BOOT_SOURCE_QSPI_NOR:
/* FALLTHROUGH */
case BOOT_SOURCE_XSPI_NOR:
env_loc = ENVL_SPI_FLASH;
break;
case BOOT_SOURCE_IFC_NAND:
/* FALLTHROUGH */
case BOOT_SOURCE_QSPI_NAND:
/* FALLTHROUGH */
case BOOT_SOURCE_XSPI_NAND:
env_loc = ENVL_NAND;
break;
case BOOT_SOURCE_SD_MMC:
/* FALLTHROUGH */
case BOOT_SOURCE_SD_MMC2:
env_loc = ENVL_MMC;
break;
case BOOT_SOURCE_I2C1_EXTENDED:
/* FALLTHROUGH */
default:
break;
}
return env_loc;
}
#endif /* CONFIG_TFABOOT */
u32 initiator_type(u32 cluster, int init_id)
{
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
u32 type = 0;
type = gur_in32(&gur->tp_ityp[idx]);
if (type & TP_ITYP_AV)
return type;
return 0;
}
u32 cpu_pos_mask(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type && (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM))
mask |= 1 << (i * TP_INIT_PER_CLUSTER + j);
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return mask;
}
u32 cpu_mask(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return mask;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
return hweight32(cpu_mask());
}
int fsl_qoriq_core_to_cluster(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (initiator_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return -1; /* cannot identify the cluster */
}
u32 fsl_qoriq_core_to_type(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (count == core)
return type;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return -1; /* cannot identify the cluster */
}
#ifndef CONFIG_FSL_LSCH3
uint get_svr(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
return gur_in32(&gur->svr);
}
#endif
#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
struct sys_info sysinfo;
char buf[32];
unsigned int i, core;
u32 type, rcw, svr = gur_in32(&gur->svr);
puts("SoC: ");
cpu_name(buf);
printf(" %s (0x%x)\n", buf, svr);
memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
get_sys_info(&sysinfo);
puts("Clock Configuration:");
for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
if (!(i % 3))
puts("\n ");
type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
printf("CPU%d(%s):%-4s MHz ", core,
type == TY_ITYP_VER_A7 ? "A7 " :
(type == TY_ITYP_VER_A53 ? "A53" :
(type == TY_ITYP_VER_A57 ? "A57" :
(type == TY_ITYP_VER_A72 ? "A72" : " "))),
strmhz(buf, sysinfo.freq_processor[core]));
}
/* Display platform clock as Bus frequency. */
printf("\n Bus: %-4s MHz ",
strmhz(buf, sysinfo.freq_systembus / CONFIG_SYS_FSL_PCLK_DIV));
printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
#ifdef CONFIG_SYS_DPAA_FMAN
printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
#endif
#ifdef CONFIG_SYS_FSL_HAS_DP_DDR
if (soc_has_dp_ddr()) {
printf(" DP-DDR: %-4s MT/s",
strmhz(buf, sysinfo.freq_ddrbus2));
}
#endif
puts("\n");
/*
* Display the RCW, so that no one gets confused as to what RCW
* we're actually using for this boot.
*/
puts("Reset Configuration Word (RCW):");
for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
rcw = gur_in32(&gur->rcwsr[i]);
if ((i % 4) == 0)
printf("\n %08x:", i * 4);
printf(" %08x", rcw);
}
puts("\n");
return 0;
}
#endif
#ifdef CONFIG_FSL_ESDHC
int cpu_mmc_init(bd_t *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
int cpu_eth_init(bd_t *bis)
{
int error = 0;
#if defined(CONFIG_FSL_MC_ENET) && !defined(CONFIG_SPL_BUILD)
error = fsl_mc_ldpaa_init(bis);
#endif
#ifdef CONFIG_FMAN_ENET
fm_standard_init(bis);
#endif
return error;
}
static inline int check_psci(void)
{
unsigned int psci_ver;
psci_ver = sec_firmware_support_psci_version();
if (psci_ver == PSCI_INVALID_VER)
return 1;
return 0;
}
static void config_core_prefetch(void)
