| //===- AffineStructures.cpp - MLIR Affine Structures Class-------*- C++ -*-===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| // |
| // Structures for affine/polyhedral analysis of MLIR functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/AffineStructures.h" |
| |
| #include "mlir/IR/AffineExprVisitor.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/IntegerSet.h" |
| #include "mlir/IR/StandardOps.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace mlir; |
| |
| /// Constructs an affine expression from a flat ArrayRef. If there are local |
| /// identifiers (neither dimensional nor symbolic) that appear in the sum of |
| /// products expression, 'localExprs' is expected to have the AffineExpr for it, |
| /// and is substituted into. The ArrayRef 'eq' is expected to be in the format |
| /// [dims, symbols, locals, constant term]. |
| static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims, |
| unsigned numSymbols, |
| ArrayRef<AffineExpr *> localExprs, |
| MLIRContext *context) { |
| // Assert expected numLocals = eq.size() - numDims - numSymbols - 1 |
| assert(eq.size() - numDims - numSymbols - 1 == localExprs.size() && |
| "unexpected number of local expressions"); |
| |
| AffineExpr *expr = AffineConstantExpr::get(0, context); |
| // Dimensions and symbols. |
| for (unsigned j = 0; j < numDims + numSymbols; j++) { |
| if (eq[j] != 0) { |
| AffineExpr *id = |
| j < numDims |
| ? static_cast<AffineExpr *>(AffineDimExpr::get(j, context)) |
| : AffineSymbolExpr::get(j - numDims, context); |
| auto *term = AffineBinaryOpExpr::getMul( |
| AffineConstantExpr::get(eq[j], context), id, context); |
| expr = AffineBinaryOpExpr::getAdd(expr, term, context); |
| } |
| } |
| |
| // Local identifiers. |
| for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) { |
| if (eq[j] != 0) { |
| auto *term = AffineBinaryOpExpr::getMul( |
| AffineConstantExpr::get(eq[j], context), |
| localExprs[j - numDims - numSymbols], context); |
| expr = AffineBinaryOpExpr::getAdd(expr, term, context); |
| } |
| } |
| |
| // Constant term. |
| unsigned constTerm = eq[eq.size() - 1]; |
| if (constTerm != 0) |
| expr = AffineBinaryOpExpr::getAdd( |
| expr, AffineConstantExpr::get(constTerm, context), context); |
| return expr; |
| } |
| |
| namespace { |
| |
| // This class is used to flatten a pure affine expression (AffineExpr *, which |
| // is in a tree form) into a sum of products (w.r.t constants) when possible, |
| // and in that process simplifying the expression. The simplification performed |
| // includes the accumulation of contributions for each dimensional and symbolic |
| // identifier together, the simplification of floordiv/ceildiv/mod exprssions |
| // and other simplifications that in turn happen as a result. A simplification |
| // that this flattening naturally performs is of simplifying the numerator and |
| // denominator of floordiv/ceildiv, and folding a modulo expression to a zero, |
| // if possible. Three examples are below: |
| // |
| // (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to d0 + d1 |
| // (d0 - d0 mod 4 + 4) mod 4 simplified to 0. |
| // (3*d0 + 2*d1 + d0) floordiv 2 + d1 simplified to 2*d0 + 2*d1 |
| // |
| // For a modulo, floordiv, or a ceildiv expression, an additional identifier |
| // (called a local identifier) is introduced to rewrite it as a sum of products |
| // (w.r.t constants). For example, for the second example above, d0 % 4 is |
| // replaced by d0 - 4*q with q being introduced: the expression then simplifies |
| // to: (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to |
| // zero. Note that an affine expression may not always be expressible in a sum |
| // of products form due to the presence of modulo/floordiv/ceildiv expressions |
| // that may not be eliminated after simplification; in such cases, the final |
| // expression can be reconstructed by replacing the local identifier with its |
| // explicit form stored in localExprs (note that the explicit form itself would |
| // have been simplified and not necessarily the original form). |
| // |
| // This is a linear time post order walk for an affine expression that attempts |
| // the above simplifications through visit methods, with partial results being |
| // stored in 'operandExprStack'. When a parent expr is visited, the flattened |
| // expressions corresponding to its two operands would already be on the stack - |
| // the parent expr looks at the two flattened expressions and combines the two. |
| // It pops off the operand expressions and pushes the combined result (although |
| // this is done in-place on its LHS operand expr. When the walk is completed, |
| // the flattened form of the top-level expression would be left on the stack. |
| // |
| class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> { |
| public: |
| // Flattend expression layout: [dims, symbols, locals, constant] |
