commit | 9aee576b99e38f05cc2e3af804650484358fe3b8 | [log] [tgz] |
---|---|---|
author | Vazquinhos <vazquinhos@gmail.com> | Fri May 13 12:37:24 2016 +0200 |
committer | Vazquinhos <vazquinhos@gmail.com> | Fri May 13 12:37:24 2016 +0200 |
tree | aae4063ffa80e69253bb90729babb598ce9d5e52 | |
parent | 0dcc72239d9f593b7347ed45ce2d71feefff3f6b [diff] |
Added dependencies to cmath in order to use sqrt
http://syoyo.github.io/tinyobjloader/
Tiny but powerful single file wavefront obj loader written in C++. No dependency except for C++ STL. It can parse 10M over polygons with moderate memory and time.
tinyobjloader
is good for embedding .obj loader to your (global illumination) renderer ;-)
tinyobjloader can successfully load 6M triangles Rungholt scene. http://graphics.cs.williams.edu/data/meshes.xml
TinyObjLoader is successfully used in ...
Licensed under 2 clause BSD.
TinyObjLoader triangulate input .obj by default.
#define TINYOBJLOADER_IMPLEMENTATION // define this in only *one* .cc #include "tiny_obj_loader.h" std::string inputfile = "cornell_box.obj"; std::vector<tinyobj::shape_t> shapes; std::vector<tinyobj::material_t> materials; std::string err; bool ret = tinyobj::LoadObj(shapes, materials, err, inputfile.c_str()); if (!err.empty()) { // `err` may contain warning message. std::cerr << err << std::endl; } if (!ret) { exit(1); } std::cout << "# of shapes : " << shapes.size() << std::endl; std::cout << "# of materials : " << materials.size() << std::endl; for (size_t i = 0; i < shapes.size(); i++) { printf("shape[%ld].name = %s\n", i, shapes[i].name.c_str()); printf("Size of shape[%ld].indices: %ld\n", i, shapes[i].mesh.indices.size()); printf("Size of shape[%ld].material_ids: %ld\n", i, shapes[i].mesh.material_ids.size()); assert((shapes[i].mesh.indices.size() % 3) == 0); for (size_t f = 0; f < shapes[i].mesh.indices.size() / 3; f++) { printf(" idx[%ld] = %d, %d, %d. mat_id = %d\n", f, shapes[i].mesh.indices[3*f+0], shapes[i].mesh.indices[3*f+1], shapes[i].mesh.indices[3*f+2], shapes[i].mesh.material_ids[f]); } printf("shape[%ld].vertices: %ld\n", i, shapes[i].mesh.positions.size()); assert((shapes[i].mesh.positions.size() % 3) == 0); for (size_t v = 0; v < shapes[i].mesh.positions.size() / 3; v++) { printf(" v[%ld] = (%f, %f, %f)\n", v, shapes[i].mesh.positions[3*v+0], shapes[i].mesh.positions[3*v+1], shapes[i].mesh.positions[3*v+2]); } } for (size_t i = 0; i < materials.size(); i++) { printf("material[%ld].name = %s\n", i, materials[i].name.c_str()); printf(" material.Ka = (%f, %f ,%f)\n", materials[i].ambient[0], materials[i].ambient[1], materials[i].ambient[2]); printf(" material.Kd = (%f, %f ,%f)\n", materials[i].diffuse[0], materials[i].diffuse[1], materials[i].diffuse[2]); printf(" material.Ks = (%f, %f ,%f)\n", materials[i].specular[0], materials[i].specular[1], materials[i].specular[2]); printf(" material.Tr = (%f, %f ,%f)\n", materials[i].transmittance[0], materials[i].transmittance[1], materials[i].transmittance[2]); printf(" material.Ke = (%f, %f ,%f)\n", materials[i].emission[0], materials[i].emission[1], materials[i].emission[2]); printf(" material.Ns = %f\n", materials[i].shininess); printf(" material.Ni = %f\n", materials[i].ior); printf(" material.dissolve = %f\n", materials[i].dissolve); printf(" material.illum = %d\n", materials[i].illum); printf(" material.map_Ka = %s\n", materials[i].ambient_texname.c_str()); printf(" material.map_Kd = %s\n", materials[i].diffuse_texname.c_str()); printf(" material.map_Ks = %s\n", materials[i].specular_texname.c_str()); printf(" material.map_Ns = %s\n", materials[i].specular_highlight_texname.c_str()); std::map<std::string, std::string>::const_iterator it(materials[i].unknown_parameter.begin()); std::map<std::string, std::string>::const_iterator itEnd(materials[i].unknown_parameter.end()); for (; it != itEnd; it++) { printf(" material.%s = %s\n", it->first.c_str(), it->second.c_str()); } printf("\n"); }
Reading .obj without triangulation. Use num_vertices[i]
to iterate over faces(indices). num_vertices[i]
stores the number of vertices for ith face.
#define TINYOBJLOADER_IMPLEMENTATION // define this in only *one* .cc #include "tiny_obj_loader.h" std::string inputfile = "cornell_box.obj"; std::vector<tinyobj::shape_t> shapes; std::vector<tinyobj::material_t> materials; std::string err; bool triangulate = false; bool ret = tinyobj::LoadObj(shapes, materials, err, inputfile.c_str(), triangulate); if (!err.empty()) { // `err` may contain warning message. std::cerr << err << std::endl; } if (!ret) { exit(1); } for (size_t i = 0; i < shapes.size(); i++) { size_t indexOffset = 0; for (size_t n = 0; n < shapes[i].mesh.num_vertices.size(); n++) { int ngon = shapes[i].mesh.num_vertices[n]; for (size_t f = 0; f < ngon; f++) { unsigned int v = shapes[i].mesh.indices[indexOffset + f]; printf(" face[%ld] v[%ld] = (%f, %f, %f)\n", n, shapes[i].mesh.positions[3*v+0], shapes[i].mesh.positions[3*v+1], shapes[i].mesh.positions[3*v+2]); } indexOffset += ngon; } }