{
char *buf = NULL;
char buffer[HWCONFIG_BUFFER_SIZE];
const char *prefetch_arg = NULL;
size_t arglen;
unsigned int mask;
struct pt_regs regs;
if (env_get_f("hwconfig", buffer, sizeof(buffer)) > 0)
buf = buffer;
prefetch_arg = hwconfig_subarg_f("core_prefetch", "disable",
&arglen, buf);
if (prefetch_arg) {
mask = simple_strtoul(prefetch_arg, NULL, 0) & 0xff;
if (mask & 0x1) {
printf("Core0 prefetch can't be disabled\n");
return;
}
#define SIP_PREFETCH_DISABLE_64 0xC200FF13
regs.regs[0] = SIP_PREFETCH_DISABLE_64;
regs.regs[1] = mask;
smc_call(&regs);
if (regs.regs[0])
printf("Prefetch disable config failed for mask ");
else
printf("Prefetch disable config passed for mask ");
printf("0x%x\n", mask);
}
}
int arch_early_init_r(void)
{
#ifdef CONFIG_SYS_FSL_ERRATUM_A009635
u32 svr_dev_id;
/*
* erratum A009635 is valid only for LS2080A SoC and
* its personalitiesi
*/
svr_dev_id = get_svr();
if (IS_SVR_DEV(svr_dev_id, SVR_DEV(SVR_LS2080A)))
erratum_a009635();
#endif
#if defined(CONFIG_SYS_FSL_ERRATUM_A009942) && defined(CONFIG_SYS_FSL_DDR)
erratum_a009942_check_cpo();
#endif
if (check_psci()) {
debug("PSCI: PSCI does not exist.\n");
/* if PSCI does not exist, boot secondary cores here */
if (fsl_layerscape_wake_seconday_cores())
printf("Did not wake secondary cores\n");
}
config_core_prefetch();
#ifdef CONFIG_SYS_HAS_SERDES
fsl_serdes_init();
#endif
#ifdef CONFIG_SYS_FSL_HAS_RGMII
/* some dpmacs in armv8a based freescale layerscape SOCs can be
* configured via both serdes(sgmii, xfi, xlaui etc) bits and via
* EC*_PMUX(rgmii) bits in RCW.
* e.g. dpmac 17 and 18 in LX2160A can be configured as SGMII from
* serdes bits and as RGMII via EC1_PMUX/EC2_PMUX bits
* Now if a dpmac is enabled by serdes bits then it takes precedence
* over EC*_PMUX bits. i.e. in LX2160A if we select serdes protocol
* that configures dpmac17 as SGMII and set the EC1_PMUX as RGMII,
* then the dpmac is SGMII and not RGMII.
*
* Therefore, move the fsl_rgmii_init after fsl_serdes_init. in
* fsl_rgmii_init function of SOC, we will check if the dpmac is enabled
* or not? if it is (fsl_serdes_init has already enabled the dpmac),
* then don't enable it.
*/
fsl_rgmii_init();
#endif
#ifdef CONFIG_FMAN_ENET
fman_enet_init();
#endif
#ifdef CONFIG_SYS_DPAA_QBMAN
setup_qbman_portals();
#endif
return 0;
}
int timer_init(void)
{
u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
#ifdef CONFIG_FSL_LSCH3
u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
#endif
#if defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \
defined(CONFIG_ARCH_LS1028A)
u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET;
u32 svr_dev_id;
#endif
#ifdef COUNTER_FREQUENCY_REAL
unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
/* Update with accurate clock frequency */
if (current_el() == 3)
asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
#endif
#ifdef CONFIG_FSL_LSCH3
/* Enable timebase for all clusters.
* It is safe to do so even some clusters are not enabled.
*/
out_le32(cltbenr, 0xf);
#endif
#if defined(CONFIG_ARCH_LS2080A) || defined(CONFIG_ARCH_LS1088A) || \
defined(CONFIG_ARCH_LS1028A)
/*
* In certain Layerscape SoCs, the clock for each core's
* has an enable bit in the PMU Physical Core Time Base Enable
* Register (PCTBENR), which allows the watchdog to operate.
*/
setbits_le32(pctbenr, 0xff);
/*
* For LS2080A SoC and its personalities, timer controller
* offset is different
*/
svr_dev_id = get_svr();
if (IS_SVR_DEV(svr_dev_id, SVR_DEV(SVR_LS2080A)))
cntcr = (u32 *)SYS_FSL_LS2080A_LS2085A_TIMER_ADDR;
#endif
/* Enable clock for timer
* This is a global setting.
