Bug: 150635486

Clone this repo:
  1. 4eb2186 [LSC] Add LOCAL_LICENSE_KINDS to external/tpm2-tss am: d76eac9f45 am: 9121942948 am: cdc8abb1a6 by Bob Badour · 12 months ago android-s-v2-preview-1 android12--mainline-release android12-dev android12-qpr1-d-release android12-qpr1-d-s1-release android12-qpr1-d-s2-release android12-qpr1-d-s3-release android12-qpr1-release master android-12.0.0_r16 android-12.0.0_r18 android-12.0.0_r19 android-12.0.0_r20 android-12.0.0_r21 android-12.0.0_r26 android-12.0.0_r27 android-mainline-12.0.0_r4 android-s-v2-beta-2 android-s-v2-preview-2
  2. cdc8abb [LSC] Add LOCAL_LICENSE_KINDS to external/tpm2-tss am: d76eac9f45 am: 9121942948 by Bob Badour · 12 months ago
  3. 9121942 [LSC] Add LOCAL_LICENSE_KINDS to external/tpm2-tss am: d76eac9f45 by Bob Badour · 12 months ago android-s-beta-4 android-s-beta-5 android-s-beta-1 android-s-beta-2 android-s-beta-3
  4. d76eac9 [LSC] Add LOCAL_LICENSE_KINDS to external/tpm2-tss by Bob Badour · 12 months ago android-s-preview-1
  5. 3a537a0 Support host compilation for tpm2-tss. am: 874eefdfd4 am: 13b6223a58 am: ef70c209e1 am: fcc4868a1b am: af75585f60 by A. Cody Schuffelen · 1 year, 9 months ago

Linux Build Status Windows Build status FreeBSD Build status Coverity Scan Coverage Status CII Best Practices Total alerts Language grade: C/C++ Documentation Status Fuzzing Status Gitter


This repository hosts source code implementing the Trusted Computing Group's (TCG) TPM2 Software Stack (TSS). This stack consists of the following layers from top to bottom:

  • Feature API (FAPI) as described in the TSS 2.0 Feature API Specification along with TSS 2.0 JSON Data Types and Policy Language Specification This API is designed to be very high-level API, intended to make programming with the TPM as simple as possible. The API functions are exposed through a single library: libtss2-fapi.
  • Enhanced System API (ESAPI) as described in the TSS 2.0 Enhanced System API (ESAPI) Specification. This API is a 1-to-1 mapping of the TPM2 commands documented in Part 3 of the TPM2 specification. Additionally there are asynchronous versions of each command. In addition to SAPI, the ESAPI performs tracking of meta data for TPM object and automatic calculation of session based authorization and encryption values. Both the synchronous and asynchronous API are exposed through a single library: libtss2-esys.
  • System API (SAPI) as described in the system level API and TPM command transmission interface specification. This API is a 1-to-1 mapping of the TPM2 commands documented in Part 3 of the TPM2 specification. Additionally there are asynchronous versions of each command. These asynchronous variants may be useful for integration into event-driven programming environments. Both the synchronous and asynchronous API are exposed through a single library: libtss2-sys.
  • Marshaling/Unmarshaling (MU) as described in the TCG TSS 2.0 Marshaling/Unmarshaling API Specification. This API provides a set of marshaling and unmarshaling functions for all data types define by the TPM library specification. The Marshaling/Unmarshaling API is exposed through a library called libtss2-mu.
  • TPM Command Transmission Interface (TCTI) that is described in the same specification. This API provides a standard interface to transmit / receive TPM command / response buffers. It is expected that any number of libraries implementing the TCTI API will be implemented as a way to abstract various platform specific IPC mechanisms. Currently this repository provides two TCTI implementations: libtss2-tcti-device and libtss2-tcti-mssim. The former should be used for direct access to the TPM through the Linux kernel driver. The latter implements the protocol exposed by the Microsoft software TPM2 simulator.
  • The TCG TSS 2.0 Overview and Common Structures Specification forms the basis for all implementations in this project. NOTE: We deviate from this draft of the specification by increasing the value of TPM2_NUM_PCR_BANKS from 3 to 16 to ensure compatibility with TPM2 implementations that have enabled a larger than typical number of PCR banks. This larger value for TPM2_NUM_PCR_BANKS is expected to be included in a future revision of the specification.

Build and Installation Instructions:

Instructions to build and install tpm2-tss are available in the INSTALL file.

Getting in Touch:

If you're looking to discuss the source code in this project or get some questions answered you should join the 01.org TPM2 mailing list: https://lists.01.org/postorius/lists/tpm2.lists.01.org/. We also have an IRC channel set up on FreeNode called #tpm2.0-tss. You can also try Gitter Gitter

In case you want to contribute to the project, please also have a look at the Contribution Guidelines.


The doxygen documentation can either be built by oneself (see the INSTALL file) or browsed directly on tpm2-tss.readthedocs.io.