| // Stack that holds the LHS and RHS operands while visiting a binary op expr. |
| // In future, consider adding a prepass to determine how big the SmallVector's |
| // will be, and linearize this to std::vector<int64_t> to prevent |
| // SmallVector moves on re-allocation. |
| std::vector<SmallVector<int64_t, 32>> operandExprStack; |
| |
| inline unsigned getNumCols() const { |
| return numDims + numSymbols + numLocals + 1; |
| } |
| |
| unsigned numDims; |
| unsigned numSymbols; |
| // Number of newly introduced identifiers to flatten mod/floordiv/ceildiv |
| // expressions that could not be simplified. |
| unsigned numLocals; |
| // AffineExpr's corresponding to the floordiv/ceildiv/mod expressions for |
| // which new identifiers were introduced; if the latter do not get canceled |
| // out, these expressions are needed to reconstruct the AffineExpr * / tree |
| // form. Note that these expressions themselves would have been simplified |
| // (recursively) by this pass. Eg. d0 + (d0 + 2*d1 + d0) ceildiv 4 will be |
| // simplified to d0 + q, where q = (d0 + d1) ceildiv 2. (d0 + d1) ceildiv 2 |
| // would be the local expression stored for q. |
| SmallVector<AffineExpr *, 4> localExprs; |
| MLIRContext *context; |
| |
| AffineExprFlattener(unsigned numDims, unsigned numSymbols, |
| MLIRContext *context) |
| : numDims(numDims), numSymbols(numSymbols), numLocals(0), |
| context(context) { |
| operandExprStack.reserve(8); |
| } |
| |
| void visitMulExpr(AffineBinaryOpExpr *expr) { |
| assert(operandExprStack.size() >= 2); |
| // This is a pure affine expr; the RHS will be a constant. |
| assert(isa<AffineConstantExpr>(expr->getRHS())); |
| // Get the RHS constant. |
| auto rhsConst = operandExprStack.back()[getConstantIndex()]; |
| operandExprStack.pop_back(); |
| // Update the LHS in place instead of pop and push. |
| auto &lhs = operandExprStack.back(); |
| for (unsigned i = 0, e = lhs.size(); i < e; i++) { |
| lhs[i] *= rhsConst; |
| } |
| } |
| |
| void visitAddExpr(AffineBinaryOpExpr *expr) { |
| assert(operandExprStack.size() >= 2); |
| const auto &rhs = operandExprStack.back(); |
| auto &lhs = operandExprStack[operandExprStack.size() - 2]; |
| assert(lhs.size() == rhs.size()); |
| // Update the LHS in place. |
| for (unsigned i = 0; i < rhs.size(); i++) { |
| lhs[i] += rhs[i]; |
| } |
| // Pop off the RHS. |
| operandExprStack.pop_back(); |
| } |
| |
| void visitModExpr(AffineBinaryOpExpr *expr) { |
| assert(operandExprStack.size() >= 2); |
| // This is a pure affine expr; the RHS will be a constant. |
| assert(isa<AffineConstantExpr>(expr->getRHS())); |
| auto rhsConst = operandExprStack.back()[getConstantIndex()]; |
| operandExprStack.pop_back(); |
| auto &lhs = operandExprStack.back(); |
| // TODO(bondhugula): handle modulo by zero case when this issue is fixed |
| // at the other places in the IR. |
| assert(rhsConst != 0 && "RHS constant can't be zero"); |
| |
| // Check if the LHS expression is a multiple of modulo factor. |
| unsigned i; |
| for (i = 0; i < lhs.size(); i++) |
| if (lhs[i] % rhsConst != 0) |
| break; |
| // If yes, modulo expression here simplifies to zero. |
| if (i == lhs.size()) { |
| lhs.assign(lhs.size(), 0); |
| return; |
| } |
| |
| // Add an existential quantifier. expr1 % expr2 is replaced by (expr1 - |
| // q * expr2) where q is the existential quantifier introduced. |
| addLocalId(AffineBinaryOpExpr::get( |
| AffineExpr::Kind::FloorDiv, |
| toAffineExpr(lhs, numDims, numSymbols, localExprs, context), |
| AffineConstantExpr::get(rhsConst, context), context)); |
| lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; |
| } |
| void visitCeilDivExpr(AffineBinaryOpExpr *expr) { |
| visitDivExpr(expr, /*isCeil=*/true); |
| } |
| void visitFloorDivExpr(AffineBinaryOpExpr *expr) { |
| visitDivExpr(expr, /*isCeil=*/false); |
| } |
| void visitDimExpr(AffineDimExpr *expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| eq[getDimStartIndex() + expr->getPosition()] = 1; |
| } |
| void visitSymbolExpr(AffineSymbolExpr *expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| eq[getSymbolStartIndex() + expr->getPosition()] = 1; |
| } |
| void visitConstantExpr(AffineConstantExpr *expr) { |
| operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); |
| auto &eq = operandExprStack.back(); |
| eq[getConstantIndex()] = expr->getValue(); |
| } |
| |
| private: |
| void visitDivExpr(AffineBinaryOpExpr *expr, bool isCeil) { |
| assert(operandExprStack.size() >= 2); |
| assert(isa<AffineConstantExpr>(expr->getRHS())); |
| // This is a pure affine expr; the RHS is a positive constant. |
| auto rhsConst = operandExprStack.back()[getConstantIndex()]; |
| // TODO(bondhugula): handle division by zero at the same time the issue is |
| // fixed at other places. |
| assert(rhsConst != 0 && "RHS constant can't be zero"); |
| operandExprStack.pop_back(); |