*/
out_le32(cntcr, 0x1);
return 0;
}
__efi_runtime_data u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
void __efi_runtime reset_cpu(ulong addr)
{
u32 val;
#ifdef CONFIG_ARCH_LX2160A
val = in_le32(rstcr);
val |= 0x01;
out_le32(rstcr, val);
#else
/* Raise RESET_REQ_B */
val = scfg_in32(rstcr);
val |= 0x02;
scfg_out32(rstcr, val);
#endif
}
#ifdef CONFIG_EFI_LOADER
void __efi_runtime EFIAPI efi_reset_system(
enum efi_reset_type reset_type,
efi_status_t reset_status,
unsigned long data_size, void *reset_data)
{
switch (reset_type) {
case EFI_RESET_COLD:
case EFI_RESET_WARM:
case EFI_RESET_PLATFORM_SPECIFIC:
reset_cpu(0);
break;
case EFI_RESET_SHUTDOWN:
/* Nothing we can do */
break;
}
while (1) { }
}
efi_status_t efi_reset_system_init(void)
{
return efi_add_runtime_mmio(&rstcr, sizeof(*rstcr));
}
#endif
/*
* Calculate reserved memory with given memory bank
* Return aligned memory size on success
* Return (ram_size + needed size) for failure
*/
phys_size_t board_reserve_ram_top(phys_size_t ram_size)
{
phys_size_t ram_top = ram_size;
#if defined(CONFIG_FSL_MC_ENET) && !defined(CONFIG_SPL_BUILD)
ram_top = mc_get_dram_block_size();
if (ram_top > ram_size)
return ram_size + ram_top;
ram_top = ram_size - ram_top;
/* The start address of MC reserved memory needs to be aligned. */
ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1);
#endif
return ram_size - ram_top;
}
phys_size_t get_effective_memsize(void)
{
phys_size_t ea_size, rem = 0;
/*
* For ARMv8 SoCs, DDR memory is split into two or three regions. The
* first region is 2GB space at 0x8000_0000. Secure memory needs to
* allocated from first region. If the memory extends to the second
* region (or the third region if applicable), Management Complex (MC)
* memory should be put into the highest region, i.e. the end of DDR
* memory. CONFIG_MAX_MEM_MAPPED is set to the size of first region so
* U-Boot doesn't relocate itself into higher address. Should DDR be
* configured to skip the first region, this function needs to be
* adjusted.
*/
if (gd->ram_size > CONFIG_MAX_MEM_MAPPED) {
ea_size = CONFIG_MAX_MEM_MAPPED;
rem = gd->ram_size - ea_size;
} else {
ea_size = gd->ram_size;
}
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
/* Check if we have enough space for secure memory */
if (ea_size > CONFIG_SYS_MEM_RESERVE_SECURE)
ea_size -= CONFIG_SYS_MEM_RESERVE_SECURE;
else
printf("Error: No enough space for secure memory.\n");
#endif
/* Check if we have enough memory for MC */
if (rem < board_reserve_ram_top(rem)) {
/* Not enough memory in high region to reserve */
if (ea_size > board_reserve_ram_top(ea_size))
ea_size -= board_reserve_ram_top(ea_size);
else
printf("Error: No enough space for reserved memory.\n");
}
return ea_size;
}
#ifdef CONFIG_TFABOOT
phys_size_t tfa_get_dram_size(void)
{
struct pt_regs regs;
phys_size_t dram_size = 0;
regs.regs[0] = SMC_DRAM_BANK_INFO;
regs.regs[1] = -1;
smc_call(&regs);
if (regs.regs[0])
return 0;
dram_size = regs.regs[1];
return dram_size;
}
static int tfa_dram_init_banksize(void)
{
int i = 0, ret = 0;
struct pt_regs regs;
phys_size_t dram_size = tfa_get_dram_size();
debug("dram_size %llx\n", dram_size);
if (!dram_size)
return -EINVAL;
do {
regs.regs[0] = SMC_DRAM_BANK_INFO;
regs.regs[1] = i;
smc_call(&regs);
if (regs.regs[0]) {
ret = -EINVAL;
break;
}
debug("bank[%d]: start %lx, size %lx\n", i, regs.regs[1],
regs.regs[2]);
gd->bd->bi_dram[i].start = regs.regs[1];
gd->bd->bi_dram[i].size = regs.regs[2];
dram_size -= gd->bd->bi_dram[i].size;
i++;
} while (dram_size);
if (i > 0)
ret = 0;
#if defined(CONFIG_FSL_MC_ENET) && !defined(CONFIG_SPL_BUILD)