Test Suite

This repository contains a test suite intended to exercise the TCTI, SAPI and ESAPI code. This test suite is not intended to test a TPM implementation, so this test suite should only be run against a TPM simulator. If this test suite is executed against a TPM other than the software simulator it may cause damage to the TPM (NV storage wear out, etc.). You have been warned.


The TPM library specification contains reference code sufficient to construct a software TPM 2.0 simulator. This code was provided by Microsoft and they provide a binary download for Windows here. IBM has repackaged this code with a few Makefiles so that the Microsoft code can be built and run on Linux systems. The Linux version of the Microsoft TPM 2.0 simulator can be obtained here. Once you've downloaded and successfully built and execute the simulator it will, by default, be accepting connections on the localhost, TCP ports 2321 and 2322.

Issues building or running the simulator should be reported to the IBM software TPM2 project.

NOTE: The Intel TCG TSS is currently tested against version 974 of the simulator. Compatibility with later versions has not yet been tested.


To test the various TCTI, SAPI and ESAPI api calls, unit and integration tests can be run by configuring the build to enable unit testing and running the “check” build target. It is recommended to use a simulator for testing, and the simulator will be automatically launched by the tests. Please review the dependency list in INSTALL for dependencies when building the test suite.

$ ./configure --enable-unit --enable-integration
$ make -j$(nproc) check

This will generate a file called “test-suite.log” in the root of the build directory.

Please report failures in a Github ‘issue’ with a full log of the test run.

NOTE: The unit and integration tests can be enabled independently. The --enable-unit option controls unit tests, and --enable-integration controls the integration tests.

Running tests on physical TPM device

To run integration tests on a physical TPM device, including a TPM hardware or a software TPM implemented in platform firmware the configure script provides two options. The first option is called --with-ptpm and it is used to point to the TPM device interface exposed by the OS, for example:

  $ ./configure  --with-ptpm=/dev/tpm0

The second option, --with-ptpmtests, enables a “class” of test. There are three classes:

  1. destructive - these tests can affect TPM capability or lifespan
  2. mandatory - these tests check all the functionality that is mandatory per the TCG specification (default).
  3. optional - these tests are for functionality that is optional per the TCG specification.

For example to enable both mandatory and optional test cases during configure one needs to set this flag as follows:

  $ ./configure --with-ptpmtests="mandatory,optional"

Tht default value for the flag is “mandatory” Any combination of the three is valid. The two flags are only valid when the integration tests are enabled with --enable-integration flag.

After that the following command is used to run the test on the configured TPM device:

  $ sudo make check-ptpm


  $ sudo make check -j 1

Note: The tests can not be run in paralel.

Running valgrind check

The unit and integration tests can be run under the valgrind tool, which performs additional checks on the library and test code, such as memory leak checks etc. The following command is used to run the tests under valgrind:

$ make check-valgrind

This command will enable all valgrind “tools” and kick off as many test as many tools it supports. It is possible to enable different valgrind tools (checks) in more granularity. This can be controlled by invoking different tools separately using check-valgrind-<tool>, for instance:

  $ make check-valgrind-memcheck


  $ make check-valgrind-drd

Currently the the following tools are supported:

memcheck - Performs memory related checks. This is the default tool. helgrind - Performs synchronization errors checks. drd - Performs thread related checks. sgcheck - Performs stack overrun related checks.

Note that the valgring tool can also be invoked manually using the standard libtool:

  $ libtool exec valgrind --tool=memcheck --leak-check=full \

This allows for more control on what checks are performed.


While investigating issues it might be helpful to enable extra debug/trace output. It can be enabled separately for different components. The description how to do this can be found in the logging file.


All system API function calls can be tested using a fuzzing library. The description how to do this can be found in the fuzzing file.

Architecture/Block Diagram

SAPI library, TAB/RM, and Test Code Block Diagram: Architecture Block Diagram

Project Layout

├── doc     : various bits of documentation\
├── include : header files installed in $(includedir)\
│   └── tss2      : all public headers for this project\
├── lib     : data files used by the build or installed into $(libdir)\
├── m4      : autoconf support macros\
├── man     : man pages\
├── script  : scripts used by the build or CI\
├── src     : all source files\
│   ├── tss2-esys : enhanced system API (ESAPI) implementation\
│   │   └── api   : ESAPI TPM API implementation\
│   ├── tss2-mu   : TPM2 type marshaling/unmarshaling (MU) API implementation\
│   ├── tss2-sys  : system API (SAPI) implementation\
│   │   └── api   : SAPI public API implementation\
│   ├── tss2-tcti : TCTI implementations for device and mssim\
│   └── util      : Internal utility library (e.g. logging framework)\
└── test    : test code\
    ├── integration : integration test harness and test cases\
    ├── tpmclient   : monolithic, legacy test application\
    └── unit        : unit tests