commit | d2664949539e69aadd5050329104b4a81a217ee3 | [log] [tgz] |
---|---|---|
author | Thomas O'Malley <omalleyt@google.com> | Fri Oct 30 12:22:31 2020 -0700 |
committer | TensorFlower Gardener <gardener@tensorflow.org> | Fri Oct 30 12:27:12 2020 -0700 |
tree | db497ae733e217df3562ea3a12023fcde615fa66 | |
parent | 9c3c3855bd8404ce6c9191ee8043b080e7b3ac9b [diff] |
Support TF Modules inside Keras Layers and Models. With this change, it is now possible to mix-and-match tf.keras.Layers and tf.Modules inside a tf.keras.Model and everything will be tracked properly. - Variables in tf.Modules that are set as attributes of custom Layers and Models now show up properly in properties such as Layer.trainable_variables and Model.trainable_variables. - tf.Modules do not show up in Model.layers. Instead, a new method Layer._flatten_modules is added that iterates over tf.Modules and Layers in the order that Keras expects. The existing method Layer.submodules (inherited from tf.Module) can still be used to iterate over tf.Modules and Layer with the tf.Module ordering. Layer._flatten_layers is built on top of Layer._flatten_modules - Layer._layers is renamed to Layer._self_tracked_trackables to avoid naming conflicts with user-defined attributes (and to reflect that this attr contains Layers, Modules, and TrackableDataStructures) - A new property is added to tf.Module to enable this, namely tf.Module.non_trainable_variables PiperOrigin-RevId: 339917644 Change-Id: I96a7302745280a6261de8c4295c5cbf5f4d7dd5c
Documentation |
---|
TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.
TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.
TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.
Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.
See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.
To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):
$ pip install tensorflow
A smaller CPU-only package is also available:
$ pip install tensorflow-cpu
To update TensorFlow to the latest version, add --upgrade
flag to the above commands.
Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.
$ python
>>> import tensorflow as tf >>> tf.add(1, 2).numpy() 3 >>> hello = tf.constant('Hello, TensorFlow!') >>> hello.numpy() b'Hello, TensorFlow!'
For more examples, see the TensorFlow tutorials.
If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.
We use GitHub issues for tracking requests and bugs, please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.
The TensorFlow project strives to abide by generally accepted best practices in open-source software development:
Build Type | Status | Artifacts |
---|---|---|
Linux CPU | PyPI | |
Linux GPU | PyPI | |
Linux XLA | TBA | |
macOS | PyPI | |
Windows CPU | PyPI | |
Windows GPU | PyPI | |
Android | ||
Raspberry Pi 0 and 1 | Py3 | |
Raspberry Pi 2 and 3 | Py3 | |
Libtensorflow MacOS CPU | Nightly GCS Official GCS | |
Libtensorflow Linux CPU | Nightly GCS Official GCS | |
Libtensorflow Linux GPU | Nightly GCS Official GCS | |
Libtensorflow Windows CPU | Nightly GCS Official GCS | |
Libtensorflow Windows GPU | Nightly GCS Official GCS |
Build Type | Status | Artifacts |
---|---|---|
Linux AMD ROCm GPU Nightly | Nightly | |
Linux AMD ROCm GPU Stable Release | Release 1.15 / 2.x | |
Linux s390x Nightly | Nightly | |
Linux s390x CPU Stable Release | Release | |
Linux ppc64le CPU Nightly | Nightly | |
Linux ppc64le CPU Stable Release | Release 1.15 / 2.x | |
Linux ppc64le GPU Nightly | Nightly | |
Linux ppc64le GPU Stable Release | Release 1.15 / 2.x | |
Linux aarch64 CPU Nightly (Linaro) Python 3.8 | Nightly | |
Linux aarch64 CPU Stable Release (Linaro) | Release 1.x & 2.x | |
Linux aarch64 CPU Nightly (OpenLab) Python 3.6 | Nightly | |
Linux aarch64 CPU Stable Release (OpenLab) | Release 1.15 / 2.x | |
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) Nightly | Nightly | |
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) Stable Release | Release 1.15 / 2.x | |
Red Hat® Enterprise Linux® 7.6 CPU & GPU Python 2.7, 3.6 | 1.13.1 PyPI |
Container Type | Status | Artifacts |
---|---|---|
TensorFlow aarch64 Neoverse-N1 CPU Stable (Linaro) Debian | Static | Release 2.3 |
Learn more about the TensorFlow community and how to contribute.