/* Assign memory for MC */
#ifdef CONFIG_SYS_DDR_BLOCK3_BASE
if (gd->bd->bi_dram[2].size >=
board_reserve_ram_top(gd->bd->bi_dram[2].size)) {
gd->arch.resv_ram = gd->bd->bi_dram[2].start +
gd->bd->bi_dram[2].size -
board_reserve_ram_top(gd->bd->bi_dram[2].size);
} else
#endif
{
if (gd->bd->bi_dram[1].size >=
board_reserve_ram_top(gd->bd->bi_dram[1].size)) {
gd->arch.resv_ram = gd->bd->bi_dram[1].start +
gd->bd->bi_dram[1].size -
board_reserve_ram_top(gd->bd->bi_dram[1].size);
} else if (gd->bd->bi_dram[0].size >
board_reserve_ram_top(gd->bd->bi_dram[0].size)) {
gd->arch.resv_ram = gd->bd->bi_dram[0].start +
gd->bd->bi_dram[0].size -
board_reserve_ram_top(gd->bd->bi_dram[0].size);
}
}
#endif /* CONFIG_FSL_MC_ENET */
return ret;
}
#endif
int dram_init_banksize(void)
{
#ifdef CONFIG_SYS_DP_DDR_BASE_PHY
phys_size_t dp_ddr_size;
#endif
#ifdef CONFIG_TFABOOT
if (!tfa_dram_init_banksize())
return 0;
#endif
/*
* gd->ram_size has the total size of DDR memory, less reserved secure
* memory. The DDR extends from low region to high region(s) presuming
* no hole is created with DDR configuration. gd->arch.secure_ram tracks
* the location of secure memory. gd->arch.resv_ram tracks the location
* of reserved memory for Management Complex (MC). Because gd->ram_size
* is reduced by this function if secure memory is reserved, checking
* gd->arch.secure_ram should be done to avoid running it repeatedly.
*/
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
debug("No need to run again, skip %s\n", __func__);
return 0;
}
#endif
gd->bd->bi_dram[0].start = CONFIG_SYS_SDRAM_BASE;
if (gd->ram_size > CONFIG_SYS_DDR_BLOCK1_SIZE) {
gd->bd->bi_dram[0].size = CONFIG_SYS_DDR_BLOCK1_SIZE;
gd->bd->bi_dram[1].start = CONFIG_SYS_DDR_BLOCK2_BASE;
gd->bd->bi_dram[1].size = gd->ram_size -
CONFIG_SYS_DDR_BLOCK1_SIZE;
#ifdef CONFIG_SYS_DDR_BLOCK3_BASE
if (gd->bi_dram[1].size > CONFIG_SYS_DDR_BLOCK2_SIZE) {
gd->bd->bi_dram[2].start = CONFIG_SYS_DDR_BLOCK3_BASE;
gd->bd->bi_dram[2].size = gd->bd->bi_dram[1].size -
CONFIG_SYS_DDR_BLOCK2_SIZE;
gd->bd->bi_dram[1].size = CONFIG_SYS_DDR_BLOCK2_SIZE;
}
#endif
} else {
gd->bd->bi_dram[0].size = gd->ram_size;
}
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
if (gd->bd->bi_dram[0].size >
CONFIG_SYS_MEM_RESERVE_SECURE) {
gd->bd->bi_dram[0].size -=
CONFIG_SYS_MEM_RESERVE_SECURE;
gd->arch.secure_ram = gd->bd->bi_dram[0].start +
gd->bd->bi_dram[0].size;
gd->arch.secure_ram |= MEM_RESERVE_SECURE_MAINTAINED;
gd->ram_size -= CONFIG_SYS_MEM_RESERVE_SECURE;
}
#endif /* CONFIG_SYS_MEM_RESERVE_SECURE */
#if defined(CONFIG_FSL_MC_ENET) && !defined(CONFIG_SPL_BUILD)
/* Assign memory for MC */
#ifdef CONFIG_SYS_DDR_BLOCK3_BASE
if (gd->bd->bi_dram[2].size >=
board_reserve_ram_top(gd->bd->bi_dram[2].size)) {
gd->arch.resv_ram = gd->bd->bi_dram[2].start +
gd->bd->bi_dram[2].size -
board_reserve_ram_top(gd->bd->bi_dram[2].size);
} else
#endif
{
if (gd->bd->bi_dram[1].size >=
board_reserve_ram_top(gd->bd->bi_dram[1].size)) {
gd->arch.resv_ram = gd->bd->bi_dram[1].start +
gd->bd->bi_dram[1].size -
board_reserve_ram_top(gd->bd->bi_dram[1].size);
} else if (gd->bd->bi_dram[0].size >
board_reserve_ram_top(gd->bd->bi_dram[0].size)) {
gd->arch.resv_ram = gd->bd->bi_dram[0].start +
gd->bd->bi_dram[0].size -
board_reserve_ram_top(gd->bd->bi_dram[0].size);
}
}
#endif /* CONFIG_FSL_MC_ENET */
#ifdef CONFIG_SYS_DP_DDR_BASE_PHY
#ifdef CONFIG_SYS_DDR_BLOCK3_BASE
#error "This SoC shouldn't have DP DDR"
#endif
if (soc_has_dp_ddr()) {
/* initialize DP-DDR here */
puts("DP-DDR: ");
/*
* DDR controller use 0 as the base address for binding.
