Use mlir::OpState::operator->() to get to Operation::getAttrs()/removeAttr().

This is a preparation step to remove getAttrs()/removeAttr() from OpState.

PiperOrigin-RevId: 363942846
Change-Id: If9c7f9751935e46f8edabb4b85da5ca2180291bb
diff --git a/tensorflow/compiler/mlir/lite/transforms/lower_static_tensor_list.cc b/tensorflow/compiler/mlir/lite/transforms/lower_static_tensor_list.cc
index 35fb7c8..6a3befc 100644
--- a/tensorflow/compiler/mlir/lite/transforms/lower_static_tensor_list.cc
+++ b/tensorflow/compiler/mlir/lite/transforms/lower_static_tensor_list.cc
@@ -949,7 +949,7 @@
     // Create a new while op with new operands and updated result types.
     auto converted = rewriter.create<TF::WhileOp>(op.getLoc(), result_types,
                                                   operands, op->getAttrs());
-    converted.removeAttr("T");
+    converted->removeAttr("T");
     (void)UpdateFunctionTypes(rewriter, converted, tensor_list_args);
 
     rewriter.replaceOp(op, converted.getResults());
diff --git a/tensorflow/compiler/mlir/tensorflow/ir/tf_ops_helpers.inc b/tensorflow/compiler/mlir/tensorflow/ir/tf_ops_helpers.inc
index 775326d0..4993166 100644
--- a/tensorflow/compiler/mlir/tensorflow/ir/tf_ops_helpers.inc
+++ b/tensorflow/compiler/mlir/tensorflow/ir/tf_ops_helpers.inc
@@ -548,7 +548,7 @@
   // Drop the "output_shapes" attribute.
   LogicalResult matchAndRewrite(Op op,
                                 PatternRewriter &rewriter) const override {
-    bool found = !!op.removeAttr("output_shapes");
+    bool found = !!op->removeAttr("output_shapes");
     return success(found);
   }
 };
diff --git a/tensorflow/compiler/mlir/tensorflow/transforms/tpu_resource_read_for_write.cc b/tensorflow/compiler/mlir/tensorflow/transforms/tpu_resource_read_for_write.cc
index 63d2b28..e4eaa83 100644
--- a/tensorflow/compiler/mlir/tensorflow/transforms/tpu_resource_read_for_write.cc
+++ b/tensorflow/compiler/mlir/tensorflow/transforms/tpu_resource_read_for_write.cc
@@ -112,7 +112,7 @@
 
     auto new_cluster_func = builder.create<tf_device::ClusterFuncOp>(
         cluster_func.getLoc(), cluster_func.getResultTypes(), operands,
-        cluster_func.getAttrs());
+        cluster_func->getAttrs());
     cluster_func.replaceAllUsesWith(new_cluster_func);
     FuncOp func = cluster_func.getFunc();
     Block& block = func.front();