| auto &lhs = operandExprStack.back(); |
| |
| // Simplify the floordiv, ceildiv if possible by canceling out the greatest |
| // common divisors of the numerator and denominator. |
| uint64_t gcd = std::abs(rhsConst); |
| for (unsigned i = 0; i < lhs.size(); i++) |
| gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); |
| // Simplify the numerator and the denominator. |
| if (gcd != 1) { |
| for (unsigned i = 0; i < lhs.size(); i++) |
| lhs[i] = lhs[i] / gcd; |
| } |
| int64_t denominator = rhsConst / gcd; |
| // If the denominator becomes 1, the updated LHS is the result. (The |
| // denominator can't be negative since rhsConst is positive). |
| if (denominator == 1) |
| return; |
| |
| // If the denominator cannot be simplified to one, we will have to retain |
| // the ceil/floor expr (simplified up until here). Add an existential |
| // quantifier to express its result, i.e., expr1 div expr2 is replaced |
| // by a new identifier, q. |
| auto divKind = |
| isCeil ? AffineExpr::Kind::CeilDiv : AffineExpr::Kind::FloorDiv; |
| addLocalId(AffineBinaryOpExpr::get( |
| divKind, toAffineExpr(lhs, numDims, numSymbols, localExprs, context), |
| AffineConstantExpr::get(denominator, context), context)); |
| lhs.assign(lhs.size(), 0); |
| lhs[getLocalVarStartIndex() + numLocals - 1] = 1; |
| } |
| |
| // Add an existential quantifier (used to flatten a mod, floordiv, ceildiv |
| // expr). localExpr is the simplified tree expression (AffineExpr *) |
| // corresponding to the quantifier. |
| void addLocalId(AffineExpr *localExpr) { |
| for (auto &subExpr : operandExprStack) { |
| subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); |
| } |
| localExprs.push_back(localExpr); |
| numLocals++; |
| } |
| |
| inline unsigned getConstantIndex() const { return getNumCols() - 1; } |
| inline unsigned getLocalVarStartIndex() const { return numDims + numSymbols; } |
| inline unsigned getSymbolStartIndex() const { return numDims; } |
| inline unsigned getDimStartIndex() const { return 0; } |
| }; |
| |
| } // end anonymous namespace |
| |
| AffineExpr *mlir::simplifyAffineExpr(AffineExpr *expr, unsigned numDims, |
| unsigned numSymbols, |
| MLIRContext *context) { |
| // TODO(bondhugula): only pure affine for now. The simplification here can be |
| // extended to semi-affine maps as well. |
| if (!expr->isPureAffine()) |
| return nullptr; |
| |
| AffineExprFlattener flattener(numDims, numSymbols, context); |
| flattener.walkPostOrder(expr); |
| ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); |
| auto *simplifiedExpr = toAffineExpr(flattenedExpr, numDims, numSymbols, |
| flattener.localExprs, context); |
| flattener.operandExprStack.pop_back(); |
| assert(flattener.operandExprStack.empty()); |
| if (simplifiedExpr == expr) |
| return nullptr; |
| return simplifiedExpr; |
| } |
| |
| MutableAffineMap::MutableAffineMap(AffineMap *map, MLIRContext *context) |
| : numDims(map->getNumDims()), numSymbols(map->getNumSymbols()), |
| context(context) { |
| for (auto *result : map->getResults()) |
| results.push_back(result); |
| for (auto *rangeSize : map->getRangeSizes()) |
| results.push_back(rangeSize); |
| } |
| |
| bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const { |
| if (results[idx]->isMultipleOf(factor)) |
| return true; |
| |
| // TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to |
| // complete this (for a more powerful analysis). |
| return false; |
| } |
| |
| // Simplifies the result affine expressions of this map. The expressions have to |
| // be pure for the simplification implemented. |
| void MutableAffineMap::simplify() { |
| // Simplify each of the results if possible. |
| for (unsigned i = 0, e = getNumResults(); i < e; i++) { |
| AffineExpr *sExpr = |
| simplifyAffineExpr(getResult(i), numDims, numSymbols, context); |
| if (sExpr) |
| results[i] = sExpr; |
| } |
| } |
| |
| MutableIntegerSet::MutableIntegerSet(IntegerSet *set, MLIRContext *context) |
| : numDims(set->getNumDims()), numSymbols(set->getNumSymbols()), |
| context(context) { |
| // TODO(bondhugula) |
| } |
| |
| // Universal set. |
| MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols, |
| MLIRContext *context) |
| : numDims(numDims), numSymbols(numSymbols), context(context) {} |
| |
| AffineValueMap::AffineValueMap(const AffineApplyOp &op, MLIRContext *context) |
| : map(op.getAffineMap(), context) { |
| // TODO: pull operands and results in. |
| } |
| |
| inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const { |
| return map.isMultipleOf(idx, factor); |
| } |
| |
| AffineValueMap::~AffineValueMap() {} |
| |
| void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) { |
| assert(eq.size() == getNumCols()); |
| unsigned offset = equalities.size(); |
| equalities.resize(equalities.size() + eq.size()); |
| for (unsigned i = 0, e = eq.size(); i < e; i++) { |
| equalities[offset + i] = eq[i]; |
| } |
| } |