* It is mapped to CONFIG_SYS_DP_DDR_BASE for core to access.
*/
dp_ddr_size = fsl_other_ddr_sdram(CONFIG_SYS_DP_DDR_BASE_PHY,
CONFIG_DP_DDR_CTRL,
CONFIG_DP_DDR_NUM_CTRLS,
CONFIG_DP_DDR_DIMM_SLOTS_PER_CTLR,
NULL, NULL, NULL);
if (dp_ddr_size) {
gd->bd->bi_dram[2].start = CONFIG_SYS_DP_DDR_BASE;
gd->bd->bi_dram[2].size = dp_ddr_size;
} else {
puts("Not detected");
}
}
#endif
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
debug("%s is called. gd->ram_size is reduced to %lu\n",
__func__, (ulong)gd->ram_size);
#endif
return 0;
}
#if CONFIG_IS_ENABLED(EFI_LOADER)
void efi_add_known_memory(void)
{
int i;
phys_addr_t ram_start, start;
phys_size_t ram_size;
u64 pages;
/* Add RAM */
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
#ifdef CONFIG_SYS_DP_DDR_BASE_PHY
#ifdef CONFIG_SYS_DDR_BLOCK3_BASE
#error "This SoC shouldn't have DP DDR"
#endif
if (i == 2)
continue; /* skip DP-DDR */
#endif
ram_start = gd->bd->bi_dram[i].start;
ram_size = gd->bd->bi_dram[i].size;
#ifdef CONFIG_RESV_RAM
if (gd->arch.resv_ram >= ram_start &&
gd->arch.resv_ram < ram_start + ram_size)
ram_size = gd->arch.resv_ram - ram_start;
#endif
start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
false);
}
}
#endif
/*
* Before DDR size is known, early MMU table have DDR mapped as device memory
* to avoid speculative access. To relocate U-Boot to DDR, "normal memory"
* needs to be set for these mappings.
* If a special case configures DDR with holes in the mapping, the holes need
* to be marked as invalid. This is not implemented in this function.
*/
void update_early_mmu_table(void)
{
if (!gd->arch.tlb_addr)
return;
if (gd->ram_size <= CONFIG_SYS_FSL_DRAM_SIZE1) {
mmu_change_region_attr(
CONFIG_SYS_SDRAM_BASE,
gd->ram_size,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_NS |
PTE_TYPE_VALID);
} else {
mmu_change_region_attr(
CONFIG_SYS_SDRAM_BASE,
CONFIG_SYS_DDR_BLOCK1_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_NS |
PTE_TYPE_VALID);
#ifdef CONFIG_SYS_DDR_BLOCK3_BASE
#ifndef CONFIG_SYS_DDR_BLOCK2_SIZE
#error "Missing CONFIG_SYS_DDR_BLOCK2_SIZE"
#endif
if (gd->ram_size - CONFIG_SYS_DDR_BLOCK1_SIZE >
CONFIG_SYS_DDR_BLOCK2_SIZE) {
mmu_change_region_attr(
CONFIG_SYS_DDR_BLOCK2_BASE,
CONFIG_SYS_DDR_BLOCK2_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_NS |
PTE_TYPE_VALID);
mmu_change_region_attr(
CONFIG_SYS_DDR_BLOCK3_BASE,
gd->ram_size -
CONFIG_SYS_DDR_BLOCK1_SIZE -
CONFIG_SYS_DDR_BLOCK2_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_NS |
PTE_TYPE_VALID);
} else
#endif
{
mmu_change_region_attr(
CONFIG_SYS_DDR_BLOCK2_BASE,
gd->ram_size -
CONFIG_SYS_DDR_BLOCK1_SIZE,
PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE |
PTE_BLOCK_NS |
PTE_TYPE_VALID);
}
}
}
__weak int dram_init(void)
{
fsl_initdram();
#if (!defined(CONFIG_SPL) && !defined(CONFIG_TFABOOT)) || \
defined(CONFIG_SPL_BUILD)
/* This will break-before-make MMU for DDR */
update_early_mmu_table();
#endif
return 0;
}